Adaptivity in Machine Learning
CUSO winter school

Francis Bach

February 4, 2026

Notes updated everyday!

Based on book “Learning Theory from First Principles”, available at https://www.di.ens.fr/~fbach/
1tfp_book.pdf

Outline of the class:
e Lecture 1: How to get generalization bounds, the SGD way
e Lecture 2: Adaptivity of kernel methods to smoothness

e Lecture 3: Adaptivity of neural networks to linear latent variables

Remain as simple as possible. Can look at special topics chapter for deeper analysis.
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1 Lecture 1: Simple generalization bounds with SGD (linear models)

Chapters 2, 4, and 5

1.1 Classical machine learning set up (Chapter 2)

1.2

Observed data: (z;,y;) € X xY,i=1,...,niid. from a given distribution
Infinite amount of testing data from the same distribution
Goal: estimate a prediction function f: X — Y
Loss function ¢(y, z) (running example of least-squares)
Expected risk: R(f) = E[l(y, f(x))]. /A\ Randomness
Empirical risk: R(f) = LSy, f(2))
Bayes predictor and Bayes risk: minimizer
fu(x) € argmin E[((y, 2)[a]

and minimal value R, of R over all functions from X to Y. Goal of machine learning, achieve the
Bayes risk

Regression: Y = R, and the usual loss is £(y,2) = (y — 2)?, with f.(z) = E[y|z]. Absolute loss can
also be considered.

Classification: Y = {—1,1}, with ¢(y,z) = 1,—.. Use of convex surrogates (with plot): square,
logistic, hinge, each with its own interpretation, and optimal fi(x).

For logistic regression, ¢(y, f(x)) = log(1 + exp(—yf(x)), with f.(x) = 2atanh(E[y|z]).
For hinge loss, {(y, f(x)) = (1 — yf(z))+, with f.(x) = sign(Ely|z]).

Calibration functions exist. Focus only on real-valued predictions. Many other examples (Chapter
13 on structured prediction)

Two classical frameworks for learning methods: (1) local averaging (which simply replaces p(y|z) by
a local approximation based on data), and (2) empirical risk minimization.

Empirical risk minimization

Consider a set F of functions / models from X to R, typically F = {fy,0 € O}

Classical risk decomposition (estimation and approximation errors), for f € F:

R(f) = R = {R(f) = inf R} +{ inf R - R}

frex frex

/N Randomness, dependence on number of observations, and “size” of F



1.3

Exact empirical risk minimizer f € argminyey UAQ( f)
Approximate empirical risk minimizer 5%( f ) < mingeg 5%( f) + € optimization error
/N optimization error may not always go to zero! Has to be part of the analysis
Approximation error dealt with in next lecture
Estimation error, with f3 € argmin ;5 R(f):
R =R = {RH =R} +{RH-RED |+ { R - R |

< 2sup [R(f) — R(f)| +¢
fex

Classical analysis: bound uniform deviations (statistics) and optimization errors (optimization) sep-
arately

Classical statistical analysis for estimation error (Chapter 4)

Focus on G-Lipschitz-continuous loss functions (logistic, hinge, or quadratic once reduced to a com-
pact set)

Focus on “linear” predictors: fp(x) = ¢(z) "6, with ||p(z)|l2 < R almost surely. Consider the upper-
bound © = {0, 0|2 < D}. /\ Can be made more general, can be infinite-dimensional (see next
lecture)

Focus on bounds in expectation E[supfeg ‘fR(f) — SJA%(f)H

Classical symmetrization result leading to Rademacher complexity:

Eqp bug IR(f) — ﬁ(f)ﬂ <2-Ep,. [j}”;‘% zn:sm(yz-, f(a:z-))ﬂ
€ = i=1

Contraction principle:
1 « 1«
Ep [sup =Y eillyi, f(x5)) } < 2G - Eqp [Sup — Y eif(xy) ]
& fe&"‘n; 7 7 7 ‘ € fe?‘n; 7 z|
Uniform deviations, with closed-form maximization:

Eyp [ffég R =R < 4G En, [?23 !% geif(xi)”

1 n
< 4G-E = o(z) 7o
D,e[”es”ggD |~ ;e o) 70|
AGDR
NG

/\ No explicit dependence on dimension!



1.4 Subgradient method (Chapter 5)

e Given I : R? — R convex, differentiable, B-Lipschitz-continuous (gradients bounded by B in fo-
norm),

Ok = W p<n (01 = 7F' (O-1))-

Constant step-size for simplicity.
e Lemma about convexity: F(6') — F(0) < F'(6))T(#' — 6)

e For any 6 such that ||f||2 < D, we have:

10k — 015 < ||0k—1 — YF'(0r_1) — 0|3
< Ok—1 = 0[3 — 29F (05—1) " (01 — 0) + V2| F'(Ox—1) I3
< 1k—1 — 03 — 2y[F(0r-1) — F(0)] ++°B
leading to
[FOi) — FO)] < (s — 013 — 10 — 03 + B
—1 X 27 —1 2 2,}/ 2 2,}/
1t 1 o
1 N\ < g2 Y n?
F(s > 0;) — F(0) < o — 03+ 58
1 vy
< —4D%*+ 1B?
2vk * 2
9BD
< 2= with v = 2D/(BVk
5 Vitha /( )

e Application to machine learning, with F(0) = UAQ( fo), and B = GR, k = n iterations: expected
estimation error less than

AGDR | 2GDR _ 6GDR
vn vnoooWn

but O(n?) calls to gradient of individual loss functions.

NB: can be done as well without the orthogonal projection.

Note the dependence in D of the estimation error.

1.5 Stochastic gradient descent (Chapter 5)

e Two classical set ups: single pass or multiple passes. Focus on single pass (can obtain the other as
special case) where F(0) = R(fp) is the expected risk.

e Assumptions: at time k, E[gr|Fr_1] = F'(0r_1), and |gx||3 < B? almost surely.

o Iteration: 0y = 0r_1 — Yok



e Exact “same” proof with additional expectations leads to

E[F(%E@)] _F(H) < 66\’%}2

with O(n) accesses to local gradients.

A Bound on expected risk!

e (Classical extensions: strongly-convex, smoothness, variance reduction, mirror descent

e Other benefits: extend to multivariate outputs



2 Lecture 2: Adaptivity of kernel methods to smoothness

e Recall on loss functions, empirical risk, and expected risks. Model fy: X - R, § € ©

e Decomposition between estimation and approximation errors:

R(fo) =R = {R() ~ inf R(fw)} +{ jnf R(fo) - R. |

= estimation error 4 approximation error

e Summary of last lecture:

(1) For linear models fy(z) = 6T p(z), the estimation error after ERM or SGD on the ball of
radius D is proportional to %, when all features are bounded in fo-norm by R, and a G-

Lipschitz-continuous function.

(2) Single-pass constrained (on a ball of radius D) SGD, E[R(f; )] — infjs)<p R(fp) < G\}/%D.

(3) Unconstrained single-pass SGD: for all § € R?, E[R(f5. )] < R(f) + 2~mH9 0ol|* + VG 2 for 6,
averaged iterate.

/\ No explicit dependence on dimension!
/\ Linear in D/\/n

A\ Many improvements (e.g., fast rate with strong convexity)
e Goals of this lecture:

— Show that infinite-dimensional Hilbert spaces are computationally feasible.

— Deal with approximation error (requires assumption on f, based on the existence and bound-
edness of s-th order derivatives).

— Show (partial) adaptivity of kernel methods.

2.1 Kernel trick

e Now assume that p(x) € H Hilbert space, and consider f parameterized by 6 € H, as

f(x) = (0, p(x)).

Defines a space of function for which the function evaluations at a given x are bounded linear operators
(this excludes spaces which are too big).

Penalized ERM trained ERM): —» Uy, (0, ¢ —6
e Penalized ERM (or constrained ER Hélgl{l nz Yy i))) + = 110113

Representer theorem (proof by Pythagore argument): 0 = > | a;¢(z;), and everything depends on
the kernel function k(x,z') = (p(z), p(z')), since f(x) (0,0(x)) = Zz:l aik(x,z;), and H0||g{ =
22]51 ala]Kz]7 where KZ] = k(;];‘“x])

Kernel trick: only need to know the kernel function and not the feature vector.



e Alternative “algorithmic” version. SGD starting from 6y = 0:

i = 0i—1— v (Yi, (Oie1, (x:))) o ()
i
can be written as 0; = Z ajp(x;), with a new iteration
j=1

a; = — <yi, § ajk(xj, xz)) .
j=1

Complexity is O(n?) after n iterations but several methods exist to lower the cost (random features,
column sampling).

2.2 Approximation / estimation trade-off for kernel methods

e Goal: optimize D (radius of ball for constrained optimization), A (regularization parameter for
penalized optimization), or « (step-size of SGD).

What is meant by adaptivity? With a single hyperparameter, can benefit from faster rates when
available. Still needs some form of validation to find that hyperparameter.

Classical analysis for constrained optimization. (not done in lecture)

e Estimation error proportional to G\}/%D (as seen in last lecture for ERM or SGD)

e Approximation error, for © ball of radius D and center 0:

gl,nf R(for) — = Gilléfé R(for) — R(f+)
inf E[t(y. fo (@) = Uy, £.2)| < G inf E[|fo(x) = fu(a)]

m&@m@%mwm”
Il for — fell Lop)

N

N

||9’|I;c<D

e The excess risk can then be upper-bounded as (up to universal constants), with

fp € argmin IJAQ(fg)
6"l3c<D

or by single pass SGD on the ball ©:
p GRD
— <
v ¥ ieien

inf R(fp) =R < mf [1fo = fellow)

1fo — fell o)

GR
+ T”HHJ{

G2 R2 1/2
< (o {1o- 2.0+ S 0018} )
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e Goal: how to approximate
AN = inf Ifo - FllZ o) + A3

where fy(z) = (60, p(x)).
Given some (natural) assumptions on fi, optimal excess risk proportional to A(G?R?/n)'/2.

SGD way (simpler). We have, after n iterations of SGD started at 6y = 0, for any 6 € J,

’7G2R2
E[R(f5,)] < R(fs) + —||9H2 5
with, if £ is G-Lipschitz-continuous,

R(fo) = R(f+) = Ell(y, (¢(2),0)) — £y, f«(2))]
< GE[[{p(2),0)) = fu(@)l] < GVE[|fo = ] = Gllfo = fell Loy
G2

K
< Slife- Fella) + K
for any K (which will be minimized later). We then get, with K = 5 R2’
K 9 1 s  G*  ~AG?R?
7] < * e — Jx Y. ST
BR(5)] < R+ 5o~ Ll + 5O + o+ 25

_ 1 2 1 2 2 P2
- :R(f*)"i_2,YR2”f9_f*|’L2(p)+2,_Y—n”6H +’YGR-

If
AW = inf {Ifo = £l13, + M6I7 ) < pX",

we get the two bounds

BR(f5,) - R(J) € oA
V2pG(R?/n)"/2.

NB: same bound can be obtained with constrained empirical risk optimization and optimizing over D.

(R%/n) +vG*R? < p(R?/n)* + ~G? R

2vR?

/A f, is not in general of the form f«(@) = (p(z),04).
If well specified, then A()\) < A||f.]|?, and the excess risk is proportional to 1/y/n.

Alternative not done in lecture. Alternatively, we can obtain a better bound if ¢ is H-smooth, that
is, second derivatives are bounded, then, by optimality E[¢'(y, f.(z))h(z)] = 0 for any function h, and

R(fo) = R(fe) = El(y, {p(x),0)) — Ly, f«(2))]
< B[y, £u(@)((e(2),0) = fu(z)) + gl@(w)’ 0)) — fo(z)?]

TEp(0),0)) — £ = 5 1o il

Thus, we get:
. H 9 1 2 vG?R?
. < - _ - S
ER(f,)) < RU) + juf { G = Fillfan + 5o 10} + 25—
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2.3 Kernels for non-parametric estimation in one dimension

e Simple possible set-up: X = [0, 1], and p uniform on [0, 1].

e Using Fourier series expansions f(x Z fin€®™ ™ define the norm of the Hilbert space ¥ as
meZ
2 Lo 2
1£13e = D2 —1(Pml*.
Cm
meZ

with dot-product (f,g) =>_ L ()% (§)m, for e > 0.

MEZ cm

If Z ~ (1 +m?®), this is the Sobolev space of functions with square-integrable s-th derivative, with

the constraint s > 1/2 (so that ), ¢, is finite)

e Explicit feature map and kernel: ¢,,(2) = ¢,,e?™™* for m € Z, so that

(p(@)pa) = D cne®™ ™) = k(z, ')

mMEZL

Z fm 2immx __ Z fm 22m7rx _ (f’ ( )>

meZ mGZ

Note that kernel can be obtained in closed form by Fourier series summations for simple sequences
(¢m ). For example, for Sobolev cases, the kernel is a Bernoulli polynomial.

e Decomposition of optimal predictor: fx can be expanded in Fourier series

Jolw) = 3 (Fo)me?me.

meZ
e This leads to

o 2 2
AQ) = inf llfo— fulld, + 6B

= inf Y [0 — () m\2+)\2—]9 K

beC* 22 mez M
=it S {Iml = 285 () + (14 26110}
GGCZmGZ

Minimizer characterized by 0,,(1 4 Ac;;') = (f+)m, leading to optimal value

> {1~ )

meZ

N

A(N)

_ ZM_

—1
MEZL L+ )\Cm



e Assumption: >, o, (14+m?)|( f+)m|? finite for t > 0, that is, t-th derivative of f, is square integrable.

We get:
A | (f)m? Actm % 2
AN < Y T = N T o (f)
meZ L+ Aem meZ L+ Aem
A1+ m?)~? AN F N 12
< _ 1 *)m| -
sup === > (14 m)|(fo)ml
meZ
Two cases:

— If t > s, then f, is part of the function space we use for modelling (we have a well-specified
model), and thus A(X) < || fill.

— If t < s, the model is mis-specified,

AL+ m*)™! AUNI(F Y |2
A(N) < sup ———m—F— 1+m *)m
O < s 2R Sl
A1 +m*)~ 2N F Y 2
< sup ——F— 1+m m
S virr D SRR (AN
< O > (1 +m)|(fo)ml*.

meZ

Using lemma (based on Jensen’s inequality): a+b > La+ (1 —L)b > at/spt=t/s.

e Thus, the excess risk is less than a constant times n~%/2 if t > s and n~%/2%, for t € (1,s). Two facts:
(1) misspecified leads to slower rates, (2) faster rates with more derivatives (i.e., t bigger).

e More precise results for least-squares (see book and references therein), in particular with the pos-
sibility to take s large and have a rate that does not degrade with s, and for which we get optimal
behavior with respect to the model class.

2.4 Extensions beyond dimension one

e Translation invariant kernel on R?, k(z,y) = q(x —y), with ¢ having non-negative Fourier transform
e Convergence rates depend on decay of Fourier transform g(w).

e Abel kernel: ¢(x) = exp(—||z]2), ¢(w) corresponds to all s-th order derivatives being

bounded with s =d/2 +1/2 > d/2.

_1
1+[|wl3”

e Similar developments as for one dimension with rate n=%/25, but with now constraint that s > d/2.
Similar adaptivity.

o ANIft=1 (only first-order partial derivatives), then the rate of estimation for the Abel kernel is
n~1/@+D)  which is very slow, but unavoidable. See next lecture for adapativity for linear substruc-
tures.
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Comparison of three kernels: Sobolev space of order 1 (top), Matern kernel corresponding to the Sobolev
space of order 3 (middle). and Gaussian kernel (bottom). We consider two different target functions and

Smooth target

Nonsmooth target

Target

Prediction | ]

Target
Prediction|]

log, (excess risk)

Smooth target

Nonsmooth target

Target

Prediction |

Target
Prediction |

log, (excess risk)

Smooth target

Target
Prediction |

Convergence rates

—— Smooth target
Nonsmooth target

2 4 6 8 10
log, (n)

Convergence rates

—— Smooth target

—10 Nonsmooth target
1 2 4 6 8 10
T log,(n)
Nonsmooth target Convergence rates

Target
Prediction |

log, (excess risk)
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—— Smooth target

Nonsmooth target \

2 4 6 8 10

log,(n)



3 Lecture 3: Adaptivity of neural networks to latent variables

3.1

3.2

This lecture: focus on one-hidden layer neural networks. Simplest model, on which some results may
be obtained.

Prediction function: .
f(x) =3 mjo(w]z+0;),
j=1
with the activation function being often the rectified linear unit, that is, o(u) = max{u,0} = (u)+
(key property = homogeneity).
Model fg(2) which is nonlinear in 0 = {(w;), (b;), (n;)} € R™+2),

Three types of error: Estimation error (uniform deviations + optimization) + Approximation error

Optimization
Gradient descent or SGD only reaches a stationary point. No global minima

Chizat & Bach (2018): for overparameterized networks (that is, m goes to infinity), then the station-
ary points of the gradient flow have to be global minimizers. Proof based on a mean field limit since
neurons decouple

£@) = o> motw] o+ b) ==Y 0(0) = [ ©(O)dn(o).
We have
R() = % / @(0)du(0))

with R convex. Gradient flow on © = {w;};j=1, . m with 6; = (wj,b;,n;) can be interpreted as a
Wasserstein gradient flow, with bad stationary points, but global convergence when initialized with
a measure with full mass.

Uniform deviations

Assume [z < R = 1 almost surely. Constrained the norm [Jw;* + b3 to be less than one (by
renormalization, since ReLU is homogeneous), and add a constraint ||n||; < D, which corresponds to
an fy-constraint on 0 = {(w;), (b;), (n;)} € R™@+2) after optimizing over scale, since aj_lnj (ozjija: +
a;bj)y = nj(ijx +bj)4+, and

. 2.2, 2 2 272

Jnf o0 + af lwills + a5b5 = 2[n;|y/llw;||* + 3.

Uniform deviations (no proof on board):

sup |R(fg) — JAQ( fo)| < universal constant X GRD

9co Vn
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Proof using Rademacher complexity (see book) and contraction principles
Independent of the number of neurons m

/\ The number of parameters is not what counts! The norm In]l1 matters.

Approximation error - infinitely many neurons

Assume all neurons (wj,b;) € K, with K = {(w,b), max{||w||2,b} < 1}.

Variation norm:

If|2 = inf/K (dn(w, b)| such that [|z]ls < R = f(z) = /K(wTa: B dn(w, b)

Mean field limit of ||n||; when considering dn(w,b) Z Ni0(w; b;)

/N Key property of the total variation: if the function depends on a projection, we can do the
expansion in low dimension, that is, if f(z) = g(a' ), with g : R — R and ||a = 1, then || f|*> < |lg]I?.

Approximation of one-dimensional linear functions: proof by image

Approximation of one-dimensional function using Taylor series with integral remainder, assuming for
simplicity that f is twice differentiable and R = 1:

1

@—bﬁﬂwﬁsz4%ww+0fb4%+/(w—wﬁﬂwwb

-1

xT

ﬂ@szD+@+UfPD+/

-1

If constants and linear functions can be approximated by two ReLUs, we get a bound on || f]|
based on the L1 -norm of f” and values of f(1) and f’(—1), and because of Poincaré inequal-
ity, ||If] < Df L f(@)]dt + Df | f"(t)|dt, and thus it is less than the Sobolev-2 norm defined as

VO 0 Rd+ O [ () 2.

Thus, all approximation theorems for Sobolev spaces extend to one-dimension neural networks.

Extensions to more than one dimension using Fourier transform. Give only formula.

O —

G L fe

w2 \with norm proportional to 1 + ||wl||?, leading to an upper bound

A1 <0 [ 1A+ el

and decompose x — e

often called Barron norms. They can also be upper bounded by Sobolev norms of order %l + % This
implies that approximation theorems for Sobolev spaces extend, /\ for better or for worse (adaptivity
to smoothness but still pay the curse of dimensionality).

Adaptivity to linear structures. Simply does it when f.(z) = g(a'

in d in the rate, not necessarily in the constants.

x) and escape the dependence
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