

Adaptivity in Machine Learning

CUSO winter school

Francis Bach

February 4, 2026

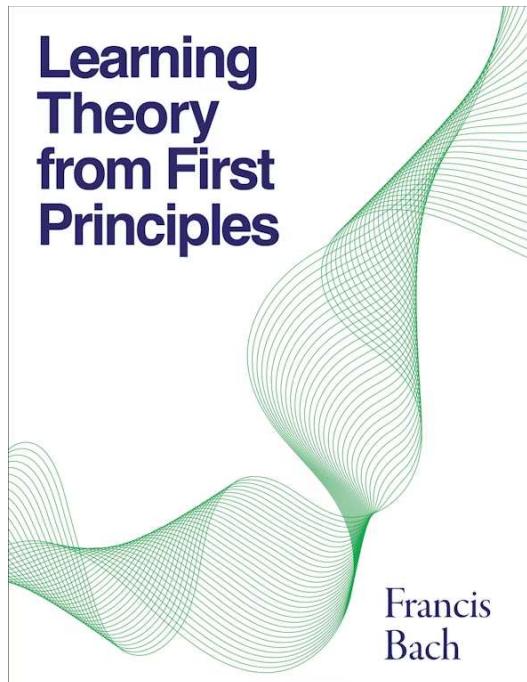
Notes updated everyday!

Based on book “Learning Theory from First Principles”, available at https://www.di.ens.fr/~fbach/ltpf_book.pdf

Outline of the class:

- Lecture 1: How to get generalization bounds, the SGD way
- Lecture 2: Adaptivity of kernel methods to smoothness
- Lecture 3: Adaptivity of neural networks to linear latent variables

Remain as simple as possible. Can look at special topics chapter for deeper analysis.



1 Lecture 1: Simple generalization bounds with SGD (linear models)

Chapters 2, 4, and 5

1.1 Classical machine learning set up (Chapter 2)

- Observed data: $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \dots, n$ i.i.d. from a given distribution
- Infinite amount of testing data from the same distribution
- Goal: estimate a prediction function $f : \mathcal{X} \rightarrow \mathcal{Y}$
- Loss function $\ell(y, z)$ (running example of least-squares)
- Expected risk: $\mathcal{R}(f) = \mathbb{E}[\ell(y, f(x))]$. \triangle Randomness
- Empirical risk: $\widehat{\mathcal{R}}(f) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, f(x_i))$
- Bayes predictor and Bayes risk: minimizer

$$f_*(x) \in \arg \min_{z \in \mathcal{Y}} \mathbb{E}[\ell(y, z)|x]$$

and minimal value \mathcal{R}_* of \mathcal{R} over all functions from \mathcal{X} to \mathcal{Y} . Goal of machine learning, achieve the Bayes risk

- Regression: $\mathcal{Y} = \mathbb{R}$, and the usual loss is $\ell(y, z) = (y - z)^2$, with $f_*(x) = \mathbb{E}[y|x]$. Absolute loss can also be considered.
- Classification: $\mathcal{Y} = \{-1, 1\}$, with $\ell(y, z) = 1_{y=z}$. Use of convex surrogates (with plot): square, logistic, hinge, each with its own interpretation, and optimal $f_*(x)$.
For logistic regression, $\ell(y, f(x)) = \log(1 + \exp(-yf(x)))$, with $f_*(x) = 2\text{atanh}(\mathbb{E}[y|x])$.
For hinge loss, $\ell(y, f(x)) = (1 - yf(x))_+$, with $f_*(x) = \text{sign}(\mathbb{E}[y|x])$.
Calibration functions exist. Focus only on real-valued predictions. Many other examples (Chapter 13 on structured prediction)
- Two classical frameworks for learning methods: (1) local averaging (which simply replaces $p(y|x)$ by a local approximation based on data), and (2) empirical risk minimization.

1.2 Empirical risk minimization

- Consider a set \mathcal{F} of functions / models from \mathcal{X} to \mathbb{R} , typically $\mathcal{F} = \{f_\theta, \theta \in \Theta\}$
- Classical risk decomposition (estimation and approximation errors), for $f \in \mathcal{F}$:

$$\mathcal{R}(f) - \mathcal{R}_* = \left\{ \mathcal{R}(f) - \inf_{f' \in \mathcal{F}} \mathcal{R}(f') \right\} + \left\{ \inf_{f' \in \mathcal{F}} \mathcal{R}(f') - \mathcal{R}_* \right\}$$

\triangle Randomness, dependence on number of observations, and “size” of \mathcal{F}

- Exact empirical risk minimizer $\hat{f} \in \arg \min_{f \in \mathcal{F}} \widehat{\mathcal{R}}(f)$
- Approximate empirical risk minimizer $\widehat{\mathcal{R}}(\hat{f}) \leq \min_{f \in \mathcal{F}} \widehat{\mathcal{R}}(f) + \varepsilon$ optimization error
⚠ optimization error may not always go to zero! Has to be part of the analysis
- Approximation error dealt with in next lecture
- Estimation error, with $f_{\mathcal{F}}^* \in \operatorname{argmin}_{f \in \mathcal{F}} \mathcal{R}(f)$:

$$\begin{aligned} \mathcal{R}(\hat{f}) - \mathcal{R}(f_{\mathcal{F}}^*) &= \left\{ \mathcal{R}(\hat{f}) - \widehat{\mathcal{R}}(\hat{f}) \right\} + \left\{ \widehat{\mathcal{R}}(\hat{f}) - \widehat{\mathcal{R}}(f_{\mathcal{F}}^*) \right\} + \left\{ \widehat{\mathcal{R}}(f_{\mathcal{F}}^*) - \mathcal{R}(f_{\mathcal{F}}^*) \right\} \\ &\leq 2 \sup_{f \in \mathcal{F}} |\mathcal{R}(f) - \widehat{\mathcal{R}}(f)| + \varepsilon \end{aligned}$$

- Classical analysis: bound uniform deviations (statistics) and optimization errors (optimization) separately

1.3 Classical statistical analysis for estimation error (Chapter 4)

- Focus on G -Lipschitz-continuous loss functions (logistic, hinge, or quadratic once reduced to a compact set)
- Focus on “linear” predictors: $f_{\theta}(x) = \varphi(x)^\top \theta$, with $\|\varphi(x)\|_2 \leq R$ almost surely. Consider the upper-bound $\Theta = \{\theta, \|\theta\|_2 \leq D\}$. ⚠ Can be made more general, can be infinite-dimensional (see next lecture)
- Focus on bounds in expectation $\mathbb{E} \left[\sup_{f \in \mathcal{F}} |\mathcal{R}(f) - \widehat{\mathcal{R}}(f)| \right]$.
- Classical symmetrization result leading to Rademacher complexity:

$$\mathbb{E}_{\mathcal{D}} \left[\sup_{f \in \mathcal{F}} |\mathcal{R}(f) - \widehat{\mathcal{R}}(f)| \right] \leq 2 \cdot \mathbb{E}_{\mathcal{D}, \varepsilon} \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i \ell(y_i, f(x_i)) \right| \right]$$

- Contraction principle:

$$\mathbb{E}_{\mathcal{D}, \varepsilon} \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i \ell(y_i, f(x_i)) \right| \right] \leq 2G \cdot \mathbb{E}_{\mathcal{D}, \varepsilon} \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i f(x_i) \right| \right]$$

- Uniform deviations, with closed-form maximization:

$$\begin{aligned} \mathbb{E}_{\mathcal{D}} \left[\sup_{f \in \mathcal{F}} |\mathcal{R}(f) - \widehat{\mathcal{R}}(f)| \right] &\leq 4G \cdot \mathbb{E}_{\mathcal{D}, \varepsilon} \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i f(x_i) \right| \right] \\ &\leq 4G \cdot \mathbb{E}_{\mathcal{D}, \varepsilon} \left[\sup_{\|\theta\|_2 \leq D} \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i \varphi(x_i)^\top \theta \right| \right] \\ &\leq \frac{4GDR}{\sqrt{n}} \end{aligned}$$

⚠ No explicit dependence on dimension!

1.4 Subgradient method (Chapter 5)

- Given $F : \mathbb{R}^d \rightarrow \mathbb{R}$ convex, differentiable, B -Lipschitz-continuous (gradients bounded by B in ℓ_2 -norm),

$$\theta_k = \Pi_{\|\cdot\|_2 \leq D}(\theta_{k-1} - \gamma F'(\theta_{k-1})).$$

Constant step-size for simplicity.

- Lemma about convexity: $F(\theta') - F(\theta) \leq F'(\theta')^\top(\theta' - \theta)$
- For any θ such that $\|\theta\|_2 \leq D$, we have:

$$\begin{aligned} \|\theta_k - \theta\|_2^2 &\leq \|\theta_{k-1} - \gamma F'(\theta_{k-1}) - \theta\|_2^2 \\ &\leq \|\theta_{k-1} - \theta\|_2^2 - 2\gamma F'(\theta_{k-1})^\top(\theta_{k-1} - \theta) + \gamma^2 \|F'(\theta_{k-1})\|_2^2 \\ &\leq \|\theta_{k-1} - \theta\|_2^2 - 2\gamma [F(\theta_{k-1}) - F(\theta)] + \gamma^2 B^2 \end{aligned}$$

leading to

$$\begin{aligned} [F(\theta_{k-1}) - F(\theta)] &\leq \frac{1}{2\gamma} \|\theta_{k-1} - \theta\|_2^2 - \frac{1}{2\gamma} \|\theta_k - \theta\|_2^2 + \frac{1}{2\gamma} B^2 \\ F\left(\frac{1}{k} \sum_{i=0}^{k-1} \theta_i\right) - F(\theta) &\leq \frac{1}{2\gamma k} \|\theta_0 - \theta\|_2^2 + \frac{\gamma}{2} B^2 \\ &\leq \frac{1}{2\gamma k} 4D^2 + \frac{\gamma}{2} B^2 \\ &\leq \frac{2BD}{\sqrt{k}} \text{ with } \gamma = 2D/(B\sqrt{k}) \end{aligned}$$

- Application to machine learning, with $F(\theta) = \widehat{\mathcal{R}}(f_\theta)$, and $B = GR$, $k = n$ iterations: expected estimation error less than

$$\frac{4GDR}{\sqrt{n}} + \frac{2GDR}{\sqrt{n}} = \frac{6GDR}{\sqrt{n}}$$

but $O(n^2)$ calls to gradient of individual loss functions.

NB: can be done as well without the orthogonal projection.

Note the dependence in D of the estimation error.

1.5 Stochastic gradient descent (Chapter 5)

- Two classical set ups: single pass or multiple passes. Focus on single pass (can obtain the other as special case) where $F(\theta) = \mathcal{R}(f_\theta)$ is the *expected* risk.
- Assumptions: at time k , $\mathbb{E}[g_k | \mathcal{F}_{k-1}] = F'(\theta_{k-1})$, and $\|g_k\|_2^2 \leq B^2$ almost surely.
- Iteration: $\theta_k = \theta_{k-1} - \gamma g_k$

- Exact “same” proof with additional expectations leads to

$$\mathbb{E} \left[F \left(\frac{1}{n} \sum_{i=0}^{n-1} \theta_i \right) \right] - F(\theta) \leq \frac{6GDR}{\sqrt{n}}$$

with $O(n)$ accesses to local gradients.

Bound on expected risk!

- Classical extensions: strongly-convex, smoothness, variance reduction, mirror descent
- Other benefits: extend to multivariate outputs

2 Lecture 2: Adaptivity of kernel methods to smoothness

- Recall on loss functions, empirical risk, and expected risks. Model $f_\theta : \mathcal{X} \rightarrow \mathbb{R}$, $\theta \in \Theta$
- Decomposition between estimation and approximation errors:

$$\begin{aligned}\mathcal{R}(f_\theta) - \mathcal{R}_* &= \left\{ \mathcal{R}(\theta) - \inf_{\theta' \in \Theta} \mathcal{R}(f_{\theta'}) \right\} + \left\{ \inf_{\theta' \in \Theta} \mathcal{R}(f_{\theta'}) - \mathcal{R}_* \right\} \\ &= \text{estimation error} + \text{approximation error}\end{aligned}$$

- Summary of last lecture:

- (1) For linear models $f_\theta(x) = \theta^\top \varphi(x)$, the estimation error after ERM or SGD on the ball of radius D is proportional to $\frac{GDR}{\sqrt{n}}$, when all features are bounded in ℓ_2 -norm by R , and a G -Lipschitz-continuous function.
- (2) Single-pass constrained (on a ball of radius D) SGD, $\mathbb{E}[\mathcal{R}(f_{\hat{\theta}_n})] - \inf_{\|\theta\| \leq D} \mathcal{R}(f_\theta) \leq \frac{GRD}{\sqrt{n}}$.
- (3) Unconstrained single-pass SGD: for all $\theta \in \mathbb{R}^d$, $\mathbb{E}[\mathcal{R}(f_{\bar{\theta}_n})] \leq \mathcal{R}(f_\theta) + \frac{1}{2\gamma n} \|\theta - \theta_0\|^2 + \frac{\gamma G^2 R^2}{2}$ for $\bar{\theta}_n$ averaged iterate.

⚠ No explicit dependence on dimension!

⚠ Linear in D/\sqrt{n}

⚠ Many improvements (e.g., fast rate with strong convexity)

- Goals of this lecture:

- Show that infinite-dimensional Hilbert spaces are computationally feasible.
- Deal with approximation error (requires assumption on f_* based on the existence and boundedness of s -th order derivatives).
- Show (partial) adaptivity of kernel methods.

2.1 Kernel trick

- Now assume that $\varphi(x) \in \mathcal{H}$ Hilbert space, and consider f parameterized by $\theta \in \mathcal{H}$, as

$$f(x) = \langle \theta, \varphi(x) \rangle.$$

Defines a space of function for which the function evaluations at a given x are bounded linear operators (this excludes spaces which are too big).

- Penalized ERM (or constrained ERM): $\min_{\theta \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle \theta, \varphi(x_i) \rangle) + \frac{\lambda}{2} \|\theta\|_{\mathcal{H}}^2$.

Representer theorem (proof by Pythagore argument): $\theta = \sum_{i=1}^n \alpha_i \varphi(x_i)$, and everything depends on the kernel function $k(x, x') = \langle \varphi(x), \varphi(x') \rangle$, since $f(x) = \langle \theta, \varphi(x) \rangle = \sum_{i=1}^n \alpha_i k(x, x_i)$, and $\|\theta\|_{\mathcal{H}}^2 = \sum_{i,j=1}^n \alpha_i \alpha_j K_{ij}$, where $K_{ij} = k(x_i, x_j)$.

Kernel trick: only need to know the kernel function and not the feature vector.

- Alternative “algorithmic” version. SGD starting from $\theta_0 = 0$:

$$\theta_i = \theta_{i-1} - \gamma \ell'(y_i, \langle \theta_{i-1}, \varphi(x_i) \rangle) \varphi(x_i)$$

can be written as $\theta_i = \sum_{j=1}^i \alpha_j \varphi(x_j)$, with a new iteration

$$\alpha_i = -\gamma \ell' \left(y_i, \sum_{j=1}^{i-1} \alpha_j k(x_j, x_i) \right).$$

Complexity is $O(n^2)$ after n iterations but several methods exist to lower the cost (random features, column sampling).

2.2 Approximation / estimation trade-off for kernel methods

- Goal: optimize D (radius of ball for constrained optimization), λ (regularization parameter for penalized optimization), or γ (step-size of SGD).

What is meant by adaptivity? With a single hyperparameter, can benefit from faster rates when available. Still needs some form of validation to find that hyperparameter.

Classical analysis for constrained optimization. (not done in lecture)

- Estimation error proportional to $\frac{GRD}{\sqrt{n}}$ (as seen in last lecture for ERM or SGD)
- Approximation error, for Θ ball of radius D and center 0:

$$\begin{aligned} \inf_{\theta' \in \Theta} \mathcal{R}(f_{\theta'}) - \mathcal{R}_* &= \inf_{\theta' \in \Theta} \mathcal{R}(f_{\theta'}) - \mathcal{R}(f_*) \\ &= \inf_{\theta' \in \Theta} \mathbb{E} [\ell(y, f_{\theta'}(x)) - \ell(y, f_*(x))] \leq G \inf_{\theta' \in \Theta} \mathbb{E} [|f_{\theta'}(x) - f_*(x)|] \\ &\leq G \inf_{\theta' \in \Theta} \left(\mathbb{E} [|f_{\theta'}(x) - f_*(x)|^2] \right)^{1/2} \\ &\leq \inf_{\|\theta'\|_{\mathcal{H}} \leq D} \|f_{\theta'} - f_*\|_{L_2(p)} \end{aligned}$$

- The excess risk can then be upper-bounded as (up to universal constants), with

$$\hat{f}_D \in \operatorname{argmin}_{\|\theta'\|_{\mathcal{H}} \leq D} \hat{\mathcal{R}}(f_{\theta})$$

or by single pass SGD on the ball Θ :

$$\begin{aligned} \mathcal{R}(\hat{f}_D) - \mathcal{R}_* &\leq \frac{GRD}{\sqrt{n}} + \inf_{\|\theta\|_{\mathcal{H}} \leq D} \|f_{\theta} - f_*\|_{L_2(p)} \\ \inf_{D \geq 0} \mathcal{R}(\hat{f}_D) - \mathcal{R}_* &\leq \inf_{\theta \in \mathcal{H}} \|f_{\theta} - f_*\|_{L_2(p)} + \frac{GR}{\sqrt{n}} \|\theta\|_{\mathcal{H}} \\ &\leq \left(\inf_{\theta \in \mathcal{H}} \left\{ \|f_{\theta} - f_*\|_{L_2(p)}^2 + \frac{G^2 R^2}{n} \|\theta\|_{\mathcal{H}}^2 \right\} \right)^{1/2} \end{aligned}$$

- Goal: how to approximate

$$A(\lambda) = \inf_{\theta \in \mathcal{H}} \|f_\theta - f_*\|_{L_2(p)}^2 + \lambda \|\theta\|_{\mathcal{H}}^2$$

where $f_\theta(x) = \langle \theta, \varphi(x) \rangle$.

Given some (natural) assumptions on f_* , optimal excess risk proportional to $A(G^2 R^2/n)^{1/2}$.

SGD way (simpler). We have, after n iterations of SGD started at $\theta_0 = 0$, for any $\theta \in \mathcal{H}$,

$$\mathbb{E}[\mathcal{R}(f_{\bar{\theta}_n})] \leq \mathcal{R}(f_\theta) + \frac{1}{2\gamma n} \|\theta\|^2 + \frac{\gamma G^2 R^2}{2},$$

with, if ℓ is G -Lipschitz-continuous,

$$\begin{aligned} \mathcal{R}(f_\theta) - \mathcal{R}(f_*) &= \mathbb{E}[\ell(y, \langle \varphi(x), \theta \rangle) - \ell(y, f_*(x))] \\ &\leq G \mathbb{E}[|\langle \varphi(x), \theta \rangle - f_*(x)|] \leq G \sqrt{\mathbb{E}[|f_\theta - f_*|^2]} = G \|f_\theta - f_*\|_{L_2(p)} \\ &\leq \frac{K}{2} \|f_\theta - f_*\|_{L_2(p)}^2 + \frac{G^2}{2K} \end{aligned}$$

for any K (which will be minimized later). We then get, with $K = \frac{1}{\gamma R^2}$,

$$\begin{aligned} \mathbb{E}[\mathcal{R}(f_{\bar{\theta}_n})] &\leq \mathcal{R}(f_*) + \frac{K}{2} \|f_\theta - f_*\|_{L_2(p)}^2 + \frac{1}{2\gamma n} \|\theta\|^2 + \frac{G^2}{2K} + \frac{\gamma G^2 R^2}{2} \\ &= \mathcal{R}(f_*) + \frac{1}{2\gamma R^2} \|f_\theta - f_*\|_{L_2(p)}^2 + \frac{1}{2\gamma n} \|\theta\|^2 + \gamma G^2 R^2. \end{aligned}$$

If

$$A(\lambda) = \inf_{\theta \in \mathcal{H}} \left\{ \|f_\theta - f_*\|_{L_2(p)}^2 + \lambda \|\theta\|^2 \right\} \leq \rho \lambda^\kappa,$$

we get the two bounds

$$\begin{aligned} \mathbb{E}[\mathcal{R}(f_{\bar{\theta}_n})] - \mathcal{R}(f_*) &\leq \frac{1}{2\gamma R^2} A(R^2/n) + \gamma G^2 R^2 \leq \frac{1}{2\gamma R^2} \rho (R^2/n)^\kappa + \gamma G^2 R^2 \\ &\leq \sqrt{2\rho} G (R^2/n)^{\kappa/2}. \end{aligned}$$

NB: same bound can be obtained with constrained empirical risk optimization and optimizing over D .

⚠ f_* is not in general of the form $f_*(x) = \langle \varphi(x), \theta_* \rangle$.

If well specified, then $A(\lambda) \leq \lambda \|\theta_*\|^2$, and the excess risk is proportional to $1/\sqrt{n}$.

Alternative not done in lecture. Alternatively, we can obtain a better bound if ℓ is H -smooth, that is, second derivatives are bounded, then, by optimality $\mathbb{E}[\ell'(y, f_*(x))h(x)] = 0$ for any function h , and

$$\begin{aligned} \mathcal{R}(f_\theta) - \mathcal{R}(f_*) &= \mathbb{E}[\ell(y, \langle \varphi(x), \theta \rangle) - \ell(y, f_*(x))] \\ &\leq \mathbb{E}[\ell'(y, f_*(x))(\langle \varphi(x), \theta \rangle - f_*(x)) + \frac{H}{2} |\langle \varphi(x), \theta \rangle - f_*(x)|^2] \\ &= \frac{H}{2} \mathbb{E}[|\langle \varphi(x), \theta \rangle - f_*(x)|^2] = \frac{H}{2} \|f_\theta - f_*\|_{L_2(p)}^2. \end{aligned}$$

Thus, we get:

$$\mathbb{E}[\mathcal{R}(f_{\bar{\theta}_n})] \leq \mathcal{R}(f_*) + \inf_{\theta \in \mathcal{H}} \left\{ \frac{H}{2} \|f_\theta - f_*\|_{L_2(p)}^2 + \frac{1}{2\gamma n} \|\theta\|^2 \right\} + \frac{\gamma G^2 R^2}{2}.$$

2.3 Kernels for non-parametric estimation in one dimension

- Simple possible set-up: $\mathcal{X} = [0, 1]$, and p uniform on $[0, 1]$.
- Using Fourier series expansions $f(x) = \sum_{m \in \mathbb{Z}} \hat{f}_m e^{2im\pi x}$, define the norm of the Hilbert space \mathcal{H} as

$$\|f\|_{\mathcal{H}}^2 = \sum_{m \in \mathbb{Z}} \frac{1}{c_m} |(\hat{f})_m|^2,$$

with dot-product $\langle f, g \rangle = \sum_{m \in \mathbb{Z}} \frac{1}{c_m} (\hat{f})_m^* (\hat{g})_m$, for $c_m > 0$.

If $\frac{1}{c_m} \sim (1 + m^{2s})$, this is the Sobolev space of functions with square-integrable s -th derivative, with the constraint $s > 1/2$ (so that $\sum_{m \in \mathbb{Z}} c_m$ is finite)

- Explicit feature map and kernel: $\varphi_m(x) = c_m e^{2im\pi x}$, for $m \in \mathbb{Z}$, so that

$$\langle \varphi(x), \varphi(x') \rangle = \sum_{m \in \mathbb{Z}} c_m e^{2im\pi(x-x')} = k(x, x')$$

$$f(x) = \sum_{m \in \mathbb{Z}} \hat{f}_m e^{2im\pi x} = \sum_{m \in \mathbb{Z}} \frac{\hat{f}_m}{c_m} c_m e^{2im\pi x} = \langle f, \varphi(x) \rangle.$$

Note that kernel can be obtained in closed form by Fourier series summations for simple sequences (c_m) . For example, for Sobolev cases, the kernel is a Bernoulli polynomial.

- Decomposition of optimal predictor: f_* can be expanded in Fourier series

$$f_*(x) = \sum_{m \in \mathbb{Z}} (\hat{f}_*)_m e^{2im\pi x}.$$

- This leads to

$$\begin{aligned} A(\lambda) &= \inf_{\theta \in \mathcal{H}} \|f_\theta - f_*\|_{L_2(p)}^2 + \lambda \|\theta\|_{\mathcal{H}}^2 \\ &= \inf_{\hat{\theta} \in \mathbb{C}^{\mathbb{Z}}} \sum_{m \in \mathbb{Z}} |\hat{\theta}_m - (\hat{f}_*)_m|^2 + \lambda \sum_{m \in \mathbb{Z}} \frac{1}{c_m} |\hat{\theta}_m|^2 \\ &= \inf_{\hat{\theta} \in \mathbb{C}^{\mathbb{Z}}} \sum_{m \in \mathbb{Z}} \left\{ |(\hat{f}_*)_m|^2 - 2\hat{\theta}_m^* (\hat{f}_*)_m + (1 + \lambda c_m^{-1}) |\hat{\theta}_m|^2 \right\} \end{aligned}$$

Minimizer characterized by $\theta_m (1 + \lambda c_m^{-1}) = (\hat{f}_*)_m$, leading to optimal value

$$\begin{aligned} A(\lambda) &\leq \sum_{m \in \mathbb{Z}} \left\{ |(\hat{f}_*)_m|^2 - \frac{|(\hat{f}_*)_m|^2}{1 + \lambda c_m^{-1}} \right\} \\ &= \sum_{m \in \mathbb{Z}} \frac{\lambda c_m^{-1} |(\hat{f}_*)_m|^2}{1 + \lambda c_m^{-1}}. \end{aligned}$$

- Assumption: $\sum_{m \in \mathbb{Z}} (1 + m^{2t}) |(\hat{f}_*)_m|^2$ finite for $t \geq 0$, that is, t -th derivative of f_* is square integrable. We get:

$$\begin{aligned} A(\lambda) &\leq \sum_{m \in \mathbb{Z}} \frac{\lambda c_m^{-1} |(\hat{f}_*)_m|^2}{1 + \lambda c_m^{-1}} = \sum_{m \in \mathbb{Z}} \frac{\lambda c_m^{-1} m^{-2t}}{1 + \lambda c_m^{-1}} m^{2t} |(\hat{f}_*)_m|^2 \\ &\leq \sup_{m \in \mathbb{Z}} \frac{\lambda (1 + m^{2t})^{-1}}{\lambda + c_m} \sum_{m \in \mathbb{Z}} (1 + m^{2t}) |(\hat{f}_*)_m|^2. \end{aligned}$$

Two cases:

- If $t \geq s$, then f_* is part of the function space we use for modelling (we have a well-specified model), and thus $A(\lambda) \leq \lambda \|f_*\|_{\mathcal{H}}^2$.
- If $t < s$, the model is mis-specified,

$$\begin{aligned} A(\lambda) &\leq \sup_{m \in \mathbb{Z}} \frac{\lambda (1 + m^{2t})^{-1}}{\lambda + c_m} \sum_{m \in \mathbb{Z}} (1 + m^{2t}) |(\hat{f}_*)_m|^2 \\ &\leq \sup_{m \in \mathbb{Z}} \frac{\lambda (1 + m^{2t})^{-1}}{\lambda^{1-t/s} c_m^{t/s}} \sum_{m \in \mathbb{Z}} (1 + m^{2t}) |(\hat{f}_*)_m|^2 \\ &\leq O(\lambda^{t/s}) \sum_{m \in \mathbb{Z}} (1 + m^{2t}) |(\hat{f}_*)_m|^2. \end{aligned}$$

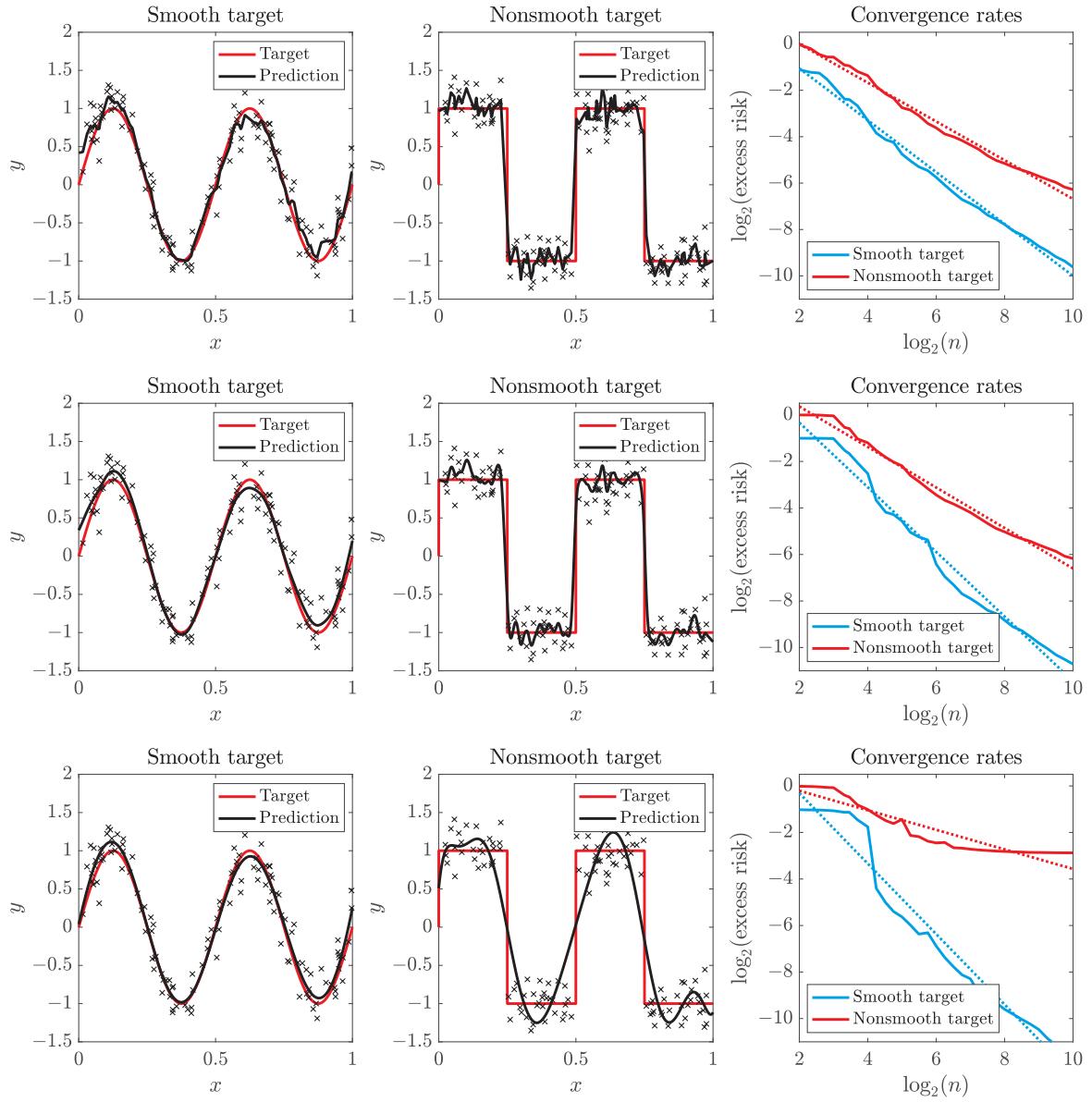
Using lemma (based on Jensen's inequality): $a + b \geq \frac{t}{s}a + (1 - \frac{t}{s})b \geq a^{t/s}b^{1-t/s}$.

- Thus, the excess risk is less than a constant times $n^{-1/2}$ if $t > s$ and $n^{-t/2s}$, for $t \in (1, s)$. Two facts: (1) misspecified leads to slower rates, (2) faster rates with more derivatives (i.e., t bigger).
- More precise results for least-squares (see book and references therein), in particular with the possibility to take s large and have a rate that does not degrade with s , and for which we get optimal behavior with respect to the model class.

2.4 Extensions beyond dimension one

- Translation invariant kernel on \mathbb{R}^d , $k(x, y) = q(x - y)$, with q having non-negative Fourier transform
- Convergence rates depend on decay of Fourier transform $\hat{q}(\omega)$.
- Abel kernel: $q(x) = \exp(-\|x\|_2)$, $\hat{q}(\omega) \propto \frac{1}{1 + \|\omega\|_2^2}$, corresponds to all s -th order derivatives being bounded with $s = d/2 + 1/2 > d/2$.
- Similar developments as for one dimension with rate $n^{-t/2s}$, but with now constraint that $s > d/2$. Similar adaptivity.
- !** If $t = 1$ (only first-order partial derivatives), then the rate of estimation for the Abel kernel is $n^{-1/(d+1)}$, which is very slow, but unavoidable. See next lecture for adaptivity for linear substructures.

Comparison of three kernels: Sobolev space of order 1 (top), Matern kernel corresponding to the Sobolev space of order 3 (middle), and Gaussian kernel (bottom). We consider two different target functions and



3 Lecture 3: Adaptivity of neural networks to latent variables

- This lecture: focus on one-hidden layer neural networks. Simplest model, on which some results may be obtained.
- Prediction function:

$$f(x) = \sum_{j=1}^m \eta_j \sigma(w_j^\top x + b_j),$$

with the activation function being often the rectified linear unit, that is, $\sigma(u) = \max\{u, 0\} = (u)_+$ (key property = homogeneity).

- Model $f_\theta(x)$ which is *nonlinear* in $\theta = \{(w_j), (b_j), (\eta_j)\} \in \mathbb{R}^{m(d+2)}$.
- Three types of error: Estimation error (uniform deviations + optimization) + Approximation error

3.1 Optimization

- Gradient descent or SGD only reaches a stationary point. No global minima
- Chizat & Bach (2018): for overparameterized networks (that is, m goes to infinity), then the stationary points of the gradient flow have to be global minimizers. Proof based on a mean field limit since neurons decouple

$$f(x) = \frac{1}{m} \sum_{j=1}^m \eta_j \sigma(w_j^\top x + b_j) = \frac{1}{m} \sum_{j=1}^m \Phi(\theta_j) = \int \Phi(\theta) d\mu(\theta).$$

We have

$$\mathcal{R}(f) = \mathcal{R}\left(\int \Phi(\theta) d\mu(\theta)\right)$$

with \mathcal{R} convex. Gradient flow on $\Theta = \{w_j\}_{j=1,\dots,m}$ with $\theta_j = (w_j, b_j, \eta_j)$ can be interpreted as a Wasserstein gradient flow, with bad stationary points, but global convergence when initialized with a measure with full mass.

3.2 Uniform deviations

- Assume $\|x\|_2 \leq R = 1$ almost surely. Constrained the norm $\|w_j\|^2 + b_j^2$ to be less than one (by renormalization, since ReLU is homogeneous), and add a constraint $\|\eta\|_1 \leq D$, which corresponds to an ℓ_2 -constraint on $\theta = \{(w_j), (b_j), (\eta_j)\} \in \mathbb{R}^{m(d+2)}$ after optimizing over scale, since $\alpha_j^{-1} \eta_j (\alpha_j w_j^\top x + \alpha_j b_j)_+ = \eta_j (w_j^\top x + b_j)_+$, and

$$\inf_{\alpha_j > 0} \alpha_j^{-2} \eta_j^2 + \alpha_j^2 \|w_j\|_2^2 + \alpha_j^2 b_j^2 = 2|\eta_j| \sqrt{\|w_j\|_2^2 + b_j^2}.$$

- Uniform deviations (no proof on board):

$$\sup_{\theta \in \Theta} |\mathcal{R}(f_\theta) - \widehat{\mathcal{R}}(f_\theta)| \leq \text{universal constant} \times \frac{GRD}{\sqrt{n}}$$

- Proof using Rademacher complexity (see book) and contraction principles
- Independent of the number of neurons m
- ⚠ The number of parameters is not what counts! The norm $\|\eta\|_1$ matters.

3.3 Approximation error - infinitely many neurons

- Assume all neurons $(w_j, b_j) \in K$, with $K = \{(w, b), \max\{\|w\|_2, b\} \leq 1\}$.
- Variation norm:

$$\|f\|^2 = \inf \int_K |d\eta(w, b)| \text{ such that } \|x\|_2 \leq R \Rightarrow f(x) = \int_K (w^\top x + b)_+ d\eta(w, b)$$

Mean field limit of $\|\eta\|_1$ when considering $d\eta(w, b) = \sum_{j=1}^m \eta_j \delta_{(w_j, b_j)}$.

⚠ Key property of the total variation: if the function depends on a projection, we can do the expansion in low dimension, that is, if $f(x) = g(a^\top x)$, with $g : \mathbb{R} \rightarrow \mathbb{R}$ and $\|a\| = 1$, then $\|f\|^2 \leq \|g\|^2$.

- Approximation of one-dimensional linear functions: proof by image
- Approximation of one-dimensional function using Taylor series with integral remainder, assuming for simplicity that f is twice differentiable and $R = 1$:

$$f(x) = f(-1) + (x+1)f'(-1) + \int_{-1}^x (x-b)f''(b)dt = f(-1) + (x+1)f'(-1) + \int_{-1}^1 (x-b)_+ f''(b)db$$

If constants and linear functions can be approximated by two ReLUs, we get a bound on $\|f\|$ based on the L_1 -norm of f'' and values of $f(1)$ and $f'(-1)$, and because of Poincaré inequality, $\|f\| \leq \sqrt{\int_{-1}^1 |f(t)|dt + \int_{-1}^1 |f''(t)|dt}$, and thus it is less than the Sobolev-2 norm defined as $\sqrt{\int_{-1}^1 |f(t)|^2 dt + \int_{-1}^1 |f''(t)|^2 dt}$.

Thus, all approximation theorems for Sobolev spaces extend to one-dimension neural networks.

- Extensions to more than one dimension using Fourier transform. Give only formula.

$$f(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \hat{f}(\omega) e^{i\omega^\top x} d\omega,$$

and decompose $x \mapsto e^{i\omega^\top x}$ with norm proportional to $1 + \|\omega\|^2$, leading to an upper bound

$$\|f\| \leq \sqrt{\int_{\mathbb{R}^d} \|\hat{f}(\omega)\|^2 (1 + \|\omega\|_2^2) d\omega},$$

often called Barron norms. They can also be upper bounded by Sobolev norms of order $\frac{d}{2} + \frac{3}{2}$. This implies that approximation theorems for Sobolev spaces extend, ⚠ for better or for worse (adaptivity to smoothness but still pay the curse of dimensionality).

- **Adaptivity to linear structures.** Simply does it when $f_*(x) = g(a^\top x)$ and escape the dependence in d in the rate, not necessarily in the constants.