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Notes updated everyday!

Based on book “Learning Theory from First Principles”, available at https://www.di.ens.fr/~fbach/
ltfp_book.pdf

Outline of the class:

• Lecture 1: How to get generalization bounds, the SGD way

• Lecture 2: Adaptivity of kernel methods to smoothness

• Lecture 3: Adaptivity of neural networks to linear latent variables

Remain as simple as possible. Can look at special topics chapter for deeper analysis.
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1 Lecture 1: Simple generalization bounds with SGD (linear models)

Chapters 2, 4, and 5

1.1 Classical machine learning set up (Chapter 2)

• Observed data: (xi, yi) ∈ X× Y, i = 1, . . . , n i.i.d. from a given distribution

• Infinite amount of testing data from the same distribution

• Goal: estimate a prediction function f : X → Y

• Loss function ℓ(y, z) (running example of least-squares)

• Expected risk: R(f) = E[ℓ(y, f(x))]. △! Randomness

• Empirical risk: R̂(f) = 1
n

∑n
i=1 ℓ(yi, f(xi))

• Bayes predictor and Bayes risk: minimizer

f∗(x) ∈ argmin
z∈Y

E[ℓ(y, z)|x]

and minimal value R∗ of R over all functions from X to Y. Goal of machine learning, achieve the
Bayes risk

• Regression: Y = R, and the usual loss is ℓ(y, z) = (y − z)2, with f∗(x) = E[y|x]. Absolute loss can
also be considered.

• Classification: Y = {−1, 1}, with ℓ(y, z) = 1y=z. Use of convex surrogates (with plot): square,
logistic, hinge, each with its own interpretation, and optimal f∗(x).

For logistic regression, ℓ(y, f(x)) = log(1 + exp(−yf(x)), with f∗(x) = 2atanh(E[y|x]).
For hinge loss, ℓ(y, f(x)) = (1− yf(x))+, with f∗(x) = sign(E[y|x]).
Calibration functions exist. Focus only on real-valued predictions. Many other examples (Chapter
13 on structured prediction)

• Two classical frameworks for learning methods: (1) local averaging (which simply replaces p(y|x) by
a local approximation based on data), and (2) empirical risk minimization.

1.2 Empirical risk minimization

• Consider a set F of functions / models from X to R, typically F = {fθ, θ ∈ Θ}

• Classical risk decomposition (estimation and approximation errors), for f ∈ F:

R(f)− R∗ =
{
R(f)− inf

f ′∈F
R(f ′)

}
+
{

inf
f ′∈F

R(f ′)− R∗
}

△! Randomness, dependence on number of observations, and “size” of F
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• Exact empirical risk minimizer f̂ ∈ argminf∈F R̂(f)

• Approximate empirical risk minimizer R̂(f̂) 6 minf∈F R̂(f) + ε optimization error

△! optimization error may not always go to zero! Has to be part of the analysis

• Approximation error dealt with in next lecture

• Estimation error, with f∗
F ∈ argminf∈F R(f):

R(f̂)− R(f∗
F) =

{
R(f̂)− R̂(f̂)

}
+

{
R̂(f̂)− R̂(f∗

F)
}
+

{
R̂(f∗

F)− R(f∗
F)
}

6 2 sup
f∈F

∣∣R(f)− R̂(f)
∣∣+ ε

• Classical analysis: bound uniform deviations (statistics) and optimization errors (optimization) sep-
arately

1.3 Classical statistical analysis for estimation error (Chapter 4)

• Focus on G-Lipschitz-continuous loss functions (logistic, hinge, or quadratic once reduced to a com-
pact set)

• Focus on “linear” predictors: fθ(x) = ϕ(x)⊤θ, with ‖ϕ(x)‖2 6 R almost surely. Consider the upper-

bound Θ = {θ, ‖θ‖2 6 D}. △! Can be made more general, can be infinite-dimensional (see next
lecture)

• Focus on bounds in expectation E

[
supf∈F

∣∣R(f)− R̂(f)
∣∣
]
.

• Classical symmetrization result leading to Rademacher complexity:

ED

[
sup
f∈F

∣∣R(f)− R̂(f)
∣∣
]
6 2 · ED,ε

[
sup
f∈F

∣∣ 1
n

n∑

i=1

εiℓ(yi, f(xi))
∣∣
]

• Contraction principle:

ED,ε

[
sup
f∈F

∣∣ 1
n

n∑

i=1

εiℓ(yi, f(xi))
∣∣
]
6 2G · ED,ε

[
sup
f∈F

∣∣ 1
n

n∑

i=1

εif(xi)
∣∣
]

• Uniform deviations, with closed-form maximization:

ED

[
sup
f∈F

∣∣R(f)− R̂(f)
∣∣
]

6 4G · ED,ε

[
sup
f∈F

∣∣ 1
n

n∑

i=1

εif(xi)
∣∣
]

6 4G · ED,ε

[
sup

‖θ‖26D

∣∣ 1
n

n∑

i=1

εiϕ(xi)
⊤θ

∣∣
]

6
4GDR√

n

△! No explicit dependence on dimension!
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1.4 Subgradient method (Chapter 5)

• Given F : Rd → R convex, differentiable, B-Lipschitz-continuous (gradients bounded by B in ℓ2-
norm),

θk = Π‖·‖26D

(
θk−1 − γF ′(θk−1)

)
.

Constant step-size for simplicity.

• Lemma about convexity: F (θ′)− F (θ) 6 F ′(θ′)⊤(θ′ − θ)

• For any θ such that ‖θ‖2 6 D, we have:

‖θk − θ‖22 6 ‖θk−1 − γF ′(θk−1)− θ‖22
6 ‖θk−1 − θ‖22 − 2γF ′(θk−1)

⊤(θk−1 − θ) + γ2‖F ′(θk−1)‖22
6 ‖θk−1 − θ‖22 − 2γ

[
F (θk−1)− F (θ)

]
+ γ2B2

leading to

[
F (θk−1)− F (θ)

]
6

1

2γ
‖θk−1 − θ‖22 −

1

2γ
‖θk − θ‖22 +

1

2γ
B2

F
(1
k

k−1∑

i=0

θi

)
− F (θ) 6

1

2γk
‖θ0 − θ‖22 +

γ

2
B2

6
1

2γk
4D2 +

γ

2
B2

6
2BD√

k
with γ = 2D/(B

√
k)

• Application to machine learning, with F (θ) = R̂(fθ), and B = GR, k = n iterations: expected
estimation error less than

4GDR√
n

+
2GDR√

n
=

6GDR√
n

but O(n2) calls to gradient of individual loss functions.

NB: can be done as well without the orthogonal projection.

Note the dependence in D of the estimation error.

1.5 Stochastic gradient descent (Chapter 5)

• Two classical set ups: single pass or multiple passes. Focus on single pass (can obtain the other as
special case) where F (θ) = R(fθ) is the expected risk.

• Assumptions: at time k, E[gk|Fk−1] = F ′(θk−1), and ‖gk‖22 6 B2 almost surely.

• Iteration: θk = θk−1 − γgk
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• Exact “same” proof with additional expectations leads to

E

[
F
( 1

n

n−1∑

i=0

θi

)]
− F (θ) 6

6GDR√
n

with O(n) accesses to local gradients.

△! Bound on expected risk!

• Classical extensions: strongly-convex, smoothness, variance reduction, mirror descent

• Other benefits: extend to multivariate outputs
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2 Lecture 2: Adaptivity of kernel methods to smoothness

• Recall on loss functions, empirical risk, and expected risks. Model fθ : X → R, θ ∈ Θ

• Decomposition between estimation and approximation errors:

R(fθ)− R∗ =
{
R(θ)− inf

θ′∈Θ
R(fθ′)

}
+

{
inf
θ′∈Θ

R(fθ′)− R∗
}

= estimation error + approximation error

• Summary of last lecture:

(1) For linear models fθ(x) = θ⊤ϕ(x), the estimation error after ERM or SGD on the ball of
radius D is proportional to GDR√

n
, when all features are bounded in ℓ2-norm by R, and a G-

Lipschitz-continuous function.

(2) Single-pass constrained (on a ball of radius D) SGD, E[R(fθ̂n)]− inf‖θ‖6D R(fθ) 6
GRD√

n
.

(3) Unconstrained single-pass SGD: for all θ ∈ R
d, E[R(fθ̄n)] 6 R(fθ)+

1
2γn‖θ− θ0‖2 + γG2R2

2 for θ̄n
averaged iterate.

△! No explicit dependence on dimension!

△! Linear in D/
√
n

△! Many improvements (e.g., fast rate with strong convexity)

• Goals of this lecture:

– Show that infinite-dimensional Hilbert spaces are computationally feasible.

– Deal with approximation error (requires assumption on f∗ based on the existence and bound-
edness of s-th order derivatives).

– Show (partial) adaptivity of kernel methods.

2.1 Kernel trick

• Now assume that ϕ(x) ∈ H Hilbert space, and consider f parameterized by θ ∈ H, as

f(x) = 〈θ, ϕ(x)〉.

Defines a space of function for which the function evaluations at a given x are bounded linear operators
(this excludes spaces which are too big).

• Penalized ERM (or constrained ERM): min
θ∈H

1

n

n∑

i=1

ℓ(yi, 〈θ, ϕ(xi)〉) +
λ

2
‖θ‖2H.

Representer theorem (proof by Pythagore argument): θ =
∑n

i=1 αiϕ(xi), and everything depends on
the kernel function k(x, x′) = 〈ϕ(x), ϕ(x′)〉, since f(x) = 〈θ, ϕ(x)〉 =

∑n
i=1 αik(x, xi), and ‖θ‖2H =∑n

i,j=1 αiαjKij, where Kij = k(xi, xj).

Kernel trick: only need to know the kernel function and not the feature vector.
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• Alternative “algorithmic” version. SGD starting from θ0 = 0:

θi = θi−1 − γℓ′(yi, 〈θi−1, ϕ(xi)〉)ϕ(xi)

can be written as θi =

i∑

j=1

αjϕ(xj), with a new iteration

αi = −γℓ′
(
yi,

i−1∑

j=1

αjk(xj , xi)
)
.

Complexity is O(n2) after n iterations but several methods exist to lower the cost (random features,
column sampling).

2.2 Approximation / estimation trade-off for kernel methods

• Goal: optimize D (radius of ball for constrained optimization), λ (regularization parameter for
penalized optimization), or γ (step-size of SGD).

What is meant by adaptivity? With a single hyperparameter, can benefit from faster rates when
available. Still needs some form of validation to find that hyperparameter.

Classical analysis for constrained optimization. (not done in lecture)

• Estimation error proportional to GRD√
n

(as seen in last lecture for ERM or SGD)

• Approximation error, for Θ ball of radius D and center 0:

inf
θ′∈Θ

R(fθ′)− R∗ = inf
θ′∈Θ

R(fθ′)− R(f∗)

= inf
θ′∈Θ

E

[
ℓ(y, fθ′(x))− ℓ(y, f∗(x))

]
6 G inf

θ′∈Θ
E
[
|fθ′(x)− f∗(x)|

]

6 G inf
θ′∈Θ

(
E
[
|fθ′(x)− f∗(x)|2

])1/2

6 inf
‖θ′‖H6D

‖fθ′ − f∗‖L2(p)

• The excess risk can then be upper-bounded as (up to universal constants), with

f̂D ∈ argmin
‖θ′‖H6D

R̂(fθ)

or by single pass SGD on the ball Θ:

R(f̂D)− R∗ 6
GRD√

n
+ inf

‖θ‖H6D
‖fθ − f∗‖L2(p)

inf
D>0

R(f̂D)− R∗ 6 inf
θ∈H

‖fθ − f∗‖L2(p) +
GR√
n
‖θ‖H

6

(
inf
θ∈H

{
‖fθ − f∗‖2L2(p)

+
G2R2

n
‖θ‖2H

})1/2
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• Goal: how to approximate
A(λ) = inf

θ∈H
‖fθ − f∗‖2L2(p)

+ λ‖θ‖2H
where fθ(x) = 〈θ, ϕ(x)〉.
Given some (natural) assumptions on f∗, optimal excess risk proportional to A(G2R2/n)1/2.

SGD way (simpler). We have, after n iterations of SGD started at θ0 = 0, for any θ ∈ H,

E[R(fθ̄n)] 6 R(fθ) +
1

2γn
‖θ‖2 + γG2R2

2
,

with, if ℓ is G-Lipschitz-continuous,

R(fθ)− R(f∗) = E[ℓ(y, 〈ϕ(x), θ〉) − ℓ(y, f∗(x))]

6 GE[|〈ϕ(x), θ〉) − f∗(x)|] 6 G
√

E[|fθ − f∗|2] = G‖fθ − f∗‖L2(p)

6
K

2
‖fθ − f∗‖2L2(p)

+
G2

2K

for any K (which will be minimized later). We then get, with K = 1
γR2 ,

E[R(fθ̄n)] 6 R(f∗) +
K

2
‖fθ − f∗‖2L2(p)

+
1

2γn
‖θ‖2 + G2

2K
+

γG2R2

2

= R(f∗) +
1

2γR2
‖fθ − f∗‖2L2(p)

+
1

2γn
‖θ‖2 + γG2R2.

If
A(λ) = inf

θ∈H

{
‖fθ − f∗‖2L2(p)

+ λ‖θ‖2
}
6 ρλκ,

we get the two bounds

E[R(fθ̄n)]− R(f∗) 6
1

2γR2
A(R2/n) + γG2R2 6

1

2γR2
ρ(R2/n)κ + γG2R2

6
√

2ρG(R2/n)κ/2.

NB: same bound can be obtained with constrained empirical risk optimization and optimizing over D.

△! f∗ is not in general of the form f∗(x) = 〈ϕ(x), θ∗〉.
If well specified, then A(λ) 6 λ‖θ∗‖2, and the excess risk is proportional to 1/

√
n.

Alternative not done in lecture. Alternatively, we can obtain a better bound if ℓ is H-smooth, that
is, second derivatives are bounded, then, by optimality E[ℓ′(y, f∗(x))h(x)] = 0 for any function h, and

R(fθ)− R(f∗) = E[ℓ(y, 〈ϕ(x), θ〉) − ℓ(y, f∗(x))]

6 E[ℓ′(y, f∗(x))(〈ϕ(x), θ〉) − f∗(x)) +
H

2
|〈ϕ(x), θ〉) − f∗(x)|2]

=
H

2
E[|〈ϕ(x), θ〉) − f∗(x)|2] =

H

2
‖fθ − f∗‖2L2(p)

.

Thus, we get:

E[R(fθ̄n)] 6 R(f∗) + inf
θ∈H

{H

2
‖fθ − f∗‖2L2(p)

+
1

2γn
‖θ‖2

}
+

γG2R2

2
.
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2.3 Kernels for non-parametric estimation in one dimension

• Simple possible set-up: X = [0, 1], and p uniform on [0, 1].

• Using Fourier series expansions f(x) =
∑

m∈Z
f̂me2imπx, define the norm of the Hilbert space H as

‖f‖2H =
∑

m∈Z

1

cm
|(f̂)m|2,

with dot-product 〈f, g〉 =
∑

m∈Z
1
cm

(f̂)∗m(ĝ)m, for cm > 0.

If 1
cm

∼ (1 +m2s), this is the Sobolev space of functions with square-integrable s-th derivative, with
the constraint s > 1/2 (so that

∑
m∈Z cm is finite)

• Explicit feature map and kernel: ϕm(x) = cme2imπx, for m ∈ Z, so that

〈ϕ(x), ϕ(x′)〉 =
∑

m∈Z
cme2imπ(x−x′) = k(x, x′)

f(x) =
∑

m∈Z
f̂me2imπx =

∑

m∈Z

f̂m
cm

cme2imπx = 〈f, ϕ(x)〉.

Note that kernel can be obtained in closed form by Fourier series summations for simple sequences
(cm). For example, for Sobolev cases, the kernel is a Bernoulli polynomial.

• Decomposition of optimal predictor: f∗ can be expanded in Fourier series

f∗(x) =
∑

m∈Z
(f̂∗)me2imπx.

• This leads to

A(λ) = inf
θ∈H

‖fθ − f∗‖2L2(p)
+ λ‖θ‖2H

= inf
θ̂∈CZ

∑

m∈Z
|θ̂m − (f̂∗)m|2 + λ

∑

m∈Z

1

cm
|θ̂m|2

= inf
θ̂∈CZ

∑

m∈Z

{
|(f̂∗)m|2 − 2θ̂∗m(f̂∗)m + (1 + λc−1

m )|θ̂m|2
}

Minimizer characterized by θm(1 + λc−1
m ) = (f̂∗)m, leading to optimal value

A(λ) 6
∑

m∈Z

{
|(f̂∗)m|2 − |(f̂∗)m|2

1 + λc−1
m

}

=
∑

m∈Z

λc−1
m |(f̂∗)m|2
1 + λc−1

m
.
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• Assumption:
∑

m∈Z(1+m2t)|(f̂∗)m|2 finite for t > 0, that is, t-th derivative of f∗ is square integrable.
We get:

A(λ) 6
∑

m∈Z

λc−1
m |(f̂∗)m|2
1 + λc−1

m
=

∑

m∈Z

λc−1
m m−2t

1 + λc−1
m

m2t|(f̂∗)m|2

6 sup
m∈Z

λ(1 +m2t)−1

λ+ cm

∑

m∈Z
(1 +m2t)|(f̂∗)m|2.

Two cases:

– If t > s, then f∗ is part of the function space we use for modelling (we have a well-specified
model), and thus A(λ) 6 λ‖f∗‖2H.

– If t < s, the model is mis-specified,

A(λ) 6 sup
m∈Z

λ(1 +m2t)−1

λ+ cm

∑

m∈Z
(1 +m2t)|(f̂∗)m|2

6 sup
m∈Z

λ(1 +m2t)−1

λ1−t/sc
t/s
m

∑

m∈Z
(1 +m2t)|(f̂∗)m|2

6 O(λt/s)
∑

m∈Z
(1 +m2t)|(f̂∗)m|2.

Using lemma (based on Jensen’s inequality): a+ b > t
sa+ (1− t

s)b > at/sb1−t/s.

• Thus, the excess risk is less than a constant times n−1/2 if t > s and n−t/2s, for t ∈ (1, s). Two facts:
(1) misspecified leads to slower rates, (2) faster rates with more derivatives (i.e., t bigger).

• More precise results for least-squares (see book and references therein), in particular with the pos-
sibility to take s large and have a rate that does not degrade with s, and for which we get optimal
behavior with respect to the model class.

2.4 Extensions beyond dimension one

• Translation invariant kernel on R
d, k(x, y) = q(x− y), with q having non-negative Fourier transform

• Convergence rates depend on decay of Fourier transform q̂(ω).

• Abel kernel: q(x) = exp(−‖x‖2), q̂(ω) ∝ 1
1+‖ω‖2

2

, corresponds to all s-th order derivatives being

bounded with s = d/2 + 1/2 > d/2.

• Similar developments as for one dimension with rate n−t/2s, but with now constraint that s > d/2.
Similar adaptivity.

• △! If t = 1 (only first-order partial derivatives), then the rate of estimation for the Abel kernel is
n−1/(d+1), which is very slow, but unavoidable. See next lecture for adapativity for linear substruc-
tures.
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Comparison of three kernels: Sobolev space of order 1 (top), Matern kernel corresponding to the Sobolev
space of order 3 (middle), and Gaussian kernel (bottom). We consider two different target functions and
represent on the right plots the excess risks in logarithmic scale.
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3 Lecture 3: Adaptivity of neural networks to latent variables

• This lecture: focus on one-hidden layer neural networks. Simplest model, on which some results may
be obtained.

• Prediction function:

f(x) =
m∑

j=1

ηjσ(w
⊤
j x+ bj),

with the activation function being often the rectified linear unit, that is, σ(u) = max{u, 0} = (u)+
(key property = homogeneity).

• Model fθ(x) which is nonlinear in θ = {(wj), (bj), (ηj)} ∈ R
m(d+2).

• Three types of error: Estimation error (uniform deviations + optimization) + Approximation error

3.1 Optimization

• Gradient descent or SGD only reaches a stationary point. No global minima

• Chizat & Bach (2018): for overparameterized networks (that is, m goes to infinity), then the station-
ary points of the gradient flow have to be global minimizers. Proof based on a mean field limit since
neurons decouple

f(x) =
1

m

m∑

j=1

ηjσ(w
⊤
j x+ bj) =

1

m

m∑

j=1

Φ(θj) =

∫
Φ(θ)dµ(θ).

We have

R(f) = R

(∫
Φ(θ)dµ(θ)

)

with R convex. Gradient flow on Θ = {wj}j=1,...,m with θj = (wj , bj , ηj) can be interpreted as a
Wasserstein gradient flow, with bad stationary points, but global convergence when initialized with
a measure with full mass.

3.2 Uniform deviations

• Assume ‖x‖2 6 R = 1 almost surely. Constrained the norm ‖wj‖2 + b2j to be less than one (by
renormalization, since ReLU is homogeneous), and add a constraint ‖η‖1 6 D, which corresponds to
an ℓ2-constraint on θ = {(wj), (bj), (ηj)} ∈ R

m(d+2) after optimizing over scale, since α−1
j ηj(αjw

⊤
j x+

αjbj)+ = ηj(w
⊤
j x+ bj)+, and

inf
αj>0

α−2
j η2j + α2

j‖wj‖22 + α2
jb

2
j = 2|ηj |

√
‖wj‖2 + b2j .

• Uniform deviations (no proof on board):

sup
θ∈Θ

|R(fθ)− R̂(fθ)| 6 universal constant × GRD√
n
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• Proof using Rademacher complexity (see book) and contraction principles

• Independent of the number of neurons m

• △! The number of parameters is not what counts! The norm ‖η‖1 matters.

3.3 Approximation error - infinitely many neurons

• Assume all neurons (wj , bj) ∈ K, with K = {(w, b), max{‖w‖2, b} 6 1}.

• Variation norm:

‖f‖2 = inf

∫

K
|dη(w, b)| such that ‖x‖2 6 R ⇒ f(x) =

∫

K
(w⊤x+ b)+dη(w, b)

Mean field limit of ‖η‖1 when considering dη(w, b) =

m∑

j=1

ηjδ(wj ,bj).

△! Key property of the total variation: if the function depends on a projection, we can do the
expansion in low dimension, that is, if f(x) = g(a⊤x), with g : R → R and ‖a‖ = 1, then ‖f‖2 6 ‖g‖2.

• Approximation of one-dimensional linear functions: proof by image

• Approximation of one-dimensional function using Taylor series with integral remainder, assuming for
simplicity that f is twice differentiable and R = 1:

f(x) = f(−1) + (x+ 1)f ′(−1) +

∫ x

−1
(x− b)f ′′(b)dt = f(−1) + (x+ 1)f ′(−1) +

∫ 1

−1
(x− b)+f

′′(b)db

If constants and linear functions can be approximated by two ReLUs, we get a bound on ‖f‖
based on the L1-norm of f ′′ and values of f(1) and f ′(−1), and because of Poincaré inequal-
ity, ‖f‖ 6 �

∫ 1
−1 |f(t)|dt + �

∫ 1
−1 |f ′′(t)|dt, and thus it is less than the Sobolev-2 norm defined as√

�
∫ 1
−1 |f(t)|2dt+�

∫ 1
−1 |f ′′(t)|2dt.

Thus, all approximation theorems for Sobolev spaces extend to one-dimension neural networks.

• Extensions to more than one dimension using Fourier transform. Give only formula.

f(x) =
1

(2π)d

∫

Rd

f̂(ω)eiω
⊤xdω,

and decompose x 7→ eiω
⊤x with norm proportional to 1 + ‖ω‖2, leading to an upper bound

‖f‖ 6 �

∫

Rd

‖f̂(ω)‖(1 + ‖ω‖22)dω,

often called Barron norms. They can also be upper bounded by Sobolev norms of order d
2 +

3
2 . This

implies that approximation theorems for Sobolev spaces extend,△! for better or for worse (adaptivity
to smoothness but still pay the curse of dimensionality).

• Adaptivity to linear structures. Simply does it when f∗(x) = g(a⊤x) and escape the dependence
in d in the rate, not necessarily in the constants.
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