Adaptivity in Machine Learning

Francis Bach

September 25, 2024

Based on book “Learning Theory from First Principles”, available at https://www.di.ens.fr/~fbach/
1tfp_book.pdf

Outline of the class:

e Lecture 1: How to get generalization bounds, the SGD way
e Lecture 2: Adaptivity of kernel methods to smoothness

e Lecture 3: Adaptivity of neural networks to linear latent variables

Remain as simple as possible. Can look at special topics chapter for deeper analysis.



1 Lecture 1: Simple generalization bounds with SGD (linear models)

1.1

1.2

Classical machine learning set up

Observed data: (z;,y;) € X xY,i=1,...,niid. from a given distribution
Infinite amount of testing data from the same distribution

Goal: estimate a prediction function f: X — Y

Loss function ¢(y, z) (running example of least-squares)

Expected risk: R(f) = E[l(y, f(x))]. /A\ Randomness

Empirical risk: R(f) = £ S0, £y, f(x:))

Bayes predictor and Bayes risk: minimizer
f«(x) € argmin E[((y, z)|«]
z€Y

and minimal value R, of R over all functions from X to Y. Goal of machine learning, achieve the
Bayes risk

Regression: Y = R, and the usual loss is £(y,2) = (y — 2)?, with f.(z) = E[y|z]. Absolute loss can
also be considered.

Classification: Y = {—1,1}, with ¢(y,z) = 1,—.. Use of convex surrogates (with plot): square,
logistic, hinge, each with its own interpretation, and optimal fi(x).

For logistic regression, ¢(y, f(x)) = log(1 + exp(—yf(x)), with f.(x) = 2atanh(E[y|z]).
For hinge loss, £(y, /(x)) = (1 — yf(x)).. with f(z) = sign(Ely|z]).

Calibration functions exist. Focus only on real-valued predictions. Many other examples (Chapter
13 on structured prediction)

Two classical frameworks for learning methods: (1) local averaging (which simply replaces p(y|z) by
a local approximation based on data), and (2) empirical risk minimization.

Empirical risk minimization

Consider a set F of functions / models from X to R, typically F = {fy,0 € O}

Classical risk decomposition (estimation and approximation errors), for f € F:

R(f) — R, = {Jz(f) — inf fR(f’)} +{ inf R(f) —Jz*}

fres frex
A Randomness, dependence on number of observations, and “size” of F

Exact empirical risk minimizer f € arg minycg UAQ( f)
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1.3

Approximate empirical risk minimizer UAQ( f ) < mingeg UAQ( f) + € optimization error

/N optimization error may not always go to zero! Has to be part of the analysis
Approximation error dealt with in next lecture
Estimation error, with f3 € argmin ;5 R(f):

R()=R(f5) = {RF) =R} + {RD) - R+ {R(5) - R}

< 2sup |R(f) = R(f)| + e
feF

Classical analysis: bound uniform deviations (statistics) and optimization errors (optimization) sep-
arately
Classical statistical analysis for estimation error

Focus on G-Lipschitz-continuous loss functions (logistic, hinge, or quadratic once reduced to a com-
pact set)

Focus on “linear” predictors: fp(x) = ¢(z) "0, with ||p(z)|l2 < R almost surely. Consider the upper-
bound © = {0, ||0]|s < D}. /\ Can be made more general, can be infinite-dimensional (see next
lecture)

Focus on bounds in expectation E[supfeg ‘fR(f) — ﬁ(f)”

Classical symmetrization result leading to Rademacher complexity:

Ep [Sup |R(f) — JA%(f)H <2-Ep. [?‘lg‘% i&f(yi,f@i))”
€ i=1

fex

Contraction principle:
1 « 1 «
Eop, [sup — el (yi, f(x; } <2G - Eop, [sup — gi f(x; ]
. f€?|n;,<z (2:))] . feg\n;z ()]
Uniform deviations, with closed-form maximization:

Eqp [iug |R(f) - iz(f)\] < 4G -Ep. [iug !% Zn:eif(xi)”
€ € i=1

1 n
< 4G -E - wo(x) o
D,e[”;”ggD b= ;6 e(@)T0]|
AGDR
NLD

/\ No explicit dependence on dimension!



1.4 Subgradient method

e Given I : R? — R convex, differentiable, B-Lipschitz-continuous (gradients bounded by B in fo-
norm),

Ok = W p<n (01 = 7F' (O-1))-

Constant step-size for simplicity.
e Lemma about convexity: F(6') — F(0) < F'(6))T(#' — 6)

e For any 6 such that ||f||2 < D, we have:

10k — 015 < ||0k—1 — YF'(0r_1) — 0|3
< 01— 0113 = 29F (05—1) T (Op—1 — 0) + || " (0x—1)I3
< 1k—1 — 03 — 2y[F(0r-1) — F(0)] ++°B
leading to
(FBier) — F(8)] < 60— 01— 16— 013 + = B
—1 X 27 —1 2 2,}/ 2 2,}/
k—1
1 1 s 1,
- ) < _ —
F(ki:09’> FO) < gl =015+ 5B
1 1
< —4D? + —B?
2vk +2’y
2BD
< === withv=2D/(BVk
N /( )

e Application to machine learning, with F(0) = UAQ( fo), and B = GR, k = n iterations: expected
estimation error less than

AGDR | 2GDR _ 6GDR
vn vnoooWn

but O(n?) calls to gradient of individual loss functions.

NB: can be done as well without the orthogonal projection.

Note the dependence in D of the estimation error.

1.5 Stochastic gradient descent

e Two classical set ups: single pass or multiple passes. Focus on single pass (can obtain the other as
special case) where F(0) = R(fp) is the expected risk.

e Assumptions: at time k, E[gr|Fr_1] = F'(0r_1), and |gx||3 < B? almost surely.

o Iteration: 0y = 0r_1 — Yok



e Exact “same” proof with additional expectations leads to

E[F(%E@)] _F(H) < 66\’%}2

with O(n) accesses to local gradients.

A Bound on expected risk!

e (Classical extensions: strongly-convex, smoothness, variance reduction, mirror descent

e Other benefits: extend to multivariate outputs



2 Lecture 2: Adaptivity of kernel methods to smoothness

2.1

Recall on loss functions, empirical risk, and expected risks. Model fp : X = R, § € ©

Decomposition between estimation and approximation errors:

). = {0~ g 80} { g 2000 2.

= estimation error + approximation error

Summary of last lecture: For linear models fg(z) = 0" ¢(x), the estimation error after ERM or SGD
on the ball of radius D is proportional to G\?R when all features are bounded in f5-norm by R, and
a G-Lipschitz-continuous function.

/\ No explicit dependence on dimension!

/\ Linear in D/\/n
Goals of this lecture:

— Show that infinite-dimensional Hilbert spaces are computationally feasible.

— Deal with approximation error (requires assumption on f, based on the existence and bound-
edness of s-th order derivatives).

— Show (partial) adaptivity of kernel methods.

Kernel trick

Now assume that ¢(x) € H Hilbert space, and consider f parameterized by 6 € H, as

f(x) = (0, p(x)).

Define a space of function for which the function evaluations at a given x are bounded linear operators
(this excludes spaces which are too big).

n

1
Constrained ERM: min — Z 0y, (8, p(z:))).

<Dn
0llse<D 1 =

Yo cip(w), and everything depends on

Representer theorem (proof by Pythagore argument): 6
) = (0, 0(x)) = iy cik(z,24), and [0]|3; =

the kernel function k(z,2') = (p(x), p(x')), since f(x
ZZj:l OéiOéjKij, where Kij = k(:ﬂz,l’])

Kernel trick: only need to know the kernel function and not the feature vector.

e SGD starting from 6y = 0:

0; = iy — v (yi, (Oiz1, p(2:)))p(4)



2.2

can be written as 6; = Z ajp(x;), with a new iteration
j=1

a; =l (yz’, ZE_E ajk(z;j, :Ei))
i=1

Complexity is O(n?) after n iterations but several methods exist to lower the cost (random features,
column sampling).

Approximation / estimation trade-off for kernel methods

Goal: optimize D (radius of ball). What is meant by adaptivity? With a single hyperparame-
ter, can benefit from faster rates when available. Still needs some form of validation to find that
hyperparameter.

Estimation error proportional to GfﬁD (as seen in last lecture for ERM or SGD)

Approximation error, for © ball of radius D and center 0:
inf R(fo)—Re = inf R(fy) — R(f«
Jnf R(fo) Jnf R(for) = R(f+)
= inf E[y. fo (@) — Uy, £.(2))] < G jnf E[for(2) = ()]

0'cO
/
G ot (E[lfo(@) ~ £@)P)"

- s
||9’|1|]2c<DHf6 Fell o)

N

N

The excess risk can then be upper-bounded as (up to universal constants), with

fp € argmin IJAQ(fg)
6"]l3c<D

or by single pass SGD on the ball ©:

A GRD
(/) 7 ek

i f — Nk S i *
inf R(fp) —R elggf{HfG I HLz

D>0
G2 R2 1/2
< (o {1to- 2.0+ S 0008} )

1 fo — fellLo(p)

Goal: how to approximate
AN = inf I fo - Pl + A6

where fyg(z) = (0, p(z)).

Given some (natural) assumptions on fi, optimal excess risk proportional to A(G?R?/n)"/2.



2.3 Kernels for non-parametric estimation in one dimension

e Simple possible set-up: X = [0, 1], and p uniform on [0, 1].

e Using Fourier series expansions f(x Z fin€®™ ™ define the norm of the Hilbert space ¥ as
meZ
2 Lo 2
1£13e = D2 —1(Pml*.
Cm
meZ

with dot-product (f,g) =>_ L ()% (§)m, for e > 0.

MEZ cm

If Z ~ (1 +m?®), this is the Sobolev space of functions with square-integrable s-th derivative, with

the constraint s > 1/2 (so that ), ¢, is finite)

e Explicit feature map and kernel: ¢,,(2) = ¢,,e?™™* for m € Z, so that

(p(@)pa) = D cne®™ ™) = k(z, ')

mMEZL

Z fm 2immx __ Z fm 22m7rx _ (f’ ( )>

meZ mGZ

Note that kernel can be obtained in closed form by Fourier series summations for simple sequences

(cm)-

e Decomposition of optimal predictor: fx can be expanded in Fourier series

Jolw) = 3 (F)me?me.

meZ
e This leads to

o 2 2
AQ) = ot lfo— fulld, + 6B

= inf Y |0 — () m\2+)\2—]9 K

beC* 2 mez M
=it S {Iml = 285 () + (14 26110}
GGCZmGZ

Minimizer characterized by 0,,(1 4 Ac;;') = (f+)m, leading to optimal value

> {1~ )

meZ

N

A(N)

_ ZM_

—1
MEZL L+ )\Cm



e Assumption: >, o, (14+m?)|( f+)m|? finite for t > 0, that is, t-th derivative of f, is square integrable.

We get:

Two cases:

AN < Z M - Z Mmzﬂ(f*)mﬁ

—1 —1
— 1+ e — 1+ e

A1+ m2h)~t
sup ——
meZ A+ Cm,

N

> @+ m)(f)ml

meZ

— If t > s, then f, is part of the function space we use for modelling (we have a well-specified
model), and thus A(X) < || fil%.

—Ift<s,

AL+ m*)~! AN F Y |2
A(N) < sup ——m—F— 1+m *)m
O < s 2T Sl
A1 +m*)~ 2\ F Y |2
< sup ——F— 1+m )m
S virrw ) SRR (M
< O > m™|(fo)ml*

meZ

Using lemma: a+b > ta+ (1—1)b> at/spl—t/s

e Thus, the excess risk is less than a constant times n=1/2 if ¢ > s and n=%/2%, for t € (1,s). That is,
faster rates with more derivatives (i.e., t bigger).

e More precise results for least-squares (see book and references therein), in particular with the pos-
sibility to take s large and have a rate that does not degrade with s, and for which we get optimal
behavior with respect to the model class.

2.4 Extensions beyond dimension one

e Translation invariant kernel on R?, k(x,7) = ¢(z — y), with ¢ having non-negative Fourier transform

e Convergence rates depend on decay of Fourier transform ¢(w).

o Abel kernel: ¢(z) = exp(—||z]j2), ¢(w) mg, corresponds to all s-th order derivatives being
bounded with s = d/2 +1/2 > d/2.

e Similar developments as for one dimension with rate n=%/2%, but with now constraint that s > d/2.
Similar adaptivity.



3 Lecture 3: Adaptivity of neural networks to latent variables
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