
Non-Convex Non-IID Non-Stochastic Non-Serial

Stochastic Variance-Reduced Optimization for Machine Learning
Parts 2: Weakening the Assumptions

Presenters: Francis Bach and Mark Schmidt

2017 SIAM Conference on Optimization

May 23, 2017

Non-Convex Non-IID Non-Stochastic Non-Serial

Outline

1 Non-Convex

2 Non-IID

3 Non-Stochastic

4 Non-Serial

Non-Convex Non-IID Non-Stochastic Non-Serial

Linear of Convergence of Gradient-Based Methods

We’ve seen a variety of results of the form:

Smoothness + Strong-Convexity ⇒ Linear Convergence

Error on iteration t is O(ρt), or we need O(log(1/ε)) iterations.

But even simple models are often not strongly-convex.

Least squares, logistic regression, SVMs with bias, etc.

How much can we relax strong-convexity?

Smoothness + ???
Strong-Convexity

⇒ Linear Convergence

Non-Convex Non-IID Non-Stochastic Non-Serial

Linear of Convergence of Gradient-Based Methods

We’ve seen a variety of results of the form:

Smoothness + Strong-Convexity ⇒ Linear Convergence

Error on iteration t is O(ρt), or we need O(log(1/ε)) iterations.

But even simple models are often not strongly-convex.

Least squares, logistic regression, SVMs with bias, etc.

How much can we relax strong-convexity?

Smoothness + ???
Strong-Convexity

⇒ Linear Convergence

Non-Convex Non-IID Non-Stochastic Non-Serial

Linear of Convergence of Gradient-Based Methods

We’ve seen a variety of results of the form:

Smoothness + Strong-Convexity ⇒ Linear Convergence

Error on iteration t is O(ρt), or we need O(log(1/ε)) iterations.

But even simple models are often not strongly-convex.

Least squares, logistic regression, SVMs with bias, etc.

How much can we relax strong-convexity?

Smoothness + ???
Strong-Convexity

⇒ Linear Convergence

Non-Convex Non-IID Non-Stochastic Non-Serial

Polyak- Lojasiewicz (PL) Inequality

For example, in 1963 Polyak showed linear convergence of GD only assuming

1

2
‖∇f (x)‖2 ≥ µ(f (x)− f ∗),

that gradient grows as quadratic function of sub-optimality.

Holds for SC problems, but also problems of the form

f (x) = g(Ax), for strongly-convex g .

Includes least squares, logistic regression (on compact set), etc.

A special case of the Lojasiewicz’ inequality [1963].
We’ll call this the Polyak- Lojasiewicz (PL) inequality.

Using the PL inequality we can show

Smoothness +
PL Inequality

Strong-Convexity
⇒ Linear Convergence

Non-Convex Non-IID Non-Stochastic Non-Serial

Polyak- Lojasiewicz (PL) Inequality

For example, in 1963 Polyak showed linear convergence of GD only assuming

1

2
‖∇f (x)‖2 ≥ µ(f (x)− f ∗),

that gradient grows as quadratic function of sub-optimality.

Holds for SC problems, but also problems of the form

f (x) = g(Ax), for strongly-convex g .

Includes least squares, logistic regression (on compact set), etc.

A special case of the Lojasiewicz’ inequality [1963].
We’ll call this the Polyak- Lojasiewicz (PL) inequality.

Using the PL inequality we can show

Smoothness +
PL Inequality

Strong-Convexity
⇒ Linear Convergence

Non-Convex Non-IID Non-Stochastic Non-Serial

Polyak- Lojasiewicz (PL) Inequality

For example, in 1963 Polyak showed linear convergence of GD only assuming

1

2
‖∇f (x)‖2 ≥ µ(f (x)− f ∗),

that gradient grows as quadratic function of sub-optimality.

Holds for SC problems, but also problems of the form

f (x) = g(Ax), for strongly-convex g .

Includes least squares, logistic regression (on compact set), etc.

A special case of the Lojasiewicz’ inequality [1963].
We’ll call this the Polyak- Lojasiewicz (PL) inequality.

Using the PL inequality we can show

Smoothness +
PL Inequality

Strong-Convexity
⇒ Linear Convergence

Non-Convex Non-IID Non-Stochastic Non-Serial

Polyak- Lojasiewicz (PL) Inequality

For example, in 1963 Polyak showed linear convergence of GD only assuming

1

2
‖∇f (x)‖2 ≥ µ(f (x)− f ∗),

that gradient grows as quadratic function of sub-optimality.

Holds for SC problems, but also problems of the form

f (x) = g(Ax), for strongly-convex g .

Includes least squares, logistic regression (on compact set), etc.

A special case of the Lojasiewicz’ inequality [1963].
We’ll call this the Polyak- Lojasiewicz (PL) inequality.

Using the PL inequality we can show

Smoothness +
PL Inequality

Strong-Convexity
⇒ Linear Convergence

Non-Convex Non-IID Non-Stochastic Non-Serial

PL Inequality and Invexity

PL inequality doesn’t require uniqueness or convexity.

However, it implies invexity.
For smooth f , invexity ↔ all stationary points are global optimum.

Example of invex but non-convex function satisfying PL:

f (x) = x2 + 3 sin2(x).

Gradient descent converges linearly on this non-convex problem.

Non-Convex Non-IID Non-Stochastic Non-Serial

PL Inequality and Invexity

PL inequality doesn’t require uniqueness or convexity.
However, it implies invexity.

For smooth f , invexity ↔ all stationary points are global optimum.

Example of invex but non-convex function satisfying PL:

f (x) = x2 + 3 sin2(x).

Gradient descent converges linearly on this non-convex problem.

Non-Convex Non-IID Non-Stochastic Non-Serial

PL Inequality and Invexity

PL inequality doesn’t require uniqueness or convexity.
However, it implies invexity.

For smooth f , invexity ↔ all stationary points are global optimum.

Example of invex but non-convex function satisfying PL:

f (x) = x2 + 3 sin2(x).

Gradient descent converges linearly on this non-convex problem.

Non-Convex Non-IID Non-Stochastic Non-Serial

Weaker Conditions than Strong Convexity (SC)

How does PL inequality [1963] relate to more recent conditions?

EB: error bounds [Luo and Tseng, 1993].
QG: quadratic growth [Anitescu, 2000]
ESC: essential strong convexity [Liu et al., 2013].
RSI: restricted secant inequality [Zhang & Yin, 2013].

RSI plus convexity is “restricted strong-convexity”.

Semi-strong convexity [Gong & Ye, 2014].

Equivalent to QG plus convexity.

Optimal strong convexity [Liu & Wright, 2015].

Equivalent to QG plus convexity.

WSC: weak strong convexity [Necoara et al., 2015].

Proofs are often more complicated under these conditions.

Are they more general?

Non-Convex Non-IID Non-Stochastic Non-Serial

Weaker Conditions than Strong Convexity (SC)

How does PL inequality [1963] relate to more recent conditions?

EB: error bounds [Luo and Tseng, 1993].

QG: quadratic growth [Anitescu, 2000]
ESC: essential strong convexity [Liu et al., 2013].
RSI: restricted secant inequality [Zhang & Yin, 2013].

RSI plus convexity is “restricted strong-convexity”.

Semi-strong convexity [Gong & Ye, 2014].

Equivalent to QG plus convexity.

Optimal strong convexity [Liu & Wright, 2015].

Equivalent to QG plus convexity.

WSC: weak strong convexity [Necoara et al., 2015].

Proofs are often more complicated under these conditions.

Are they more general?

Non-Convex Non-IID Non-Stochastic Non-Serial

Weaker Conditions than Strong Convexity (SC)

How does PL inequality [1963] relate to more recent conditions?

EB: error bounds [Luo and Tseng, 1993].
QG: quadratic growth [Anitescu, 2000]

ESC: essential strong convexity [Liu et al., 2013].
RSI: restricted secant inequality [Zhang & Yin, 2013].

RSI plus convexity is “restricted strong-convexity”.

Semi-strong convexity [Gong & Ye, 2014].

Equivalent to QG plus convexity.

Optimal strong convexity [Liu & Wright, 2015].

Equivalent to QG plus convexity.

WSC: weak strong convexity [Necoara et al., 2015].

Proofs are often more complicated under these conditions.

Are they more general?

Non-Convex Non-IID Non-Stochastic Non-Serial

Weaker Conditions than Strong Convexity (SC)

How does PL inequality [1963] relate to more recent conditions?

EB: error bounds [Luo and Tseng, 1993].
QG: quadratic growth [Anitescu, 2000]
ESC: essential strong convexity [Liu et al., 2013].

RSI: restricted secant inequality [Zhang & Yin, 2013].

RSI plus convexity is “restricted strong-convexity”.

Semi-strong convexity [Gong & Ye, 2014].

Equivalent to QG plus convexity.

Optimal strong convexity [Liu & Wright, 2015].

Equivalent to QG plus convexity.

WSC: weak strong convexity [Necoara et al., 2015].

Proofs are often more complicated under these conditions.

Are they more general?

Non-Convex Non-IID Non-Stochastic Non-Serial

Weaker Conditions than Strong Convexity (SC)

How does PL inequality [1963] relate to more recent conditions?

EB: error bounds [Luo and Tseng, 1993].
QG: quadratic growth [Anitescu, 2000]
ESC: essential strong convexity [Liu et al., 2013].
RSI: restricted secant inequality [Zhang & Yin, 2013].

RSI plus convexity is “restricted strong-convexity”.

Semi-strong convexity [Gong & Ye, 2014].

Equivalent to QG plus convexity.

Optimal strong convexity [Liu & Wright, 2015].

Equivalent to QG plus convexity.

WSC: weak strong convexity [Necoara et al., 2015].

Proofs are often more complicated under these conditions.

Are they more general?

Non-Convex Non-IID Non-Stochastic Non-Serial

Weaker Conditions than Strong Convexity (SC)

How does PL inequality [1963] relate to more recent conditions?

EB: error bounds [Luo and Tseng, 1993].
QG: quadratic growth [Anitescu, 2000]
ESC: essential strong convexity [Liu et al., 2013].
RSI: restricted secant inequality [Zhang & Yin, 2013].

RSI plus convexity is “restricted strong-convexity”.

Semi-strong convexity [Gong & Ye, 2014].

Equivalent to QG plus convexity.

Optimal strong convexity [Liu & Wright, 2015].

Equivalent to QG plus convexity.

WSC: weak strong convexity [Necoara et al., 2015].

Proofs are often more complicated under these conditions.

Are they more general?

Non-Convex Non-IID Non-Stochastic Non-Serial

Weaker Conditions than Strong Convexity (SC)

How does PL inequality [1963] relate to more recent conditions?

EB: error bounds [Luo and Tseng, 1993].
QG: quadratic growth [Anitescu, 2000]
ESC: essential strong convexity [Liu et al., 2013].
RSI: restricted secant inequality [Zhang & Yin, 2013].

RSI plus convexity is “restricted strong-convexity”.

Semi-strong convexity [Gong & Ye, 2014].

Equivalent to QG plus convexity.

Optimal strong convexity [Liu & Wright, 2015].

Equivalent to QG plus convexity.

WSC: weak strong convexity [Necoara et al., 2015].

Proofs are often more complicated under these conditions.

Are they more general?

Non-Convex Non-IID Non-Stochastic Non-Serial

Weaker Conditions than Strong Convexity (SC)

How does PL inequality [1963] relate to more recent conditions?

EB: error bounds [Luo and Tseng, 1993].
QG: quadratic growth [Anitescu, 2000]
ESC: essential strong convexity [Liu et al., 2013].
RSI: restricted secant inequality [Zhang & Yin, 2013].

RSI plus convexity is “restricted strong-convexity”.

Semi-strong convexity [Gong & Ye, 2014].

Equivalent to QG plus convexity.

Optimal strong convexity [Liu & Wright, 2015].

Equivalent to QG plus convexity.

WSC: weak strong convexity [Necoara et al., 2015].

Proofs are often more complicated under these conditions.

Are they more general?

Non-Convex Non-IID Non-Stochastic Non-Serial

Weaker Conditions than Strong Convexity (SC)

How does PL inequality [1963] relate to more recent conditions?

EB: error bounds [Luo and Tseng, 1993].
QG: quadratic growth [Anitescu, 2000]
ESC: essential strong convexity [Liu et al., 2013].
RSI: restricted secant inequality [Zhang & Yin, 2013].

RSI plus convexity is “restricted strong-convexity”.

Semi-strong convexity [Gong & Ye, 2014].

Equivalent to QG plus convexity.

Optimal strong convexity [Liu & Wright, 2015].

Equivalent to QG plus convexity.

WSC: weak strong convexity [Necoara et al., 2015].

Proofs are often more complicated under these conditions.

Are they more general?

Non-Convex Non-IID Non-Stochastic Non-Serial

Relationships Between Conditions

For a function f with a Lipschitz-continuous gradient, we have:

(SC) → (ESC) → (WSC) → (RSI) → (EB) ≡ (PL) → (QG).

If we further assume that f is convex, then

(RSI) ≡ (EB) ≡ (PL) ≡ (QG).

QG is the weakest condition but allows non-global local minima.

PL ≡ EB are most general conditions giving global min.

Non-Convex Non-IID Non-Stochastic Non-Serial

Relationships Between Conditions

For a function f with a Lipschitz-continuous gradient, we have:

(SC) → (ESC) → (WSC) → (RSI) → (EB) ≡ (PL) → (QG).

If we further assume that f is convex, then

(RSI) ≡ (EB) ≡ (PL) ≡ (QG).

QG is the weakest condition but allows non-global local minima.

PL ≡ EB are most general conditions giving global min.

Non-Convex Non-IID Non-Stochastic Non-Serial

Relationships Between Conditions

For a function f with a Lipschitz-continuous gradient, we have:

(SC) → (ESC) → (WSC) → (RSI) → (EB) ≡ (PL) → (QG).

If we further assume that f is convex, then

(RSI) ≡ (EB) ≡ (PL) ≡ (QG).

QG is the weakest condition but allows non-global local minima.

PL ≡ EB are most general conditions giving global min.

Non-Convex Non-IID Non-Stochastic Non-Serial

Relationships Between Conditions

For a function f with a Lipschitz-continuous gradient, we have:

(SC) → (ESC) → (WSC) → (RSI) → (EB) ≡ (PL) → (QG).

If we further assume that f is convex, then

(RSI) ≡ (EB) ≡ (PL) ≡ (QG).

QG is the weakest condition but allows non-global local minima.

PL ≡ EB are most general conditions giving global min.

Non-Convex Non-IID Non-Stochastic Non-Serial

Convergence of Huge-Scale Methods

For large datasets, we typically don’t use GD.

But the PL inequality can be used to analyze other algorithms.

It has now been used to analyze:
Classic stochastic gradient methods [Karimi et al., 2016]:

O(1/k) without strong-convexity using basic method.

Coordinate descent methods [Karimi et al, 2016].
Frank-Wolfe [Garber & Hazan, 2015].
Variance-reduced stochastic gradient (like SAGA and SVRG) [Reddi et al., 2016].

Linear convergence without strong-convexity.

Non-Convex Non-IID Non-Stochastic Non-Serial

Convergence of Huge-Scale Methods

For large datasets, we typically don’t use GD.

But the PL inequality can be used to analyze other algorithms.

It has now been used to analyze:
Classic stochastic gradient methods [Karimi et al., 2016]:

O(1/k) without strong-convexity using basic method.

Coordinate descent methods [Karimi et al, 2016].
Frank-Wolfe [Garber & Hazan, 2015].

Variance-reduced stochastic gradient (like SAGA and SVRG) [Reddi et al., 2016].

Linear convergence without strong-convexity.

Non-Convex Non-IID Non-Stochastic Non-Serial

Convergence of Huge-Scale Methods

For large datasets, we typically don’t use GD.

But the PL inequality can be used to analyze other algorithms.

It has now been used to analyze:
Classic stochastic gradient methods [Karimi et al., 2016]:

O(1/k) without strong-convexity using basic method.

Coordinate descent methods [Karimi et al, 2016].
Frank-Wolfe [Garber & Hazan, 2015].
Variance-reduced stochastic gradient (like SAGA and SVRG) [Reddi et al., 2016].

Linear convergence without strong-convexity.

Non-Convex Non-IID Non-Stochastic Non-Serial

Relevant Problems for Proximal-PL

Proximal-PL is a generalization for non-smooth composite problems.

Reddi et al. [2016] analyze proximal-SVRG and proximal-SAGA.

Proximal-PL is satisfied when:

f is strongly-convex.
f satisfies PL and g is constant.
f = h(Ax) for strongly-convex h and g is indicator of polyhedral set.

F is convex and satisfies QG (SVM and LASSO)
Any problem satisfying KL inequality or error bounds (equivalent to these).

Group L1-regularization, nuclear-norm regularization.

Another important problem class: principal component analysis (PCA)

Non-convex and doesn’t satisfy PL, but we can find global optimum.
But it satisfies PL on Riemannian manifold [Zhang et al., 2016].
New faster method based on SVRG [Shamir, 2015, Garber & Hazan, 2016].

Non-Convex Non-IID Non-Stochastic Non-Serial

Relevant Problems for Proximal-PL

Proximal-PL is a generalization for non-smooth composite problems.

Reddi et al. [2016] analyze proximal-SVRG and proximal-SAGA.

Proximal-PL is satisfied when:

f is strongly-convex.
f satisfies PL and g is constant.
f = h(Ax) for strongly-convex h and g is indicator of polyhedral set.
F is convex and satisfies QG (SVM and LASSO)
Any problem satisfying KL inequality or error bounds (equivalent to these).

Group L1-regularization, nuclear-norm regularization.

Another important problem class: principal component analysis (PCA)

Non-convex and doesn’t satisfy PL, but we can find global optimum.
But it satisfies PL on Riemannian manifold [Zhang et al., 2016].
New faster method based on SVRG [Shamir, 2015, Garber & Hazan, 2016].

Non-Convex Non-IID Non-Stochastic Non-Serial

Relevant Problems for Proximal-PL

Proximal-PL is a generalization for non-smooth composite problems.

Reddi et al. [2016] analyze proximal-SVRG and proximal-SAGA.

Proximal-PL is satisfied when:

f is strongly-convex.
f satisfies PL and g is constant.
f = h(Ax) for strongly-convex h and g is indicator of polyhedral set.
F is convex and satisfies QG (SVM and LASSO)
Any problem satisfying KL inequality or error bounds (equivalent to these).

Group L1-regularization, nuclear-norm regularization.

Another important problem class: principal component analysis (PCA)

Non-convex and doesn’t satisfy PL, but we can find global optimum.

But it satisfies PL on Riemannian manifold [Zhang et al., 2016].
New faster method based on SVRG [Shamir, 2015, Garber & Hazan, 2016].

Non-Convex Non-IID Non-Stochastic Non-Serial

Relevant Problems for Proximal-PL

Proximal-PL is a generalization for non-smooth composite problems.

Reddi et al. [2016] analyze proximal-SVRG and proximal-SAGA.

Proximal-PL is satisfied when:

f is strongly-convex.
f satisfies PL and g is constant.
f = h(Ax) for strongly-convex h and g is indicator of polyhedral set.
F is convex and satisfies QG (SVM and LASSO)
Any problem satisfying KL inequality or error bounds (equivalent to these).

Group L1-regularization, nuclear-norm regularization.

Another important problem class: principal component analysis (PCA)

Non-convex and doesn’t satisfy PL, but we can find global optimum.
But it satisfies PL on Riemannian manifold [Zhang et al., 2016].
New faster method based on SVRG [Shamir, 2015, Garber & Hazan, 2016].

Non-Convex Non-IID Non-Stochastic Non-Serial

But can we say anything about general non-convex functions?

What if all we know is ∇f is Lipschitz and f is bounded below?

Non-Convex Non-IID Non-Stochastic Non-Serial

Non-Convex Rates for Gradient Descent

For strongly-convex functions, GD satisfies

‖xt − x∗‖2 = O(ρt).

For convex functions, for GD still satisfies

f (x t)− f (x∗) = O(1/t).

For non-convex and bounded below functions, GD still satisfies

min
k≤t
‖∇f (xk)‖2 = O(1/t),

a convergence rate in terms of getting to a critical point [Nesterov, 2003].

Non-Convex Non-IID Non-Stochastic Non-Serial

Non-Convex Rates for Gradient Descent

For strongly-convex functions, GD satisfies

‖xt − x∗‖2 = O(ρt).

For convex functions, for GD still satisfies

f (x t)− f (x∗) = O(1/t).

For non-convex and bounded below functions, GD still satisfies

min
k≤t
‖∇f (xk)‖2 = O(1/t),

a convergence rate in terms of getting to a critical point [Nesterov, 2003].

Non-Convex Non-IID Non-Stochastic Non-Serial

Non-Convex Rates for Stochastic Gradient

For stochastic gradient methods, Ghadimi & Lan [2013] show a similar result,

E[‖∇f (xk)‖2] = O(1
√
t),

for a randomly-chosen k ≤ t.

For variance-reduced methods, Reddi et al. [2016] show we get faster rate,

E[‖∇f (xk)‖2] = O(1/t),

for a randomly-chosen k ≤ t.

Non-Convex Non-IID Non-Stochastic Non-Serial

Non-Convex Rates for Stochastic Gradient

For stochastic gradient methods, Ghadimi & Lan [2013] show a similar result,

E[‖∇f (xk)‖2] = O(1
√
t),

for a randomly-chosen k ≤ t.

For variance-reduced methods, Reddi et al. [2016] show we get faster rate,

E[‖∇f (xk)‖2] = O(1/t),

for a randomly-chosen k ≤ t.

Non-Convex Non-IID Non-Stochastic Non-Serial

Non-Convex Rates for Stochastic Gradient

Non-Convex Non-IID Non-Stochastic Non-Serial

Non-Convex Rates for Stochastic Gradient

Number of gradient evaluations to guarantee ε-close to critical:
Gradient descent O(n/ε)
Stochastic gradient O(1/ε2)

Variance-reduced O(n + n2/3/ε)

We have analogous results for variance-reduced proximal+stochastic methods.
[Reddi et al., 2016]

We cannot show analogous results for classic proximal stochastic methods.

All existing proximal+stochastic results require noise to go to zero.
Open problem that needs to be resolved: are analogous results possible?

Non-Convex Non-IID Non-Stochastic Non-Serial

Non-Convex Rates for Stochastic Gradient

Number of gradient evaluations to guarantee ε-close to critical:
Gradient descent O(n/ε)
Stochastic gradient O(1/ε2)

Variance-reduced O(n + n2/3/ε)

We have analogous results for variance-reduced proximal+stochastic methods.
[Reddi et al., 2016]

We cannot show analogous results for classic proximal stochastic methods.

All existing proximal+stochastic results require noise to go to zero.
Open problem that needs to be resolved: are analogous results possible?

Non-Convex Non-IID Non-Stochastic Non-Serial

Non-Convex Rates for Stochastic Gradient

Number of gradient evaluations to guarantee ε-close to critical:
Gradient descent O(n/ε)
Stochastic gradient O(1/ε2)

Variance-reduced O(n + n2/3/ε)

We have analogous results for variance-reduced proximal+stochastic methods.
[Reddi et al., 2016]

We cannot show analogous results for classic proximal stochastic methods.

All existing proximal+stochastic results require noise to go to zero.
Open problem that needs to be resolved: are analogous results possible?

Non-Convex Non-IID Non-Stochastic Non-Serial

Non-Convex Rates for Stochastic Gradient

Number of gradient evaluations to guarantee ε-close to critical:
Gradient descent O(n/ε)
Stochastic gradient O(1/ε2)

Variance-reduced O(n + n2/3/ε)

We have analogous results for variance-reduced proximal+stochastic methods.
[Reddi et al., 2016]

We cannot show analogous results for classic proximal stochastic methods.

All existing proximal+stochastic results require noise to go to zero.
Open problem that needs to be resolved: are analogous results possible?

Non-Convex Non-IID Non-Stochastic Non-Serial

Outline

1 Non-Convex

2 Non-IID

3 Non-Stochastic

4 Non-Serial

Non-Convex Non-IID Non-Stochastic Non-Serial

Non-IID Setting

We discussed stochastic minimization problems

argmin
x

E[fi (x)],

where we have the ability to generate IID samples fi (x).

Using IID samples is justified by the law of large numbers.

But it’s almost never true.

What if we can’t get IID samples?

Classic non-IID sampling scheme [Bertsekas & Tsitsiklis, 1996]:

Samples follow a Markov chain with stationary distribution of E[fi (x)].
Obtain standard guarantees if Markov chain mixes fast enough [Duchi et al., 2012].

Non-Convex Non-IID Non-Stochastic Non-Serial

Non-IID Setting

We discussed stochastic minimization problems

argmin
x

E[fi (x)],

where we have the ability to generate IID samples fi (x).

Using IID samples is justified by the law of large numbers.

But it’s almost never true.

What if we can’t get IID samples?

Classic non-IID sampling scheme [Bertsekas & Tsitsiklis, 1996]:

Samples follow a Markov chain with stationary distribution of E[fi (x)].
Obtain standard guarantees if Markov chain mixes fast enough [Duchi et al., 2012].

Non-Convex Non-IID Non-Stochastic Non-Serial

Non-IID Setting

We discussed stochastic minimization problems

argmin
x

E[fi (x)],

where we have the ability to generate IID samples fi (x).

Using IID samples is justified by the law of large numbers.

But it’s almost never true.

What if we can’t get IID samples?

Classic non-IID sampling scheme [Bertsekas & Tsitsiklis, 1996]:

Samples follow a Markov chain with stationary distribution of E[fi (x)].
Obtain standard guarantees if Markov chain mixes fast enough [Duchi et al., 2012].

Non-Convex Non-IID Non-Stochastic Non-Serial

General Sampling

What about general non-IID sampling schemes?

What if our samples fi come from an adversary?

Can we say anything in this case?

Optimization error can be arbitrarily bad, but we can bound regret...

Non-Convex Non-IID Non-Stochastic Non-Serial

General Sampling

What about general non-IID sampling schemes?

What if our samples fi come from an adversary?

Can we say anything in this case?

Optimization error can be arbitrarily bad, but we can bound regret...

Non-Convex Non-IID Non-Stochastic Non-Serial

General Sampling

What about general non-IID sampling schemes?

What if our samples fi come from an adversary?

Can we say anything in this case?

Optimization error can be arbitrarily bad, but we can bound regret...

Non-Convex Non-IID Non-Stochastic Non-Serial

Online Convex Optimization

Consider the online convex optimization (OCO) framework [Zinkevich, 2003]:

At time t, make a prediction x t .

Receive next arbitrary convex loss ft .
Pay a penalty of ft(x

t).

The regret at time t is given by

t∑
k=1

[fk(xk)− fk(x∗)],

the total error compared to the best x∗ we could have chosen for first t functions.

The x∗ is not the solution to the problem, it’s just the best we could have done.

The x∗ depends on t, the “solution” is changing over time.

Non-Convex Non-IID Non-Stochastic Non-Serial

Online Convex Optimization

Consider the online convex optimization (OCO) framework [Zinkevich, 2003]:

At time t, make a prediction x t .
Receive next arbitrary convex loss ft .

Pay a penalty of ft(x
t).

The regret at time t is given by

t∑
k=1

[fk(xk)− fk(x∗)],

the total error compared to the best x∗ we could have chosen for first t functions.

The x∗ is not the solution to the problem, it’s just the best we could have done.

The x∗ depends on t, the “solution” is changing over time.

Non-Convex Non-IID Non-Stochastic Non-Serial

Online Convex Optimization

Consider the online convex optimization (OCO) framework [Zinkevich, 2003]:

At time t, make a prediction x t .
Receive next arbitrary convex loss ft .
Pay a penalty of ft(x

t).

The regret at time t is given by

t∑
k=1

[fk(xk)− fk(x∗)],

the total error compared to the best x∗ we could have chosen for first t functions.

The x∗ is not the solution to the problem, it’s just the best we could have done.

The x∗ depends on t, the “solution” is changing over time.

Non-Convex Non-IID Non-Stochastic Non-Serial

Online Convex Optimization

Consider the online convex optimization (OCO) framework [Zinkevich, 2003]:

At time t, make a prediction x t .
Receive next arbitrary convex loss ft .
Pay a penalty of ft(x

t).

The regret at time t is given by

t∑
k=1

[fk(xk)− fk(x∗)],

the total error compared to the best x∗ we could have chosen for first t functions.

The x∗ is not the solution to the problem, it’s just the best we could have done.

The x∗ depends on t, the “solution” is changing over time.

Non-Convex Non-IID Non-Stochastic Non-Serial

Online Convex Optimization

Consider the online convex optimization (OCO) framework [Zinkevich, 2003]:

At time t, make a prediction x t .
Receive next arbitrary convex loss ft .
Pay a penalty of ft(x

t).

The regret at time t is given by

t∑
k=1

[fk(xk)− fk(x∗)],

the total error compared to the best x∗ we could have chosen for first t functions.

The x∗ is not the solution to the problem, it’s just the best we could have done.

The x∗ depends on t, the “solution” is changing over time.

Non-Convex Non-IID Non-Stochastic Non-Serial

Online Convex Optimization

Assuming everything is bounded, doing nothing has a regret of O(t).

Consider applying stochastic gradient, treating the ft as the samples.

For convex functions, has a regret of O(
√
t) [Zinkevich, 2003].

For strongly-convex, has a regret of O(log(t)) [Hazan et al., 2006].
These are optimal.

Key idea: x∗ isn’t moving faster than stochastic gradient is converging.

Non-Convex Non-IID Non-Stochastic Non-Serial

Online Convex Optimization

Assuming everything is bounded, doing nothing has a regret of O(t).

Consider applying stochastic gradient, treating the ft as the samples.

For convex functions, has a regret of O(
√
t) [Zinkevich, 2003].

For strongly-convex, has a regret of O(log(t)) [Hazan et al., 2006].

These are optimal.

Key idea: x∗ isn’t moving faster than stochastic gradient is converging.

Non-Convex Non-IID Non-Stochastic Non-Serial

Online Convex Optimization

Assuming everything is bounded, doing nothing has a regret of O(t).

Consider applying stochastic gradient, treating the ft as the samples.

For convex functions, has a regret of O(
√
t) [Zinkevich, 2003].

For strongly-convex, has a regret of O(log(t)) [Hazan et al., 2006].
These are optimal.

Key idea: x∗ isn’t moving faster than stochastic gradient is converging.

Non-Convex Non-IID Non-Stochastic Non-Serial

Online Convex Optimization

AdaGrad is a very-popular online method [Duchi et al., 2011]:

Improves on constants in regret bounds using diagonal-scaleing

x t+1 = x t − αtD
−1
t ∇ft(x t),

with diagonal entries (Dt)ii = δ +
√∑t

k=1∇i fk(xk).

Adam is a generalization that is incredibly-popular for deep learning.
[Kingma & Ba, 2015]

Though trend is returning to variations on accelerated stochastic gradient.

Online learning remains active area and many variations exist:

Bandit methods only receive evaluation ft(x
t) rather than function ft .

Main application: internet advertising and recommender systems.

Non-Convex Non-IID Non-Stochastic Non-Serial

Online Convex Optimization

AdaGrad is a very-popular online method [Duchi et al., 2011]:

Improves on constants in regret bounds using diagonal-scaleing

x t+1 = x t − αtD
−1
t ∇ft(x t),

with diagonal entries (Dt)ii = δ +
√∑t

k=1∇i fk(xk).

Adam is a generalization that is incredibly-popular for deep learning.
[Kingma & Ba, 2015]

Though trend is returning to variations on accelerated stochastic gradient.

Online learning remains active area and many variations exist:

Bandit methods only receive evaluation ft(x
t) rather than function ft .

Main application: internet advertising and recommender systems.

Non-Convex Non-IID Non-Stochastic Non-Serial

Outline

1 Non-Convex

2 Non-IID

3 Non-Stochastic

4 Non-Serial

Non-Convex Non-IID Non-Stochastic Non-Serial

Graph-Structured Optimization

Another structure arising in machine learning is graph-structured problems,

argmin
x

∑
(i ,j)∈E

fij(xi , xj) +
n∑

i=1

fi (xi).

where E is the set of edges in graph.

Includes quadratic functions,

xTAx + bT x =
n∑

i=1

n∑
j=1

aijxixj +
n∑

i=1

bixi ,

and other models like label propagation for semi-supervised learning.

The graph is sparsity pattern of A.

Non-Convex Non-IID Non-Stochastic Non-Serial

Graph-Structured Optimization

Another structure arising in machine learning is graph-structured problems,

argmin
x

∑
(i ,j)∈E

fij(xi , xj) +
n∑

i=1

fi (xi).

where E is the set of edges in graph.

Includes quadratic functions,

xTAx + bT x =
n∑

i=1

n∑
j=1

aijxixj +
n∑

i=1

bixi ,

and other models like label propagation for semi-supervised learning.

The graph is sparsity pattern of A.

Non-Convex Non-IID Non-Stochastic Non-Serial

Coordinate Descent for Graph-Structured Optimization

Coordinate descent seems well-suited to this problem structure:

argmin
x

∑
(i ,j)∈E

fij(xi , xj) +
n∑

i=1

fi (xi).

To update xi , we only need to consider fi and the fij for each neighbour.

With random selection of coordinates, expected iteration cost is O(|E |/n).

This is n-times faster than GD iteration which cost O(|E |).

Non-Convex Non-IID Non-Stochastic Non-Serial

Coordinate Descent for Graph-Structured Optimization

Coordinate descent seems well-suited to this problem structure:

argmin
x

∑
(i ,j)∈E

fij(xi , xj) +
n∑

i=1

fi (xi).

To update xi , we only need to consider fi and the fij for each neighbour.

With random selection of coordinates, expected iteration cost is O(|E |/n).

This is n-times faster than GD iteration which cost O(|E |).

Non-Convex Non-IID Non-Stochastic Non-Serial

Coordinate Descent for Graph-Structured Optimization

But for many problems randomized coordinate descent doesn’t work well...

Epochs
0 5 10 15 20 25 30

O
b
j
e
c
t
i
v
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cyclic

Random

Lipschitz

G
S

G
SL

Graph-based label propagation

Often outperformed by the greedy Gauss-Southwell rule.

But is plotting “epochs” cheating because Gauss-Southwell is more expensive?

Non-Convex Non-IID Non-Stochastic Non-Serial

Coordinate Descent for Graph-Structured Optimization

But for many problems randomized coordinate descent doesn’t work well...

Epochs
0 5 10 15 20 25 30

O
b
j
e
c
t
i
v
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cyclic

Random

Lipschitz

G
S

G
SL

Graph-based label propagation

Often outperformed by the greedy Gauss-Southwell rule.

But is plotting “epochs” cheating because Gauss-Southwell is more expensive?

Non-Convex Non-IID Non-Stochastic Non-Serial

Greedy Coordinate Descent

Gauss-Southwell greedy rule for picking a coordinate to update:

argmax
i
|∇i f (x)|.

x1 x2 x3

Looks expensive because computing the gradient costs O(|E |).

Non-Convex Non-IID Non-Stochastic Non-Serial

Greedy Coordinate Descent

Gauss-Southwell greedy rule for picking a coordinate to update:

argmax
i
|∇i f (x)|.

x1 x2 x3

Looks expensive because computing the gradient costs O(|E |).

Non-Convex Non-IID Non-Stochastic Non-Serial

Greedy Coordinate Descent

Gauss-Southwell greedy rule for picking a coordinate to update:

argmax
i
|∇i f (x)|.

x1 x2 x3

Looks expensive because computing the gradient costs O(|E |).

Non-Convex Non-IID Non-Stochastic Non-Serial

Greedy Coordinate Descent

Gauss-Southwell greedy rule for picking a coordinate to update:

argmax
i
|∇i f (x)|.

x1 x2 x3
Gauss-Southwell

Looks expensive because computing the gradient costs O(|E |).

Non-Convex Non-IID Non-Stochastic Non-Serial

Greedy Coordinate Descent

Gauss-Southwell greedy rule for picking a coordinate to update:

argmax
i
|∇i f (x)|.

x1 x2 x3
Gauss-Southwell

Looks expensive because computing the gradient costs O(|E |).

Non-Convex Non-IID Non-Stochastic Non-Serial

Cost of Greedy Coordinate Descnet

Gauss-Southwell cost depends on graph structure.

Same is true of Lipschitz sampling.

Consider problems where maximum degree and average degree are similar:

Lattice graphs (max is 4, average is ≈ 4).
Complete graphs (max and average degrees are n − 1).
Facebook graph (max is 7000, average is ≈ 200).

Here we can efficiently track the gradient and it’s max [Meshi et al., 2012].

Updating xi , it only changes |∇j f (xk)| for i and its neighbours.
We can use a max-heap to track the maximum.

Non-Convex Non-IID Non-Stochastic Non-Serial

Cost of Greedy Coordinate Descnet

Gauss-Southwell cost depends on graph structure.

Same is true of Lipschitz sampling.

Consider problems where maximum degree and average degree are similar:

Lattice graphs (max is 4, average is ≈ 4).

Complete graphs (max and average degrees are n − 1).
Facebook graph (max is 7000, average is ≈ 200).

Here we can efficiently track the gradient and it’s max [Meshi et al., 2012].

Updating xi , it only changes |∇j f (xk)| for i and its neighbours.
We can use a max-heap to track the maximum.

Non-Convex Non-IID Non-Stochastic Non-Serial

Cost of Greedy Coordinate Descnet

Gauss-Southwell cost depends on graph structure.

Same is true of Lipschitz sampling.

Consider problems where maximum degree and average degree are similar:

Lattice graphs (max is 4, average is ≈ 4).
Complete graphs (max and average degrees are n − 1).

Facebook graph (max is 7000, average is ≈ 200).

Here we can efficiently track the gradient and it’s max [Meshi et al., 2012].

Updating xi , it only changes |∇j f (xk)| for i and its neighbours.
We can use a max-heap to track the maximum.

Non-Convex Non-IID Non-Stochastic Non-Serial

Cost of Greedy Coordinate Descnet

Gauss-Southwell cost depends on graph structure.

Same is true of Lipschitz sampling.

Consider problems where maximum degree and average degree are similar:

Lattice graphs (max is 4, average is ≈ 4).
Complete graphs (max and average degrees are n − 1).
Facebook graph (max is 7000, average is ≈ 200).

Here we can efficiently track the gradient and it’s max [Meshi et al., 2012].

Updating xi , it only changes |∇j f (xk)| for i and its neighbours.
We can use a max-heap to track the maximum.

Non-Convex Non-IID Non-Stochastic Non-Serial

Cost of Greedy Coordinate Descnet

Gauss-Southwell cost depends on graph structure.

Same is true of Lipschitz sampling.

Consider problems where maximum degree and average degree are similar:

Lattice graphs (max is 4, average is ≈ 4).
Complete graphs (max and average degrees are n − 1).
Facebook graph (max is 7000, average is ≈ 200).

Here we can efficiently track the gradient and it’s max [Meshi et al., 2012].

Updating xi , it only changes |∇j f (xk)| for i and its neighbours.
We can use a max-heap to track the maximum.

Non-Convex Non-IID Non-Stochastic Non-Serial

Cost of Greedy Coordinate Descnet

Gauss-Southwell cost depends on graph structure.

Same is true of Lipschitz sampling.

Consider problems where maximum degree and average degree are similar:

Lattice graphs (max is 4, average is ≈ 4).
Complete graphs (max and average degrees are n − 1).
Facebook graph (max is 7000, average is ≈ 200).

Here we can efficiently track the gradient and it’s max [Meshi et al., 2012].

Updating xi , it only changes |∇j f (xk)| for i and its neighbours.
We can use a max-heap to track the maximum.

Non-Convex Non-IID Non-Stochastic Non-Serial

Convergence Rate of Greedy Coordinate Descent

But don’t random and greedy have the same rate?

Nutini et al. [2015] show that rate for Gauss-Southwell is

f (xk)− f ∗ ≤
(

1− µ1
L

)k
[f (x0)− f ∗)],

where µ1 is strong-convexity constant in the 1-norm.

Constant µ1 satisfies
µ

n︸︷︷︸
random

≤ µ1︸︷︷︸
greedy

≤ µ︸︷︷︸
gradient

,

so we should expect more progress under Gauss-Southwell.

Non-Convex Non-IID Non-Stochastic Non-Serial

Convergence Rate of Greedy Coordinate Descent

But don’t random and greedy have the same rate?

Nutini et al. [2015] show that rate for Gauss-Southwell is

f (xk)− f ∗ ≤
(

1− µ1
L

)k
[f (x0)− f ∗)],

where µ1 is strong-convexity constant in the 1-norm.

Constant µ1 satisfies
µ

n︸︷︷︸
random

≤ µ1︸︷︷︸
greedy

≤ µ︸︷︷︸
gradient

,

so we should expect more progress under Gauss-Southwell.

Non-Convex Non-IID Non-Stochastic Non-Serial

Convergence Rate of Greedy Coordinate Descent

But don’t random and greedy have the same rate?

Nutini et al. [2015] show that rate for Gauss-Southwell is

f (xk)− f ∗ ≤
(

1− µ1
L

)k
[f (x0)− f ∗)],

where µ1 is strong-convexity constant in the 1-norm.

Constant µ1 satisfies
µ

n︸︷︷︸
random

≤ µ1︸︷︷︸
greedy

≤ µ︸︷︷︸
gradient

,

so we should expect more progress under Gauss-Southwell.

Non-Convex Non-IID Non-Stochastic Non-Serial

Gauss-Southwell-Lipschitz Rule
Nutini et al. [2015] also give a rule with faster rate by incorporating the Li ,

ik = argmax
i

|∇i f (xk)|√
Li

,

which is called the Gauss-Southwell-Lipschitz rule.
At least as fast as GS and Lipschitz sampling rules.

Intuition: if gradients are similar, more progress if Li is small.

x1
x2

Greedy rules have lead to new methods for computing leading eigenvectors.
Coordinate-wise power methods [Wei et al., 2016, Wang et al., 2017].

Non-Convex Non-IID Non-Stochastic Non-Serial

Gauss-Southwell-Lipschitz Rule
Nutini et al. [2015] also give a rule with faster rate by incorporating the Li ,

ik = argmax
i

|∇i f (xk)|√
Li

,

which is called the Gauss-Southwell-Lipschitz rule.
At least as fast as GS and Lipschitz sampling rules.

Intuition: if gradients are similar, more progress if Li is small.

x1
x2

Greedy rules have lead to new methods for computing leading eigenvectors.
Coordinate-wise power methods [Wei et al., 2016, Wang et al., 2017].

Non-Convex Non-IID Non-Stochastic Non-Serial

Gauss-Southwell-Lipschitz Rule
Nutini et al. [2015] also give a rule with faster rate by incorporating the Li ,

ik = argmax
i

|∇i f (xk)|√
Li

,

which is called the Gauss-Southwell-Lipschitz rule.
At least as fast as GS and Lipschitz sampling rules.

Intuition: if gradients are similar, more progress if Li is small.

x1
x2

Gauss-Southwell

Greedy rules have lead to new methods for computing leading eigenvectors.
Coordinate-wise power methods [Wei et al., 2016, Wang et al., 2017].

Non-Convex Non-IID Non-Stochastic Non-Serial

Gauss-Southwell-Lipschitz Rule
Nutini et al. [2015] also give a rule with faster rate by incorporating the Li ,

ik = argmax
i

|∇i f (xk)|√
Li

,

which is called the Gauss-Southwell-Lipschitz rule.
At least as fast as GS and Lipschitz sampling rules.

Intuition: if gradients are similar, more progress if Li is small.

x1
x2

Gauss-SouthwellGauss-Southwell-Lipschitz

Greedy rules have lead to new methods for computing leading eigenvectors.
Coordinate-wise power methods [Wei et al., 2016, Wang et al., 2017].

Non-Convex Non-IID Non-Stochastic Non-Serial

Outline

1 Non-Convex

2 Non-IID

3 Non-Stochastic

4 Non-Serial

Non-Convex Non-IID Non-Stochastic Non-Serial

Motivation for Parallel and Distributed

Two recent trends:

We aren’t making large gains in serial computation speed.
Datasets no longer fit on a single machine.

Result: we must use parallel and distributed computation.

Two major new issues:

Synchronization: we can’t wait for the slowest machine.
Communication: we can’t transfer all information.

Non-Convex Non-IID Non-Stochastic Non-Serial

Motivation for Parallel and Distributed

Two recent trends:

We aren’t making large gains in serial computation speed.
Datasets no longer fit on a single machine.

Result: we must use parallel and distributed computation.

Two major new issues:

Synchronization: we can’t wait for the slowest machine.
Communication: we can’t transfer all information.

Non-Convex Non-IID Non-Stochastic Non-Serial

Motivation for Parallel and Distributed

Two recent trends:

We aren’t making large gains in serial computation speed.
Datasets no longer fit on a single machine.

Result: we must use parallel and distributed computation.

Two major new issues:

Synchronization: we can’t wait for the slowest machine.
Communication: we can’t transfer all information.

Non-Convex Non-IID Non-Stochastic Non-Serial

Embarrassing Parallelism in Machine Learning

A lot of machine learning problems are embarrassingly parallel:

Split task across M machines, solve independently, combine.

E.g., computing the gradient in deterministic gradient method,

1

N

N∑
i=1

∇fi (x) =
1

N

N/M∑
i=1

∇fi (x) +

2N/M∑
i=(N/M)+1

∇fi (x) + . . .

 .

These allow optimal linear speedups.

You should always consider this first!

Non-Convex Non-IID Non-Stochastic Non-Serial

Embarrassing Parallelism in Machine Learning

A lot of machine learning problems are embarrassingly parallel:

Split task across M machines, solve independently, combine.

E.g., computing the gradient in deterministic gradient method,

1

N

N∑
i=1

∇fi (x) =
1

N

N/M∑
i=1

∇fi (x) +

2N/M∑
i=(N/M)+1

∇fi (x) + . . .

 .

These allow optimal linear speedups.

You should always consider this first!

Non-Convex Non-IID Non-Stochastic Non-Serial

Embarrassing Parallelism in Machine Learning

A lot of machine learning problems are embarrassingly parallel:

Split task across M machines, solve independently, combine.

E.g., computing the gradient in deterministic gradient method,

1

N

N∑
i=1

∇fi (x) =
1

N

N/M∑
i=1

∇fi (x) +

2N/M∑
i=(N/M)+1

∇fi (x) + . . .

 .

These allow optimal linear speedups.

You should always consider this first!

Non-Convex Non-IID Non-Stochastic Non-Serial

Asynchronous Computation
For stochastic gradient and SVRG, we can compute batch of gradients in parallel:

xk+1 = xk − αk
1

|B|
∑
i∈B
∇fi (xk),

for example computing one gradient ∇fi (xk) per processor.

Do we have to wait for the last computer to finish?
No!
Updating asynchronously saves a lot of time.
E.g., stochastic gradient method on shared memory:

xk+1 = xk − αk∇fik (xk−m).

You need to decrease step-size in proportion to asynchrony.
Convergence rate decays elegantly with delay m [Niu et al., 2011].

Now exists asynchronous variance-reduced methods.
[Reddi et al., 2015, Leblond et al., 2016, Mania et al., 2016]

Non-Convex Non-IID Non-Stochastic Non-Serial

Asynchronous Computation
For stochastic gradient and SVRG, we can compute batch of gradients in parallel:

xk+1 = xk − αk
1

|B|
∑
i∈B
∇fi (xk),

for example computing one gradient ∇fi (xk) per processor.

Do we have to wait for the last computer to finish?

No!
Updating asynchronously saves a lot of time.
E.g., stochastic gradient method on shared memory:

xk+1 = xk − αk∇fik (xk−m).

You need to decrease step-size in proportion to asynchrony.
Convergence rate decays elegantly with delay m [Niu et al., 2011].

Now exists asynchronous variance-reduced methods.
[Reddi et al., 2015, Leblond et al., 2016, Mania et al., 2016]

Non-Convex Non-IID Non-Stochastic Non-Serial

Asynchronous Computation
For stochastic gradient and SVRG, we can compute batch of gradients in parallel:

xk+1 = xk − αk
1

|B|
∑
i∈B
∇fi (xk),

for example computing one gradient ∇fi (xk) per processor.

Do we have to wait for the last computer to finish?
No!
Updating asynchronously saves a lot of time.

E.g., stochastic gradient method on shared memory:

xk+1 = xk − αk∇fik (xk−m).

You need to decrease step-size in proportion to asynchrony.
Convergence rate decays elegantly with delay m [Niu et al., 2011].

Now exists asynchronous variance-reduced methods.
[Reddi et al., 2015, Leblond et al., 2016, Mania et al., 2016]

Non-Convex Non-IID Non-Stochastic Non-Serial

Asynchronous Computation
For stochastic gradient and SVRG, we can compute batch of gradients in parallel:

xk+1 = xk − αk
1

|B|
∑
i∈B
∇fi (xk),

for example computing one gradient ∇fi (xk) per processor.

Do we have to wait for the last computer to finish?
No!
Updating asynchronously saves a lot of time.
E.g., stochastic gradient method on shared memory:

xk+1 = xk − αk∇fik (xk−m).

You need to decrease step-size in proportion to asynchrony.
Convergence rate decays elegantly with delay m [Niu et al., 2011].

Now exists asynchronous variance-reduced methods.
[Reddi et al., 2015, Leblond et al., 2016, Mania et al., 2016]

Non-Convex Non-IID Non-Stochastic Non-Serial

Asynchronous Computation
For stochastic gradient and SVRG, we can compute batch of gradients in parallel:

xk+1 = xk − αk
1

|B|
∑
i∈B
∇fi (xk),

for example computing one gradient ∇fi (xk) per processor.

Do we have to wait for the last computer to finish?
No!
Updating asynchronously saves a lot of time.
E.g., stochastic gradient method on shared memory:

xk+1 = xk − αk∇fik (xk−m).

You need to decrease step-size in proportion to asynchrony.
Convergence rate decays elegantly with delay m [Niu et al., 2011].

Now exists asynchronous variance-reduced methods.
[Reddi et al., 2015, Leblond et al., 2016, Mania et al., 2016]

Non-Convex Non-IID Non-Stochastic Non-Serial

Reduced Communication: Parallel Coordinate Descnet

It may be expensive to communicate parameters x .

One solution: use parallel coordinate descent:

xj1 = xj1 − αj1∇j1f (x)

xj2 = xj2 − αj2∇j2f (x)

xj3 = xj3 − αj3∇j3f (x)

Only needs to communicate single coordinates.

Again need to decrease step-size for convergence.

Speedup is based on dependencies between variables [Richtarik & Takac, 2013].

Non-Convex Non-IID Non-Stochastic Non-Serial

Reduced Communication: Parallel Coordinate Descnet

It may be expensive to communicate parameters x .

One solution: use parallel coordinate descent:

xj1 = xj1 − αj1∇j1f (x)

xj2 = xj2 − αj2∇j2f (x)

xj3 = xj3 − αj3∇j3f (x)

Only needs to communicate single coordinates.

Again need to decrease step-size for convergence.

Speedup is based on dependencies between variables [Richtarik & Takac, 2013].

Non-Convex Non-IID Non-Stochastic Non-Serial

Reduced Communication: Parallel Coordinate Descnet

It may be expensive to communicate parameters x .

One solution: use parallel coordinate descent:

xj1 = xj1 − αj1∇j1f (x)

xj2 = xj2 − αj2∇j2f (x)

xj3 = xj3 − αj3∇j3f (x)

Only needs to communicate single coordinates.

Again need to decrease step-size for convergence.

Speedup is based on dependencies between variables [Richtarik & Takac, 2013].

Non-Convex Non-IID Non-Stochastic Non-Serial

Reduced Communication: Decentralized Gradient

We may need to distribute the data across machines.

One solution: decentralized gradient method [Nedic & Ozdaglar, 2009]:

Each processor has its own data samples f1, f2, . . . fm.
Each processor has its own parameter vector xc .
Each processor only communicates with a limited number of neighbours nei(c).

xc =
1

|nei(c)|
∑

c ′∈nei(c)

xc −
αc

M

M∑
i=1

∇fi (xc).

Gradient descent is special case where all neighbours communicate.

Modified update has fast rate in terms of graph Laplacian [Shi et al., 2014].

Can also consider communication failures [Agarwal & Duchi, 2011].

An active area with several other recent distributed methods.
[Jaggi et al., 2014, Shamir et al., 2013, Lee et al. 2015]

Non-Convex Non-IID Non-Stochastic Non-Serial

Reduced Communication: Decentralized Gradient

We may need to distribute the data across machines.

One solution: decentralized gradient method [Nedic & Ozdaglar, 2009]:

Each processor has its own data samples f1, f2, . . . fm.
Each processor has its own parameter vector xc .

Each processor only communicates with a limited number of neighbours nei(c).

xc =
1

|nei(c)|
∑

c ′∈nei(c)

xc −
αc

M

M∑
i=1

∇fi (xc).

Gradient descent is special case where all neighbours communicate.

Modified update has fast rate in terms of graph Laplacian [Shi et al., 2014].

Can also consider communication failures [Agarwal & Duchi, 2011].

An active area with several other recent distributed methods.
[Jaggi et al., 2014, Shamir et al., 2013, Lee et al. 2015]

Non-Convex Non-IID Non-Stochastic Non-Serial

Reduced Communication: Decentralized Gradient

We may need to distribute the data across machines.

One solution: decentralized gradient method [Nedic & Ozdaglar, 2009]:

Each processor has its own data samples f1, f2, . . . fm.
Each processor has its own parameter vector xc .
Each processor only communicates with a limited number of neighbours nei(c).

xc =
1

|nei(c)|
∑

c ′∈nei(c)

xc −
αc

M

M∑
i=1

∇fi (xc).

Gradient descent is special case where all neighbours communicate.

Modified update has fast rate in terms of graph Laplacian [Shi et al., 2014].

Can also consider communication failures [Agarwal & Duchi, 2011].

An active area with several other recent distributed methods.
[Jaggi et al., 2014, Shamir et al., 2013, Lee et al. 2015]

Non-Convex Non-IID Non-Stochastic Non-Serial

Reduced Communication: Decentralized Gradient

We may need to distribute the data across machines.

One solution: decentralized gradient method [Nedic & Ozdaglar, 2009]:

Each processor has its own data samples f1, f2, . . . fm.
Each processor has its own parameter vector xc .
Each processor only communicates with a limited number of neighbours nei(c).

xc =
1

|nei(c)|
∑

c ′∈nei(c)

xc −
αc

M

M∑
i=1

∇fi (xc).

Gradient descent is special case where all neighbours communicate.

Modified update has fast rate in terms of graph Laplacian [Shi et al., 2014].

Can also consider communication failures [Agarwal & Duchi, 2011].

An active area with several other recent distributed methods.
[Jaggi et al., 2014, Shamir et al., 2013, Lee et al. 2015]

Non-Convex Non-IID Non-Stochastic Non-Serial

Reduced Communication: Decentralized Gradient

We may need to distribute the data across machines.

One solution: decentralized gradient method [Nedic & Ozdaglar, 2009]:

Each processor has its own data samples f1, f2, . . . fm.
Each processor has its own parameter vector xc .
Each processor only communicates with a limited number of neighbours nei(c).

xc =
1

|nei(c)|
∑

c ′∈nei(c)

xc −
αc

M

M∑
i=1

∇fi (xc).

Gradient descent is special case where all neighbours communicate.

Modified update has fast rate in terms of graph Laplacian [Shi et al., 2014].

Can also consider communication failures [Agarwal & Duchi, 2011].

An active area with several other recent distributed methods.
[Jaggi et al., 2014, Shamir et al., 2013, Lee et al. 2015]

Non-Convex Non-IID Non-Stochastic Non-Serial

Reduced Communication: Decentralized Gradient

We may need to distribute the data across machines.

One solution: decentralized gradient method [Nedic & Ozdaglar, 2009]:

Each processor has its own data samples f1, f2, . . . fm.
Each processor has its own parameter vector xc .
Each processor only communicates with a limited number of neighbours nei(c).

xc =
1

|nei(c)|
∑

c ′∈nei(c)

xc −
αc

M

M∑
i=1

∇fi (xc).

Gradient descent is special case where all neighbours communicate.

Modified update has fast rate in terms of graph Laplacian [Shi et al., 2014].

Can also consider communication failures [Agarwal & Duchi, 2011].

An active area with several other recent distributed methods.
[Jaggi et al., 2014, Shamir et al., 2013, Lee et al. 2015]

Non-Convex Non-IID Non-Stochastic Non-Serial

Summary

PL inequality: linear convergence for somewhat-non-convex functions.

Convergence rate of gradient norm, and variance-reduction appears.

Stochastic algorithms have good regret for arbitrary sequences.

Greedy coordinate descent seems like the right tool for some problems.

Parallel/distributed methods are the future, but pose new challenges.

Non-Convex Non-IID Non-Stochastic Non-Serial

Summary

PL inequality: linear convergence for somewhat-non-convex functions.

Convergence rate of gradient norm, and variance-reduction appears.

Stochastic algorithms have good regret for arbitrary sequences.

Greedy coordinate descent seems like the right tool for some problems.

Parallel/distributed methods are the future, but pose new challenges.

Non-Convex Non-IID Non-Stochastic Non-Serial

Summary

PL inequality: linear convergence for somewhat-non-convex functions.

Convergence rate of gradient norm, and variance-reduction appears.

Stochastic algorithms have good regret for arbitrary sequences.

Greedy coordinate descent seems like the right tool for some problems.

Parallel/distributed methods are the future, but pose new challenges.

Non-Convex Non-IID Non-Stochastic Non-Serial

Summary

PL inequality: linear convergence for somewhat-non-convex functions.

Convergence rate of gradient norm, and variance-reduction appears.

Stochastic algorithms have good regret for arbitrary sequences.

Greedy coordinate descent seems like the right tool for some problems.

Parallel/distributed methods are the future, but pose new challenges.

Non-Convex Non-IID Non-Stochastic Non-Serial

Summary

PL inequality: linear convergence for somewhat-non-convex functions.

Convergence rate of gradient norm, and variance-reduction appears.

Stochastic algorithms have good regret for arbitrary sequences.

Greedy coordinate descent seems like the right tool for some problems.

Parallel/distributed methods are the future, but pose new challenges.

	Non-Convex
	Non-IID
	Non-Stochastic
	Non-Serial

