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Linear of Convergence of Gradient-Based Methods
@ We've seen a variety of results of the form:

Smoothness + Strong-Convexity =-  Linear Convergence

o Error on iteration t is O(p*), or we need O(log(1/€)) iterations.
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Linear of Convergence of Gradient-Based Methods
@ We've seen a variety of results of the form:

Smoothness + Strong-Convexity =-  Linear Convergence

o Error on iteration t is O(p*), or we need O(log(1/€)) iterations.

@ But even simple models are often not strongly-convex.
o Least squares, logistic regression, SVMs with bias, etc.

@ How much can we relax strong-convexity?

777

Smoothness + S c . = Linear Convergence
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Polyak-tojasiewicz (PL) Inequality

o For example, in 1963 Polyak showed linear convergence of GD only assuming
1 *
SIVACII? = u(f(x) = £),

that gradient grows as quadratic function of sub-optimality.
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Polyak-tojasiewicz (PL) Inequality
o For example, in 1963 Polyak showed linear convergence of GD only assuming
1 *
SIVACII? = u(f(x) = £),

that gradient grows as quadratic function of sub-optimality.
@ Holds for SC problems, but also problems of the form

f(x) = g(Ax), for strongly-convex g.

@ Includes least squares, logistic regression (on compact set), etc.
@ A special case of the tojasiewicz' inequality [1963].
o We'll call this the Polyak-tojasiewicz (PL) inequality.
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Polyak-tojasiewicz (PL) Inequality

For example, in 1963 Polyak showed linear convergence of GD only assuming

SIVFRIR 2 (F(x) — £°).

that gradient grows as quadratic function of sub-optimality.
Holds for SC problems, but also problems of the form

f(x) = g(Ax), for strongly-convex g.

Includes least squares, logistic regression (on compact set), etc.
A special case of the tojasiewicz’ inequality [1963].
o We'll call this the Polyak-tojasiewicz (PL) inequality.

Using the PL inequality we can show

Smoothness + SPL Ine;quallty

= Linear Convergence
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PL Inequality and Invexity

@ PL inequality doesn't require uniqueness or convexity.
@ However, it implies invexity.

e For smooth 7, invexity <> all stationary points are global optimum.
@ Example of invex but non-convex function satisfying PL:

f(x) = x* + 3sin?(x).

10 Plot of X~2 + 3*sin(x)~2

=3 -2 -1 0 1 2
x

o Gradient descent converges linearly on this non-convex problem.
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Weaker Conditions than Strong Convexity (SC)

@ How does PL inequality [1963] relate to more recent conditions?
EB: error bounds [Luo and Tseng, 1993].
QG: quadratic growth [Anitescu, 2000]

ESC: essential strong convexity [Liu et al., 2013].
RSI: restricted secant inequality [Zhang & Yin, 2013].

o RSI plus convexity is “restricted strong-convexity” .
e Semi-strong convexity [Gong & Ye, 2014].

e Equivalent to QG plus convexity.
o Optimal strong convexity [Liu & Wright, 2015].
o Equivalent to QG plus convexity.
o WSC: weak strong convexity [Necoara et al., 2015].
@ Proofs are often more complicated under these conditions.

@ Are they more general?



Non-Convex Non-IID Non-Stochastic Non-Serial

Relationships Between Conditions

For a function f with a Lipschitz-continuous gradient, we have:

(SC) — (ESC) — (WSC) — (RSI) — (EB) = (PL) — (QG).
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Relationships Between Conditions

For a function f with a Lipschitz-continuous gradient, we have:
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@ QG is the weakest condition but allows non-global local minima.

e PL = EB are most general conditions giving global min.
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Convergence of Huge-Scale Methods

@ For large datasets, we typically don’t use GD.
e But the PL inequality can be used to analyze other algorithms.

@ It has now been used to analyze:
o Classic stochastic gradient methods [Karimi et al., 2016]:
e O(1/k) without strong-convexity using basic method.

o Coordinate descent methods [Karimi et al, 2016].
o Frank-Wolfe [Garber & Hazan, 2015].
o Variance-reduced stochastic gradient (like SAGA and SVRG) [Reddi et al., 2016].

@ Linear convergence without strong-convexity.
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Relevant Problems for Proximal-PL

@ Proximal-PL is a generalization for non-smooth composite problems.
o Reddi et al. [2016] analyze proximal-SVRG and proximal-SAGA.

@ Proximal-PL is satisfied when:
e f is strongly-convex.
o f satisfies PL and g is constant.
o f = h(Ax) for strongly-convex h and g is indicator of polyhedral set.
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Relevant Problems for Proximal-PL

@ Proximal-PL is a generalization for non-smooth composite problems.
o Reddi et al. [2016] analyze proximal-SVRG and proximal-SAGA.

@ Proximal-PL is satisfied when:
e f is strongly-convex.
f satisfies PL and g is constant.
f = h(Ax) for strongly-convex h and g is indicator of polyhedral set.
F is convex and satisfies QG (SVM and LASSO)
Any problem satisfying KL inequality or error bounds (equivalent to these).

@ Group L1-regularization, nuclear-norm regularization.

@ Another important problem class: principal component analysis (PCA)
e Non-convex and doesn’t satisfy PL, but we can find global optimum.
o But it satisfies PL on Riemannian manifold [Zhang et al., 2016].
o New faster method based on SVRG [Shamir, 2015, Garber & Hazan, 2016].



Non-Convex Non-11D Non-Stochastic Non-Serial

@ But can we say anything about general non-convex functions?

@ What if all we know is Vf is Lipschitz and f is bounded below?
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2 _ t
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Non-Convex Rates for Gradient Descent

@ For strongly-convex functions, GD satisfies
Ixe = x> = O(p").
@ For convex functions, for GD still satisfies
f(x') — f(x*) = O(1/t).
@ For non-convex and bounded below functions, GD still satisfies

min IVF(x )2 = 0(1/1),

a convergence rate in terms of getting to a critical point [Nesterov, 2003].
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Non-Convex Rates for Stochastic Gradient

@ For stochastic gradient methods, Ghadimi & Lan [2013] show a similar result,
E[|VF(x)?] = O(1V?),

for a randomly-chosen k < t.
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Non-Convex Rates for Stochastic Gradient

@ For stochastic gradient methods, Ghadimi & Lan [2013] show a similar result,
E[|VF(x)?] = O(1V?),

for a randomly-chosen k < t.

@ For variance-reduced methods, Reddi et al. [2016] show we get faster rate,
E[|VF(x")[IP] = O(1/1),

for a randomly-chosen k < t.
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Non-Convex Rates for Stochastic Gradient

10!
0.54
— SGD 10° — SGD 0.52
— SVRG =~ 107 — SVRG 5 050
= £ 048
% 10 ; 0.46
= 102 & 0.44
0.42
ln" 0.40
104 0.38
100 200 300 300 100 200 300 400

#grad/n

#grad/n

CIFARI0 dataset; 2-layer NN

— SGD
— SVRG

100 200 300 400
#grad/n



Non-Convex Non-11D Non-Stochastic Non-Serial

Non-Convex Rates for Stochastic Gradient
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@ We have analogous results for variance-reduced proximal+-stochastic methods.
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Non-Convex Rates for Stochastic Gradient

@ Number of gradient evaluations to guarantee e-close to critical:
Gradient descent O(n/e)
Stochastic gradient O(1/€?)
Variance-reduced O(n+ n?/3/¢)
@ We have analogous results for variance-reduced proximal+-stochastic methods.
[Reddi et al., 2016]

@ We cannot show analogous results for classic proximal stochastic methods.

o All existing proximal+stochastic results require noise to go to zero.
o Open problem that needs to be resolved: are analogous results possible?
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Non-IID Setting

@ We discussed stochastic minimization problems
argmin E[f;(x)],
where we have the ability to generate 11D samples f;(x).

@ Using IID samples is justified by the law of large numbers.
e But it's almost never true.

@ What if we can’t get |ID samples?

@ Classic non-IID sampling scheme [Bertsekas & Tsitsiklis, 1996]:

e Samples follow a Markov chain with stationary distribution of E[f;(x)].
o Obtain standard guarantees if Markov chain mixes fast enough [Duchi et al., 2012].
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General Sampling

@ What about general non-lIID sampling schemes?
@ What if our samples f; come from an adversary?
@ Can we say anything in this case?

@ Optimization error can be arbitrarily bad, but we can bound regret...
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Online Convex Optimization

e Consider the online convex optimization (OCO) framework [Zinkevich, 2003]:

o At time t, make a prediction x!.
e Receive next arbitrary convex loss f;.
o Pay a penalty of f;(x?!).

@ The regret at time t is given by

t

> %) = ),

k=1

the total error compared to the best x* we could have chosen for first t functions.

@ The x* is not the solution to the problem, it's just the best we could have done.

@ The x* depends on t, the “solution” is changing over time.
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Online Convex Optimization

@ Assuming everything is bounded, doing nothing has a regret of O(t).

o Consider applying stochastic gradient, treating the f; as the samples.

o For convex functions, has a regret of O(v/t) [Zinkevich, 2003].
o For strongly-convex, has a regret of O(log(t)) [Hazan et al., 2006].
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Online Convex Optimization

@ Assuming everything is bounded, doing nothing has a regret of O(t).

o Consider applying stochastic gradient, treating the f; as the samples.

o For convex functions, has a regret of O(v/t) [Zinkevich, 2003].
o For strongly-convex, has a regret of O(log(t)) [Hazan et al., 2006].
o These are optimal.

o Key idea: x* isn't moving faster than stochastic gradient is converging.
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Online Convex Optimization

e AdaGrad is a very-popular online method [Duchi et al., 2011]:
e Improves on constants in regret bounds using diagonal-scaleing

x = xt — a,D; VR (xY),

with diagonal entries (D¢);i = 6 + /> 4 Vifu(xK).
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Online Convex Optimization

e AdaGrad is a very-popular online method [Duchi et al., 2011]:
e Improves on constants in regret bounds using diagonal-scaleing

x = xt — a,D; VR (xY),

with diagonal entries (D¢);i = 6 + /> 4 Vifu(xK).

@ Adam is a generalization that is incredibly-popular for deep learning.
[Kingma & Ba, 2015]

e Though trend is returning to variations on accelerated stochastic gradient.
@ Online learning remains active area and many variations exist:

o Bandit methods only receive evaluation f;(x*) rather than function .
e Main application: internet advertising and recommender systems.
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@ Another structure arising in machine learning is graph-structured problems,

argmln Z fii(xi, X +Zf X;).
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where E is the set of edges in graph.
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Graph-Structured Optimization

@ Another structure arising in machine learning is graph-structured problems,

argmln Z fii(xi, X +Zf X;).

(ij)eE

where E is the set of edges in graph.

@ Includes quadratic functions,
xTAx+b"x = ZZ‘BUX’XJ + be,,
i=1 j=1

and other models like label propagation for semi-supervised learning.
e The graph is sparsity pattern of A.
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Coordinate Descent for Graph-Structured Optimization

@ Coordinate descent seems well-suited to this problem structure:

argmln Z i (i, X —i—Zf Xi).

(ij)eE

e To update x;, we only need to consider f; and the f;; for each neighbour.
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Coordinate Descent for Graph-Structured Optimization

@ Coordinate descent seems well-suited to this problem structure:

argmln Z i (i, X —i—Zf Xi).

(ij)eE

e To update x;, we only need to consider f; and the f;; for each neighbour.

e With random selection of coordinates, expected iteration cost is O(|E|/n).
o This is n-times faster than GD iteration which cost O(|E|).
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Coordinate Descent for Graph-Structured Optimization

@ But for many problems randomized coordinate descent doesn't work well...

Graph-based label propagation
T T T

j ective

1
Epochs

@ Often outperformed by the greedy Gauss-Southwell rule.
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Coordinate Descent for Graph-Structured Optimization

@ But for many problems randomized coordinate descent doesn't work well...

Graph-based label propagation
T T T

j ective

@ Often outperformed by the greedy Gauss-Southwell rule.

@ But is plotting “epochs” cheating because Gauss-Southwell is more expensive?

Non-Serial
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Greedy Coordinate Descent

@ Gauss-Southwell greedy rule for picking a coordinate to update:

argmax |V;f(x)|.
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Greedy Coordinate Descent

@ Gauss-Southwell greedy rule for picking a coordinate to update:

argmax |V;f(x)|.

X2

@ Looks expensive because computing the gradient costs O(|E|).
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Cost of Greedy Coordinate Descnet

@ Gauss-Southwell cost depends on graph structure.
e Same is true of Lipschitz sampling.

@ Consider problems where maximum degree and average degree are similar:
o Lattice graphs (max is 4, average is &~ 4).
o Complete graphs (max and average degrees are n — 1).
o Facebook graph (max is 7000, average is = 200).

@ Here we can efficiently track the gradient and it's max [Meshi et al., 2012].
o Updating x;, it only changes |V;f(x*)| for i and its neighbours.
e We can use a max-heap to track the maximum.
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Convergence Rate of Greedy Coordinate Descent
@ But don't random and greedy have the same rate?
o Nutini et al. [2015] show that rate for Gauss-Southwell is
) - < (1= 2 1r60) - 7))

where 7 is strong-convexity constant in the 1-norm.

o Constant uq satisfies

I

; < M1 < moo,
~ greedy  gradient
random

so we should expect more progress under Gauss-Southwell.
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Gauss-Southwell-Lipschitz Rule
e Nutini et al. [2015] also give a rule with faster rate by incorporating the L;,

Ik = argmax M
i V6L
which is called the Gauss-Southwell-Lipschitz rule.
o At least as fast as GS and Lipschitz sampling rules.
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Gauss-Southwell-Lipschitz Rule

e Nutini et al. [2015] also give a rule with faster rate by incorporating the L;,

Ik = argmax M
i V6L
which is called the Gauss-Southwell-Lipschitz rule.
o At least as fast as GS and Lipschitz sampling rules.

@ Intuition: if gradients are similar, more progress if L; is small.

@ Greedy rules have lead to new methods for computing leading eigenvectors.

o Coordinate-wise power methods [Wei et al., 2016, Wang et al., 2017].

Non-Serial
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Motivation for Parallel and Distributed

@ Two recent trends:

o We aren’t making large gains in serial computation speed.
o Datasets no longer fit on a single machine.

@ Result: we must use parallel and distributed computation.

@ Two major new issues:

e Synchronization: we can't wait for the slowest machine.
e Communication: we can't transfer all information.
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@ A lot of machine learning problems are embarrassingly parallel:
e Split task across M machines, solve independently, combine.

e E.g., computing the gradient in deterministic gradient method,
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i=1
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Embarrassing Parallelism in Machine Learning

@ A lot of machine learning problems are embarrassingly parallel:
e Split task across M machines, solve independently, combine.

e E.g., computing the gradient in deterministic gradient method,

N N/M 2N/M

%va;(x):% dMVE)+ > VA +...
i=1

i=1 i=(N/M)+1

@ These allow optimal linear speedups.
e You should always consider this first!
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Asynchronous Computation
For stochastic gradient and SVRG, we can compute batch of gradients in parallel:
xk1 = ZV?‘
|B| ieB

for example computing one gradient Vf;(x*) per processor.

Do we have to wait for the last computer to finish?
No!

Updating asynchronously saves a lot of time.

E.g., stochastic gradient method on shared memory:

Xk+1 — Xk _ Oéka,’k(inm).

You need to decrease step-size in proportion to asynchrony.
Convergence rate decays elegantly with delay m [Niu et al., 2011].
o Now exists asynchronous variance-reduced methods.
[Reddi et al., 2015, Leblond et al., 2016, Mania et al., 2016]
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Reduced Communication: Parallel Coordinate Descnet

@ It may be expensive to communicate parameters x.

@ One solution: use parallel coordinate descent:
Xj = X, — a; Vi f(x)
Xj = Xjp — ap Vi f(X)

Xjs — s Vg f(x)

&
[

@ Only needs to communicate single coordinates.
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Reduced Communication: Parallel Coordinate Descnet

It may be expensive to communicate parameters x.

One solution: use parallel coordinate descent:
Xj = X, — a; Vi f(x)
Xj = Xjp — ap Vi f(X)

Xjs = Xj; — a3 Vs f(x)

Only needs to communicate single coordinates.

Again need to decrease step-size for convergence.

Speedup is based on dependencies between variables [Richtarik & Takac, 2013].
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@ Gradient descent is special case where all neighbours communicate
e Modified update has fast rate in terms of graph Laplacian [Shi et al., 2014].
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Reduced Communication: Decentralized Gradient

@ We may need to distribute the data across machines.
@ One solution: decentralized gradient method [Nedic & Ozdaglar, 2009]:

e Each processor has its own data samples f1, f5, ... fn.
e Each processor has its own parameter vector x.
o Each processor only communicates with a limited number of neighbours nei(c).

Z Xe — Qe ZVf(XC

c’enei(c)

Xc =
]nel )|
@ Gradient descent is special case where all neighbours communicate.
e Modified update has fast rate in terms of graph Laplacian [Shi et al., 2014].
@ Can also consider communication failures [Agarwal & Duchi, 2011].

@ An active area with several other recent distributed methods.
[Jaggi et al., 2014, Shamir et al., 2013, Lee et al. 2015]
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Summary

PL inequality: linear convergence for somewhat-non-convex functions.
Convergence rate of gradient norm, and variance-reduction appears.
Stochastic algorithms have good regret for arbitrary sequences.

Greedy coordinate descent seems like the right tool for some problems.

Parallel /distributed methods are the future, but pose new challenges.

Non-Serial
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