Eloïse Berthier

 

Briefly

Since September 2019, I am a first-year Ph.D. student under the supervision of Francis Bach. I work in the SIERRA team in Paris, which is a joint team between Inria Paris, ENS Paris and CNRS. My research focuses on developing efficient algorithms for optimal control and motion planning, with a particular interest in methods which can be applied to robotics, and which come with theoretical guarantees.

Before that, I have worked in the MLO team, under the supervision of Martin Jaggi, on privacy-preserving machine learning.

Contact

  • E-mail: eloise [dot] berthier [at] inria [dot] fr

  • Physical address: Inria Paris, 4th floor, Office C409, 2 rue Simone Iff, 75012 Paris.

    Get directions with Citymapper

Publications and Preprints

  • E. Berthier, F. Bach. Max-Plus Linear Approximations for Deterministic Continuous-State Markov Decision Processes. IEEE Control Systems Letters, 4(3):767-772, 2020.
    [hal, journal] [Show Abstract]

    Abstract: We consider deterministic continuous-state Markov decision processes (MDPs). We apply a max-plus linear method to approximate the value function with a specific dictionary of functions that leads to an adequate state-discretization of the MDP. This is more efficient than a direct discretization of the state space, typically intractable in high dimension. We propose a simple strategy to adapt the discretization to a problem instance, thus mitigating the curse of dimensionality. We provide numerical examples showing that the method works well on simple MDPs.

  • E. Berthier. Protection des données d'entraînement pour l'apprentissage statistique [In French], 2019, Conférence Intelligence Artificielle et Défense.
    [pdf] [Show Abstract]

    Abstract: Les modèles d'apprentissage statistique sont susceptibles d'exposer les données qui ont été utilisées lors de leur entraînement. Ce phénomène doit être pris en compte pour qualifier le niveau de sensibilité d'un modèle. La notion de confidentialité différentielle, créée à l'origine pour la protection de la vie privée, répond partiellement à cette problématique. En particulier, il est possible d'adapter le processus d'apprentissage de façon à vérifier certaines propriétés de confidentialité. Lorsque les données sensibles sont distribuées sur plusieurs machines, des processus cryptographiques permettent d’entraîner conjointement un modèle sans en partager les données d’entraînement.

  • O. Kempf, E. Berthier. IA, explicabilité et défense [In French], 2019, RDN 820 - L'Intelligence artificielle et ses enjeux pour la Défense.
    [journal, synopsis] [Show Abstract]

    Abstract: L’IA est une réalité déjà ancienne mais son champ d’emploi ne cesse de s’élargir et accapare des domaines nouveaux, en particulier pour la défense. L’IA est polymorphe et se retrouve confrontée à un problème d’explicabilité. Pourquoi et comment sont les questions qui se posent pour les applications liées au contexte militaire. AI is in itself old news but its fields of application never cease to expand and capture new ones, particularly in the defence domain. AI takes on many forms and faces a problem of how it should be described. Why? and how? are the questions to be asked about those applications with a military connection.