
THÈSE DE DOCTORAT

présentée à

SORBONNE UNIVERSITÉ

Static analysis
of program portability

by abstract interpretation
Analyse statique de la portabilité des programmes

par interprétation abstraite

David DELMAS

28 novembre 2022

Directeur de thèse : Antoine Miné
Sorbonne Université & CNRS, France

Rapporteurs : Eran Yahav
Technion Israel Institute of Technology, Israel
Bor-Yuh Evan Chang
University Colorado Boulder & AWS, États-Unis

Examinateurs : Emmanuel Chailloux
Sorbonne Université & CNRS, France
Sylvie Putot
École Polytechnique, France
Jérôme Feret
École normale supérieure, France
Vincent Soumier
Airbus Opérations SAS, France

Invité : Abdelraouf Ouadjaout
Indépendant, France

Laboratoire d’informatique
École doctorale informatique, télécommunications et électronique (Paris)

iii

Résumé

Les logiciels tendent à être utilisés plus longtemps que prévu à leur conception, et dans une plus grande
variété d’environnements. Si aucune précaution n’est prise, l’adaptation d’un logiciel à de nouvelles
utilisations peut s’avérer très difficile et coûteuse. Assurer la portabilité des programmes est un enjeu
majeur : il s’agit de s’assurer que leur compilation et leur exécution dans un environnement différent
aura un effet réduit et maîtrisé sur leur sémantique, et que la sûreté d’exécution n’est pas compromise.

Cette thèse vise au développement d’une nouvelle classe d’analyses statiques par interprétation
abstraite, permettant de vérifier de telles propriétés de portabilité. Ce but est atteint en trois étapes.

Nous nous intéressons d’abord au problème connexe des patchs logiciels. L’analyse de patchs vise à
évaluer l’impact de petites modifications d’un programme sur son comportement. Il s’agit de comparer
les sémantiques de deux versions syntaxiquement proches d’un même logiciel qui s’exécutent dans un
même environnement. La principale application est la vérification de non régression : s’assurer que
deux versions d’un programme calculent les mêmes sorties quand elles lisent les mêmes entrées. Nous
abordons ce problème par une méthode d’analyse paramétrée par le choix d’un domaine abstrait.
Nous partons d’une sémantique concrète collectrice originale, capable d’exprimer les comportements
de deux versions d’un programme simultanément. Cette sémantique est définie par induction sur
la syntaxe d’un double programme, une structure syntaxique qui distingue les parties communes
des parties spécifiques de chaque version. Nous supposons d’abord cette structure donnée, et nous
nous concentrons sur des programmes purement numériques, qui lisent leurs entrées dans des flux de
profondeur non bornée. Nous proposons une abstraction des flux permettant de prouver que deux
versions d’un programme lisant un même flux produisent les mêmes sorties. Puis nous montrons
comment exploiter des domaines abstraits numériques classiques pour construire une analyse statique
efficace. Nous introduisons ensuite un domaine numérique pour borner les différences entre les variables
des deux programmes Nous proposons enfin un algorithme pour la synthèse d’un double programme à
partir de deux versions. Il produit dans la plupart des cas pratiques des doubles programmes suffisants
pour des analyses statiques conclusives avec des domaines numériques linéaires.

Nous passons ensuite à l’analyse de patchs de programmes C de bas niveau, c’est-à-dire dont le
comportement dépend de la représentation de la mémoire en machine. C’est le cas de la plupart des
logiciels écrits en C, notamment les logiciels embarqués. Pour ce faire, nous implémentons notre anal-
yse de patchs sur la plateforme Mopsa, qui permet des analyses relationnelles basées sur des domaines
faiblement couplés, et facilite le passage d’un langage jouet à un véritable langage de programmation.
Notre implantation tire naturellement parti du domaine des cellules implanté dans Mopsa, un mod-
èle mémoire adapté à l’analyse sûre et précise de programmes C de bas niveau. La mémoire est
représentée comme une collection dynamique de variables synthétiques (les cellules) représentant les
déréférencements scalaires issus de l’exécution du programme. L’abstraction numérique est sûre, mal-
gré la présence de cellules qui se chevauchent lorsque le programme contourne le système de types
du langage C pour manipuler la représentation mémoire des scalaires. L’analyse de patchs dans ce
modèle permet d’inférer avec succès une première propriété de portabilité des programmes C: la ro-
bustesse aux variations des positions des champs scalaires en mémoire, dues e.g. à un changement
d’interface binaire (ABI), d’options de compilation ou d’extensions C (attributs des types). L’analyse
de patchs de programmes C réalistes dans ce modèle requiert une abstraction numérique expressive
pour inférer des égalités entre paires de cellules correspondant aux mêmes déréférencements scalaires
dans les deux versions de la mémoire. On s’attend en effet à ce qu’elles aient presque toujours la même
valeur pendant l’exécution, avec seulement des divergences localisées. Nous optimisons donc le modèle
mémoire pour ce cas fréquent, en représentant ces égalités symboliquement. Cela permet l’utilisation
de domaines numériques non relationnels, d’où un meilleur passage à l’échelle.

Nous étendons enfin notre domaine mémoire pour supporter une nouvelle propriété : la portabilité
vis-à-vis des changements de représentation des scalaires en mémoire (endianisme). Nous inférons et
représentons symboliquement des égalités entre cellules, modulo le retournement des octets. Nous
introduisons un domaine de prédicats symboliques capable de représenter des relations numériques
établies par des calculs arithmétiques bit-à-bits utilisés dans les programmes C de bas niveau sensibles
à l’endianisme. L’analyse obtenue permet d’analyser avec succès un logiciel avionique d’un million de
lignes de C.

v

Abstract

Computer programs tend to be used much longer than expected at design time, and in a wider variety
of environments. If no care is taken, adapting a software product for new usage may turn out to be
difficult and costly. Ensuring the portability of programs is a major stake: it amounts to ensuring
that their compilation and execution in a different environment will have small controlled impact on
their semantics, and that safety of executions is not jeopardized.

The goal of this thesis is to develop a novel class of static analyses based on abstract interpretation,
allowing to verify such portability properties. This goal is reached in three steps.

In a first step, we consider a related problem: software patches. Patch analysis aims at evaluating
the impact of small modifications of a program on its behavior. It compares the semantics of two
syntactically close versions of a program running in the same environment. The main application is
non regression verification: check that the two versions compute the same outputs when run on the
same inputs. We address this problem with a method based on abstract interpretation and parametric
in the choice of an abstract domain. We start with a novel concrete collecting semantics, expressing
the behaviors of both programs at the same time. This semantics is defined by induction on the
syntax of a so-called double program, a joint syntactic representation of two versions of a program,
which distinguishes between common and distinctive parts. We first assume this representation given,
and focus on infinite-state numerical programs reading from infinite input streams. We propose an
abstraction of input streams that allows proving that programs reading from the same stream compute
equal outputs. Then, we show how to leverage classic numerical abstract domains, such as polyhedra
or octagons, to build an effective static analysis. Moreover, we introduce a novel numerical domain
to bound the differences between the values of the variables in the two programs, which has linear
cost, and the right amount of relationality to express useful properties of software patches. Finally,
We propose a heuristic algorithm for constructing a double program from a pair of program versions
that allows, in most practical cases, successful patch analyses relying on linear invariants only.

In a second step, we turn to the analysis of patches of low-level C programs, i.e. programs whose
behaviors depend on the representation of computer memory. This is the case of most C programs,
especially in embedded software. To this aim, we implement our patch analysis on top of the Mopsa
platform, which allows relational analyses based on weakly coupled cooperating abstract domains, and
eases the lifting of an abstract domain from a toy language to a real-world language such as C. Our
implementation benefits from the cell domain implemented in Mopsa, a memory model permitting a
sound and precise analysis of low-level C programs. This domain represents the memory as a dynamic
collection of scalar variables, termed cells, holding values for the scalar memory dereferences discovered
during the analysis. It maintains a consistent abstract state despite the presence of overlapping cells
introduced when the analyzed programs by-pass the type-system of C to get byte-level access to
memory. Patch analysis in this model allows us to successfully address a first portability property:
robustness to variations of the offsets of scalar fields, such as those introduced by changes of the
Application Binary Interface (ABI) of the target, compiler options or language extensions such as
attributes of types or variables. To analyze realistic patches of C programs with this memory model
requires expressive numerical abstractions that infer equalities between cells associated to the same
scalar dereferences in the two versions of the memory. Such cells are indeed expected to be equal
most of the time during program execution, with only local deviations. We thus optimize the memory
model for this common case, by representing these equalities symbolically. This enables the use of
non-relational numerical domains, improving scalability.

In a third step, we extend our memory domain to support an additional portability property:
portability across platforms with opposite byte-orders (a.k.a. endiannesses). We infer and represent
symbolically equalities between cells, modulo byte-swapping. We introduce a novel symbolic predicate
domain to infer relations between individual bytes of the variables in the two programs, which has near-
linear cost, and the right amount of relationality to express (bitwise) arithmetic properties relevant
to endian portability. The resulting analysis allows to analyze successfully a large real-world avionics
software product (one million lines of C).

Contents

1 Introduction 1
1.1 Approaches to reliable software . 1

1.1.1 Best effort process-based assurance 1
1.1.2 Formal methods for product-based assurance 2
1.1.3 The case of avionics software at Airbus 4
1.1.4 Combining testing and formal verification 9

1.2 Overview of the thesis . 12
1.2.1 Outline . 12
1.2.2 Contributions . 14
1.2.3 Context of the work . 14

2 Background 17
2.1 Language . 17

2.1.1 Syntax . 18
2.1.2 Semantics . 19
2.1.3 Properties . 24
2.1.4 Proofs . 25

2.2 Elements of abstract interpretation . 25
2.2.1 Order theory . 26
2.2.2 Functions, operators and fixpoints 29
2.2.3 Domain abstraction . 31
2.2.4 Operator and fixpoint approximation 36

2.3 Static analysis . 39
2.3.1 Generic computable abstract semantics 40
2.3.2 Numerical abstract domains . 40

2.4 Conclusion . 49

3 Patch Analysis 51
3.1 Motivation . 51
3.2 Running example . 53
3.3 Syntax . 54
3.4 Concrete semantics . 55

3.4.1 From simple statements to double statements 55

vii

viii CONTENTS

3.4.2 Semantics of double programs . 58
3.4.3 Properties of interest . 58
3.4.4 Non-terminating executions . 59

3.5 Abstract semantics . 62
3.5.1 Wrapping up infinite input sequences 62
3.5.2 Bounding input queues . 64
3.5.3 Obliviating output sequences . 66
3.5.4 Special case: inputs and outputs in lockstep 70
3.5.5 Numerical abstraction . 73
3.5.6 Introducing a dedicated numerical domain 74

3.6 Evaluation . 79
3.6.1 Benchmarking . 79
3.6.2 Handling streams . 83

3.7 Related work . 83
3.7.1 Program equivalence . 84
3.7.2 Information flow . 85

3.8 Conclusion . 86

4 Double program construction 89
4.1 Motivating examples . 89
4.2 Program merging algorithm . 96

4.2.1 Overview . 97
4.2.2 Formalization . 98

4.3 Related works . 104
4.3.1 Static product constructions . 104
4.3.2 Dynamic product constructions . 106

4.4 Conclusion . 108

5 Implementing patch analysis with Mopsa 109
5.1 The Mopsa platform . 110

5.1.1 Extensible syntax . 110
5.1.2 Distributed iterator . 111
5.1.3 Domains . 113
5.1.4 Dynamic expression rewriting . 114
5.1.5 Domain combination . 116

5.2 Analysis of C programs . 118
5.2.1 Motivation . 118
5.2.2 Syntax . 119
5.2.3 Semantics of low-level C programs 120
5.2.4 Cell-based memory model . 121
5.2.5 Analysis of C programs with Mopsa 125

5.3 Analysis of double C programs . 126
5.3.1 Front-ends . 126
5.3.2 Semantics . 130

CONTENTS ix

5.3.3 Memory model . 132
5.3.4 Abstraction . 133
5.3.5 Domains . 135

5.4 Evaluation . 142
5.4.1 From Nimp2 to C . 142
5.4.2 From simplified benchmarks to real code 144
5.4.3 Practical complexity of double program construction 146

5.5 Related works . 147
5.6 Conclusion . 148

6 Sharing cells in the memory abstraction 151
6.1 Motivating examples . 151
6.2 Memory model optimization . 153

6.2.1 Labeling cells with sides . 153
6.2.2 Merging single cells . 154
6.2.3 Bi-cell synthesis . 155
6.2.4 Semantics of simple statements . 158
6.2.5 Semantics of double statements . 162
6.2.6 Unification . 164
6.2.7 Value abstraction . 165

6.3 Implementation . 166
6.4 Evaluation . 167

6.4.1 Real-world patches . 167
6.4.2 Synthetic benchmarks . 168

6.5 Conclusion . 169

7 Endian portability analysis 171
7.1 Introduction . 171
7.2 Concrete semantics . 174

7.2.1 Semantics of simple endian-aware low-level C programs 174
7.2.2 Endian-aware cell-based memory model 176
7.2.3 Semantics of endian-diverse double C programs 178
7.2.4 Endian portability property of interest 179

7.3 Memory abstraction . 181
7.3.1 Domain . 181
7.3.2 Bi-cell synthesis for double programs 183
7.3.3 Abstract join . 185
7.3.4 Semantics of simple and double statements 186

7.4 Numerical abstraction . 188
7.4.1 The bit-slice symbolic predicate domain 189
7.4.2 Integration with the numerical and memory abstractions 193
7.4.3 Analysis of Example 39 . 195

7.5 Implementation . 196
7.6 Evaluation . 197

x CONTENTS

7.6.1 Idiomatic examples . 198
7.6.2 Open source benchmarks . 198
7.6.3 Industrial case study . 199

7.7 Conclusion . 200

8 Conclusion 201

Bibliography 205

A Double program semantics for Nimp2 221
A.1 Abstract semantics with unbounded queues 221
A.2 Abstract semantics with bounded queues 221
A.3 Abstracting away output sequences . 221
A.4 Abstracting away input sequences . 221

B Double program semantics for C 229
B.1 Semantics of endian-diverse simple and double statements 229

B.1.1 Semantics of simple statements . 229
B.1.2 Semantics of double statements . 230

B.2 Symbolic domain of bit-slice predicates . 231

C Examples 233
C.1 Patch analysis for Nimp−2 programs . 233

C.1.1 Comp example from [173] . 233
C.1.2 Const example from [173] . 233
C.1.3 Modified Fig.2 example (from [173]) 234
C.1.4 LoopMult example from [173] . 234
C.1.5 Variables switch roles: LoopSub example from [173] 235
C.1.6 UnchLoop example from [173] . 235
C.1.7 sign example from [154] . 236
C.1.8 sum example from [154] . 236
C.1.9 copy example from Coreutils, and [154] 237
C.1.10 remove example from Coreutils, and [154] 238
C.1.11 Loop rearrangements: seq example from Coreutils, and [154, 155] . 239
C.1.12 test example from Coreutils . 240

C.2 Endian portability analysis for C programs 242
C.2.1 Type-punning . 244
C.2.2 Bitwise arithmetics . 245
C.2.3 Endianness of floats . 247
C.2.4 Open source benchmarks . 248

List of Figures 253

Chapter 1

Introduction

Industrial societies devote increasingly important roles to software. Besides mediating
social interactions, computer programs control the engines and brakes of cars [7] and
aircraft, the flights of fly-by-wire airplanes [33] and UAV, emergency systems of nuclear
power plants [104], and medical devices such as pacemakers1. Such software is termed
safety-critical, as some failures thereof may have catastrophic consequences, including
the loss of human lives. The case occurs typically for industrial software embedded in
transportation, military, medical, and power systems. As emphasized by [47, Sec. I.1],
failures of such software may additionally cost billions of dollars2, and ruin the reputation
of companies ruled against by courts for defects3.

1.1 Approaches to reliable software
To avoid such situations, software companies are struggling to apply best practices to
produce quality software. Such best practices are typically gathered into international
standards, such as IEC 62304 [90] for medical devices, DO-178 [3, 4] for aviation, and
IEC 60880 [89] for nuclear power plants.

1.1.1 Best effort process-based assurance

Most of these industrial standards consist in guidelines for process-based assurance, re-
lying on the assumption that a better-defined process is more likely to produce quality
software. Such standards emphasize process activities such as software planning, spec-
ification, design, unit and integration testing, and peer-reviews. Informal verification
methods such as testing and peer-reviews have well-known shortcomings: they may miss
bugs. To face this limitation, standards typically mandate that every software artifact

1https://public4.pagefreezer.com/content/FDA/16-06-2022T13:39/https://www.fda.gov/me
dical-devices/safety-communications/cybersecurity-vulnerabilities-affecting-medtronic-i
mplantable-cardiac-devices-programmers-and-home

2https://en.wikipedia.org/wiki/Financial_impact_of_the_Boeing_737_MAX_groundings
3http://www.nytimes.com/2013/12/14/business/toyota-seeks-settlement-for-lawsuits.ht

ml

1

https://public4.pagefreezer.com/content/FDA/16-06-2022T13:39/https://www.fda.gov/medical-devices/safety-communications/cybersecurity-vulnerabilities-affecting-medtronic-implantable-cardiac-devices-programmers-and-home
https://public4.pagefreezer.com/content/FDA/16-06-2022T13:39/https://www.fda.gov/medical-devices/safety-communications/cybersecurity-vulnerabilities-affecting-medtronic-implantable-cardiac-devices-programmers-and-home
https://public4.pagefreezer.com/content/FDA/16-06-2022T13:39/https://www.fda.gov/medical-devices/safety-communications/cybersecurity-vulnerabilities-affecting-medtronic-implantable-cardiac-devices-programmers-and-home
https://en.wikipedia.org/wiki/Financial_impact_of_the_Boeing_737_MAX_groundings
http://www.nytimes.com/2013/12/14/business/toyota-seeks-settlement-for-lawsuits.html
http://www.nytimes.com/2013/12/14/business/toyota-seeks-settlement-for-lawsuits.html

2 CHAPTER 1. INTRODUCTION

be verified multiple times, using different techniques, and possibly by different people.
The resulting industrial processes are thus intentionally very heavy and redundant. In
some domains, such as aviation and railway, software is liable to certification by third
parties on behalf of national or international authorities, and applicable standards are
used as the basis for certification audits.

1.1.2 Formal methods for product-based assurance

Unlike informal verification methods such as testing and peer-reviews, formal methods
strive for exhaustiveness: never miss a bug (in a well-defined class of bugs). Their
goal is to provide definite statements about program properties such as correctness,
safety and security, so that assurance relies solely on the intrinsic quality of the product,
rather than that of the process or the expertise of the software engineer. These meth-
ods are grounded on mathematically well-defined techniques. Formal methods include
model-checking [42], symbolic execution [109], program proof [86], typing [39], static
analysis [49], and program transformations [153]. They can be unified [56, 53, 57], [47,
Chap. 26] in the framework of abstract interpretation [49].

Let us introduce, informally, key notions related to the formal methods of interest in
this introduction.

Semantics

Semantics is the art of assigning meanings to programs [76]. The semantics of a program
is a mathematical description of the set of its possible executions. It serves as the basis
for formal reasoning about its run-time behavior.

Formal methods

Formal methods are techniques relying on mathematical reasoning about the behaviors
of programs. A formal method is called sound if all its outputs can be proved compatible
with a well-defined program semantics, unsound otherwise. A formal method is called
complete if it allows proving all the properties that are compatible with the semantics.
Due to Rice’s theorem [159], no formal method can be at the same time sound, complete
and automatic. Fig. 1.1 compares testing with two formal methods: program proof
and static analysis4. Testing is considered complete and unsound, as “testing shows the
presence, not the absence of bugs” [35].

Program proof

Program proof, a.k.a. deductive program verification, is a formal method that verifies
run-time properties of programs at compile-time. It operates on the source code of a
program, together with a set of user-specified properties expressed in some program
logic. Program proof techniques can be designed to be sound and (relatively) complete,

4We thank Matthieu Journault for this figure.

1.1. APPROACHES TO RELIABLE SOFTWARE 3

Fully Automated

SoundComplete

Testing Static
Analysis

Program
Proof

∅

Figure 1.1: Program verification techniques.

but they can only be partially automated. Indeed these methods require that program
parts be annotated with contracts (pre- and post-conditions). In particular, loops must
be annotated with inductive invariants. In addition, although theorem provers such as
SMT-solvers can be used to automate proofs, these tools require the assistance of the
user in some cases, e.g. to prove some quantified formulas.

Static analysis

Static analysis is a formal method that infers run-time properties of programs at compile-
time. It is typically implemented in tools, called static analyzers, that analyze the
source (or compiled) code of a program. Static analyzers can be designed to be sound
and automatic, and to always terminate. Static analyzers compute on (conservative)
approximations of program semantics designed to infer predefined classes of properties
of interest, at the cost of completeness: analyses may be inconclusive.

Abstract interpretation

Abstract interpretation [47] is a unifying theory of the executions of computer programs.
It formalizes formal methods, allowing formal reasoning about their properties, such as
soundness (all provable facts are true) and completeness (all true facts are provable).
Abstract interpretation can be used to design semantics, proof methods, and static
analyses of programs. In particular, it allows designing static analyses that are sound by

4 CHAPTER 1. INTRODUCTION

construction, by formalizing the relationships between a (concrete) program semantics
of reference and (abstract) approximations thereof handled by static analyzers.

1.1.3 The case of avionics software at Airbus

A relevant example is the case of avionics software at Airbus. This case is the most
familiar to us, as we write this thesis after 20 years as an avionics software engineer at
Airbus, with practical experience in the verification of certified software with both formal
and informal methods [62, 64, 167, 65, 28, 134, 58, 63]. The avionics software department
of Airbus is responsible for the development of the software of some of the most safety-
critical cockpit avionics systems of Airbus aircraft, such as fly-by-wire control systems,
flight-warning, maintenance and communication systems. This department is known for
pioneering the industrial deployment of formal methods in the avionics domain [167].

In the aeronautical domain, avionics software running on airborne computers are
considered critical components of the systems of civil aircraft. They are thus subject to
certification on behalf of authorities such as the European Union Aviation Safety Agency
(EASA) and the US Federal Aviation Administration (FAA), and developed according
to stringent rules imposed by the applicable DO-178 standard. Three revisions of this
standard have been in use since its creation in the beginning of the 1980s, with limited
updates to the main document. In the meantime, most aircraft functions have been
transferred from hardware to software. This trend, together with the growing effort to
optimize fuel consumption and passenger comfort, as well as system configurability and
interoperability, has resulted in a fast growth of the size of this kind of avionics software,
as depicted on Fig. 1.2, and in an exponential growth of its complexity.

Legacy processes

The state of the industrial practice, on the other hand, has evolved at a much slower
pace during the same time frame. Most avionics software processes are still based on
informal specifications and designs, pair reviews, and hand-written test procedures based
on equivalence class partitioning.

As shown on Fig. 1.3, all artefacts produced by development processes, i.e., in DO-
178 terminology, High-Level Requirements (HLR), architecture, Low-Level Requirements
(LLR), source and executable code, are verified several times. All of them are reviewed
for compliance with artefacts from which they are derived on one hand, and for accuracy,
consistency, hardware compatibility and conformance to standards on the other hand.
In addition, executable code is verified against LLR and HLR by means of unit and
integration testing. Test cases and procedures are then also subject to pair reviews.

LLR provide very detailed specifications for every individual C function or assembly
routine, down to the specification of every single procedure call or volatile access. These
specifications are typically expressed in informal pseudo-code. In this context, significant
effort is invested into unit testing, which roughly amounts to perform grey-box testing of
every individual C function or assembly routine on the target hardware, to ensure that it
implements the given algorithm correctly. Indeed test scenarios and expected values of

1.1. APPROACHES TO RELIABLE SOFTWARE 5

Figure 1.2: Airbus cockpit avionics software (MB)

outputs are derived completely by hand, from a intellectual reinterpretation of the infor-
mal LLR. Then, the correctness of this reinterpretation and the correct implementation
of associate scenarios are verified in additional pair reviews.

Despite the automatic compilation of test scripts into target programs for part of
the test procedures, the largest part of these heavy design and verification processes is
essentially hand-crafted, and relies completely on human expertise. Unfortunately, such
legacy processes do not scale up to current avionics software size and complexity within
reasonable costs, hence cost issues in both development and maintenance phases. In
particular, verification is liable for a steadily growing share of the overall development
costs. The 2015 status is about 70% for maximum-criticality software, such as fly-by-wire
control/command software developed mostly with legacy methods.

6 CHAPTER 1. INTRODUCTION

© AIRBUS Operations S.A.S. All rights reserved. Confidential and proprietary document.

New WoW-EYYW Presentation– 27th June 2016

Executable

Object code

Source

code

Software

Architecture
Low-level

Requirements

High-level

Requirements

System

Requirements

Development activity

Review or analysis

Integration Testing

Reading

Test activity

Reading

Reading

Reading

27/06/2016

Reading

Reading

Reading

Reading

Unit Testing

Reading

Reading

Reading

Page 1

Figure 1.3: Legacy process safety-critical software

Formal methods as cost-cutters

To address this economical risk, Airbus has started introducing formal techniques into
the verification processes of several internal avionics software products since 2001 [167],
in order to replace or complement legacy methods. Such techniques have indeed the
potential to improve automation, while preserving safety. Such methods provide indeed
strong, mathematical guarantees about systems behaviors.

Several tools based on formal techniques have been shown to cope with real-world
industrial software. Some program proof techniques using deductive methods have been
shown credible alternatives to unit testing of individual C functions [72]. This approach is
cost-efficient when most proofs are automatic. The case occurs when verifying relatively
small functions with abstract memory and numerical models [30]. The soundness of this
approach can be ensured at source code level by validating the assumptions introduced by
the memory and numerical models. Such assumptions include the absence of run-time
errors and non-aliasing of function parameters. Transferring this confidence from the
source to the compiled program requires trusting the compiler. Fortunately, a formally
verified compiler [116] has be shown usable in practice in the avionics context [22].
Moreover, multiple static analyses based on abstract interpretation have been shown to

1.1. APPROACHES TO RELIABLE SOFTWARE 7

cope with real-world industrial software. They typically infer non-functional properties,
such as the absence of run-time errors [62, 25, 107, 134], reachable data and control
flows [58, 106], and safe upper-bounds of the stack consumption [105], of the worst-case
execution time [166], and of round-off errors in floating-point computations [65]. Such
analyses are sound and automatic alternatives to costly and error-prone code reviews.
For instance, ASTRÉE [25] is routinely used at Airbus to prove the absence of run-
time errors of fly-by-wire control/command programs [134] up to 800,000 lines of C.
In addition, most of them are whole-program analyses that scale up to large software,
allowing to validate the assumptions required by unit proofs in all calling contexts.

Transforming industrial processes with formal methods

In a first step, some program proof [72] and static analysis [166, 62, 134, 65, 58] techniques
have been introduced on some avionics projects, until 2015. However, their impact on
industrial efficiency has been limited by a lack of formalization of design processes, by
an incompatibility of previous testing frameworks with formal methods, and by a lack
of interoperation between tools, resulting in significant efforts dedicated to preparing
inputs for formal verification processes.

In a second step [28, 30], Airbus avionics processes have been transformed to maxi-
mize automation, while relying on formal techniques to maintain the highest standards
for safety. Fig. 1.4 gives a simplified overview of the New Ways of Working (νWoW)
automated process. We refer the reader to [28, 30] for a complete description. The
design phase, presented in the central box, is deeply revisited. In legacy processes, this
phase was mostly a preparation for the coding phase, producing informal documen-
tation expressing LLR in the form of pseudo-code, and their traceability to HLR. In
the νWoW approach, the design phase is extended to prepare verification. Dedicated
domain-specific languages and compilers have been created to enable the formalization
of all design artifacts. A first advantage is that it allows automating a large part of
reviews of design data for accuracy, consistency, or conformance to standards. A second,
key interest is that it also allows a tight interoperation between design and verification
tools. For instance, LLR are formalized as first-order contracts expressed in an inter-
nal behavioral interface description language, coined DCSL [28]. The DCSL compiler
translates them to unit proof or test contracts, and generates associate verification en-
vironments. This enables a hybrid approach to unit verification: individual procedures
can be verified either by unit test or unit proof, for the same design contracts. This
approach has been shown to be very cost-efficient [28]. Note that Fig. 1.4 shows the case
of unit proof only, for conciseness. Also note that the proof engine is used to check design
consistency, even when the implementation is tested. The DCSL compiler additionally
generates expected variables ranges and data-flows to be verified by static analysis tools.
Moreover, the functional ranges guaranteed by static analysis allow focusing the scope
of unit verification to reachable input ranges. Some static analyzers compute configu-
ration files for other static analyzers, e.g. a points-to analysis on source code resolves
computed calls, enabling stack analysis on machine code. Static analysis tools validate

8 CHAPTER 1. INTRODUCTION

© AIRBUS Operations S.A.S. All rights reserved. Confidential and proprietary document.

New WoW-EYYW Presentation– 27th June 2016

Executable

Object code

C Source

code

Software

Architecture
Formal Low-level

Requirements

High-level

Requirements

System

Requirements

Integration Testing

Reading

Reading

27/06/2016

Reading

Reading

Reading

Reading

Unit Proof

Page 13

Static Analysis

Development activity

Review or analysis

Test activity

= Reduced activity

(almost) automatic analysis

Figure 1.4: νWoW process with unit proof

assumptions used by design and unit verification tools, such as the absence of run-time
errors, variable ranges and non-aliasing.

Moreover, reviews for conformance of C source code to LLR are eliminated where
unit proof is applicable, thanks to the exhaustiveness of this verification technique. Re-
views for conformance with the software architecture are automated using a mixture of
syntax-based and semantics-based static analysis techniques, such as data flow analy-
sis [58]. Reviews for conformance to standards are automated by syntax-based static
analysis tools [63]. Reviews for accuracy and consistency are automated by semantics-
based static analysers by abstract interpretation [134, 65, 105, 166]. Note that the trace-
ability analysis between source and compiled code, required for the most critical software
products, is also avoided thanks to a formally verified optimizing C compiler [22]. As a
consequence, code and design reviews are mostly limited to tool warning analyses.

The νWoW process has been deployed on three large avionics projects, with an
estimated productivity gain of 50% on the subset of the activities related to design and
unit verification [28]. As a side effect, integration testing is also alleviated, as some
properties that could only be verified in integration tests with legacy processes, e.g.
volatile accesses, are verified at unit level, by unit proof or unit test on virtualized
hardware.

1.1. APPROACHES TO RELIABLE SOFTWARE 9

Updating standards

Standards have evolved to welcome such alternative techniques into industrial processes.
For instance, the latest revision of DO-178 [4] introduces a technical supplement, DO-
333 [6], providing guidance on the use of formal techniques to meet certification ob-
jectives. This supplement introduces standard categories of formal analysis techniques:
deductive methods, model-checking, and abstract interpretation. Abstract interpreta-
tion, in particular, is presented as a method for constructing semantics-based analysis
algorithms for the automatic, static, and sound determination of dynamic properties
of infinite-state programs. It emphasizes soundness as the key criterion for an analysis
to be considered compliant: the applicant is required to provide justifications that the
method never asserts that a property is true when it may not be true.

1.1.4 Combining testing and formal verification

Nonetheless, the current state of the industrial practice is that completely formal de-
velopment methods are still not quite tractable for most avionics software products.
Current approaches rely on hybrid processes [28, 30, 45, 143], that integrate design
activities with static analysis, program proof, and testing.

Testing is still needed

Indeed, while some whole-program static analyses [105, 166, 134, 106] based on abstract
interpretation successfully scale to large real-world industrial software, program proofs
with deductive methods are currently not yet considered applicable, in an industrial
context such as Airbus avionics, to the complete functional verification of large software.
The reason for this situation is that proving large software requires users to annotate
program parts with inductive invariants, which require specific expertise and may be as
large as the program itself. In addition, as explained in Sec. 1.1.3, program proof is only
considered an efficient alternative to testing when most of the proofs are automatic. The
case occurs when proving relatively small programs with abstract memory and numerical
models, which is not applicable to all parts of an industrial software that contains low-
level code. As a consequence, deductive program proofs are only used, for now, as a
replacement of unit testing at the level of small, well-typed individual C functions, in
order to verify, locally, the correct implementation of algorithms.

As a consequence, testing is still required for the functional verification of large
industrial software. Large whole-program test scripts are thus developed in parallel
to the initial version of an industrial software products. Their primary objective is to
detect and fix bugs, and gain confidence in the behavior of the product. They serve as
the standard means to verify the correct implementation of the HLR in the context of
certified avionics software.

10 CHAPTER 1. INTRODUCTION

Regression verification

Then, new versions of the product are developed, and most test procedures are reused,
in hope that they might detect any “regressions”, i.e. any unintended changes in pro-
gram behavior. The maintenance of such test procedures is very costly. First, they are
typically affected by any change in software interfaces. Second, they have been devel-
oped with the behaviors of the initial version of the product in mind. As a consequence,
intended changes in some program behaviors typically break large subsets of the test
cases, including many test cases that intended to target unrelated program behaviors.
Discriminating such situations from actual regressions is a difficult and error-prone task.

In the end, the maintenance of large test bases over time is a costly and ineffective
approach to regression verification. This situation is not specific to safety-critical soft-
ware. It generalizes to most software development projects. Moreover, it is made worse
by the trend, in industrial software, to develop software in product lines [118, 91]. This
approach aims at developing generic software components that are shared by multiple
products. While this approach eases the initial development of a new product from
available components, it may complicate its long-term maintenance. Indeed, changes
to generic components affect the behaviors of multiple products. Therefore, there is a
strong need to ensure freedom from potential regressions when incorporating a new re-
vision of a generic component into a product. Note that a similar situation occurs when
incorporating commercial off-the-shelf (COTS) or open source software that evolves over
time5.

First problem statement: patch analysis

Regression verification [80] aims at proving the equivalence of two syntactically close
versions of a program [93] running in the same environment. It is a particular instance
of the problem of proving the functional equivalence of programs, or program parts,
which is fundamental [77]. In this thesis, we develop an approach based on abstract
interpretation to address this sub-problem, in particular in the context of low-level C
programs such as those used in embedded software. We term our approach patch analysis.

Portability

Portability is a related problem. Computer programs tend to be used much longer than
expected at design time, and in a wider variety of environments. If no care is taken,
adapting a software product for new usage may turn out to be difficult and costly.
Ensuring the portability of programs is a major stake: it amounts to ensuring that their
compilation and execution in a different environment will have small controlled impact
on their semantics, and that the safety of executions is not jeopardized.

5https://www.bleepingcomputer.com/news/security/big-sabotage-famous-npm-package-del
etes-files-to-protest-ukraine-war/
https://www.theregister.com/2021/12/14/log4j_vulnerability_open_source_funding/

https://www.bleepingcomputer.com/news/security/big-sabotage-famous-npm-package-deletes-files-to-protest-ukraine-war/
https://www.bleepingcomputer.com/news/security/big-sabotage-famous-npm-package-deletes-files-to-protest-ukraine-war/
https://www.theregister.com/2021/12/14/log4j_vulnerability_open_source_funding/

1.1. APPROACHES TO RELIABLE SOFTWARE 11

In practice, developers maintain multiple, syntactically close versions of the same
software products to accommodate multiple environments. Typical examples are the
Linux kernel and drivers, that run on a vast variety of machines. Such software products
are typically composed of generic parts, written in portable C, and target-specific parts
activated or de-activated by conditional compilation. The case occurs also in industrial
embedded software developed in product line approaches, where generic components
should be portable to the environments of the software products that incorporate them.

A third, less well-known occurrence of portability is the simulation of embedded
systems. For instance, Airbus develops simulators for crew training and system valida-
tion. These simulators are based on commodity hardware, as embedded hardware may
be a rather scarce and expensive resource. In some cases, there is a strong need that
simulations be “representative” of the behavior of the real embedded system, i.e. that
they feature the same observable behaviors. The case occurs especially in the context
of system validation, when applicants would like to replace part of the tests of the real
software on the real hardware with simulations, and use the results of these simula-
tions for certification credit. The related supplement [5] to the applicable standard [4]
mandates, in this case, that “an analysis should provide compelling evidence that the
simulation approach provides equivalent defect detection and removal as testing of the
Executable Object Code”. In this case, the simulator is generated from the C source
code of the real system. Yet, this is not enough to guarantee that it will behave as
the real system. The C standard [92] leaves indeed the encoding of scalar types and
the layout of fields in structures partly unspecified. The precise representation of types
is standardized in implementation-specific Application Binary Interfaces (ABI), such as
the System V ABI [11], to ensure the interoperability of compiled programs, libraries,
and operating systems. Although it is possible to write fully portable, ABI-neutral C
code, the vast majority of C programs rely on assumptions on the ABI of the platform.
This is especially the case in embedded programs, that often require a low-level access to
the system. Such programs tend to rely on low-level programming constructs that abuse
unions and pointers to bypass the type system of the language. As a consequence, dif-
ferences between the ABI of the simulation platform and that of the embedded platform
may result in the embedded system and the simulator behaving differently.

Endianness is an important source of portability errors in this context. Simulators
are typically run on little-endian x86 machines, while some embedded processors such
as PowerPC are big-endian. Another source of portability errors are the offsets of fields
in data structures, which are typically ABI-dependent. Moreover, embedded systems
often use C extensions such as type attributes or #pragma directives to fine-tune the
memory layouts of some data structures, e.g. to memory-map hardware resources. Such
extensions may be interpreted differently by different compilers. We will address these
sources of portability errors in this thesis. Nonetheless, multiple other sources sources
of portability issues exist, which we will not address. For instance, ensuring the porta-
bility of software across platforms where scalar types have different sizes is a difficult
task which Linux developers face daily. As another example, ensuring the portability
of performance-critical parallel programs across platforms with different weak memory

12 CHAPTER 1. INTRODUCTION

consistency models is very challenging [9, 115].

Second problem statement: portability analysis

Portability verification aims at proving the equivalence of two syntactically close ver-
sions of a program running in different environments. As program equivalence, it is a
fundamental problem [86]. Portability and non regression are related properties. In-
deed, they both deal with comparing the semantics of two program versions. Regression
verification compares the semantics of two programs running in the same environment.
They may have different semantics, as they have different syntax. Portability verification
compares the semantics of two programs running in different environments. They may
have different semantics, even if they share exactly the same syntax. They may addi-
tionally exhibit syntactic differences. It is thus natural to view regression verification
as a particular case of portability verification, where program versions run in the same
environments.

In this thesis, we develop an approach to portability analysis of C programs that
is designed as an extension of patch analysis. We focus on two portability properties,
related to the representation of the computer memory specified by the ABI: portability
against changes in the offsets of scalar fields of C structs, and portability against the
order of bytes in the representation of scalars on the platform, which we term endian
portability.

1.2 Overview of the thesis
In this thesis, we wish to contribute to the development of formal methods applicable to
the verification of real-world software, such as low-level C avionics software. We target
the two problems introduced in Sec. 1.1.4 : patch and portability analysis. We address
these problems by proposing a novel class of sound, semantics-based static analyses by
abstract interpretation.

1.2.1 Outline

We start by introducing static analysis by abstract interpretation in Chapter 2, in the
context of a simple numerical imperative language called Nimp. We rely on a standard
approach used throughout the thesis: we define a denotational concrete collecting se-
mantics by induction on the syntax, and construct an analysis that is parametric in the
choice of a numerical abstract domain.

Then, we address patch analysis of numerical programs in Chapter 3. We define
a language called Nimp2 for so-called double programs. A double program is a joint
syntactic representation of two versions of a Nimp program, which distinguishes between
common and distinctive parts. We assume this representation given in Chapter 3, and
focus on analyzing infinite-state numerical programs reading from infinite input streams.
We introduce a novel concrete collecting semantics, defined by induction on the syntax
of double programs, that expresses the behaviors of both program versions at the same

1.2. OVERVIEW OF THE THESIS 13

time. We propose an abstraction of input streams able to prove that program versions
reading from the same stream compute equal outputs. Then, we show how to leverage
classic numerical abstract domains, such as polyhedra or octagons, to build an effective
static analysis. Finally, we introduce a novel numerical domain to bound the differences
between the values of the variables in the two programs, which has linear cost, and the
right amount of relationality to express useful properties of software patches.

Then, we propose in Chapter 4 an algorithm to automate the synthesis of a double
program from a pair of program versions. For most practical patches, the double pro-
grams obtained suffice to enable conclusive static analyses with linear numerical domains,
even when program invariants are non-linear.

In Chapter 5, we turn to the analysis of patches of low-level C programs, i.e. programs
whose behaviors depend on the representation of computer memory. This is the case
of most C programs, especially in embedded software. To this aim, we implement our
patch analysis on top of the Mopsa platform [98], which allows relational analyses based
on weakly coupled cooperating abstract domains, and eases the lifting of an abstract
domain from a toy language to a real-world language such as C. Our implementation
benefits from the cell domain [128] implemented in Mopsa, a memory model permitting
sound and precise analyses of low-level C programs. This domain represents the memory
as a dynamic collection of scalar variables, termed cells, holding values for the scalar
memory dereferences discovered during the analysis. It maintains a consistent abstract
state despite the presence of overlapping cells introduced when the analyzed program
by-passes the type-system of C to get byte-level access to memory. Patch analysis in
this model allows us to successfully address a first portability property: robustness
to variations of the offsets of scalar fields, such as those introduced by changes of the
Application Binary Interface (ABI) of the target, compiler options or language extensions
such as attributes of types or variables. Our implementation analyses successfully real
patches from the repositories of the GNU core utilities and the Linux kernel.

To analyze realistic patches of C programs with this memory model requires expres-
sive numerical abstractions that infer equalities between cells associated to the same
scalar dereferences in the two versions of the memory. Such cells are indeed expected
to be equal most of the time during program execution, with only local deviations. We
thus optimize the memory model for this common case in Chapter 6, by representing
these equalities symbolically. To this aim, we introduce so-called shared bi-cells, which
represent pairs of cells from different program versions holding equal values. This op-
timization of the memory model enables successful analyses of some real-world patches
using only non-relational numerical domains, which improves scalability dramatically.

Finally, we extend our memory domain in Chapter 7 to support a second portability
property: portability across platforms with opposite byte-orders, a.k.a. endiannesses.
We infer and represent symbolically equalities between cells, modulo byte-swapping.
We introduce a novel symbolic predicate domain with near-linear cost to infer relations
between individual bytes of the variables in the two programs, such as those established
by bitwise arithmetic operations. Bitwise arithmetic is indeed used in programming
patterns that are commonly used in endian-portable programs, e.g. to byte-swap scalar

14 CHAPTER 1. INTRODUCTION

data. The resulting analysis allows analyzing successfully a real-world avionics software
product of a million lines of C.

1.2.2 Contributions

The main contributions presented in this thesis are:
– We introduce a novel concrete collecting semantics, expressing the behaviors of two

versions of a program at the same time. This semantics deals with programs reading
from unbounded input streams. In the context of patch analysis, both program ver-
sions run in the same environment. In the context of portability analysis, they run on
platforms with different ABIs, hence syntactically equal programs may have different
semantics. We construct pairs of semantics to support these cases uniformly.

– We propose abstractions of input streams able to prove that programs that read from
the same stream compute equal output values.

– We propose a joint memory abstraction able to infer equivalence relations between
the memories of the two program versions, and represent them symbolically. This
memory model deals soundly with ABI-dependent low-level C programs.

– We design structure layout portability analysis and endian portability analysis as
extensions of patch analysis.

– We introduce a novel numerical domain to bound differences between the values of
the variables in the two program versions, which has linear cost, and the right amount
of relationality to express useful properties of software patches.

– We introduce a novel symbolic predicate domain to infer relations between individual
bytes of the variables in the two programs, which has near-linear cost, and enough
relationality to express (bitwise) arithmetic properties relevant to endian portability.

– We implemented our analyses on the Mopsa platform. Our prototype endian porta-
bility analysis is able to scale to large real-world industrial software, with zero false
alarms. It is also able to analyze successfully smaller slices of open source software,
such as Linux drivers.
Some of the results described in Chapters 3 to 7 have been subject to publications

in workshops and symposiums [66, 67, 68, 69], and are presented here with multiple
extensions.

1.2.3 Context of the work

Airbus avionics software. During the research presented in this thesis, I shared
my time between research and my work as an avionics software engineer at Airbus6,
specializing in design and verification processes, methods and tools. The research was
therefore geared towards applications to practical engineering problems of the Airbus
avionics software department. In addition, this unique position gave me access to relevant
industrial use cases to evaluate experimentally the scalability and the precision of static
analyses.

6This work was performed as part of a collaborative partnership between Sorbonne Univer-
sité / CNRS (LIP6) and Airbus.

1.2. OVERVIEW OF THE THESIS 15

The Mopsa project. I was also part of the Mopsa [135, 98] project7, which aims at
the modular development of a family of static analyzers for multiple languages and mul-
tiple properties. The development of Mopsa was started by Antoine Miné, Abdelraouf
Ouadjaout, Matthieu Journault and Raphaël Monat. I implemented most of the results
presented in this thesis on top of the Mopsa platform.

Collaborations. All the research described in this thesis is joint work with Antoine
Miné. None of it could have happened without his brilliant suggestions. All the re-
sults from Chapter 4 are also joint work with Abdelraouf Ouadjaout. The successful
implementation of our analyses on top of Mopsa owes a lot to his patient, dedicated
support.

7This work was partially supported by the European Research Council under the Consolidator Grant
Agreement 681393 – MOPSA.

Chapter 2

Background

In this chapter, we introduce a standard approach based on abstract interpretation to
design a static analysis, that will be extended in the following chapters to construct
our patch and portability analyses. Starting from a concrete collecting semantics, this
approach constructs a computable abstract semantics through a sequence of abstraction
steps. The resulting abstraction is sound by construction, and can be implemented into
a static analyzer to infer automatically sound approximations of program properties.

We demonstrate this approach by a classic construction of a static analysis of numer-
ical programs by induction in the syntax. We therefore start by introducing the syntax
and (concrete) semantics of a simple numerical language called Nimp in Sec. 2.1. Then,
we propose a lightweight introduction to the theory of Abstract Interpretation in Sec. 2.2,
limited to the elements used in this thesis. We illustrate the concepts by constructing
a simple abstraction of the Nimp language into a classical uncomputable invariant se-
mantics of environments. Finally, we introduce numerical abstraction in Sec. 2.3.2, and
illustrate it by abstracting the semantics of Nimp further, into a computable interval
semantics.

This background chapter reuses material from comprehensive textbooks such as [133]
and [47]. In particular, Sec. 2.1 follows broadly the structuration of [133, Sections 3.1
to 3.3], and Sec. 2.2 follows that of [133, Chapter 2].

2.1 Language

We introduce a simple numerical language called Nimp. Nimp is a toy language featuring
standard imperative statements, and less classic operators for reading from an infinite
input stream, and writing to an output stream. These operators will be abstracted away
in the present background chapter to focus on a classic numerical semantics. They will
however be of critical importance in Chapter 3, where they will be used to compare the
semantics of two versions of a Nimp program. In this section, we describe the syntax of
Nimp, formalize the semantics of statements and programs, and discuss the properties
that can be proved from the concrete semantics. We broadly follow the structuration
of [133, Sections 3.1 to 3.3].

17

18 CHAPTER 2. BACKGROUND

stat ::= V ← expr V ∈ V
| V ← input(a, b) a, b ∈ Z
| output(V)
| assert(cond)
| if cond then stat else stat
| while cond do stat
| stat; stat
| skip

Figure 2.1: Statements of Nimp programs

expr ::= V V ∈ V
| c c ∈ Z
| −expr
| expr ⋄ expr ⋄ ∈ {+,−,×, /,%}
| rand(a, b) a, b ∈ Z

Figure 2.2: Expressions of Nimp programs

cond ::= expr ▷◁ expr ▷◁ ∈ {≤,≥,=, ̸=, <,>}
| ¬cond
| cond ⋄ cond ⋄ ∈ {∧,∨}

Figure 2.3: Conditions of Nimp programs

2.1.1 Syntax

Let us describe the syntax of Nimp. Statements stat are presented in Fig. 2.1. They
are built on top of numeric expressions expr and Boolean conditions cond, defined in
Fig. 2.2 and Fig. 2.3, respectively. We assume a given finite set of global Z-valued inte-
ger variables V. Nimp features classic imperative statements stat, such as assignments
V ← e of expression e ∈ expr to variable V ∈ V, conditionals if c then s1 else s2, while
loops, and run-time assertions. The less standard V ← input(a, b) statement reads a
fresh value in the range [a, b] from an infinite input stream, and stores it in variable V .
The output(V) statement writes the value of variable V to an output stream. Numeric
expressions expr include arithmetic expressions over variables and integer constants.
They additionally support non-determinism: the expression rand(a, b) evaluates to a
random value in the range [a, b]. Finally, the Boolean conditions cond used in condition-
als, loops and assertions are comparisons of numeric expressions, or arbitrary Boolean
combinations thereof.

2.1. LANGUAGE 19

EJ expr K ∈ E → P(Z)
EJV Kρ ≜ {ρ(V)}
EJ c Kρ ≜ {c}
EJ rand(a, b) Kρ≜ {x | a ≤ x ≤ b }
EJ−e Kρ ≜ {−v | v ∈ EJ e Kρ }
EJ e1 ⋄ e2 Kρ ≜ { v1 ⋄ v2 | v1 ∈ EJ e1 Kρ, v2 ∈ EJ e2 Kρ, ⋄ ̸∈ { /,% } ∨ v2 ̸= 0 } ⋄ ∈ {+,−,×, /}

Figure 2.4: Semantics of numerical expressions

2.1.2 Semantics

In this section, we define the formal semantics of Nimp, i.e. a mathematical description
of the possible behaviors of Nimp programs. A semantics is chosen according to a class
of program properties of interest. We are interested in numerical invariants relating the
inputs, the memory and the outputs of programs. We thus choose a suitable semantic
domain to represent the possible memory states of programs.

Consider Nimp programs with integer-valued variables in V: every memory state
may be modeled as a function from V to Z. We thus let E ≜ V → Z denote the set of
possible memory states.

Expression semantics

Let e ∈ expr be some numerical expression. The semantics of e describes the result of its
evaluation. Consider the syntax of expressions from Fig. 2.2. The result of evaluation
may depend on the syntax of e, and on the memory state ρ at the time of evaluation:

• If e is some constant c ∈ Z, then it evaluates always to the same value: c.
• If e is a non-deterministic value rand(a, b) where a, b ∈ Z2, then it may evaluate

to several values. For instance, expression [1, 3] may evaluate to values 1, 2 or 3.
• If e is some variable V ∈ V, then its value depends on the memory state ρ ∈ E .

For instance, expression V evaluates to 42 if ρ(V) = 42.
• Finally, if e executes some illegal operation, such as a division by zero, then the

result of evaluation cannot be defined by an integer value. For instance, expression
1/0 does not evaluate to any integer value.

As a consequence, we define the semantics of expression e as an evaluation function
EJ e K ∈ E → P(Z). EJ e Kρ is the set of possible values of expression e in memory state
ρ ∈ E . It is defined on Fig. 2.4, by induction on the syntax of numeric expressions.
For instance, EJ e1 + e2 Kρ is obtained by recording the sums of all possible values of
sub-expressions e1 and e2 in memory ρ, which are given by EJ e1 Kρ and EJ e2 Kρ.

Remark 1 (Semantics and run-time errors). EJ e Kρ filters away any evaluation which may
divide by zero. For instance, EJ 1/0 Kρ = ∅. In practice, a static analyzer based on this
semantics would print an alarm message in this case. We could enrich the semantics with
an error state, in addition to the memory state, to record any possible illegal operations.

20 CHAPTER 2. BACKGROUND

CJ cond K ∈ E → P({true, false})
CJ¬c Kρ ≜ {¬v | v ∈ CJ c Kρ }
CJ c1 ⋄ c2 Kρ ≜ { v1 ⋄ v2 | v1 ∈ CJ c1 Kρ, v2 ∈ CJ c2 Kρ } ⋄ ∈ {∧,∨}
CJ e1 ▷◁ e2 Kρ≜ { true | ∃v1 ∈ EJ e1 Kρ, v2 ∈ EJ e2 Kρ : v1 ▷◁ v2 } ▷◁ ∈ {≤,≥,=, ̸=, <,>}

∪ { false | ∃v1 ∈ EJ e1 Kρ, v2 ∈ EJ e2 Kρ : v1 ̸▷◁ v2 }

Figure 2.5: Semantics of conditional expressions

We do not do it here for the sake of conciseness, and because the work presented in this
thesis does not aim at run-time error analysis.

Condition semantics

Conditions are comparisons between numeric expressions, or Boolean combinations thereof.
As a consequence, their evaluations also depend on the memory state, and may re-
turn several possible results due to non-determinism. The semantics for some condition
c ∈ cond is thus an evaluation function CJ c K ∈ E → P({true, false}). It is defined in
Fig. 2.5, by induction on the syntax of conditions. For instance, the semantics CJ¬c Kρ
of condition ¬c in memory ρ is defined as the set of the negations of the possible values
condition c in ρ, given by CJ c Kρ. Note that:

• true ∈ CJ¬c Kρ⇔ false ∈ CJ c K;
• true ∈ CJ c1 ∧ c2 Kρ⇔ true ∈ CJ c1 K ∩ CJ c2 Kρ;
• true ∈ CJ c1 ∨ c2 Kρ⇔ true ∈ CJ c1 K ∪ CJ c2 Kρ.

Statement semantics

Let us now introduce the semantics of statements of Nimp programs. The semantics
for some statement s ∈ stat aims at describing the effect of the execution of s, i.e. the
relation between the states of the program before and after executing s. The former are
called pre-states of s, the latter are called post-states of s.

Nimp programs have memory states ρ ∈ E . In addition, such programs write to
some output stream with output statements. We therefore let program states record
the (finite) sequence o ∈ Z⋆ of output values. Moreover, Nimp programs read from
some input stream, using input statements. Standard program semantics use non-
deterministic choice to model such inputs. Yet, we anticipate that we would like to
compare the behaviors of several versions of the same program, reading from the same
input stream: see Chapter 3. As a consequence, we parameterize the semantics SJ s Kι

of statement s by a sequence ι ∈ Zω of input values, and let program states record the
current index n ∈ N in this sequence. Note that this sequence has to be infinite: indeed,
due to non-determinism, the semantics maps every input stream to a (possibly infinite)
set of executions, which can execute an unbounded number of input statements.

We thus let triples (ρ, n, o) ∈ Σ ≜ E × N × Z⋆ describe program states, where ρ
defines the memory state, n is the current index in the input stream, and o records

2.1. LANGUAGE 21

SJ stat K ∈ Zω → P(Σ)→ P(Σ)

SJ skip KιX ≜X

SJV ← e KιX ≜ { (ρ[V 7→ v], n, o) | (ρ, n, o) ∈ X ∧ v ∈ EJ e Kρ }
SJV ← input(a, b) KιX ≜ { (ρ[V 7→ ιn], n+ 1, o) | (ρ, n, o) ∈ X ∧ a ≤ ιn ≤ b }
SJ output(V) KιX ≜ { (ρ, n, o · ρ(V)) | (ρ, n, o) ∈ X }
SJ assert(c) Kι ≜SJ c? K
SJ s ; t Kι ≜SJ t Kι ◦ SJ s Kι

SJ if c then s else t Kι ≜SJ s Kι ◦ SJ c? K ∪̇ SJ t Kι ◦ SJ¬c? K
SJ while c do s Kι ≜SJ¬c? K ◦ (SJ s Kι ◦ SJ c? K)∗

where SJ c? KX ≜ { (ρ, n, o) ∈ X | true ∈ CJ c Kρ }

Figure 2.6: Semantics of Nimp statements

the sequence of past outputs. Given some statement s ∈ stat and some input stream
ι ∈ Zω, we then let SJ s Kι describe the relation between pre-states (ρ, n, o) ∈ Σ and post-
states (ρ′, n′, o′) ∈ Σ of statement s. A standard choice of semantic domain would be to
let SRJ s Kι ∈ P(Σ × Σ). Yet, we anticipate that we will compute abstractions of this
semantics using numerical domains that represent sets of states. We therefore tailor the
formalization of the semantic domain to handle sets of states rather than relations over
states. As P(Σ× Σ) ≃ Σ→ P(Σ), we may represent the relation over Σ with its image
function SFJ s Kι ∈ Σ→ P(Σ), defined by SFJ s Kιρ ≜ { ρ′ | (ρ, ρ′) ∈ SRJ s Kι }. However,
this semantic function has different domain and codomain. This is inconvenient, as
semantic functions should be composed to reflect the composition of statements, e.g., in
sequences. We thus extend the semantic function to P(Σ)→ P(Σ), as a ∪-morphism:

SJ s KιX ≜ ∪{SFJ s Kιρ | ρ ∈ X } (2.1)

Given a set of program states (ρ, n, o) ∈ X ∈ P(Σ) before executing statement s, the
semantic function SJ s Kι returns the set of possible program states (ρ′, n′, o′) ∈ SJ s KιX
after executing statement s.

The semantics SJ s K ∈ Zω → P(Σ) → P(Σ) is defined on Fig. 2.6, by induction on
the syntax of statements s ∈ stat of Nimp programs. It builds on the semantics EJ e K ∈
E → P(Z) of expressions e ∈ expr , and CJ c K ∈ E → P({true, false}) of conditions
c ∈ cond.

Atomic statements. We first describe the semantics of base cases of the syntax of
statements: the empty statement, assignments, input and output statements, and the
assert(c) statement.

The semantics of the skip statement is the identity function, as the statement has no
effect on the program state. The semantics of an assignment V ← e on a set of program
states X updates the memory state ρ in each program state (ρ, n, o) ∈ X independently:

22 CHAPTER 2. BACKGROUND

X ← input(−10, 10); Y ← input(−10, 10); X ← X + Y ;
Y ← rand(−10, 10) + rand(−10, 10);

Figure 2.7: Input statement versus non-determistic choice

it evaluates e in memory ρ, and changes the current program state to a set of new states
(ρ′, n, o), such that ρ′(V) ∈ EJ e Kρ is a possible value for e, and ρ′(W) = ρ(W) if W ̸= V .
The semantics of an input statement V ← input(a, b) assigns the value at the current
index in the input stream to V , and increments the index in all program states. Note
that input(a, b) returns only if the input value at the current index is in the range [a, b].

Remark 2 (Input statement versus non-determistic choice). Atomic statements V ←
input(a, b) and V ← rand(a, b) are similar, in that they both assign to V a value in
the range [a, b]. Yet, the former establishes a relation between the current memory state
and the contents of the input stream, while the latter does not. Consider for instance
the program P shown on Fig. 2.7. Starting from the initial state Σ0 = ([X 7→ 0, Y 7→
0], 0, ∅), the set of reachable program states when reading from a given stream ι ∈ Zω

is SJP Kι {Σ0 } = { ([X 7→ i0 + i1, Y 7→ v], 2, ∅) | i0, i1 ∈ [−10, 10] ∧ v ∈ [−20, 20] }. This
semantics expresses properties such as “P reads the two first values of ι, and stores their
sum into X”. In contrast, the only property expressed for Y is that its value ranges in
[−20, 20].

The semantics of an output statement output(V) extends the sequence of outputs
in each program state with the value of variable V in this state. Note that we write o · v
to denote the sequence extending sequence o with value v.
Remark 3 (Generalization to multiple streams). We model one input stream and one
output stream only, to simplify the presentation, while realistic programs may use several
input and output streams. This does not restrict the applicability of our approach, as
the generalization to multiple input and output streams is straightforward.

assert(c) statements do not depend on the input stream. We use the dedicated filter
SJ c? K ∈ P(Σ) → P(Σ) to formalize their semantics. SJ c? K filters away any program
state where condition c cannot evaluate to true. In practice, a static analyzer based on
this semantics would print an alarm message in this case. We could enrich the semantics
with an error state, in addition to the memory state, to record any possible illegal
operations. We do not do it here for the sake of conciseness. Note that SJ c1 ∧ c2? K =
SJ c1? K∩SJ c2? K and SJ c1∨c2? K = SJ c1? K∪SJ c2? K. Furthermore, SJ c? K is a complete
∪-morphism: SJ c? K(∪i∈IXi) = ∪i∈ISJ c? KXi for arbitrary families of sets (Xi)i∈I .

Compound statements. We now describe the semantics of inductive cases of the
syntax of statements: sequences of statements, selection and iteration statements.

The semantics of a sequence of statements s ; t is defined as the composition of
semantic functions of s and t. This models accurately the fact that s ; t adds the effects
of t to those of s.

2.1. LANGUAGE 23

The semantics of a selection statement if c then s else t is defined as the union
of the semantics of the then branch s and the else branch t. The semantics of the
then branch applies the semantics of s to the pre-states that may satisfy condition c,
which are selected using the SJ c? K filter. The semantics of the else branch applies the
semantics of t to the pre-states that may fail to satisfy condition c, which are selected
using the SJ¬c? K filter. Note that we use the symbol ∪̇ to denote the pointwise lifting
of ∪: f ∪̇f ′ ≜ σ ∈ Zω 7→ f(σ) ∪ f ′(σ).

Let us now describe the semantics of iteration statements while c do s. Starting
with some pre-state, such statements iterate the body s of the loop, as long as the
memory state satisfies the condition c.

Let X be a set of pre-states, and let X ′ ≜ SJ while c do s KιX be the associated
set of possible post-states. The evaluation of the condition c of the loop divides X into
two subsets: the set of states which may satisfy c, and the set of states which may fail
to satisfy c. Let X ′≥1 ≜ SJ c? KX be the former, and X ′0 ≜ SJ¬c? KX be the latter.
The loop has no effect on the states in X ′0, hence X ′0 ⊆ X ′. On the contrary, the
body s of the loop is run on states in X ′≥1, resulting in states SJ s KιX

′
≥1. Then, the

condition is evaluated again for these states, dividing them again into two subsets: states
in X ′≥2 ≜ SJ c? K◦SJ s KιX

′
≥1 may satisfy c, while states in X ′1 ≜ SJ¬c? K◦SJ s KιX

′
≥1 may

fail to. States in X ′1 exit the loop at this point, hence X ′1 ⊆ X ′. On the contrary, the
body s of the loop is run again on states in X ′≥2, and the previous process is repeated,
resulting in a infinite family of sets of states (X ′0, X ′1, . . .), such that ∀n ∈ N : X ′n ≜
SJ¬c? K ◦ (SJ s Kι ◦ SJ c? K)nX ⊆ X ′. X ′n denotes the set of post-states that may be
reached after exactly n iterations. Conversely, all states in X ′ are post-states that may
be reached after finitely many iterations. Hence X ′ = ∪n∈NX

′
n.

As consequence, SJ while c do s Kι = ∪n∈NSJ¬c? K ◦ (SJ s Kι ◦SJ c? K)n. As SJ c? K is
a complete ∪-morphism, this can be re-written as

SJ while c do s Kι = SJ¬c? K ◦ (SJ s Kι ◦ SJ c? K)∗

where we note f∗ ≜ ∪̇n∈Nf
n for any f ∈ P(Σ)→ P(Σ).

Program semantics

We are now ready to define the formal semantics of Nimp programs. We choose to define
it in terms of observable inputs and outputs, abstracting away the internal memory state.
This is a standard choice when we are interested in properties of observable behaviors.
For instance, [27, Sec 3.5] defines the semantics of the source language of the CompCert
C compiler in terms of traces of observable input-output operations. We thus denote
by PJ p K ∈ Zω → P(Z∗) the semantics of programs p ∈ stat. The semantics PJ p Kι of
a program p reading from an input stream ι ∈ Zω is the set of sequences of values that
terminating executions of p may output.

Recall, from Sec. 2.1.2, that program states are triples (ρ, n, o), where ρ is a memory
state, n is a number of executed input statements, and o is a sequence of output values.
Consider the initial memory state ρ0 with all variables zero-initialized: ∀V ∈ V : ρ0(V) =

24 CHAPTER 2. BACKGROUND

I ← 0;
X ← input(−100, 100);
whileX ≥ 0 do

if (X/2)× 2 < X then output(X);
I ← I + 1;
X ← input(−100, 100)

done

Figure 2.8: Filtering inputs

0. Consider the related initial program state, with zero-initialized input index, and empty
output sequence x0 ≜ (ρ0, 0, ϵ). Given some input stream ι ∈ Zω, SJ p Kι {x0 } is the set
of possible post-states of statement p.

Definition 1 (Semantics of Nimp programs). We thus define the semantics of program
p as:

PJ p Kι ≜ { o | (ρ, n, o) ∈ SJ p Kι {x0 } }

2.1.3 Properties

P is suitable to express a number of properties of terminating executions of Nimp pro-
grams, such as so-called “functional properties” expressing relations between inputs and
outputs.

Example 1 (Filtering inputs). For instance, a property such as “the program reads a
sequence of integers in the range [−100, 100] from the input stream, until some negative
input value occurs, and writes the sequence of indexes of odd inputs to the output
stream” may be expressed as:
∀ι ∈ Zω : ∃N ∈ N : (ιN ∈ [−100, 0] ∧ ∀n < N : ιn ∈ [0, 100]) ⇒ ∀o ∈ PJ p Kι : |o| =
|Sι(0, N)| ∧ o0 = minSι(0, N) ∧ ∀n < |o| : on+1 = minSι(on + 1, N),
where Sι(p, q) ≜ {n ∈ N | p ≤ n < q ∧ ιn ≡ 1 mod 2 }.
Consider the program p on Fig. 2.8.
SJ p Kι {x0 } = { ([I 7→ N,X 7→ ιN], N + 1, o) |N ∈ N ∧ ιN ∈ [−100, 0] ∧ ∀n < N : ιn ∈
[0, 100] }, where o satisfies the specification above.
Hence PJ p Kι ≜ { o | (ρ, n, o) ∈ SJ p Kι {x0 } } can be proved to satisfy the specification.

Remark 4 (Properties of non-terminating executions). Though our definition of P focuses
on terminating executions, some (functional) properties of non-terminating executions
can be verified using assert statements. For instance, non-terminating executions of the
program shown on Fig. 2.9 read only positive inputs. The semantic domain could be
extended to express such properties formally (e.g. adding propagated error states), but
we do not do it here for simplicity.

2.2. ELEMENTS OF ABSTRACT INTERPRETATION 25

X ← input(−100, 100);
while true do

assert(X ≥ 0);
X ← input(−100, 100)

done

Figure 2.9: Non-terminating Nimp program

2.1.4 Proofs

As shown in previous sections, our formal semantics for Nimp statements and programs
is able to express precise properties of program executions. It can thus be used as the
mathematical reference for conducting a formal proof that a given Nimp program (or
statement) meets a given specification. However, such proofs cannot be automated,
because the semantics S and P are not computable.

Indeed, the elements of the semantic domain D ≜ Zω → P(Σ) of S are infinite sets
that cannot be represented in computer memory. Recall that Σ = (V → Z)×N×Z⋆. As
a consequence, the semantic transfer functions of atomic statements such as SJV ← e K
and SJ c? K are not computable. The same situation occurs for lattice operators such as
∪. Moreover, the semantic transfer function of loops may require an infinite number of
iterations.

To side-step this computability issue, one could be tempted to make the set of mem-
ory states P(V → Z) finite by restricting the values of variables to the range of machine
integers. One could additionally restrict the maximum lengths of valid input and output
sequences to some fixed numbers to handle finitely many variables. However, this would
still result in a huge domain, so that a naive representation of sets in extension would not
be practicable. For instance, even the set of memory states of a program with only 9 32-
bit variables is larger than current estimates of the number of protons in the observable
universe (1080). Similarly, while semantic transfer functions of atomic statements and
lattice operators would be computable in principle with these restrictions, evaluating
them on every program state individually would not be tractable in practice. Finally,
the transfer function of while loops would iterate in finite, but extremely long sequences.

We thus turn to another approach to overcome this computability issue. We will
leverage the theory of abstract interpretation to replace the functions operating on the
semantic domain by sound, computable approximations thereof, operating on an alter-
nate semantic domain. The former are called concrete, the latter abstract.

2.2 Elements of abstract interpretation

Abstract interpretation is an invaluable tool for designing formal methods. In particular,
it enables the design of static analyses that are sound by construction by formalizing the
relations between a (concrete) program semantics of reference and (abstract) approxi-
mations thereof handled by a static analyzer. In this section, we propose a lightweight

26 CHAPTER 2. BACKGROUND

introduction to the theory of Abstract Interpretation, limited to the elements used in this
thesis. We nonetheless follow broadly the structuration of the more comprehensive [133,
Chapter 2].

Abstract interpretation is a mathematical theory where:
1. Concrete and abstract semantic domains are formalized as sets of objects equipped

with partial order relations. We thus review elements of order theory in Sec. 2.2.1.
2. Semantic functions such as our concrete semantics SJ s K of Sec. 2.1.2 are defined as

fixpoints of operators over these partially ordered sets. We thus introduce relevant
fixpoint theorems in Sec. 2.2.2.

3. These mathematical tools are used to construct abstract semantics as sound ap-
proximations of concrete ones. We thus introduce abstract domains in Sec. 2.2.3,
and related operator approximation techniques in Sec. 2.2.4.

2.2.1 Order theory

Semantic domains such as our Zω → P(Σ) of Sec. 2.1.2 represent properties of pro-
gram computations. These properties are naturally ordered by logical implication. Such
domains are thus modeled as partially ordered sets, or richer order structures, such as
(complete) lattices. Most of the domains used in this thesis are complete lattices, but
the framework is not limited to them. Let us introduce these order structures.

Posets

Definition 2 (Properties of binary relations). A binary relation ▷◁∈ P(X ×X) over a
set X is called:

• reflexive if: ∀x ∈ X : x ▷◁ x;
• transitive if: ∀x, y, z ∈ X : x ▷◁ y ∧ y ▷◁ z =⇒ x ▷◁ z;
• symmetric if: ∀x, y ∈ X : x ▷◁ y =⇒ y ▷◁ x;
• anti-symmetric if: ∀x, y ∈ X : x ▷◁ y ∧ y ▷◁ x =⇒ x = y.

Definition 3 (Partial order, Poset). A binary relation ⊑ over a set X is called a partial
order if ⊑ is reflexive, transitive and anti-symmetric. (X,⊑) is then called a partially
ordered set (a.k.a. poset).

Example 2 (Poset). Given a set X, (P(X),⊆) is a poset. In particular, using the
notations of Sec. 2.1.2, the set of memory states (P(V → Z),⊆) and the set of program
states (P(Σ),⊆) and are both posets.

Definition 4 (Lower and upper bounds of two elements). Let (X,⊑) be a poset, and
a, b ∈ X. c ∈ X is called:

• a lower bound of a and b if c ⊑ a and c ⊑ b;
• an upper bound of a and b if a ⊑ c and b ⊑ c.

Definition 5 (glb and lub of two elements). Let (X,⊑) be a poset, and a, b ∈ X. c ∈ X
is called:

2.2. ELEMENTS OF ABSTRACT INTERPRETATION 27

• the greatest lower bound (a.k.a. glb) of a and b if c′ ⊑ c for all lower bound c′ of
a and b;

• the least upper bound (a.k.a. lub) of a and b if c ⊑ c′ for all upper bound c′ of a
and b.

Remark 5 (Unicity of glb and lub). If a and b have a glb (resp. lub) in (X,⊑) then it is
unique, and denoted a ⊓ b (resp. a ⊔ b).

Example 3 (glb and lub). Let S = { a, b, c, d }. Elements X = { a, b } and Y = { b, c }
of the poset (P(S),⊆) have lub X ∪ Y = { a, b, c } and glb X ∩ Y = { b }.

Definition 6 (Lower and upper bounds of a set). Let (X,⊑) be a poset, and A ∈ P(X)
be a subset. x ∈ X is called:

• a lower bound of A if x ⊑ a for all a ∈ A;
• an upper bound of A if a ⊑ x for all a ∈ A.

Definition 7 (glb and lub of a set). Let (X,⊑) be a poset, and A ∈ P(X) be a subset.
x ∈ X is called:

• the greatest lower bound (a.k.a. glb) of A if x′ ⊑ x for all lower bound x′ of A;
• the least upper bound (a.k.a. lub) of A if x ⊑ x′ for all upper bound x′ of A.

Remark 6 (glb and lub of a set). If A admits a glb (resp. lub) in (X,⊑) then it is unique,
and denoted ⊓A (resp. ⊔A).

Definition 8 (Chain). Let (X,⊑) be a poset, and C ∈ P(X) be a subset. C is called a
chain if all elements of C are comparable, i.e. ∀a, b ∈ C : a ⊑ b ∨ b ⊑ a.

Hasse diagrams are directed graphs commonly used as graphic representations of
posets. Vertices are elements of the set. The greater elements are placed above the
smaller ones. Arcs depict the order relation between vertices. Arcs that can be inferred
by transitivity are omitted for readability. In particular, Hasse diagrams help visualize
glbs, lubs and chains.

Example 4 (Hasse diagram). The Hasse diagrams for the poset (P({ a, b, c, d } ,⊆)) is
shown on Fig. 2.10.

Lattices

Definition 9 (Lattice). (X,⊑,⊔,⊓) is called a lattice if (X,⊑) is a poset such that a⊓b
and a ⊔ b exist for all a, b ∈ X.

Definition 10 (Complete lattice). (X,⊑,⊔,⊓,⊥,⊤) is called a complete lattice if (X,⊑)
is a poset such that ⊓A and ⊔A exist for all A ∈ P(X). In particular, ⊥ = ⊔∅ denotes
the least element, and ⊤ = ⊔X denotes the greatest element.

Property 1 (Powerset lattice). For every set X, (P(X),⊆,∪,∩, ∅, X) is a complete
lattice, called the powerset lattice of X.

28 CHAPTER 2. BACKGROUND

∅

{a}

{a, b}

{a, b, c}

{a, b, c, d}

{a, b, d}

{a, c}

{a, c, d}

{a, d}

{b}

{b, c}

{b, c, d}

{b, d}

{c}

{c, d}

{d}

Figure 2.10: Hasse diagram for (P({ a, b, c, d }),⊆)

∅

. . . {−2,−2 } {−1,−1 } { 0 } { 1, 1 } { 2, 2 } . . .

{−2,−1 } {−1, 0 } { 0, 1 } { 1, 2 }

{−2, 0 } {−1, 1 } { 0, 2 }

{−2, 1 } {−1, 2 }

{−2, 2 }

{ . . . ,−1 }

{ . . . , 0 }

{ . . . , 1 }

{ . . . , 2 } {−2, . . . }

{−1, . . . }

{ 0, . . . }

{ 1, . . . }

.

P(Z)

Figure 2.11: Hasse diagram for (P(Z),⊆)

Example 5 (Powerset lattices). Fig. 2.10 shows the Hasse diagram for the powerset
lattice of { a, b, c, d }. The Hasse diagram for the powerset lattice of Z is shown on
Fig. 2.11.

Remark 7 (Maximal chains). Fig. 2.10 shows that all chains of (P({ a, b, c, d }),⊆) are
finite. Maximal chains have length 5. In contrast, Fig. 2.11 shows that (P(Z),⊆) has

2.2. ELEMENTS OF ABSTRACT INTERPRETATION 29

infinite chains, such as ⋃n∈N { 0, . . . , n }.

Property 2 (Pointwise lifting of a lattice). Let (X,⊑,⊔,⊓,⊥,⊤) be a complete lattice
and S be a set. Then the derived order structure ((S → X), ⊑̇, ⊔̇, ⊓̇, ⊥̇, ⊤̇) defined by:

f ⊑̇ f ′ △⇐⇒ ∀s ∈ S : f(s) ⊑ f ′(s)
∀s ∈ S : (f ⊔̇ f)(s) ≜ f(s) ⊔ f ′(s)
∀s ∈ S : (f ⊓̇ f)(s) ≜ f(s) ⊓ f ′(s)

∀s ∈ S : ⊥̇(s) ≜ ⊥
∀s ∈ S : ⊤̇(s) ≜ ⊤

is a complete lattice.

Example 6 (Semantic domain as a pointwise lifted lattice). The semantic domain
D ≜ Zω → P(Σ) introduced in Sec. 2.1.2 enjoys the structure of a complete lattice
(D, ⊆̇, ∪̇, ∩̇, ∅̇, Σ̇), as it lifts the powerset lattice of Σ pointwise.

Property 3 (Coalescent pointwise lifting of a lattice). Let (X,⊑,⊔,⊓,⊥,⊤) be a com-
plete lattice and S be a set. Let ⊥0 ̸∈ S → X be a new least element. Then the derived
order structure ((S → (X \ {⊥})) ∪ {⊥0 } , ⊑̇, ⊔̇, ⊓̇,⊥0, ⊤̇) defined by:

f ⊑̇ f ′ △⇐⇒ ∀s ∈ S : f(s) ⊑ f ′(s)
∀s ∈ S : (f ⊔̇ f)(s) ≜ f(s) ⊔ f ′(s)
∀s ∈ S : (f ⊓̇ f)(s) ≜ f(s) ⊓ f ′(s)

∀s ∈ S : ⊤̇(s) ≜ ⊤

is a complete lattice.

Remark 8 (Coalescent pointwise lifting of a lattice). Property 3 is often used to de-
fine program semantics based on invariant memory states, as liftings of non-relational
numerical abstract domains. We will show the example of the Interval abstraction in
Sec. 2.3.2.

2.2.2 Functions, operators and fixpoints

Functions and operators

Let us list some useful properties of functions over order structures.

Definition 11 (Monotonicity). Given two posets (X1,⊑1) and (X2,⊑2), a function
f ∈ X1 → X2 is called monotone if:

∀x, y ∈ X1 : x ⊑1 y =⇒ f(x) ⊑2 f(y)

30 CHAPTER 2. BACKGROUND

Remark 9 (Monotonicity). If we interpret the elements of posets as program properties
and their partial orders as models of logical implication, monotonicity is a necessary
property for a function to preserve logical implication.

Example 7 (Monotonicity). Given a statement s ∈ stat and a stream ι ∈ Zω, the
semantic transfer function SJ s Kι defined on Fig. 2.6 of Sec. 2.1.2 is monotone.

Definition 12 (Complete ⊔-morphism). Given two complete lattices (X1,⊑1,⊔1,⊓1,⊥1,⊤1)
and (X2,⊑2,⊔2,⊓2,⊥2,⊤2) a function f ∈ X1 → X2 is called a complete ⊔-morphism
if:

∀C ∈ P(X1) : f(⊔1C) = ⊔2f(C)

Concrete semantic transfer functions of programs are typically defined as complete
⊔-morphisms. This property implies indeed that it suffices to observe the behavior of a
program for each possible input separately, and then to join all behaviors to obtain the
set of all possible program behaviors. For instance, we intentionally defined SJ s Kι as a
complete ∪-morphism by Equation 2.1.

Definition 13 (operator). We call operator on a set X any function f ∈ X → X.

Semantic functions are operators of the semantic domain. By extension, two-variable
functions over a set X are also called operators. For instance, ⊓ and ⊔ are called lattice
operators of the lattice (X,⊑,⊔,⊓).

Definition 14 (Extensivity). An operator f on a poset (X,⊑) is called extensive if

∀x ∈ X : x ⊑ f(x)

Example 8 (Extensivity). n 7→ 2× n is extensive on (N,≤).

Definition 15 (Reductivity). An operator f on a poset (X,⊑) is called reductive if

∀x ∈ X : f(x) ⊑ x

Example 9 (Reductivity). n 7→ ⌊n/2⌋ is reductive on (N,≤).

Fixpoints

Definition 16 (Fixpoint). Let f ∈ X → X be an operator over a poset (X,⊑).
• x ∈ X is called a fixpoint of f if f(x) = x. We denote as fp(f) the set of fixpoints

of f ;
• if fp(f) has a least element, it is called the the least fixed point of f , and denoted

lfp f .

Theorem 1 (Tarski’s fixpoint theorem [168]). Let f ∈ X → X be an operator over a
complete lattice (X,⊑,⊔,⊓,⊥,⊤). If f is monotone, then fp(f) is complete lattice, and
lfp f = ⊓{x ∈ X | f(x) ⊑ x }.

2.2. ELEMENTS OF ABSTRACT INTERPRETATION 31

Theorem 2 (Kleene’s constructive fixpoint theorem (weakened)). Let f ∈ X → X be
an operator over a complete lattice (X,⊑,⊔,⊓,⊥,⊤). If f is a complete ⊔-morphism,
then lfp f = ⊔{ fn(⊥) |n ∈ N }.

Theorem 2 can be found in [49] with weaker assumptions. In particular, X need not
be a lattice. We use the strong assumptions above to avoid introducing concepts that
are not necessary in the context of this thesis.

This theorem is constructive, in that it expresses lfp f as the limit of an iteration
starting from ⊥. It also suggests that unbounded iterations of operators may be ex-
pressed as fixpoints. The semantic function of loops of Nimp programs, introduced in
Sec. 2.1.2, features such an iteration:

SJ while c do s Kι = SJ¬c? K ◦ ∪n∈N(SJ s Kι ◦ SJ c? K)n

Using Theorem 2, we can indeed rewrite it as:

SJ while c do s KιX = SJ¬c? K(lfpFX
ι) (2.2)

where FX
ι (Y) ≜ X ∪ SJ s Kι(SJ c? KY).

2.2.3 Domain abstraction

We are now ready to formalize the relationships between concrete and abstract semantic
domains, by giving a mathematical meaning to the notion of abstraction.

Concrete and abstract domains

The minimum structure for defining a concrete semantic domain is a poset (C,≤) (al-
though we often have complete lattices in this thesis). Elements of C represent properties
of programs executions, which are sets of program behaviors. ≤ is an information order
compatible with implication: larger elements represent coarser properties, hence more
behaviors.

Example 10 (Concrete semantic domain for Nimp). The concrete semantic domain
D ≜ Zω → P(Σ) that we introduced in Sec. 2.1.2 is equipped with a complete lattice
structure through pointwise lifting (see Example 6).

An abstract domain provides an alternate representation for a concrete domain, that
may represent fewer elements, i.e. fewer properties. Abstract domains require thus the
same minimal structure as concrete domains: a poset (A,⊑).

Example 11 (Abstracting away Nimp streams). In the case of Nimp programs, one may
choose to focus on numerical properties of variables, rather than on the relationships
between output input and values. One will thus disregard input streams ι ∈ Zω, indexes
n ∈ N in these streams, and sequences of outputs o ∈ Z∗, and keep only memory states
ρ ∈ E as program states of interest. The resulting abstract “memory-only” domain is
then D̂ ≜ P(E), a (powerset) complete lattice.

32 CHAPTER 2. BACKGROUND

Remark 10 (Abstracting away Nimp streams). We will follow up on Example 11 in the
rest of chapter, and construct step by step an abstract semantics expressing numerical
invariants of reachable memory states of Nimp programs. The result will be classic
semantics that ignores input and ouput streams, as in [133, Sec. 3.3]. While we make
this choice to simplify the presentation of generic static analysis techniques in the current
chapter, we will reintroduce streams in the concrete and abstract semantics in Chapter 3,
in order to compare the semantics of two versions of a program.

We now describe the relation between concrete and abstract domains in the frame-
work of abstract interpretation, and the related notion of soundness.

Concretization and soundness

The minimum connection between a concrete domain (C,≤) and an abstract domain
(A,⊑) is a monotone function γ ∈ A→ C that defines the meaning of abstract elements
of A in terms of concrete elements of C. γ(a) is the concrete property represented
by a ∈ A. γ is called the concretization of A. Monotonicity ensures that abstract
implication is compatible with concrete implication.

An abstract property a ∈ A is said to be sound with respect to a concrete property
c ∈ C if c represents at least as many behaviours as c, i.e. c ≤ γ(a). Moreover a is called
an exact abstraction of c if a and c represent the same set of behaviors, i.e. c = γ(a).

Definition 17 (Sound and exact abstractions). Let (C,≤) and (A,⊑) be two posets.
Let γ ∈ C → A be a monotone function, and c ∈ C. a ∈ A is called:

1. a sound abstraction of c for γ if c ≤ γ(a);
2. an exact abstraction of c for γ if c = γ(a).

Definition 18 (Concretization). Let (C,≤) and (A,⊑) be two posets. γ ∈ A → C is
called a concretization function if it is monotone and every element of C has a sound
abstraction for γ.

Example 12 (Concretization function for Nimp’s memory-only domain). Following up
on Example 11, we propose the concretization γ̂ ∈ D̂ → D defined by γ̂(X)ι = X ×
N × Z∗. It means that a set of (abstract) memory states represents the set of possible
(concrete) program states that have these memory states (and arbitrary input and output
sequences).

Remark 11 (Composition of abstractions). An immediate consequence of Definitions 18
and 17 is that abstractions compose. If (A,⊑) abstracts (C,≤) via γ ∈ C → A, (A′,⊑′)
abstracts (A,⊑) via γ′ ∈ A′ → A, then (A′,⊑′) abstracts (C,≤) via γ ◦ γ′. This allows
incremental approaches to abstraction: abstract domains can be developed in layers.
We will use this approach extensively in this thesis. We will illustrate it in the current
chapter, by following up on Examples 11 and 12.

Some abstract domains rely solely on a concretization function to define their rela-
tion to a concrete domain. For instance, this it is the case of the polyhedra abstract
domain [52], that represents sets of real numbers as affine inequalities. Most abstractions

2.2. ELEMENTS OF ABSTRACT INTERPRETATION 33

used in this thesis will nonetheless enjoy a richer connection to concrete domains. They
will feature an additional function α ∈ C → A, called abstraction function, such that
the pair (α, γ) forms a Galois connection.

Galois connections

Definition 19 (Galois connection). Let (C,≤) and (A,⊑) be two posets. A pair (α, γ) ∈
(C → A)× (A→ C) is called a Galois connection, and denoted (C,≤) −−−→←−−−α

γ
(A,⊑), if:

1. γ is monotone;
2. α is monotone;
3. γ ◦ α is extensive;
4. α ◦ γ is reductive.

The monotonicity of γ and α ensure that concrete and abstract implications are
compatible: more precise (concrete) properties are represented by more precise (abstract)
properties. The extensivity of γ ◦ α states that α(c) is a sound abstraction of c for all
concrete element c ∈ C. The reductivity of α ◦ γ additionally ensures that it is the least
for the abstract order.

This last property is a key interest Galois connections: the abstraction function
returns the so-called “best abstraction” of each concrete element.

Property 4 (Best abstraction). Let (C,≤) −−−→←−−−α

γ
(A,⊑) be a Galois connection.

∀c ∈ C : α(c) = ⊓{ a | c ≤ γ(a) }

The following characterization is often used in practice to prove that two domains
are related by a Galois connection.

Property 5 (Characteristic property of Galois connections). Let (C,≤) and (A,⊑) be
two posets. A pair (α, γ) ∈ (C → A)× (A→ C) is a Galois connection if and only if:

∀(c, a) ∈ C ×A : c ≤ γ(a) ⇐⇒ a ≤ α(c)

Example 13 (Galois connection for Nimp’s memory-only domain). Following up on Ex-
ample 12, we propose the abstraction α̂ ∈ D → D̂ defined by α̂(f) = ⋃

σ∈Zω{ ρ | (ρ, n, o) ∈
f(σ) }. We have (D, ⊆̇) −−−→←−−−

α̂

γ̂
(D̂,⊆).

Example 14 (Absence of Galois connection). The polyhedra abstract domain [52] rep-
resents sets of real numbers as affine inequalities. The meaning of abstract elements is
defined by a concretization function. However, no abstraction function can be proposed
to form a Galois connection, as not all sets of real numbers have a best abstraction in
this domain. Indeed, this domain can be seen, geometrically, as abstracting a set of
points as a convex polyhedron. The best abstraction would be the smallest enclosing
polyhedron. Unfortunately, such a polyhedron does not exist for some sets of points,
such as discs. Fig. 2.12 illustrates this fact.

34 CHAPTER 2. BACKGROUND

Figure 2.12: Absence of Galois connection (no polyhedral abstraction)

Although this is not necessary to have a Galois connection, several Galois connec-
tions introduced in this thesis will feature a unique abstract representation a ∈ A for
every concrete property c ∈ C. Such particular Galois connections are called Galois
embeddings.

Definition 20 (Galois embedding). A Galois connection (C,≤) −−−→←−−−α

γ
(A,⊑) is called a

Galois embedding, and denoted (C,≤) −−−→−→←−−−−
α

γ
(A,⊑), if one of the following equivalent

properties holds:
1. α is surjective;
2. γ is injective;
3. α ◦ γ = Id.

Example 15 (Galois embedding for Nimp’s memory-only domain). The Galois connec-
tion introduced in Example 13 is additionally a Galois embedding:

(D, ⊆̇) −−−→−→←−−−−
α̂

γ̂
(D̂,⊆)

In a Galois embedding, the abstract domain is isomorphic to a subset of the concrete
domain (the image of γ̂, i.e. γ̂(A)). The abstraction of elements of γ̂(A) does not lose
information, while the abstraction of other elements may lose information. In some cases,
we introduce completely isomorphic abstractions, that do not lose information on any
concrete elements. The interest of such abstractions is usually a change of representation,
to make later abstractions easier to express. In those cases, we have Galois isomorphisms.

Definition 21 (Galois isomorphism). A Galois connection (C,≤) −−−→←−−−α

γ
(A,⊑) is called a

Galois isomorphism, and denoted (C,≤) −−−→−→←←−−−−
α

γ
(A,⊑), if one of the following equivalent

properties holds:
1. α is bijective;

2.2. ELEMENTS OF ABSTRACT INTERPRETATION 35

2. γ is bijective;
3. γ ◦ α = α ◦ γ = Id.

Example 16 (no Galois isomorphism for Nimp memory states). The Galois connection
introduced in Example 13 is not a Galois isomorphism.

Property 6 (Composing Galois connections). Let (X1,⊑1) −−−→←−−−
α1

γ1 (X2,⊑2) and (X2,⊑2

) −−−→←−−−
α2

γ2 (X3,⊑3) be two Galois connections. Then (X1,⊑1) −−−−−−→←−−−−−−
α2◦α1

γ1◦γ2 (X3,⊑3) is a
Galois connection.

Remark 12 (Composition of abstractions). Remark 11 noted that abstractions can be
developed in layers. Property 6 additionally ensures that optimal abstractions can be
developed incrementally.

Property 7 (Lifting Galois connections pointwise). Let (C,≤) −−−→←−−−α

γ
(A,⊑) be a Galois

connection, and S be a set. Then (S → C, ≤̇) −−−→←−−−
α̇

γ̇
(S → A, ⊑̇) is a Galois connection,

where

f≤̇f ′ △⇐⇒ ∀s ∈ S : f(s) ≤ f ′(s)

f⊑̇f ′ △⇐⇒ ∀s ∈ S : f(s) ⊑ f ′(s)
α̇(f) ≜ α ◦ f
γ̇(f) ≜ γ ◦ f

Property 8 (Coalescent pointwise lifting of a Galois connection). Let (C,≤,∨,∧,⊥C ,⊤C)
and (A,⊑,⊔,⊓,⊥A,⊤A) be a two complete lattices such that (C,≤) −−−→←−−−α

γ
(A,⊑), and let

S be a set. Let ((S → (C \ {⊥C }))∪{⊥0
C } , ≤̇, ∨̇, ∧̇,⊥0

C , ⊤̇C) and ((S → (A \ {⊥A }))∪
{⊥0

A } , ⊑̇, ⊔̇, ⊓̇,⊥0
A, ⊤̇A) be the coalescent pointwise liftings of (C,≤,∨,∧,⊥C ,⊤C) and

(A,⊑,⊔,⊓,⊥A,⊤A), respectively, as defined by Property 3. Then

((S → (C \ {⊥C })) ∪ {⊥0
C } , ≤̇) −−−→←−−−

ᾱ

γ̄
((S → (A \ {⊥A })) ∪ {⊥0

A } , ⊑̇)

is a Galois connection such that:

γ̄(f) ≜
{
⊥̄C if f = ⊥̄0

A

γ ◦ f otherwise

ᾱ(f) ≜
{
⊥̄A if f = ⊥̄0

C

α ◦ f otherwise

Remark 13 (Lifting Galois connections pointwise). Property 8 is often used to define pro-
gram semantics based on invariant memory states, as liftings of non-relational numerical
abstract domains. We will show the example of the Interval abstraction in Sec. 2.3.2.

36 CHAPTER 2. BACKGROUND

2.2.4 Operator and fixpoint approximation

A distinctive feature of abstract interpretation is to replace uncomputable semantic op-
erators over a concrete domain by operators on an abstract domain. Abstract operators
must be designed as sound approximations of the concrete ones. When abstract op-
erators are computable, we obtain an effective static analysis, the results of which are
guaranteed to be sound with respect to the concrete semantics. Now that we have estab-
lished formal relations between concrete and abstract domains, (through concretizations
or Galois connections), we are ready to discuss techniques for approximating operators.
A critical subset thereof deal with approximating fixpoints.

Operator approximation

In Sec. 2.2.3, we have defined a notion of sound (resp. exact) abstraction in the context
of domains. We extend these notions to domain operators, such as semantic transfer
functions and lattice operators.

Definition 22 (Sound and exact operator abstraction). Let (C,≤) and (A,⊑) be two
posets, and let f ∈ C → C and g ∈ A→ A be two operators. g is called:

1. a sound abstraction of f if f ◦ γ ≤̇ γ ◦ g;
2. an exact abstraction of f if f ◦ γ = γ ◦ g.

Remark 14 (operator abstraction). Definition 22 generalizes to two-variable operators
over a poset, such as lattice operators.

In the context of a Galois connection, we can additionally extend the notion of best
abstraction to operators.

Definition 23 (Best operator abstraction). Let (C,≤) −−−→←−−−α

γ
(A,⊑) be a Galois con-

nection, and let f ∈ C → C and g ∈ A → A be two operators. g is called the best
abstraction of f if g(a) is the best abstraction of f(γ(a)) for all a ∈ A.

Property 9 (Best operator abstraction). Let (C,≤) −−−→←−−−α

γ
(A,⊑) be a Galois connection,

and let f ∈ C → C be an operator. Then α ◦ f ◦ γ is the best abstraction of f .

Example 17 (Operator abstraction for Nimp’s memory-only domain). The best ab-
straction of the operator SJV ← e K over D defined in Fig. 2.6 is the operator ŜJV ← e K
over D̂ defined as:

ŜJV ← e KX ≜ { ρ[V 7→ v] | ρ ∈ X ∧ v ∈ EJ e Kρ }

More generally, Fig. 2.13 shows the best abstractions of the concrete semantics of
atomic Nimp statements. As noted in Remark 10, this semantics abstracts away I/O
streams: inputs are abstracted as nondeterministic choice, and outputs have no effect.
As a consequence, this semantics cannot express some functional properties of interest
of Nimp programs, such as the property stated in Example 1 for the program shown on
Fig. 2.8.

2.2. ELEMENTS OF ABSTRACT INTERPRETATION 37

ŜJ stat K ∈ D̂ → D̂

ŜJ skip KX ≜X

ŜJV ← e KX ≜ { ρ[V 7→ v] | ρ ∈ X ∧ v ∈ EJ e Kρ }
ŜJV ← input(a, b) K ≜ ŜJV ← rand(a, b) K
ŜJ output(V) K ≜ ŜJ skip K
ŜJ assert(c) K ≜ ŜJ c? K

where ŜJ c? KX ≜ { ρ ∈ X | true ∈ CJ c Kρ }

Figure 2.13: Abstract (memory-only) semantics of Nimp atomic statements

ŜJ stat K ∈ D̂ → D̂

ŜJ s ; t K ≜ ŜJ t K ◦ ŜJ s K
ŜJ if c then s else t K≜ ŜJ s K ◦ ŜJ c? K ∪̇ ŜJ t K ◦ ŜJ¬c? K
ŜJ while c do s KX ≜ ŜJ¬c? K (Π̂X)

where lfpFX ⊆ γ̂(Π̂X)

Figure 2.14: Abstract (memory-only) semantics of Nimp compound statements

Operator composition

Abstract operators can be composed, preserving the soundness of approximations.

Property 10 (Composition of sound abstract operators). Let (C,≤) be a concrete do-
main, and (A,⊑) be a related abstract domain. Let f, f ′ ∈ C → C be concrete operators,
and g, g′ ∈ A→ A be abstract operators. Then:

1. if g and g′ are sound abstractions of f and f ′, respectively, and f is monotonic,
then g ◦ g′ is a sound abstraction of f ◦ f ′.

2. if g and g′ are exact abstractions of f and f ′, respectively, then g ◦ g′ is an exact
abstraction of f ◦ f ′.

This property suggests a abstraction scheme for complex concrete operators defined
as compositions of simpler ones. Such a scheme is well-suited to abstracting concrete
semantic transfer functions defined by induction on the syntax of a programming lan-
guage.

Example 18 (Composition of sound abstract operators). The concrete semantics shown
on Fig. 2.6 of Sec. 2.1.2 is defined by induction on the syntax of Nimp programs. For
instance, SJ s ; t Kι = SJ t Kι ◦ SJ s Kι in the concrete domain D. The semantics of the
sequential composition may thus be abstracted as ŜJ s ; t K ≜ ŜJ t K ◦ŜJ s K in the abstract
domain D̂. More generally, Fig. 2.14 shows a possible abstraction of the semantics of
compound Nimp statements, which follows the same structure, by induction on the
syntax.

38 CHAPTER 2. BACKGROUND

Remark 15 (Composition of sound abstract operators). Property 10 guarantees sound-
ness, but not optimality: the composition of best abstractions may not be the best
abstraction of the composition.

Figs. 2.13 and 2.14 illustrate how an abstract semantics can be soundly derived by
approximating a concrete one. Yet, the construction is not complete. First, Fig. 2.14 re-
quires a sound abstraction Π̂X of the least fixpoint of the operator FX over the concrete
domain. We will fill this first gap in the following of this section by fixpoint approxima-
tion. Second, the abstract semantics Ŝ is not computable, as D is infinite. We will fill
this second gap in Sec. 2.3.2 by numerical abstraction.

Fixpoint approximation

A first approach is to approximate a concrete least fixpoint by Kleenian iteration in the
abstract.

Theorem 3 (Kleenian fixpoint approximation (weakened)). Let (C,≤,∨,∧,⊥C ,⊤C) be
a complete lattice and (A,⊑) be a poset with a minimal element ⊥.

If f ∈ C → C is a complete ∨-morphism, g ∈ A → A is a sound abstraction of f ,
and the sequence { gn(⊥) |n ∈ N } has a limit l ∈ A, then l is a sound abstraction of
lfp f .

This theorem can be found with weaker assumptions, e.g. in [133, Sec. 2.3]. In
particular, C need not be a lattice. We use the strong assumptions above to avoid
introducing concepts that are not necessary in the context of this thesis.

This approach is effective in practice if iterates of g from ⊥ stabilize after a finite
number of iterations, and if this number is reasonably small. The case occurs in some
abstract domains, such as finite domains, or lattices featuring only finite chains. How-
ever, many abstract domains of interest feature infinite chains [55]. This is in particular
the case of the widely used Interval Domain, as we will see in Sec. 2.3.2. To overcome
this limitation, [49] introduced an iteration acceleration technique known as widening,
that guarantees that a sound approximation of the concrete least fixpoint is computed
in finite time.

Definition 24 (Widening operator). Let (A,⊑) be a poset and ∇ ∈ A × A → A be a
binary operator. ∇ is called a widening operator if:

1. ∀x, y ∈ A : x ⊑ x∇y ∧ y ⊑ x∇y
2. for all sequences (xn)n∈N ∈ AN, the sequence (yn)n∈N ∈ AN defined by y0 ≜ x0

and yn+1 ≜ yn∇xn+1 is ultimately stationary, i.e. ∃l ∈ N : ∀n ≥ l : yn = yl.

Theorem 4 (Fixpoint approximation with widening). Let (C,≤,∨,∧,⊥C ,⊤C) be a
complete lattice, and (A,⊑) be a poset with a minimal element ⊥. Let f ∈ C → C be
a monotonic operator, g ∈ A → A be a sound abstraction of f , and ∇ be a widening
operator. Then the sequence (yn)n∈N ∈ AN defined by y0 ≜ ⊥ and yn+1 ≜ yn∇g(yn) is
ultimately stationary, and its limit is a sound abstraction of lfp f .

2.3. STATIC ANALYSIS 39

ŜJ stat K ∈ D̂ → D̂

ŜJ s ; t K ≜ ŜJ t K ◦ ŜJ s K
ŜJ if c then s else t K≜ ŜJ s K ◦ ŜJ c? K ∪̇ ŜJ t K ◦ ŜJ¬c? K

ŜJ while c do s KX ≜ ŜJ¬c? K
(
(ĜX)l(⊥)

)
where

l≜min{n ∈ N | (ĜX)n(⊥) = (ĜX)n+1(⊥) }
ĜX(Y) ≜Y ∇ F̂X(Y)
F̂X(Y) ≜X ∪ ŜJ s K (ŜJ c? KY)

Figure 2.15: abstract (memory-only) semantics of Nimp compound statements with
widening

Widening operators can be defined specifically in each abstract domain, as part of a
trade-off between the cost of abstract iterations and the precision of the approximations.
We show the naive widening of Example 19 as a witness that such operators exist.

Example 19 (Naive widening).

x∇y ≜

{
x if y ⊑ x
⊤ otherwise

The naive widening of Example 19 can be used in any abstract domain that contains
a maximum element ⊤. It typically leads to very coarse approximations in practice,
hence more refined widenings are usually defined in abstract domains. We will show an
example in the case of the Interval abstract domain in Sec. 2.3.2.

Example 20 (Fixpoint approximation with widening). Following up on Example 18 and
assuming a widening operator∇ for our abstract domain D̂, we can update Fig. 2.14 with
a sound approximation of the least fixpoint Π̂X of the concrete operator FX . The result
is shown on Fig. 2.15. We perform iterations with widening of the sound approximation
F̂X of FX , relying on Theorem 4 for iterations to stabilize on a sound approximation of
the concrete least fixpoint in finite time.

2.3 Static analysis
Static analysis aims at inferring properties of programs automatically, by computing with
sound abstractions of their concrete semantics. We have introduced the (uncomputable)
concrete semantics S of Nimp programs in Sec. 2.1. Then, we have presented in Sec. 2.2
how an abstract semantics can be designed as a sound approximation of a concrete one.
We have illustrated this approach by deriving Ŝ, a simple abstraction of S. However, Ŝ
is not yet suitable for an effective static analysis. Indeed, the elements of the abstract
domain D̂ = P(E) are not representable in computer memory, hence Ŝ, (as S) is not

40 CHAPTER 2. BACKGROUND

computable. We need to abstract Ŝ further to obtain a computable abstraction S♯

of S, resulting in an effective static analysis. Nonetheless, the modular approach to
operator approximation illustrated in Sec. 2.2.4 allows clarifying the requirements for
such a computable abstract semantics.

2.3.1 Generic computable abstract semantics

A computable abstraction of Ŝ (and thus of S) is a semantics of Nimp programs S♯ that
meets the following requirements:

• S♯J s K is an operator over a poset (D♯,⊑♯) such that:

– D♯ is a set of computer-representable values with a least element ⊥♯ and a
greatest element ⊤♯, and

– an effective algorithm is available to test whether x♯ ⊑♯ y♯ holds for all x♯, y♯ ∈
D♯;

• a monotonic (concretization) function γ ∈ D♯ → D exists such that γ(⊥♯) = ∅ and
γ(⊤♯) = E ;

• an effective algorithm is available to compute the operator S♯JV ← e K (resp.
S♯J e1 ▷◁ e2 K, resp. ∪♯, resp. ∩♯) overD♯, such that S♯JV ← e K (resp. S♯J e1 ▷◁ e2 K,
resp. ∪♯, resp. ∩♯) is a sound abstraction of ŜJV ← e K (resp. ŜJ e1 ▷◁ e2 K resp.
∪, resp. ∩);

• an effective algorithm is available to compute a widening operator ∇.

In addition, a Galois connection (D,⊆) −−−→←−−−α

γ
(D♯,⊑♯) may optionally exist. In this

case, best abstractions can be constructed for all operators.
Using the modular abstraction scheme introduced in in Sec. 2.2.4, we obtain the

abstract semantics of Nimp programs S♯ shown on Fig. 2.16. This semantics is pa-
rameterized by a generic abstract domain (D♯,⊑♯), approximations ∪♯ and ∩♯ of lattice
operators, and transfer functions of assignments V ← e and tests e1 ▷◁ e2. This generic
construction guarantees that S♯J s K is a sound approximation of ŜJ s K (and of SJ s K)
for all statements s, and that the computation of S♯J s KX♯ terminates for all abstract
properties X♯ ∈ D♯. It is therefore suitable as the design of a static analyzer that is
parametric in the choice of an abstract domain.

To move on from a generic analyzer to a practical instance, we must provide an
instance of the generic abstract domain D♯. D♯ abstracts sets of memory states in
D = P(V → Z), i.e. sets of points in a vector space of dimension |V|. Such an abstract
domain is called a numerical abstract domain.

2.3.2 Numerical abstract domains

Numerical domains are essential components of static analyzers. They express indeed
invariants that are key to prove safety properties of programs, such as the range of indi-
vidual variables, or algebraic relations between several variables. Numerical abstractions

2.3. STATIC ANALYSIS 41

∪♯ ∈ D♯ ×D♯ → D♯]
given∩♯ ∈ D♯ ×D♯ → D♯

∇ ∈ D♯ ×D♯ → D♯

S♯JV ← e K
]
given

S♯J c? K

S♯J stat K,S♯J cond ? K ∈ D♯ → D♯

S♯J skip KX♯ ≜X♯

S♯JV ← input(a, b) K ≜S♯JV ← rand(a, b) K
S♯J output(V) K ≜S♯J skip K
S♯J assert(c) K ≜S♯J c? K
S♯J s ; t K ≜S♯J t K ◦ S♯J s K
S♯J if c then s else t K ≜S♯J s K ◦ S♯J c? K ∪̇♯

S♯J t K ◦ S♯J¬c? K

S♯J while c do s KX♯ ≜S♯J¬c? K
(
(G♯

X♯)l(⊥)
)

where
l ≜min{n ∈ N | (G♯

X♯)n(⊥) = (G♯
X♯)n+1(⊥) }

G♯
X♯(Y ♯)≜Y ♯ ∇ F ♯

X♯(Y ♯)
F ♯

X♯(Y ♯) ≜X♯ ∪♯ S♯J s K(S♯J c? KY ♯)
S♯J true ? KX♯ ≜X♯

S♯J false ? KX♯ ≜⊥♯

S♯J (c1 ∧ c2) ? K ≜S♯J c1 ? K ∩̇♯
S♯J c2 ? K

S♯J (c1 ∨ c2) ? K ≜S♯J c1 ? K ∪̇♯
S♯J c2 ? K

Figure 2.16: Abstract semantics of Nimp programs (parameterized by an abstract do-
main D♯)

have thus been widely studied, resulting in a variety of numerical domains in the lit-
erature. Popular examples include: Signs [48], Intervals [48], Congruences [83], Linear
equalities [103], Polyhedra [52], Ellipses [74], Zones [136], Octagons [129], Exponen-
tials [75], Gauges [174], and Zonotopes [125].

The goal of the present chapter is not to give an in-depth overview of available
numerical abstract domains. Indeed, we mainly aim at demonstrating how a computable
abstract semantics can be derived to enable a sound static analysis. We will thus focus
on the simple Interval abstract domain. We will nonetheless provide a brief overview of
other domains, featuring different trade-offs between expressiveness and cost.

Interval abstraction

Interval analysis aims at inferring numerical invariants of the form a ≤ x ≤ b, where
x is a program variable, and a and b are numerical constants discovered during the
analysis. Such invariants are called non-relational, as they express numerical properties

42 CHAPTER 2. BACKGROUND

(D̂,⊆) −−−−→−→←−−−−−
αC

γC (D̃, ⊆̃)

αC(X̂)≜
{

⊥̃ if X = ∅
V 7→

⋃
ρ∈X̂ { ρ(V) } otherwise

γC(X̃) ≜
{

∅ if X̃ = ⊥̃⋃
{ ρ | ∀V ∈ V : ρ(V) ∈ X̃(V) } otherwise

Figure 2.17: Cartesian abstraction

(ranges) of individual variables separately. In contrast, such non-relational invariants
cannot express relations between multiple variables. The Interval domain is thus called
a non-relational domain.
Remark 16 (non-relational domains). Other widely used non-relational domains include
the Sign and Congruence domains. The Sign (resp. Congruence) domain expresses
invariants of the form x ▷◁ 0 (resp. x ∈ aZ + b) where x is a program variable, ▷◁∈
{≤,≥,= }, and a and b are numerical constants discovered during the analysis. The
abstract operators of non-relational domains have typically linear worst-case cost, which
makes them attractive. For instance, the Interval domain is used as a base domain
in most static analyzers based on abstract interpretation, and combined with other
domains in reduced products [50, 51] to contribute to the inference of precise invariants.
The Congruence domain is used in static analyzers of C programs such as ASTRÉE [25],
Frama-C [59] and Mopsa [98] to check that data structures are well-aligned on word
boundaries in computer memory.

It is sufficient, in the case non-relational domains, to abstract the set of values of
individual variables in each memory state separately, disregarding any relational infor-
mation. Such a choice is an abstraction per se, called Cartesian abstraction.

Cartesian abstraction. We abstract the domain of memory-only states D̂ = P(V →
Z) further, into the domain D̃ ≜ V → P(Z) ∪ { ⊥̃ }, where ⊥̃ ̸∈ V → P(Z) is the new
least element of (D̃, ⊆̃) such that ⊆̃ ≜ ⊆̇ ∪

⋃
X∈D̃ { (⊥̃, X) }. Abstract elements describe

the sets of reachable values of individual program variables. This abstraction enjoys a
Galois connection, as shown on Fig. 2.17. The semantic transfer functions resulting from
the best abstraction are still uncomputable, because P(Z) contains infinite elements.
The principle of interval analysis is to abstract the sets of integers representing the
values of individual variables into intervals representing their ranges, to finally achieve
computability.

Interval Domain. We start by abstracting sets of integers into intervals, which we
will lift to abstract memory states in a second step. The definition of the Interval
poset (I,⊑I) is shown on Fig. 2.19. Non-⊥I abstract elements of I are defined by
an ordered pair of integer or infinite bounds, extending the usual order ≤ on Z to

2.3. STATIC ANALYSIS 43

(P(Z),⊆) −−−→−→←−−−−−
αI

γI (I,⊑I)

αI(X)≜
{

⊥I if X = ∅
[minX,maxX] otherwise

γI(i) ≜

{
∅ if i = ⊥I

{x | l ≤ x ≤ u ∧ i = [l, u] } otherwise

Figure 2.18: Interval abstraction

I ≜ { [l, u] | l ∈ Z ∪ {−∞} , u ∈ Z ∪ {+∞} , l ≤ u } ∪ {⊥I }

⊑I ≜ { ([l1, u1], [l2, u2]) ∈ (I \ {⊥I })2 | l2 ≤ l1 ∧ u1 ≤ u2 } ∪
⋃
i∈I
{ (⊥I , i) }

Figure 2.19: The Interval Poset

[a, b] ⊔I [c, d] ≜ [min(a, c),max(b, d)]
i ⊔I ⊥I ≜ i ≜ ⊥I ⊔I i

[a, b] ⊓I [c, d] ≜
{

[max(a, c),min(b, d)] if max(a, c) ≤ min(b, d)
⊥I otherwise

i ⊓I ⊥I ≜ ⊥I ≜ ⊥I ⊓I i

Figure 2.20: Interval lattice operators

infinities. This representation is obviously representable in computer memory: at most
two numbers must be represented. The order ⊑I is also computable: it compares the
bounds of intervals. Fig. 2.18 shows the relation between intervals and sets of integers:
the Interval abstraction enjoys a Galois embedding with the complete powerset lattice
of integers (P(Z),⊆,∪,∩, ∅,Z). The lattice operators ⊔I and ⊓I can be derived as best
abstractions of ∪ and ∩, as shown on Fig. 2.20. We can derive in a similar way the best
abstractions of (arithmetic) operators over Z. We only show the cases of operators +I ,
−I and ×I on Fig. 2.21 for conciseness.

The Interval domain (I,⊑I ,⊔I ,⊓I ,⊥I , [−∞,+∞]) is a complete lattice that features
infinite chains, as illustrated by Fig. 2.22. A widening is therefore required to enforce the
convergence of abstract iterations. We could use the generic naive widening introduced
in Example 19, but this would lead to very imprecise analyses of loops in practice.
Instead, real-world analyzers such as ASTRÉE rely on widenings with thresholds. Let

44 CHAPTER 2. BACKGROUND

∀i ∈ I : ⊥I +I i ≜ ⊥I ≜ i+I ⊥I [a, b] +I [c, d] ≜ [a+ c, b+ d]
∀i ∈ I : ⊥I −I i ≜ ⊥I ≜ i−I ⊥I [a, b]−I [c, d] ≜ [a− d, b− c]
∀i ∈ I : ⊥I ×I i ≜ ⊥I ≜ i×I ⊥I [a, b]×I [c, d] ≜ [minT,max T]

where T = { ac, ad, bc, bd }

Figure 2.21: Interval abstraction of arithmetic operators

⊥I

. . . [−2,−2] [−1,−1] [0, 0] [1, 1] [2, 2] . . .

[−2,−1] [−1, 0] [0, 1] [1, 2]

[−2, 0] [−1, 1] [0, 2]

[−2, 1] [−1, 2]

[−2, 2]

[−∞,−1]

[−∞, 0]

[−∞, 1]

[−∞, 2] [−2,+∞]

[−1,+∞]

[0,+∞]

[1,+∞]

.

[−∞,+∞]

Figure 2.22: Hasse diagram of the Interval poset (I,⊑I)

T ∈ P(Z) be a finite set of bounds (thresholds). The widening operator ∇T
I is defined

as [a, b]∇T
I [c, d] ≜ [x, y] where:

• x = a if a ≤ c, otherwise x = max{n ∈ T ∪ {−∞,+∞} |n ≤ c };
• y = b if b ≥ d, otherwise y = min{n ∈ T ∪ {−∞,+∞} |n ≥ d }.

Interval based abstract program semantics. We are now ready to define an
interval-based abstract domain D♯ that can be used to parameterize the generic abstract
program semantics of Fig. 2.16. Leveraging Property 8, we derive D♯ by coalescent
pointwise lifting:

D♯ ≜ (V → (I \ {⊥I })) ∪ {⊥♯ }

2.3. STATIC ANALYSIS 45

X♯ ⊑♯ Y ♯ ⇐⇒ (X♯ = ⊥♯) ∨ (X♯, Y ♯ ̸= ⊥♯ ∧ ∀V ∈ V : X♯(V) ⊑ Y ♯(V))

γ̄I(X♯) =
{

⊥̃ if X♯ = ⊥♯

γI ◦X♯ otherwise

ᾱI(X̃) =
{

⊥♯ if X̃ = ⊥♯

αI ◦ X̃ otherwise

⊤♯(V) = [−∞,+∞]

X♯ ∪♯ Y ♯ =

Y ♯ if X♯ = ⊥♯

X♯ if Y ♯ = ⊥♯

V 7→ X♯(V) ∪♯
I Y

♯(V) otherwise

X♯∇♯
TY

♯ =

Y ♯ if X♯ = ⊥♯

X♯ if Y ♯ = ⊥♯

V 7→ X♯(V)∇T
I Y

♯(V) otherwise

X♯ ∩♯ Y ♯ =

⊥♯ if X♯ = ⊥♯ ∨ Y ♯ = ⊥♯

⊥♯ if ∃V ∈ V : X♯(V) ∩♯
I Y

♯(V) = ⊥♯
I

V 7→ X♯(V) ∩♯
I Y

♯(V) otherwise

Figure 2.23: Interval abstract operators

such that all elements where ⊥I appears are coalesced into a unique element ⊥♯. Prop-
erty 8 guarantees optimal abstraction: (D̃, ⊆̃) −−−→−→←−−−−−

ᾱI

γ̄I (D♯,⊑♯), with ⊑♯= ⊑̇I . This al-
lows deriving most abstract operators on D♯ by lifting operators on I pointwise. Fig. 2.23
shows these operators. They are sound, optimal and computable.

The only missing operators to complete the requirements of Sec. 2.3.1 for a com-
putable abstraction are the transfer functions for assignments and tests S♯JV ← e K and
S♯J e1 ▷◁ e2? K. The standard practice is to propose algorithms that define the semantics,
rather than deriving optimal abstract operators through αI . The soundness of these
algorithms must then be proved using γI . We will not do it here, as such algorithms
and proofs are standard. A standard abstract semantics for assignments is:

S
♯JV ← e KX♯ ≜

{
⊥♯ if X = ⊥♯ ∨ E♯J e KX♯ = ⊥I

X♯[V 7→ E♯J e K] otherwise

where the abstract semantics E♯J e K of expression e ∈ expr is evaluated by induction on
the syntax, propagating the abstract, interval-based, representation for sets of values.
The definition of E♯J e K is shown on Fig. 2.24. The abstract semantics for tests is shown
on Fig. 2.25: it handles precisely simple cases, safely defaulting to the identity for other
cases. Note that much more precise abstract semantics can be defined for tests. Standard

46 CHAPTER 2. BACKGROUND

E♯JV ∈ V KX♯ ≜X♯(V)
E♯J c ∈ Z KX♯ ≜ [c, c]
E♯J rand(a, b) KX♯ ≜ [a, b]
E♯J− e KX♯ ≜−♯ E♯J e KX♯

E♯J e1 + e2 KX♯ ≜ E♯J e1 KX♯ +I E♯J e2 KX♯

E♯J e1 − e2 KX♯ ≜ E♯J e1 KX♯ −I E♯J e2 KX♯

E♯J e1 × e2 KX♯ ≜ E♯J e1 KX♯ ×I E♯J e2 KX♯

Figure 2.24: Abstract semantics of expressions

S
♯JV ≤ n ? KX♯ ≜

{
X♯[V 7→ [a,min { b, n }] if a ≤ n

⊥♯ otherwise

S
♯JV ≤W ? KX♯ ≜

{
X♯[V 7→ [a,min { b, d } ,W 7→ [max { a, c } , d]] if a ≤ d

⊥♯ otherwise

S
♯J e1 ▷◁ e2 ? KX♯ ≜ X♯ in all other cases.

where [a, b] = X♯(V) and [c, d] = X♯(W)

Figure 2.25: Abstract semantics of tests

versions rely on bottom-up and top-down traversals of the abstract syntax tree of the
condition e1 ▷◁ e2, known the HC4 [23] algorithm in the constraint solving community.
A presentation in the abstract interpretation framework can be found in [133, Sec. 4.6].

Interval analysis. In the previous sections, starting with Example 12 of Sec. 2.2.3,
we have used a gradual abstraction scheme to abstract the uncomputable semantics S of
Nimp programs into a computable numerical abstract semantics S♯. Abstraction steps
can be summarized as a sequence of Galois connections:

(D,⊆) −−−→−→←−−−−
α̂

γ̂
(D̂,⊆) −−−−→−→←−−−−−

αC

γC (D̃, ⊆̃) −−−→−→←−−−−−
ᾱI

γ̄I (D♯,⊑♯)

The two first abstraction steps are done directly, while the last one results from the
coalescent pointwise lifting of the Galois connection (P(Z),⊆) −−−→−→←−−−−−

αI

γI (I,⊑I).
Our construction on now complete: S♯ is a computable abstract semantics based on

the interval domain, which can be implemented as part of a static analyzer, and used
for the analysis of real, if simple, Nimp programs.

Example 21. Fig. 2.26 shows a simple Nimp program that reads an input in the range
[0, 5], stores it into variable X, and increments X by steps of 2 until it is larger than
42. An assertion line 5 expresses the expected property that X < 50 after the loop.
Analyzing this program with our semantics S♯, we enter the loop with the abstract

2.3. STATIC ANALYSIS 47

1 : X ← input(0, 5);
2 : while (X < 42) do
3 : X ← X + 2
4 : done;
5 : assert(X < 50)

Figure 2.26: Simple loop

invariant X♯
2 = X 7→ [0, 5], and iterate X♯ 7→ X♯ ∇♯

T (X♯
2 ∪♯ S♯JX ← X + 2 K ◦ S♯JX <

42 KX♯) from ⊥♯. Equivalently in the interval domain, we iterate I 7→ I ∇T
I (I2 ⊔I (I ⊓I

[−∞, 41]) +I [2, 2]) from I2 = [0, 5]. Assuming T = ∅ (no widening thresholds), we
reach a fixpoint I∗ = [0,+∞] in 2 iterations. We obtain the invariant X ∈ [42,+∞]
line 5, which is too coarse to prove the assertion. In contrast, if we add a widening
threshold T = { 45 }, we reach the fixpoint I∗ = [0, 45] in 2 iterations. We obtain the
invariant X ∈ [42, 45] line 5, which is precise enough to prove the assertion. Note that
the most precise invariant is [42, 43]. The best invariant we can obtain with our interval
abstraction alone is [0, 43], which is computed if 43 is a widening threshold (43 ∈ T).

The precision of the Interval abstraction can be improved by a number of techniques,
such as loop unrolling, delayed widening and narrowing. We do not present these tech-
niques in the current background chapter, and refer the interested reader to [133]. The
Interval domain is widely used as a base domain in most static analyzers based on ab-
stract interpretation, because variable bounds are needed in most static analyses, and
because the linear cost of its abstract operators makes it attractive. The Interval do-
main infers coarse invariants when used in isolation. It is typically combined with other
domains in reduced products [50, 51] to infer precise invariants.

Linear relational domains

In contrast to the Interval domain and other non-relational domain presented earlier,
a variety of domains have been developed to infer relational numerical invariants, such
as algebraic relations between program variables. Such domains are called relational
domains. The majority focus on linear (or affine) invariants, as such invariants are of
critical importance for the analysis of general-purpose software. Multiple domains have
been proposed to infer linear relations between program variables. The most expressive
one is the the Polyhedra domain [52]. More restricted domains include zones [136],
octagons [129], linear equalities [103] pentagons [120], parallelotopes [10], octahedra [41],
two variables per inequality [162], 4-octahedron [150, 151], Logahedra [87] and gauges
[174]. They all consist in considering specific templates of polyhedra.

48 CHAPTER 2. BACKGROUND

Polyhedra. The Polyhedra domain is one of the most used relational abstract do-
mains. It expresses general linear inequalities of the form:

m∧
j=1

n∑
i=1

aijxi ≥ bj

where xi are program variables, n = |V| is the number of program variables, m is the
number of inequalities, and aij and bi are numerical constants discovered by the analysis.
The set of abstract elements is subject to a double representation: a constraint-based
representation, and a generator-based one. Some operators are indeed more efficient on
the former, while others are more efficient on the latter. The domain uses Chernikova’s
algorithm [36, 117] to convert between the two representations. The constraint rep-
resentation relies directly on the matrix (aij)(i,j)∈[1,n]×[1,m] and vector (bj)j∈[1,m]. The
generator representation is a set of vectors representing vertices or rays. Every point
inside a bounded polyhedron is an affine combination of vertices. For an unbounded
polyhedron, combinations of rays defining the directions in which it is unbounded are
added to the combination of vertices. The meaning of each representation is defined
by a concretization function, as there is no Galois connection between P(V → Z) and
the polyhedra domain. Recall indeed Example 14: not all sets of numbers enjoy a best
abstraction in this domain. Assignments and tests of linear expressions are represented
exactly (no loss of precision). Non-linear expressions are handled by default, unprecise
transfer functions. The abstract join computes the convex hull of two polyhedra. Imple-
mentations of the Polyhedra domain can be found in publicly available abstract domain
libraries such as Apron [94], PPL [14] and ELINA [164]. Abstract operators exhibit
exponential cost in practice. Some implementations [163] rely on a constraint-only rep-
resentation, as an important part of the cost of operators in the classic double description
method is due to the necessary conversions between the two representations.

Octagons. Polyhedra allow precise analyses of linear invariants, but do not scale to
large programs. On the contrary, Intervals scale, but allow very limited precision. The
quest for an intermediate option motivated the introduction of so-called weakly relational
domains [127]. Such domains express restricted linear invariants, relying on operators
with polynomial cost. The Octagon domain [129] is one of the most widely used weakly
relational domains. It expresses linear inequalities of the form∧

(i,j)∈[1,n]×[1,m]
±xj ± xi ≤ cij

∧
i∈[1,n]

ai ≤ xi ≤ bi

where xi are program variables, n = |V| is the number of program variables, m is the
number of two-variable inequalities, and ai, bi and cij are numerical constants discovered
by the analysis. The abstract representation relies on differences bound matrices (DBM,
or equivalently, potential graphs). The domain enjoys a Galois connection (for integer

2.4. CONCLUSION 49

or real-valued programs). The same concrete elements may have several abstract rep-
resentations as DBM, hence operators rely on strong normalization. Tests of the form
±xj ±xi ≤ c and assignments of the form xj ← ±xi + c are abstracted exactly. Abstract
operators have quadratic space (resp. cubic time) complexity in the worst case, which
is much better than polyhedra. Yet this is still costly for programs with a large number
of variables, hence variable packing [25, Sec. III.H.5] strategies are used in practice.
A widely used implementation of Octagons ships with the Apron [94] abstract domain
library. A related industrial-strength implementation ships with the ASTRÉE [25] static
analyzer. It is important, for instance, to analyze precisely some tests and some loops
that are frequently used as part of basic operators of control-command programs. A
certified implementation is available in Verasco [96, 97].

Non-linear relational domains

Domains expressing non-linear invariants are less widely used. Abstract domains ex-
pressing general polynomial inequalities are currently not scalable [15, 160]. In contrast,
some specialized domains are able to infer efficiently non-linear invariants that are neces-
sary to analyze some domain-specific programs, such as programs modeling or controlling
physical systems. Non-linear numerical abstract domains include ellipses [74, 161, 152]
for analyzing digital filters [156], and exponentials [75], for bounding the drift of floating-
point numbers due to the slow accumulation of rand-off errors over time. For instance,
ellipses and exponentials were implemented into the ASTRÉE [25] static analyzer to an-
alyze precisely control-command programs embedded in some Airbus fly-by-wire control
systems. ASTRÉE implements a large set of relational domains, and not only domain-
specific ones. This set includes intervals, congruences, octagons, ellipses, exponentials
and gauges. In constrast, polyhedra are not used because of floating-point implementa-
tion shorcomings [47, Sec. 53.2.11]. Geometric representations of the concretizations
of the invariants inferred by intervals, congruences, octagons, ellipses, exponentials and
polyhedra are shown on Fig. 2.27 (adapted from [25]).

2.4 Conclusion

In this chapter, we have introduced a standard approach to static analysis by abstract
interpretation that will be used extensively in the rest of the thesis. In particular, we
have demonstrated a classic construction of a static analysis of numerical programs by
induction on the syntax, that is parametric in the choice of a numerical abstract domain.
We have illustrated this construction on the simple imperative language Nimp.

We will follow the same approach in Chapter 3, where we turn to the joint analysis
of pairs of Nimp programs, with a view to inferring their functional equivalence. This
goal requires comparing their semantics at an abstract level. We will thus design a joint
concrete semantics for pairs of Nimp programs, defined by induction on the syntax of so-
called double programs. We will then abstract this joint semantics in numerical domains,
and introduce a novel numerical domain to bound the differences between the values of

50 CHAPTER 2. BACKGROUND

x

y

x

y

x

y

Intervals [48] Congruences [83] Polyhedra [52]
x, y ∈ [a, b] x, y ∈ aZ+ b

∧∑
i aixi ≤ b

x

y

x

y

t

y

Octagons [129] Ellipses [74] Exponentials [75]∧
±x± y ≤ c x2 + by2 − axy ≤ d |y| ≤ a(1 + b)kt

Figure 2.27: Examples of numerical abstract domains [25]

the variables in the two programs. We will introduce another novel numerical domain
in Chapter 7. This domain infers relations between individual bytes of C variables that
are useful for inferring the endian portability of C programs.

Chapter 3

Patch Analysis

In this chapter, we present a static analysis for software patches. Given two syntactically
close versions of a program, our analysis can infer a semantic difference, and prove that
both versions compute the same outputs when run on the same inputs.

3.1 Motivation

The main application of this analysis is regression verification [80]: prove that a pro-
gram change does not add any undesirable behavior. Take, for instance, the commit
shown on Fig. 3.1, extracted from a revision control repository of the GNU core utilities.
It describes a change in a library implementing core functions for removing files and
directories, and used by the POSIX rm command. The main function of this library
uses the POSIX fstatat function to read information on the file to delete. As the same
status information is needed in several contexts, the library implements a caching mech-
anism. At initialization, the main function calls a cache_stat_init function, which ini-
tializes the st_size field of the stat structure *st to -1. Then, it calls the cache_fstatat
function shown on Fig. 3.1 repeatedly, whenever status information is needed. Indeed,
cache_fstatat caches the results of the fstatat function. In revision v6.10 of Coreutils,
this function used the st_size field of the stat structure *st to store information on the
error value returned by fstatat upon the first call. It did it in a way that ensures that
st_size<0 whenever errno>0, so as to use the sign of st_size upon subsequent calls to
distinguish between successful and erroneous executions. This scheme works for operat-
ing systems where errno is always set to positive values. However, some systems, such
as BeOS [1] and Haiku [2], allow for negative errno values. The fix displayed on Fig. 3.1
aims at accommodating such systems. It consists in storing errno directly in the st_ino
field of the stat structure.

On this example, non regression verification amounts to proving that the behavior
of the main function of the library is unchanged on systems with only positive error
values. This is, indeed, validated by our analysis. The analyzed source code includes a
stub variable for errno, and stub code for the fstatat function. The stub for fstatat
updates errno with a non-deterministic value, ranging over positive integers. Note

51

52 CHAPTER 3. PATCH ANALYSIS

remove.c: Accommodate systems with negative errno values.
* src/remove.c (cache_fstatat): Store errno value directly in

the st_ino field, rather than trying to shoehorn it into st_size.

This is required at least on BeOS and Haiku.

master v8.31 … v6.11

 authored and Jim Meyering committed on 21 Mar 2008 1 parent 18ce670 commit

Showing 1 changed file with 6 additions and 3 deletions.

0 comments on commit e73dfc3

Please sign in to comment.

coreutils / coreutils
mirrored from git://git.sv.gnu.org/coreutils.git

weinhold

src/remove.c

171 171

172 172

173 173

174

174

175 175

176 176

177 177

178 178

179 179

180

180

181

182

183

181 184

182 185

183

186

184 187

185 188

186 189

9

/* Like fstatat, but cache the result. If ST->st_size is -1, the

 status has not been gotten yet. If less than -1, fstatat failed

- with errno == -1 - ST->st_size. Otherwise, the status has already

+ with errno == ST->st_ino. Otherwise, the status has already

 been gotten, so return 0. */

static int

cache_fstatat (int fd, char const *file, struct stat *st, int flag)

{

if (st->st_size == -1 && fstatat (fd, file, st, flag) != 0)

- st->st_size = -1 - errno;

+ {

+ st->st_size = -2;

+ st->st_ino = errno;

+ }

if (0 <= st->st_size)

return 0;

- errno = -1 - st->st_size;

+ errno = (int) st->st_ino;

return -1;

}

Figure 3.1: Patch on remove.c of Coreutils (between v6.10 and v6.11)

for (c=0; c<n; c++) cache_stat_init (&file[c].st);

while ((c=getchar()) >= 0 && c < n)
r = cache_fstatat (AT_FDCWD, file[c].name, &file[c].st, AT_SYMLINK_NOFOLLOW);

Figure 3.2: Execution environments for cache_fstatat

that a separate analysis of the cache_fstatat function, as opposed to an analysis of the
whole library, makes it necessary to model its possible execution environments with an
unbounded loop, calling cache_fstatat an arbitrary number of times, with parameters
taken from an arbitrary sequence of file names and stat structures. This unbounded
sequence is modeled, in practice, using an unbounded number of reads from an input
stream. Fig. 3.2 shows an example for n files, where n may be unbounded.

More generally, we are interested in analyzing patches of programs reading an un-
bounded number of input values, e.g. programs reading from file or I/O streams, and
embedded reactive software with internal state, which no related work addresses. Or
goal is to prove that the original and patched versions of such programs compute equal
outputs, when run with the same sequence of inputs. Like in Sec. 2.1.2, we therefore
model streams directly in the concrete semantics on which our analysis is based.

3.2. RUNNING EXAMPLE 53

1 : a← input(−1000, 1000);
2 : b← input(−1000, 1000);
3 : c← 1;
4 : i← 0;
5 : while (i < a) {
6 : c← c+ b;
7 : i← i+ 1;
8 : }
9 : r ← c;
10 : output(r);

(a) Left version P1

1 : a← input(−1000, 1000);
2 : b← input(−1000, 1000);
3 : c← 0;
4 : i← 0;
5 : while (i < a) {
6 : c← c+ b;
7 : i← i+ 1;
8 : }
9 : r ← c+ 1;
10 : output(r);

(b) Right version P2

1 : a← input(−1000, 1000);
2 : b← input(−1000, 1000);
3 : c← 1 ∥ 0;
4 : i← 0;
5 : while (i < a) {
6 : c← c+ b;
7 : i← i+ 1;
8 : }
9 : r ← c ∥ c+ 1;
10 : output(r);

(c) Double program P

Figure 3.3: Two versions of the Unchloop example

3.2 Running example

Let us sketch our approach to the analysis of semantic differences between two syntacti-
cally similar programs P1 and P2. We are interested in proving that P1 and P2 compute
equal outputs when run on equal inputs.

Example 22 (running example). As a running example, let us start with two syntac-
tically close versions of the Unchloop benchmark, taken from [173], and displayed on
Fig. 3.3(c). Figs. 3.3(a) and 3.3(b) show two versions of the Unchloop program, where
lines 3 and 9 differ. Let P1 denote the first (or left) version, and P2 the second (or right)
version. We call double program, and denote by P shown in Fig. 3.3(c), a joint syntactic
representation of P1 and P2 that highlights their common parts and their differences.
P1 and P2 are called simple programs, and referred to as the left (or first) and right (or
second) versions of P . The ∥ symbol is used to represent syntactic differences in the
syntax of P . It is available at expression, condition, and statement levels in our syntax
for double programs. For instance at line 3, c ← 1 ∥ 0 means c ← 1 for P1, and c ← 0
for P2. In contrast, line 4 means i← 0 for both P1 and P2.

54 CHAPTER 3. PATCH ANALYSIS

Let us describe this running example. Both versions P1 and P2 read inputs in the
range [−1000, 1000] into a and b at lines 1 and 2. At line 3, the counter c is being
initialised with value 1 for program P1, and value 0 for program P2. Then, both programs
add a times the value of b to c in a loop. Finally, they both store the result into r at
line 9: c for P1, c+1 for P2. Finally, both program versions write the value of r to some
output stream at line 10.

The property we would like to check is the following: if both program versions P1
and P2 read the same input values at lines 1 and 2, and if P1 and P2 both reach line 10,
then P1 and P2 should both write the same output value.

More generally, the semantics of P is parameterized by a (possibly infinite) sequence
of input values, and we wish to prove that, given the same sequence of input values,
P1 and P2 write the same sequence of output values. Following the standard approach
to abstract interpretation [49], we develop a concrete collecting semantics for a toy
imperative language for double programs, which we call Nimp2. Nimp2 is constructed
as an extension of Nimp in the current chapter. Our approach will be further developed
in Chapters 5 and 6, to enable the analysis of real-world C programs. In this chapter,
we assume the double program P given. We will present in Chapter 4 an algorithm for
automating its construction from P1 and P2.

The rest of the chapter is organized as follows. We first describe the syntax and
semantics of double programs reading from infinite input streams in Sec. 3.3 and 3.4.
Then, we abstract this semantics in numerical domains in Sec. 3.5. We present an
experimental evaluation in Sec. 3.6 and related works in Sec. 3.7. Finally, Sec. 3.8
concludes.

3.3 Syntax

The syntax of double statements dstat is shown in Fig. 3.4. It is built on top of double
expressions dexpr and double conditions dcond, defined in Fig. 3.5. The distinctive trait
of Nimp2 syntax is the ∥ operator, which may occur anywhere in the parse tree to denote
syntactic differences between then left and right versions of a double program. However,
∥ operators cannot be nested: a double program only describes a pair of programs.

Remark 17 (∥ operators in expressions and conditions). ∥ operators can occur in expres-
sions and Boolean conditions, but only at the top level of their parse tree.

Given a double program P , we may extract its left (resp. right) version P1 = π1(P)
(resp. P2 = π2(P)), using the π1 (resp. π2) version extraction function, keeping only
the left (resp. right) side of ∥ symbols. The definition for πk is given on Fig. 3.6
and 3.7, by induction on the syntax of double statements, expressions and conditions.
For instance, π1(x ← 1 ∥ y ← 0) = x ← 1, and π2(x ← 1 ∥ y ← 0) = y ← 0, while
π1(z ← 0) = z ← 0 = π2(z ← 0).

Simple programs P1 and P2 enjoy the Nimp syntax for simple imperative programs,
presented in Fig. 2.1 of Sec. 2.1.1.

3.4. CONCRETE SEMANTICS 55

dstat ::= stat
| stat ∥ stat
| V ← dexpr V ∈ V
| dstat; dstat
| if dcond then dstat else dstat
| while dcond do dstat

Figure 3.4: Statements of double programs

dexpr ::= expr dcond ::= cond
| expr ∥ expr | cond ∥ cond

Figure 3.5: Double expressions and conditions of double programs

πk ∈ dstat → stat k ∈ { 1, 2 }

πk(s) = s if s ∈ stat
πk(s1 ∥ s2) = sk

πk(V ← e) = V ← πexpr
k (e)

πk(s; t) = πk(s);πk(t)
πk(if c then s else t) = if πcond

k (c) then πk(s) else πk(t)
πk(while c do s) = while πcond

k (c) do πk(s)

Figure 3.6: Version extractor for statements of double programs

3.4 Concrete semantics
In this section, we define the concrete semantics of the Nimp2 language. To this aim,
we first lift the semantics S of terminating simple statements defined in Sec. 2.1.2 to
a semantics for double statements, denoted D. Then, we present the double semantics
P2J · K of Nimp2 double programs, and the program equivalence property of interest.
Finally, we describe an extension of Nimp2 designed to express equivalence properties
of non-terminating reactive programs running in lockstep.

3.4.1 From simple statements to double statements

A double program represents a pair of simple programs, reading from the same stream
of inputs. As simple program versions Pk = πk(P) have concrete states in Σ = (V →
Z) × N × R⋆, double program P has concrete states in D ≜ Σ × Σ. In addition, D is
parameterized by infinite sequences of values, representing the input stream shared by
P1 and P2.

Thus the semantics of a double statement s ∈ dstat, denoted DJ s K ∈ Zω → P(D)→
P(D), describes the relation between pre- and post-states of s, which are pairs of states
of simple programs, for a given shared sequence of input values. Given an input stream
ι ∈ Zω and a set of double program pre-states X ∈ P(D), the set of reachable double

56 CHAPTER 3. PATCH ANALYSIS

πexpr
k ∈ dexpr → expr πcond

k ∈ dcond → cond k ∈ { 1, 2 }

πexpr
k (e) = e if e ∈ expr πcond

k (c) = c if c ∈ cond
πexpr

k (e1 ∥ e2) = ek πcond
k (c1 ∥ c2) = ck

Figure 3.7: Version extractor for expressions and conditions

DJ dstat K ∈ Zω → P(D)→ P(D)

DJ skip KιX ≜X

DJ s1 ∥ s2 KιX ≜
⋃

(σ1,σ2)∈X{ (σ′1, σ′2) |σ′1 ∈ SJ s1 Kι {σ1 } ∧ σ′2 ∈ SJ s2 Kι {σ2 } }
DJV ← e1 ∥ e2 K ≜DJV ← e1 ∥ V ← e2 K
DJV ← e K ≜DJV ← e ∥ V ← e K
DJ assert(c) K ≜DJ assert(c) ∥ assert(c) K
DJV ← input(a, b) K ≜DJV ← input(a, b) ∥ V ← input(a, b) K
DJ output(V) K ≜DJ output(V) ∥ output(V) K
DJ s1; s2 Kι ≜DJ s2 Kι ◦DJ s1 Kι

DJ if c1 ∥ c2 then s else t Kι ≜DJ s Kι ◦ FJ c1 ∥ c2 K
∪̇DJπ1(s) ∥ π2(t) Kι ◦ FJ c1 ∥ ¬c2 K
∪̇DJπ1(t) ∥ π2(s) Kι ◦ FJ¬c1 ∥ c2 K
∪̇DJ t Kι ◦ FJ¬c1 ∥ ¬c2 K

DJ if c then s else t K ≜DJ if c ∥ c then s else t K
DJ while c1 ∥ c2 do s KιX ≜ FJ¬c1 ∥ ¬c2 K(lfp HX

ι)
DJ while c do s K ≜DJ while c ∥ c do s K

where FJ c1 ∥ c2 KX ≜ { ((ρ1, n1, o1), (ρ2, n2, o2)) ∈ X | true ∈ CJ c1 Kρ1 ∩ CJ c2 Kρ2 }

and HX
ι (Y) ≜X

∪DJ s Kι ◦ FJ c1 ∥ c2 KY
∪DJπ1(s) ∥ skip Kι ◦ FJ c1 ∥ ¬c2 KY
∪DJ skip ∥ π2(s) Kι ◦ FJ¬c1 ∥ c2 KY

Figure 3.8: Denotational concrete semantics of double programs

post-states DJ s KiX is shown on Fig. 3.8. It is defined by induction on the syntax, so
as to allow for modular, joint analyses of double programs that maintain input-output
relations on the variables. Note that D is parametric in S.

The semantics for the empty program is the identity function. The semantics DJ s1 ∥
s2 K for the composition of two syntactically different statements reverts to the pairing
of the simple program semantics of individual simple statements s1 and s2. Note that
DJ s1 ∥ s2 Kι = DJ skip ∥ s2 Kι◦DJ s1 ∥ skip Kι. The semantics for atomic statements, such
as assignments, assert, input and output statements, are defined using this construct.
In particular, the semantics defines the assignments of double expressions V ← e1 ∥ e2

3.4. CONCRETE SEMANTICS 57

(different expressions to the same variable) as shortands for V ← e1 ∥ V ← e2. The
interest of double expressions in the syntax is to allow for simple symbolic simplifications
in later abstraction steps, when computing differences between expressions assigned to
a variable.

The semantics for the sequential composition of statements boils down to the compo-
sition of the semantics of individual statements. The semantics for selection statements
relies on the filter FJ c1 ∥ c2 K to distinguish between cases where both program versions
agree on the value of the controlling expression, and cases where they do not (a.k.a.
unstable tests). There are two stable and two unstable test cases, according to the
evaluations of the two conditions. The semantics for stable test cases is standard. The
semantics for the first unstable test case is defined by composing the left version of the
then branch, π1(s), filtered by the condition c1, and of the right version of the else
branch, π2(t), filtered by the negation of the condition ¬c2. Intuitively, π1(s) ∥ π2(t)
means that the left version of the double program executes the left version of s, while the
right version of the double program executes the right version of t. The semantics for the
second unstable test case is the dual. The semantics for (possibly unbounded) iteration
statements is defined using the least fixpoint of a function defined similarly. Note that
FJ c1 ∥ c2 K = FJ c1 ∥ true K ∩ FJ true ∥ c2 K, FJ c1 ∧ c′1 ∥ c2 K = FJ c1 ∥ c2 K ∩ FJ c′1 ∥ true K,
and FJ∨i∈Ici ∥ c′ K = ∪i∈IFJ ci ∥ c′ K.

Remark 18 (input versus rand). The semantics DJV ← input(a, b) Kι of input state-
ments is different from the semantics DJV ← rand(a, b) Kι of non-deterministic assign-
ments. The latter entails no relationship between the values read by the two versions of
a double program, besides the fact that they range in the same interval. On the contrary,
the former reads from a shared input stream ι, hence the left and right versions P1 and
P2 read equal values if their input indexes n1 and n2 are equal. This is the case when P1
and P2 have called input equal numbers of times. On the contrary, if one version, say
P1, has called input more often than the other, then P1 is ahead of P2 in the stream,
and the two versions are desynchronized. Nonetheless, they may resynchronize later if
P2 catches up with P1, hence read equal values again. Also, owing to the semantics
SJV ← input(a, b) K of simple input statements, input(a, b) returns only if the input
value at the current index is in the range [a, b]. Therefore, it should be considered a
semantic error if P1 and P2 use different ranges [a1, b1] ̸= [a2, b2] to read the input at the
same index. For the sake of simplicity, we do not check this in our semantics (altough
our implementation performs this check).

The presence of both input and rand primitives makes the semantics very expressive,
and useful for modeling many practical problems. Non-determinism allows to abstract
unknown parts of a program: for instance, rand(0, 10) is a sound stub for f(), when
function f is only known to return values between 0 and 10. Also, combining input and
rand allows to model information flow problems, as we will see in Sec 3.7.2.

58 CHAPTER 3. PATCH ANALYSIS

3.4.2 Semantics of double programs

We are now ready to define the formal semantics of Nimp2 programs. Our goal is to
develop patch and portability analyses, able to compare the behaviors of two versions
P1 and P2 of a double program P ∈ dstat. Hence, our semantics P2JP K must enable
the comparison of the input-output relationships of P1 and P2. We thus let P2JP K ι

denote the set of pairs of output sequences (o1, o2) that may be written by terminating
executions of P1 and P2, when reading from the same input stream ι ∈ Zω.

Consider the initial (simple) memory state ρ0 with all variables zero-initialized: ∀V ∈
V : ρ0(V) = 0. Consider the related initial simple program state, with zero-initialized
input index, and empty output sequence x0 ≜ (ρ0, 0, ϵ). The related initial double
program state is (x0, x0). Given some input stream ι ∈ Zω, DJP Kι { (x0, x0) } is the set
of possible double post-states of statement P .

Definition 25 (Semantics of double Nimp2 programs). We thus define the semantics of
double program P as:

P2JP K ι ≜ { (o1, o2) | ((ρ1, n1, o1), (ρ2, n2, o2)) ∈ DJP Kι { (x0, x0) } }

3.4.3 Properties of interest

We wish to prove the functional equivalence of the left and right versions P1 = π1(P) and
P2 = π2(P) of a given double program P ∈ dstat. P1 and P2 are considered functionally
equivalent if they write the same sequence of outputs when reading the same sequence
of inputs.

Definition 26 (Equivalence property). Therefore the property of interest may be for-
malized as:

∀ι ∈ Zω : ∀(o1, o2) ∈ P2JP K ι : o1 = o2

Remark 19 (Equivalence property versus certified compilation). This definition of equiv-
alence is reminiscent of the notion of semantic preservation used in the proof of the
CompCert [116] compiler, where the source and transformed programs should exhibit
the same traces of input-output operations.

Coming back to the motivating Example 22 from Fig. 3.3(c) of Sec. 3.2, the set
of double program states reachable from (x0, x0) with input stream ι ∈ Zω can be
computed, by hand, from the concrete semantics:

DJP Kι { (x0, x0) } = { ⟨⟨R1ι, 2, (1)⟩, ⟨R2ι, 2, (1)⟩⟩ | ι0 < 0 }
∪ { ⟨⟨R′1ι, 2, (1 + ι0 × ι1)⟩, ⟨R′2ι, 2, (1 + ι0 × ι1)⟩⟩ | ι0 ≥ 0 }

where R1, R2, R
′
1, R

′
2 ∈ Zω → E are defined as:

3.4. CONCRETE SEMANTICS 59

R1σ ≜ [a 7→ σ0, b 7→ σ1, c 7→ 1, i 7→ 0, r 7→ 1]
R2σ ≜ [a 7→ σ0, b 7→ σ1, c 7→ 0, i 7→ 0, r 7→ 1]
R′1σ ≜ [a 7→ σ0, b 7→ σ1, c 7→ 1 + σ0 × σ1, i 7→ ι0, r 7→ 1 + σ0 × σ1]
R′2σ ≜ [a 7→ σ0, b 7→ σ1, c 7→ σ0 × σ1, i 7→ ι0, r 7→ 1 + σ0 × σ1]

The double program semantics is given by:

P2JP K ι = { ⟨ϵ, ϵ⟩, ⟨(1), (1)⟩ | ι0 < 0 }
∪ { ⟨ϵ, ϵ⟩, ⟨(1 + ι0 × ι1), (1 + ι0 × ι1)⟩ | ι0 ≥ 0 }

The semantics P2 is thus suitable to enable a formal proof that both program versions
output the same value, whatever the input sequence ι.

Unfortunately, our concrete collecting semantics P2 is not computable in general.
A particular difficulty of Example 22 is that the input-ouptut relation is non linear:
(a ≤ 0⇒ r = 1) ∧ (a ≥ 0⇒ r = 1 + a× b). Hence, inferring such information is beyond
classic numerical domains, such as polyhedra. We will provide a new analysis method
which works using intervals and avoids resorting to more complex, non-linear numerical
domains.

Example 23 (Reordering reads from input stream). An additional difficulty, is that
some programs may read an unbounded number of values from their input stream.
For instance, Fig. 3.9 shows a program reordering reads from the input stream across
the body of an unbounded, possibly non-terminating loop. Inputs of even index are
Booleans, used to decide whether the program should continue reading from the input
stream. Inputs of odd index are copied to the output stream, as long as Boolean inputs
are true. P1 executes one input statement more than P2 in all terminating executions.
This program satisfies the equivalence property of Definition 26, as:

P2JP K ι =
{
⟨o, o⟩

∣∣∣∣∣ |o| ∈ N ∧ ι2|o| = 0 ∧ ι2|o|+1 ∈ [−10, 10]∧
∀ 0 ≤ k ≤ |o| − 1 : ι2k = 1 ∧ ok = ι2k+1 ∈ [−10, 10]

}

Our notion of program equivalence is thus robust to reorderings of input statements
between program versions.

3.4.4 Non-terminating executions

Our concrete collecting semantics P2 relates pairs of terminating executions of two ver-
sions of a program. It is suitable to prove a number of properties, including that two
terminating programs starting from equal initial states will produce equal outputs, a
notion called partial equivalence in [80]. In contrast, P2 does not express any differ-
ences between pairs of executions where at least one of the program versions does not
terminate.

60 CHAPTER 3. PATCH ANALYSIS

W ← input(0, 1);
V ← input(−10, 10) ∥ skip;
while W = 1 do

skip ∥ V ← input(−10, 10);
output(V);
W ← input(0, 1);
V ← input(−10, 10) ∥ skip

done

Figure 3.9: Reording input statements

while true do
R← X ∥ X + 1;
X ← input(−10, 10);
output(R)

done
(a) Non equivalent versions

while true do
R← X ∥ X + 1;
X ← input(−10, 10);
Y ← R+ 1 ∥ R;
output(Y)

done
(b) Equivalent versions

Figure 3.10: Lockstep composition of versions of a reactive program

Example 24 (P2 may not terminate). For instance, consider the program

P ≜ X ← input(0, 5); skip ∥ while X = 2 do skip done; output(X)

P2 does not terminate for the input value 2, whereas P1 does. The semantics of P can
be computed by hand:

DJP Kι { (x0, x0) } = { (({X 7→ ι0 } , 1, (ι0)), ({X 7→ ι0 } , 1, (ι0))) | ι0 ∈ [0, 1] ∪ [3, 5]] }

Hence P2JP K = { ((ι0), (ι0)) | ι0 ∈ [0, 1] ∪ [3, 5]] } satisfies the equivalence property of
Definition 26, which only considers outputs of pairs of executions where both P1 and P2
terminate.

Moreover, P2 conveys no information on non-terminating executions. For instance,
P2J while true do s K ι = ∅ holds for all double statements s and input sequences ι. This
is inconvenient, as we would like to be able to compare the behaviors of multiple versions
of some reactive software, such as embedded control-command programs, which typically
run in infinite loops [62]. We are especially interested in reactive loops where the two
program versions are composed in lockstep, like the double program on Fig. 3.10(a). P1
outputs the infinite sequence (0, ι0, . . . , ιn, . . .), whereas P2 outputs the infinite sequence
(1, 1+ι0, . . . , 1+ιn, . . .). In contrast, both versions of the double program on Fig. 3.10(b)
output the infinite sequence (1, 1 + ι0, . . . , 1 + ιn, . . .). Yet, P2 does not distinguish these
two double programs.

3.4. CONCRETE SEMANTICS 61

dstat ::= · · ·
| assert_sync

(a) Extension of the syntax

πk(assert_sync)≜assert(false); k ∈ {1, 2}
DJ assert_sync KιX ≜ { ((ρ1, n1, o1), (ρ2, n2, o2)) ∈ X | o1 = o2 }

(b) Extension of the semantics

Figure 3.11: Extension of dstat with assert_sync

To overcome this issue, we extend the language with an additional primitive, used for
specifications. We add the assert_sync statement to the language of double statements,
as a means to assert that both program versions should have written the same sequence
of values to the output stream when they reach the current control point. This extension
is shown on Fig. 3.11. The semantics of assert_sync filters away any double program
state with unequal output sequences. In practice, it also reports a semantic error if any
such state may be reachable, although we do not represent this in the formalism for
conciseness. Note that program versions are only allowed to execute assert_sync in
lockstep. Indeed, executing assert_sync is an error in the simple program semantics.

We may now rewrite the double program of Fig. 3.10(b) as

P ≜ while true do
R← X ∥ X + 1;
X ← input(−10, 10);
Y ← R+ 1 ∥ R;
output(Y);
assert_sync

done

The calculation of P2JP K ι encounters no semantic error, as it only evaluatesDJ assert_sync KιXn,
for the family of sets of double states (Xn)n∈N defined by

X0 = { ⟨[R 7→ 0, X 7→ ι0, Y 7→ 1], 1, (1), [R 7→ 1, X 7→ ι0, Y 7→ 1], 1, (1)⟩ | ι0 ∈ [−10, 10] }

and ∀n ≥ 1 : Xn = { ⟨[R 7→ ιn−1, X 7→ ιn, Y 7→ 1 + ιn−1], 1 + n, (1, 1 + ι0, . . . , 1 +
ιn−1), [R 7→ 1 + ιn−1, X 7→ ιn, Y 7→ 1 + ιn−1], 1 + n, (1, 1 + ι0, . . . , 1 + ιn−1)⟩ | ∀k ≤ n :
ιk ∈ [−10, 10] }.

Remark 20 (assert_sync(V) notation). Note that we are especially interested in reac-
tive programs where output statements are executed in lockstep. The encoding of such
programs in the Nimp2 syntax typically features sequences
output(V1); . . . ; output(Vn); assert_sync,
for variables V1, . . . , Vn ∈ V. We thus abuse notations to simplify the encoding in exam-
ples, writing assert_sync(V1, . . . , Vn) as a shorthad for
output(V1); . . . ; output(Vn); assert_sync.

62 CHAPTER 3. PATCH ANALYSIS

For instance, we may rewrite the double program of Fig. 3.10(b) as:

P ≜ while true do
R← X ∥ X + 1;
X ← input(−10, 10);
Y ← R+ 1 ∥ R;
assert_sync(Y)

done

3.5 Abstract semantics
Our concrete collecting semantics D and P2 are not computable in general. We therefore
tailor an abstract semantics suitable for the analysis of program differences.

3.5.1 Wrapping up infinite input sequences

A first observation is that we do not need to recall the whole input sequence ι ∈ Zω

shared by the left and right versions P1 and P2 of a double program P . Indeed, we only
aim at exploiting equalities between the input values read by P1 and P2. We therefore
only need to record, at any point in the analysis, the input subsequence that has been
read by one program, but not the other one yet. This ensures that, when a program that
has read less values than the other catches up with it, it reads the same values. Values
read by both programs can be discarded, and values not read by any program do not need
to be known in advance, as they can be chosen non-deterministically. This subsequence
of input values read by one program only forms an (unbounded) FIFO queue, as inputs
are read in order. We therefore abstract the input sequence ι, and indexes n1 and
n2 of P1 and P2 in this sequence, defined in D, as the difference δ ≜ n2 − n1, and a
FIFO queue of length |δ|. The new semantic domain is thus D̂ ≜ Σ̂ × Σ̂ × Z × Z⋆,
where Σ̂ ≜ E ×Z⋆ records the memory states and output streams of individual program
versions. A formalization of this abstraction is shown on Fig. 3.12. Note that we use
the symbol ⊆̇ to denote the pointwise lifting of ⊆: f⊆̇f ′ ≡ ∀σ ∈ Zω : f(σ) ⊆ f ′(σ).

Proposition 1. The pair (αF, γF) defined in Fig. 3.12 is a Galois embedding.

Note that this abstraction includes some redundancy: indeed, it would be enough to
record only the sign of δ, instead of its value, as its absolute value is given by the length
of the queue. However, keeping the value simplifies subsequent abstraction steps.

Simple programs

Starting from the concrete semantics D, let us now formalize the semantics resulting from
this first abstraction step. To start with, we first define the simple program semantics.
The behaviors of the left and right versions P1 and P2 of a double program P depend
on which is ahead in the input sequence, and which is behind. P1 is ahead if δ < 0, and
P2 is ahead if δ > 0. Therefore, we need to particularize the simple program semantics

3.5. ABSTRACT SEMANTICS 63

(Zω → P(D), ⊆̇) −−−→−→←−−−−
αF

γF (P(D̂),⊆)

αF(f) ≜ {βσ(s) | s ∈ f(σ) ∧ σ ∈ Zω } = ⋃
σ∈Zω {βσ(f(σ)) }

(γF(R̂))(σ) ≜ { s |βσ(s) ∈ R̂ } = β−1
σ (R̂)

where ∀σ ∈ Zω : βσ ∈ D → D̂
βσ (((ρ1, n1, o1), (ρ2, n2, o2))) ≜ ((ρ1, o1), (ρ2, o2), δ, q)

with δ = n2 − n1
∧ |q| = |δ|
∧ ∀ 0 ≤ n < |δ| : qn = σmax{n1,n2}−n−1

Figure 3.12: Abstraction of shared input sequences with unbounded FIFO queues

ŜkJ s K ∈ P(Ê) → P(Ê), where Ê ≜ Σ̂ × Z × Z⋆, and k ∈ {1, 2}. Fig. 3.13 shows the
semantics for ŜkJV ← input(a, b) K . Note that we write q·q′ to denote the concatenation
of queues q and q′. Intuitively, this semantics distinguishes between two cases:

1. If program Pk is ahead of the other program in the input sequence, or at the same
point, then a new successful input read operation produces a fresh input value,
and adds it at the head of the queue.

2. If program Pk is behind the other program in the input sequence, then a new
successful input read operation retrieves the value at the tail of the queue.

In both cases, an input read operation is only successful if the value read matches the
bounds specified for the input statement.

We do not display the semantics for other commands, as the semantics for assign-
ments, tests and outputs are unchanged for memory environments and output sequences,
and leave input index differences and queues unchanged. For instance:

ŜkJV ← e K X̂ ≜ { ((ρ[V 7→ v], o), δ, q) | ((ρ, o), δ, q) ∈ X̂ ∧ v ∈ EJ e Kρ }
ŜkJ output(V) K X̂ ≜ { ((ρ, o · ρ(V)), δ, q) | ((ρ, o), δ, q) ∈ X̂ }

The complete semantics is available on Fig. A.1 of appendix A.1.

Double programs

We then lift the semantics Ŝ1J s K and Ŝ2J s K to double programs. The definition of
D̂J s K ∈ P(D̂)→ P(D̂) is very similar to that of DJ s K. It can be obtained by removing ι
parameters from Fig. 3.8, except for the composition of syntactically different statements
D̂J s1 ∥ s2 K and conditions F̂J c1 ∥ c2 K . We thus only show the definitions of these
relations on Fig. 3.14, and the remainder on Fig. A.2 of Appendix A.1.

Following the particularization of simple statement semantics, the semantics for
double statements and conditions compose the semantics of their left and right ver-
sions D̂kJ sk K and F̂kJ ck K , where D̂k and F̂k operate on simple statements and condi-
tions only. Note that the order of the composition is arbitrary, and not significant, as

64 CHAPTER 3. PATCH ANALYSIS

ŜkJ s K ∈ P(Ê)→ P(Ê) ; k ∈ {1, 2}

Ŝ1JV ← input(a, b) K X̂ ≜

 ((ρ[V 7→ ν], o), δ − 1, ν · q)

∣∣∣∣∣∣∣
((ρ, o), δ, q) ∈ X̂
δ ≤ 0
a ≤ ν ≤ b

∪

 ((ρ[V 7→ v], o), δ − 1, q)

∣∣∣∣∣∣∣
((ρ, o), δ, q · v) ∈ X̂
δ > 0
a ≤ ν ≤ b

Ŝ2JV ← input(a, b) K X̂ ≜

 ((ρ[V 7→ ν], o), δ + 1, ν · q)

∣∣∣∣∣∣∣
((ρ, o), δ, q) ∈ X̂
δ ≥ 0
a ≤ ν ≤ b

∪

 ((ρ[V 7→ v], o), δ + 1, q)

∣∣∣∣∣∣∣
((ρ, o), δ, q · v) ∈ X̂
δ < 0
a ≤ ν ≤ b

Figure 3.13: Abstract semantics of simple programs P1 and P2 with unbounded queues

D̂J s K ∈ P(D̂)→ P(D̂)

D̂J s1 ∥ s2 K≜ D̂2J s2 K ◦ D̂1J s1 K
D̂1J s K X̂ ≜ { (r′1, r2, δ

′, q′) | (r′1, δ′, q′) ∈ Ŝ1J s K { (r1, δ, q) } ∧ (r1, r2, δ, q) ∈ X̂ }
D̂2J s K X̂ ≜ { (r1, r

′
2, δ
′, q′) | (r′2, δ′, q′) ∈ Ŝ2J s K { (r2, δ, q) } ∧ (r1, r2, δ, q) ∈ X̂ }

F̂J c1 ∥ c2 K ≜ F̂2J c2 K ◦ F̂1J c1 K
F̂kJ c K X̂ ≜ { ((ρ1, o1), (ρ2, o2), δ, q) ∈ X̂ | true ∈ CJ c Kρk } ; k ∈ {1; 2}

Figure 3.14: Abstract semantics of double programs with unbounded queues

D̂2J s K ◦ D̂1J t K = D̂1J t K ◦ D̂2J s K , and likewise for F̂1J c K and F̂2J d K . Note also that
D̂1Jπ1(s) K = D̂Jπ1(s) ∥ skip K , and D̂2Jπ2(s) K = D̂J skip ∥ π2(s) K .

Finally, we formalize the relation between the abstract semantics D̂ and the concrete
collecting semantics D.

Proposition 2. D̂ is the best abstraction of D: D̂ = αF ◦D ◦ γF.

3.5.2 Bounding input queues

The abstract semantics D̂ features unbounded queues of input values. We aim at ab-
stracting the concrete collecting semantics D in numerical domains, so we need to deal
with a bounded number of variables. As it is also simpler to deal with a fixed number
of variables, we parameterize our abstract semantics with some predetermined integer
p ≥ 1, used to define the lengths of abstract FIFO queues in domain D̂p ≜ Σ×Σ×Z×Zp.

3.5. ABSTRACT SEMANTICS 65

(P(D̂,⊆) −−−→−→←−−−−
αp

γp

(P(D̂p),⊆)

αp(R̂) ≜ {βp(s) | s ∈ R̂ } = βp(R̂)
γp(R̂p) ≜ { s |βp(s) ∈ R̂p } = β−1

p (R̂p)
where βp ∈ D̂ → D̂p

βp(((ρ1, o1), (ρ2, o2), δ, q))≜ ((ρ1, o1), (ρ2, o2), δ, q̃) with q̃n =
{
qn if 0 ≤ n < |δ|
0 if |δ| ≤ n < p

Figure 3.15: Abstraction of FIFO queues to fixed length p ≥ 1

Queues from D̂ are truncated whenever |δ| > p, and padded with zeros whenever |δ| < p.
A formalization of this abstraction is shown on Fig. 3.15.

Proposition 3. For all p ≥ 1, the pair (αp, γp) defined in Fig. 3.15 is a Galois embed-
ding.

Let p ≥ 1. Starting from semantics D̂, we now give a formal definition for the abstract
double program semantics D̂p resulting from this second abstraction step.

Simple programs

To this aim, we first define the semantics Ŝp
kJ s K ∈ P(Êp)→ P(Êp) of simple programs,

where Êp ≜ Σ × Z × Zp, and k ∈ {1, 2}. Fig. 3.16 shows the semantics of Ŝp
kJV ←

input(a, b) K . Intuitively, this semantics distinguishes between three cases:

1. If program Pk is ahead of the other program in the input sequence, or at the same
point, then a new successful input read operation produces a fresh input value,
and adds it on top of the queue, discarding the value at the bottom at the queue.

2. If program Pk is behind the other program in the input sequence, and the delay is
less than the size of the input queue, then a new successful input read operation
retrieves the value in the queue indexed by this delay, and resets this value to zero.

3. If program Pk is behind the other program in the input sequence, and the delay is
more than the size of the input queue, then a new successful input read operation
produces a fresh input value, and leaves the queue unchanged.

In any case, an input read operation is only successful if the value read matches the
bounds specified for the input statement. We do not display the semantics for other
commands, as the semantics for assignments and tests are standard for memory en-
vironments, and leave input index differences and queues unchanged. For instance,
Ŝ

p
kJV ← e K X̂p ≜ { ((ρ[V 7→ v], o), δ, q) | ((ρ, o), δ, q) ∈ X̂p ∧ v ∈ EJ e Kρ }. The complete

semantics is available on Fig. A.3 of App. A.2.

66 CHAPTER 3. PATCH ANALYSIS

Ŝ
p
kJ s K ∈ P(Êp)→ P(Êp) ; k ∈ { 1, 2 }

Ŝ
p
1JV ← input(a, b) K X̂p ≜{

((ρ[V 7→ ν], o), δ − 1, ν · q)
∣∣∣ δ ≤ 0 ∧ ν ∈ [a, b] ∧ ((ρ, o), δ, q · v) ∈ X̂p ∧ v ∈ Z

}
∪
{

((ρ[V 7→ v], o), δ − 1, q · 0 · r)
∣∣∣∣∣ δ ∈ (0, p] ∧ v ∈ [a, b]

((ρ, o), δ, q · v · r) ∈ X̂p ∧ ∀n < p− δ − 1 : rn = 0

}
∪
{

((ρ[V 7→ ν], o), δ − 1, q)
∣∣∣ δ > p ∧ ν ∈ [a, b] ∧ ((ρ, o), δ, q) ∈ X̂p

}
Ŝ

p
2JV ← input(a, b) K X̂p ≜{

((ρ[V 7→ ν], o), δ + 1, ν · q)
∣∣∣ δ ≥ 0 ∧ ν ∈ [a, b] ∧ ((ρ, o), δ, q · v) ∈ X̂p ∧ v ∈ Z

}
∪
{

((ρ[V 7→ v], o), δ + 1, q · 0 · r)
∣∣∣∣∣ δ ∈ [−p, 0) ∧ v ∈ [a, b]

((ρ, o), δ, q · v · r) ∈ X̂p ∧ ∀n < p− δ − 1 : rn = 0

}
∪
{

((ρ[V 7→ ν], o), δ + 1, q)
∣∣∣ δ < −p ∧ ν ∈ [a, b] ∧ ((ρ, o), δ, q) ∈ X̂p

}
Figure 3.16: Abstract semantics of simple program P1 and P2 with queues of length
p ≥ 1.

Double programs

We then lift the semantics Ŝp
1J s K and Ŝ

p
2J s K to double programs. The definition of

D̂pJ s K ∈ P(D̂p) → P(D̂p) is very similar to that of D̂J s K . The main change is that
D̂

p
kJ s K is defined with Ŝp

kJ s K , whereas D̂kJ s K is defined with ŜkJ s K . We thus only show
the definitions of some transfer functions on Fig. 3.17, and the remainder on Fig. A.4
of Appendix A.2. These definitions are very similar to those of D̂J s K on Fig. 3.14.
The semantics for double statements and conditions compose the semantics of their
left and right versions. The order of the composition is arbitrary, but significant for
statements, as D̂p

2J s K ◦ D̂p
1J t K ̸= D̂

p
1J t K ◦ D̂

p
2J s K due to input statements that can lose

precision upon overflowing the bounded queue. Both composition orders, however, are
sound. A way to make the analyse precise and independent from the order would be
to compute the intersection of the compositions with the two orders. The order is in
constrast not significant for conditions, as F̂p

2J c K ◦ F̂p
1J d K = F̂

p
1J d K ◦ F̂p

2J c K . Note also
that D̂p

1Jπ1(s) K = D̂pJπ1(s) ∥ skip K , and D̂p
2Jπ2(s) K = D̂pJ skip ∥ π2(s) K .

Finally, we formalize the relation between the abstract semantics D̂p and the previous
abstraction D̂ of the concrete collecting semantics.

Proposition 4. For all p ≥ 1, D̂p is a sound and optimal abstraction of D̂:

D̂
p = αp ◦ D̂ ◦ γp

3.5.3 Obliviating output sequences

The abstract semantics D̂p features bounded queues of input values, but still unbounded
sequences of output values. We aim at proving the equality of the output sequences o1
and o2 of P1 and P2, using numerical domains on a finite number of variables.

3.5. ABSTRACT SEMANTICS 67

D̂pJ s K ∈ P(D̂p)→ P(D̂p)

D̂pJ s1 ∥ s2 K≜ D̂p
2J s2 K ◦ D̂p

1J s1 K
D̂

p
1J s K R̂p ≜ { (r′1, r2, δ

′, q′) | (r′1, δ′, q′) ∈ Ŝ
p
1J s K { (r1, δ, q) } ∧ (r1, r2, δ, q) ∈ R̂p }

D̂
p
2J s K R̂p ≜ { (r1, r

′
2, δ
′, q′) | (r′2, δ′, q′) ∈ Ŝ

p
2J s K { (r2, δ, q) } ∧ (r1, r2, δ, q) ∈ R̂p }

F̂pJ c1 ∥ c2 K ≜ F̂p
2J c2 K ◦ F̂p

1J c1 K
F̂

p
kJ c K R̂p ≜ { ((ρ1, o1), (ρ2, o2), δ, q) ∈ R̂p | true ∈ CJ c Kρk } ; k ∈ {1; 2}

Figure 3.17: Abstract semantics of double programs with queues of length p ≥ 1

dstat ::= · · ·
| assert_sync(V)

(a) Extension of the syntax

πk(assert_sync(V))≜assert(false); k ∈ {1, 2}

DJ assert_sync(V) KιX ≜

{
((ρ1, n1, o · r), (ρ2, n2, o · r))

∣∣∣∣∣ ((ρ1, n1, o), (ρ2, n2, o)) ∈ X
∧ ρ1(V) = ρ2(V) = r

}
(b) Extension of the semantics

Figure 3.18: Extension of dstat with assert_sync(V)

We could thus abstract outputs the same way we abstracted inputs: using bounded
FIFO queues to retain precise information on the differences between the outputs of P1
and P2. This approach would indeed enable us to infer the property of interest, and
would be robust to bounded desynchronizations between output statements of P1 and
P2. Yet, the examples we encountered, both in open source software and the embedded
reactive software we target, did not raise the need for such precision. Instead, these
examples execute output statements in lockstep. Output sequences are thus always
equal, or always unequal after some difference arises: there is no resynchronization after
bounded desynchronizations.

Nimp−2 , a reduced dialect of Nimp2

There is no need to distinguish assert_sync specifications from outputs in the syntax
of such examples. The equality of output sequences can be checked at every output.
We therefore introduce a dedicated specialized version of the Nimp2 language. We
extend Nimp2 with an additional primitive assert_sync(V), used for specifications.
In the following, we first formalize the concrete semantics DJ assert_sync(V) K of this
additional statement. Then, we show its semantics D̂pJ assert_sync(V) K with the
abstraction introduced in Sec. 3.5.2. Both semantics convey information on output
streams. Finally, we introduce a new semantics D̃pJ assert_sync(V) K for the specialized
version of the Nimp2 language, which abstracts away output streams.

We start with adding the assert_sync(V) statement to the language of double

68 CHAPTER 3. PATCH ANALYSIS

statements, as a means to assert that, if both program versions reach the current control
point, then they should:

1. have written the same sequence of values to the output stream;
2. agree on the value of V , which is the next value to be written to the output stream.

This extension is shown on Fig. 3.18. The semantics of assert_sync(V) filters away
any double program states with unequal output sequences, or environments disagreeing
on the value of V . In practice, it also reports a semantic error if any such state may be
reachable, although we do not represent this in the formalism for conciseness. Note that
DJ assert_sync(V) K = DJ assert_sync K ◦ DJ output(V) K, which is compatible with
the notation introduced by Remark 20: assert_sync(V) may be seen as a shorthand
for output(V); assert_sync. Also note that program versions are only allowed to
execute assert_sync(V) in lockstep. Indeed, executing assert_sync(V) is an error in
the simple program semantics.

Consistently, we remove the statements output(V) and assert_sync() from the
syntax of Nimp2, and call Nimp−2 the resulting language. Nimp−2 programs can only
execute assert_sync(V) statements to write to the output stream (in lockstep, oth-
erwise an error is propagated). Nimp−2 programs cannot resynchronize after bounded
desynchronizations of assert_sync(V) statements. Therefore it not necessary to keep
output sequences in the abstract state to prove the property of interest. The abstract se-
mantics D̂p of Nimp−2 programs is defined as that of Nimp2 programs. This abstraction
introduced in Sec. 3.5.2 conveys information on output streams. In particular,

D̂
pJ assert_sync(V) K R̂p ≜

{
((ρ1, o · r), (ρ2, o · r), δ, q)

∣∣∣∣∣ ((ρ1, o), (ρ2, o), δ, q) ∈ R̂p

∧ ρ1(V) = ρ2(V) = r

}

and D̂p
kJπk(assert_sync(V)) K = Ŝ

p
kJπk(assert_sync(V)) K = ∅ raise propagated se-

mantic errors. The rest of the transfer functions propagate output sequences unchanged
across statements.

Output sequences of program versions are initially empty: o1 = o2 = ϵ. In addition,
D̂pJ assert_sync(V) K is the only transfer function of Nimp−2 that constructs or filters
outputs sequences. It appends equal values to equal sequences. In absence of propagated
semantic errors, output sequences of the versions P1 and P2 of a Nimp−2 program can be
proved to be always equal in all reachable states of terminating executions, and finite
prefixes of non-terminating executions. As a consequence, it is not necessary to keep
output sequences in the abstract state of Nimp−2 programs. We thus remove them from
the simpler abstract domain D̃p ≜ E × E × Z × Zp. A formalization of this abstraction
is shown on Fig. 3.19.

Proposition 5. For all p ≥ 1, the pair (α̃p, γ̃p) defined in Fig. 3.19 is a Galois embed-
ding.

Let p ≥ 1. Starting from semantics D̂p, we now define the semantics D̃p resulting
from this third abstraction step.

3.5. ABSTRACT SEMANTICS 69

(P(D̂p),⊆) −−−→−→←−−−−
α̃p

γ̃p

(P(D̃p),⊆)

α̃p(R̂p) ≜ {φp(s) | s ∈ R̂p } = φp(R̂p)
γ̃p(R̃p) ≜ { s |φp(s) ∈ R̃p } = φ−1

p (R̃p)
where φp ∈ D̂p → D̃p

φp(((ρ1, o1), (ρ2, o2), δ, q)) ≜ (ρ1, ρ2, δ, q)

Figure 3.19: Simple abstraction of output sequences for Nimp−2 .

Simple programs Nimp without ouputs

We first define the semantics S̃p
kJ s K ∈ P(Ẽp) → P(Ẽp) of simple programs, where Ẽp ≜

E × Z× Zp, and k ∈ { 1, 2 }.
The semantics S̃p

kJ s K of statements s ∈ stat is very similar to Ŝ
p
kJ s K for Nimp

statements. The only differences are that the transfer function for output is removed,
and that output sequences o are no longer propagated. For instance:

S̃
p
kJV ← e K X̃p ≜ { (ρ[V 7→ v], δ, q) | (ρ, δ, q) ∈ X̃p ∧ v ∈ EJ e Kρ }

The complete semantics is available on Fig. A.5 of Appendix A.3.

Double Nimp−2 programs

We now lift the semantics S̃p
1J s K and S̃

p
2J s K to double programs. The definition of

D̃pJ s K ∈ P(D̃p) → P(D̃p) for Nimp−2 statements is very similar to that of D̂pJ s K for
Nimp2 statements. The main changes are that:

1. the transfer functions for output and assert_sync are removed;
2. the output sequences o are no longer propagated;
3. D̃pJ assert_sync(V) K filters away any abstract state such that P1 and P2 disagree

on the value of V . In practice, an alarm is raised and propagated whenever any
such state may be reached. We do not represent alarms in the semantics for
conciseness.

4. D̃p
kJ s K is defined with S̃p

kJ s K , whereas D̂p
kJ s K is defined with Ŝp

kJ s K .
We thus only show the definitions of some transfer functions on Fig. 3.20. These def-
initions are very similar to those of D̂pJ s K on Fig. 3.17. The complete semantics is
available on Fig. A.6 of Appendix A.3.

Finally, we formalize the relation between the abstract semantics D̃p and the previous
abstraction D̂p of the concrete collecting semantics.

Proposition 6 (sound and optimal abstraction for Nimp−2). For all p ≥ 1, D̃p is a
sound and optimal abstraction of D̂p for Nimp−2 programs:

D̃
p = α̃p ◦ D̂p ◦ γ̃p

70 CHAPTER 3. PATCH ANALYSIS

D̃pJ s K ∈ P(D̃p)→ P(D̃p)

D̃pJ assert_sync(V) K R̃p ≜ { (ρ1, ρ2, δ, q) ∈ R̃p | ρ1(V) = ρ2(V) }
D̃pJ s1 ∥ s2 K ≜ D̃p

2J s2 K ◦ D̃p
1J s1 K

D̃
p
1J s K R̃p ≜

{
(ρ′1, ρ2, δ

′, q′)
∣∣∣∣∣ (ρ′1, δ′, q′) ∈ S̃

p
1J s K { (ρ1, δ, q) }

(ρ1, ρ2, δ, q) ∈ R̃p

}

D̃
p
2J s K R̃p ≜

{
(ρ1, ρ

′
2, δ
′, q′)

∣∣∣∣∣ (ρ′2, δ′, q′) ∈ S̃
p
2J s K { (ρ2, δ, q) }

(ρ1, ρ2, δ, q) ∈ R̃p

}
F̃pJ c1 ∥ c2 K ≜ F̃p

2J c2 K ◦ F̃p
1J c1 K

F̃
p
kJ c K R̃p ≜ { (ρ1, ρ2, δ, q) ∈ R̃p | true ∈ CJ c Kρk } ; k ∈ {1; 2}

Figure 3.20: Abstract semantics of double Nimp−2 programs with input queues of length
p ≥ 1.

dstat ::= · · ·
| V ← input_sync(a, b)

(a) Extension of the syntax

πk(V ← input_sync(a, b))≜assert(false); k ∈ {1, 2}

DJ V ← input_sync(a, b) KιX ≜
{

((ρ1[V 7→ ιn], n + 1, o1), (ρ2[V 7→ ιn], n + 1, o2))
∣∣∣ ((ρ1, n, o2), (ρ2, n, o2)) ∈ X
∧ a ≤ ιn ≤ b

}
(b) Extension of the semantics

Figure 3.21: Extension of dstat

3.5.4 Special case: inputs and outputs in lockstep

Nimp−2 programs no longer feature output queues, but still feature bounded queues of
input values. The abstract semantics D̃p expresses relational information on the values
read by P1 and P2 from some input stream, with desynchronizations up to p between
input statements by P1 and P2. It retains only non relational information for longer
desynchronizations. We will come back to this semantics in Sec. 3.5.5, and abstract it
further into a computable semantics, using numerical domains.

Nimp⋆
2, a reduced dialect of Nimp−2

Nonetheless, we introduce here a simplified version of Nimp−2 , called Nimp⋆
2, that is suffi-

cient to handle programs without any desynchronization of inputs or outputs. Nimp⋆
2 will

allow us to simplify further D̃p into a non computable abstraction D̃0. D̃0 will be used in
later chapters, dedicated to analyses of double C programs: Chapters 5, 6, and 7. Indeed,
these chapters will focus on double C programs that read input values in lockstep (and
also write output values in lockstep). For instance, the reactive programs of Fig. 3.10(b)
execute both input and output statements in lockstep, while the programs of Fig. 3.9
execute output statements in lockstep, but not input statements. The programs of

3.5. ABSTRACT SEMANTICS 71

Fig. 3.10(b) can thus be encoded in Nimp⋆
2, and modeled precisely with D̃0, while the

programs of Fig. 3.9 cannot, and require the more expressive semantics D̃p introduced in
Sec. 3.5.3. To this aim, we first extend Nimp2 and Nimp−2 with an additional primitive
V ← input_sync(a, b), used for lockstep input. In the following, we first formalize
the concrete semantics DJV ← input_sync(a, b) K of this additional statement. Then,
we show its semantics D̃pJV ← input_sync(a, b) K with the abstraction introduced in
Sec. 3.5.3. Both semantics convey information on input streams. Finally, we introduce
a new semantics D̃0JV ← input_sync(a, b) K for the simplified Nimp⋆

2 language, which
abstracts away input streams.

We start with adding the V ← input_sync(a, b) statement to the language of double
statements, as a means to assert that, if both program versions reach the current control
point, then they should:

1. have read the same number of values from the shared input stream;
2. read a new input value in the range [a, b], and store it into V .

This extension is shown on Fig. 3.21. The semantics of V ← input_sync(a, b) filters
away any double program states with unequal input indexes, or input value outside
the range [a, b]. In practice, it also reports a semantic error if any such state may be
reachable, although we do not represent this in the formalism for conciseness. Then,
it assigns the input value to V in both program versions. Note that program versions
are only allowed to execute V ← input_sync(a, b) in lockstep. Indeed, executing
V ← input_sync(a, b) is an error in the simple program semantics.

Consistently, we remove the statement V ← input(a, b) from the syntax of Nimp−2 ,
and call Nimp⋆

2 the resulting language. Nimp⋆
2 programs can only execute V ← input_sync(a, b)

statements to read from the shared input stream (in lockstep, otherwise an error is
propagated). Nimp⋆

2 programs cannot resynchronize after bounded desynchronizations
of V ← input_sync(a, b) statements. Therefore it not necessary to keep information on
input sequences in the abstract state to prove the property of interest. The abstract se-
mantics D̃p of Nimp⋆

2 programs is defined as that of Nimp−2 programs. This abstraction
introduced in Sec. 3.5.3 conveys information on input streams. In particular,

D̃
pJV ← input_sync(a, b) K R̃p ≜

 (ρ1[V 7→ q′0], ρ2[V 7→ q′0], δ, q′)

∣∣∣∣∣∣∣
(ρ1, ρ2, δ, q) ∈ R̃p

∧ q′0 ∈ [a, b]
∧ ∀0 < n < p : q′n = qn−1

and D̃p

kJV ← input_sync(a, b) K = S̃
p
kJπk(V ← input_sync(a, b)) K = ∅ raise propa-

gated semantic errors. The rest of the transfer functions propagate input delays δ and
bounded input sequences q unchanged across statements.

Initially δ = 0, and δ is changed by no transfer function of a Nimp⋆
2 program. In

absence of propagated semantic errors, δ = 0 can be proved to hold in all reachable states
of terminating executions, and finite prefixes of non-terminating executions of Nimp⋆

2
programs. As a consequence, it is not necessary to keep input delays δ and bounded
input sequences q in the abstract state of Nimp⋆

2 programs. We thus remove them from
the simpler abstract domain D̃0 ≜ E × E . A formalization of this abstraction is shown
on Fig. 3.22.

72 CHAPTER 3. PATCH ANALYSIS

(P(D̃p),⊆) −−−→−→←−−−−
α̃0

p

γ̃0
p

(P(D̃0),⊆)

α̃0
p(R̃p) ≜

⋃
s∈R̃p

ψp(s) = ⋃
ψp(R̃p)

γ̃0
p(R̃0) ≜ { s |ψp(s) ⊆ R̃0 }

where ψp ∈ D̃p → P(D̃0)

ψp(ρ1, ρ2, δ, q) ≜

{
{ (ρ1, ρ2) } if Rp(δ, q)

D̃0 otherwise
Rp(δ, q) △⇐⇒ ∀|δ| ≤ n < p : qn = 0

Figure 3.22: Simple abstraction of input sequences for Nimp⋆
2.

Proposition 7. For all p ≥ 1, the pair (α̃0
p, γ̃

0
p) defined in Fig. 3.22 is a Galois embed-

ding.

Remark 21. The precise value of p is not significant. The same D̃0 abstracts D̃p for
any p ≥ 1. Moreover, one could abstract the semantics D̂ of 3.5.3 into D̃0 directly. We
choose to start from D̃p in order to reuse the abstraction of outputs streams introduced
in 3.5.3.

Let p ≥ 1. Starting from semantics D̃p, we now define the semantics D̃0 resulting
from this additional abstraction step.

Simple programs Nimp without inputs nor ouputs

We first define the semantics S̃0
kJ s K ∈ P(Ẽ0)→ P(Ẽ0) of simple programs, where Ẽ0 ≜ E ,

and k ∈ { 1, 2 }.
The semantics S̃0

kJ s K of statements s ∈ stat is similar to Ŝp
kJ s K for Nimp statements

without outputs. The main changes are that:
1. we no longer distinguish S̃0

1J s K and S̃0
2J s K , as this distinction was necessary to

account for desynchronized input statements; we thus define a single simple se-
mantics S̃0J s K ;

2. the transfer function for input is removed;
3. input delays δ and bounded input sequences q are no longer propagated.

For instance:
S̃

0JV ← e K X̃0 ≜ { ρ[V 7→ v] | ρ ∈ X̃0 ∧ v ∈ EJ e Kρ }

The complete semantics is available on Fig. A.7 of Appendix A.4.

Double Nimp⋆
2 programs

We now lift the simple semantics S̃0J s K to double programs. The definition of D̃0J s K ∈
P(D̃0)→ P(D̃0) for Nimp⋆

2 statements is similar to that of D̃pJ s K for Nimp−2 statements.
The main changes are that:

3.5. ABSTRACT SEMANTICS 73

D̃0J s K ∈ P(D̃0)→ P(D̃0)

D̃0JV ← input_sync(a, b) K R̃0 ≜ { (ρ1[V 7→ v], ρ2[V 7→ v]) | v ∈ [a, b] ∧ (ρ1, ρ2) ∈ R̃0 }
D̃0J s1 ∥ s2 K ≜ D̃0

2J s2 K ◦ D̃0
1J s1 K

D̃0
1J s K R̃0 ≜ { (ρ′1, ρ2) | ρ′1 ∈ S̃0J s K { ρ1 } ∧ (ρ1, ρ2) ∈ R̃0 }

D̃0
2J s K R̃0 ≜ { (ρ1, ρ

′
2) | ρ′2 ∈ S̃0J s K { ρ2 } ∧ (ρ1, ρ2) ∈ R̃0 }

F̃0J c1 ∥ c2 K ≜ F̃0
2J c2 K ◦ F̃0

1J c1 K
F̃0

kJ c K R̃0 ≜ { (ρ1, ρ2) ∈ R̃0 | true ∈ CJ c Kρk } ; k ∈ {1; 2}

Figure 3.23: Abstract semantics of double Nimp⋆
2 programs.

Sec. Input abstraction Output abstraction
D̂ 3.5.1 Unbounded FIFO Unbounded sequence
D̂p 3.5.2 Queue of length p Unbounded sequence
D̃p 3.5.3 Queue of length p Lockstep
D̃0 3.5.4 Lockstep Lockstep

Figure 3.24: Uncomputable abstractions of D.

1. the transfer function for input is removed;
2. input delays δ and bounded input sequences q are no longer propagated;
3. V ← input_sync(a, b) assigns equal values in the range [a, b] to V in both program

versions;
4. D̃0

kJ s K is defined with S̃0J s K , whereas D̃p
kJ s K is defined with S̃p

kJ s K .
We thus only show the definitions of some transfer functions on Fig. 3.23. These def-
initions are very similar to those of D̃pJ s K on Fig. 3.20. The complete semantics is
available on Fig. A.8 of Appendix A.4.

Finally, we formalize the relation between the abstract semantics D̃0 and the previous
abstraction D̃p of the concrete collecting semantics.

Proposition 8 (sound and optimal abstraction for Nimp⋆
2). For all p ≥ 1, D̃0 is a sound

and optimal abstraction of D̃p for Nimp⋆
2 programs:

D̃
0 = α̃0

p ◦ D̃p ◦ γ̃0
p

3.5.5 Numerical abstraction

In this section, we have constructed so far several non computable abstractions of the
concrete collecting semantics D. Fig. 3.24 shows a summary. Let us come back to the
semantics D̃pJ s K of Sec. 3.5.3, that features bounded inputs sequences of length p ≥ 1,
and no output sequences. We rely now on numerical abstractions to abstract it further
into a computable abstract semantics D̃♯pJ s K , resulting in an effective static analysis of
Nimp−2 programs.

74 CHAPTER 3. PATCH ANALYSIS

Connecting to numerical domains

As D̃p ≈ Z2|V|+p+1, any numerical abstract domain with 2|V|+ p+ 1 dimensions may be
used, such as polyhedra [52].

Let N be such an abstract domain, with values in D♯, order ⊑♯, concretization
γN ∈ D♯ → P(Z2|V|+p+1), and operators S̃♯pJ s K , C̃♯pJ c K ∈ D♯ → D♯ for assignments
and tests of simple programs over variables in V1 ∪ V2 ∪ Q, where Vk ≜ {xk |x ∈ V },
and Q ≜ { δ } ∪ { qn | 0 ≤ n < p }. Let ∪♯ and ∩♯ be the abstractions of set union and
intersection of domain N , and ▽ be its widening operator.

We abstract D̃pJ s K ∈ P(D̃p) → P(D̃p) by D̃♯pJ s K ∈ D♯ → D♯, with the soundness
condition ∀X♯ ∈ D♯ : D̃pJ s K (γN (X♯)) ⊆ γN (D̃♯pJ s K (X♯)). As D̃pJ s K is defined by
induction on the syntax, the definition for D̃♯pJ s K is straightforward: the abstract se-
mantics needs only be defined for the composition of syntactically different statements
s1 ∥ s2 and conditions c1 ∥ c2. We let D̃♯pJ s1 ∥ s2 K ≜ S̃♯pJ τ2(s2) K ◦ S̃♯pJ τ1(s1) K , and
F̃♯pJ c1 ∥ c2 K ≜ C̃♯pJ τ2(c2) K ◦ C̃♯pJ τ1(c1) K , where we use the syntactic renaming oper-
ator τ1 (resp. τ2), defined by induction on the syntax, to distinguish the variables of
the left (resp. right) version of a double program, with suffix 1 (resp. 2). For instance,
D̃♯pJ c← 1 ∥ 0 K = S̃♯pJ c2 ← 0 K ◦ S̃♯pJ c1 ← 1 K .

The definitions of all transfer functions are shown on Fig. 3.25.

Leveraging standard numerical domains

Coming back to the motivating Example 22 from Fig. 3.3(c) of Sec. 3.2, recall that the
relation between c and i is non linear: c1 = i1 × b1 + 1 and c2 = i2 × b2 from line 4
to line 9. Thus, a separate analysis of programs P1 and P2 would require a non linear
abstract domain to compare r1 and r2. In contrast, our joint analysis of P1 and P2 will
be sufficiently precise, even when using linear numerical domains, because the difference
between the values of the variables in P1 and in P2 remains linear. For instance, the
polyhedra domain [52] is able to infer that the invariant −c1 + c2 + 1 = 0 holds from
line 3 to 9, hence r1 = r2 at line 9, although it is not able to discover any interval for r1
or r2. The octagon domain [129] is also able to express these invariants, but its transfer
function for assignment is not precise enough to infer them. Indeed, x ← a − b cannot
be exactly abstracted by the domain, and currently proposed transfer functions fall back
to plain interval arithmetics in that case, so that the domain cannot exploit the bound
it infers on a− b to bound x, for efficiency reasons. The transfer function of octagons for
assignments could be improved to handle this case more precisely. The interval domain
is not able to express the invariants, hence it cannot be used directly for a conclusive
analysis.

3.5.6 Introducing a dedicated numerical domain

Considering the necessary invariants for a successful analysis of Example 22 (Fig. 3.3(c)),
we remark that it is sufficient to bound the difference x2−x1 for any variable x to express
these invariants, where x1 (resp. x2) represents the value of x for the left (resp. right)

3.5. ABSTRACT SEMANTICS 75

S̃♯pJV ← e K
]
given

C̃♯pJ e ▷◁ e′ K

D̃♯pJ s K ∈ D♯ → D♯

D̃♯pJ skip KR♯ ≜R♯

D̃♯pJ s1 ∥ s2 K ≜ D̃♯p
2 J s2 K ◦ D̃♯p

1 J s1 K
D̃

♯p
k J s K ≜ S̃♯pJ τk(s) K ; k ∈ {1; 2}

D̃♯pJV ← e1 ∥ e2 K ≜ S̃♯pJV2 ← τ2(e2) K ◦ S̃♯pJV1 ← τ1(e1) K
D̃♯pJV ← e K ≜ S̃♯pJV2 ← τ2(e) K ◦ S̃♯pJV1 ← τ1(e) K
D̃♯pJ assert_sync(V) K≜ C̃♯pJV1 = V2 K
D̃♯pJ assert(c) K ≜ D̃♯p

2 J assert(c) K ◦ D̃♯p
1 J assert(c) K

D̃♯pJV ← input(a, b) K ≜ D̃♯p
2 JV ← input(a, b) K ◦ D̃♯p

1 JV ← input(a, b) K
D̃

♯p
1 J V ← input(a, b) K ≜ S̃♯pJ δ ← δ − 1 K ◦(
S̃♯pJ V1 ← q0 K ◦ S̃♯pJ q0 ← rand(a, b) K ◦ S̃♯pJ q1 ← q0 K ◦ · · · ◦ S̃♯pJ qp−1 ← qp−2 K ◦ C̃♯pJ δ ≤ 0 K ∪̇♯)
S̃♯pJ qδ−1 ← 0 K ◦ S̃♯pJ V1 ← qδ−1 K ◦ C̃♯pJ qδ−1 ≤ b K ◦ C̃♯pJ qδ−1 ≥ a K ◦ C̃♯pJ δ ≤ p K ◦ C̃♯pJ δ > 0 K ∪̇♯

S̃♯pJ V1 ← rand(a, b) K ◦ C̃♯pJ δ > p K

D̃
♯p
2 J V ← input(a, b) K ≜ S̃♯pJ δ ← δ + 1 K ◦(
S̃♯pJ V2 ← q0 K ◦ S̃♯pJ q0 ← rand(a, b) K ◦ S̃♯pJ q1 ← q0 K ◦ · · · ◦ S̃♯pJ qp−1 ← qp−2 K ◦ C̃♯pJ δ ≥ 0 K ∪̇♯)
S̃♯pJ q−δ−1 ← 0 K ◦ S̃♯pJ V2 ← q−δ−1 K ◦ C̃♯pJ q−δ−1 ≤ b K ◦ C̃♯pJ q−δ−1 ≥ a K ◦ C̃♯pJ δ ≥ −p K ◦ C̃♯pJ δ < 0 K ∪̇♯

S̃♯pJ V2 ← rand(a, b) K ◦ C̃♯pJ δ < −p K

D̃♯pJ s ; t K ≜ D̃♯pJ t K ◦ D̃♯pJ s K
D̃♯pJ if c1 ∥ c2 then s else t K ≜ D̃♯pJ s K ◦ F̃♯p

2 J c2 K ◦ F̃♯p
1 J c1 K

∪̇♯
D̃♯pJ t K ◦ F̃♯p

2 J¬c2 K ◦ F̃♯p
1 J¬c1 K

∪̇♯
D̃

♯p
2 Jπ2(t) K ◦ D̃♯p

1 Jπ1(s) K ◦ F̃♯p
2 J¬c2 K ◦ F̃♯p

1 J c1 K
∪̇♯
D̃

♯p
2 Jπ2(s) K ◦ D̃♯p

1 Jπ1(t) K ◦ F̃♯p
2 J c2 K ◦ F̃♯p

1 J¬c1 K
D̃♯pJ if c then s else t K ≜ D̃♯pJ if c ∥ c then s else t K
D̃♯pJ while c1 ∥ c2 do s KR♯ ≜ (F̃♯p

2 J¬c2 K ◦ F̃♯p
1 J¬c1 K)(limHR♯)

D̃♯pJ while c do s K ≜ D̃♯pJ while c ∥ c do s K

where F̃
♯p
k J c K ≜ C̃♯pJ τk(c) K ; k ∈ { 1, 2 }

τk(x) ≜

{
xk if x ∈ V
x if x ∈ Q

and HR♯(S♯) ≜ S♯ ▽
(
R♯ ∪♯

(D̃♯pJ s K ◦ F̃♯p
2 J c2 K ◦ F̃♯p

1 J c1 K ∪̇♯)
(S♯)

)
D̃

♯p
1 Jπ1(s) K ◦ F̃♯p

2 J¬c2 K ◦ F̃♯p
1 J c1 K ∪̇♯

D̃
♯p
2 Jπ2(s) K ◦ F̃♯p

2 J c2 K ◦ F̃♯p
1 J¬c1 K

Figure 3.25: Abstract semantics of double programs with a standard numerical domain

version P1 (resp. P2) of a double program P . Thus, we now design an abstract domain
that is specialized to infer these bounds. We abstract the values x1 and x2 by the pair

76 CHAPTER 3. PATCH ANALYSIS

(P(D̃p),⊆) −−−−→−→←←−−−−−
α−

γ− (P(D̃p),⊆)

α−(R̃p) ≜ { (ρ1, ρ2 −̇ ρ1, δ
⋆, q) | (ρ1, ρ2, δ

⋆, q) ∈ R̃p }
γ−(R̃p) ≜ { (ρ1, ρ1 +̇ δρ, δ

⋆, q) | (ρ1, δρ, δ
⋆, q) ∈ R̃p }

Figure 3.26: Abstraction of double environments with environment differences

�pJ c← c+ bK R̃p

=

 (ρ1[c 7→ c′1], δρ[c 7→ δc′], δ⋆, q)

∣∣∣∣∣∣∣∣∣
δc′ = c′2 − c′1
c′1 ∈ EJ c+ b Kρ1
c′2 ∈ EJ c+ b K(ρ1 + δρ)
(ρ1, δρ, δ

⋆, q) ∈ R̃p

= { (ρ1[c 7→ ρ1(c) + ρ1(b)], δρ[c 7→ δρ(c) + δρ(b), δ⋆, q) | (ρ1, δρ, δ

⋆, q) ∈ R̃p }

�pJ r ← c ∥ c+ 1K

=

 (ρ1[r 7→ r′1], δρ[r 7→ δr′], δ⋆, q)

∣∣∣∣∣∣∣∣∣
δr′ = r′2 − r′1
r′1 ∈ EJ c Kρ1
r′2 ∈ EJ c+ 1 K(ρ1 + δρ)
(ρ1, δρ, δ

⋆, q) ∈ R̃p

= { (ρ1[r 7→ ρ1(c)], δρ[r 7→ δρ(c) + 1, δ⋆, q) | (ρ1, δρ, δ

⋆, q) ∈ R̃p }

Figure 3.27: Examples of �p semantics

(x1, δx), where δx ≜ x2 − x1. This abstraction amounts to changing the representation
of states of double program P . It does not lose information. A formalization of this
abstraction is shown on Fig. 3.26. Note that we lift operators + and − over Z pointwise
to operators over maps from variables to values.

Proposition 9. The pair (α−, γ−) defined in Fig. 3.26 is a Galois isomorphism.

�p ≜ α− ◦ D̃p ◦ γ− is able to represent two-variable equalities x1 = x2 ⇔ δx = 0,
even after numerical abstraction using non relational domains, such as intervals. Transfer
functions rely on symbolic simplifications to let such equalities propagate through linear
expressions. For instance, the semantics �p of statements 6 and 9 of the motivating
UnchLoop Example 22 of Fig. 3.3(c) are shown on Fig. 3.27, before and after simple
symbolic simplifications of affine expressions.

The Delta domain

Like for D̃p, any numerical domain over variables in V1 ∪Vδ ∪Q can be used to abstract
�p, where V1 ≜ {x1 |x ∈ V }, Vδ ≜ { δx |x ∈ V }, and Q ≜ { δ⋆ } ∪ { qn | 0 ≤ n < p }.
As in Sec. 3.5.5, we use a generic numerical domain N , with values in D♯, order ⊑♯,
concretization γN ∈ D♯ → P(Z2|V|+p+1), and operators S̃♯pJ s K , C̃♯pJ c K ∈ D♯ → D♯ for
assignments and tests of simple programs over variables in V1 ∪ Vδ ∪ Q. Let ∪♯ and ∩♯

be the abstractions of set union and intersection of domain N , and ▽ be its widening

3.5. ABSTRACT SEMANTICS 77

operator. Composing this generic numerical abstraction with the isomorphic abstraction
of Fig. 3.26, we obtain a novel numerical domain:

⟨D♯,⊑♯, γ− ◦ γN ,∪♯,∩♯,▽⟩

which we name the Delta domain. This domain is parameterized by a numerical ab-
straction, which can be a (non-relational) value abstraction or, a (possibly relational)
numerical domain.

Transfer functions

�♯pJ sK ∈ D♯ → D♯

�♯pJV ← input(a, b)K ≜(
S̃♯pJ δV ← 0 K ◦ S̃♯pJV1 ← q0 K ◦ S̃♯pJ q0 ← rand(a, b) K ◦p−2

i=0 S̃
♯pJ qi+1 ← qi K ◦ C̃♯pJ δ⋆ = 0 K ∪♯

)
�

♯p
2 JV ← input(a, b)K ◦�♯p

1 JV ← input(a, b)K ◦ C̃♯pJ δ⋆ ̸= 0 K

�♯pJV ← e ∥ e+ αK ≜ ¯̄
�♯pJV ← e ∥ e+ αK ◦�♯p

1 JV ← eK
�♯pJV ← eK ≜�♯pJV ← e ∥ e+ 0K
�♯pJ e ▷◁ 0? ∥ e ̸▷◁ 0?K ≜⊥ if is_deterministic(e) ∧ ∀x ∈ Vars(e) : δx = 0
�♯pJ e ▷◁ 0? ∥ e ▷◁ 0?K ≜�♯p

1 J e ▷◁ 0?K if is_deterministic(e) ∧ ∀x ∈ Vars(e) : δx = 0
�♯pJ assert_sync(V)K≜ C̃♯pJ δV = 0 K
�♯pJ assert(c)K ≜�♯p

2 J assert(c)K ◦�♯p
1 J assert(c)K

�♯pJ skipKR♯ ≜R♯

where

¯̄
�♯pJV ← e ∥ e+ αK ≜

S̃♯pJ δV ← α K if is_deterministic(e) ∧ ∀x ∈ Vars(e) : δx = 0
S̃♯pJ δV ← α+

∑
x∈V λxδx K if ∃(µ, (λx)x∈V) ∈ Z|V|+1 : e = µ+

∑
x∈V λxx

S̃♯pJ δV ← α+ (τ ′
2 − τ1)(e) K otherwise

τ ′
2(x) ≜

{
x1 + δx if x ∈ V
x if x ∈ Q

Figure 3.28: Abstract semantics of atomic double statements with the Delta numerical
domain

The abstract semantics �♯p is defined by induction on the syntax of double programs.
Fig. 3.28 shows the transfer functions of atomics statements, while Fig. 3.29 shows the
transfer functions of compound statements. The semantics of the s1 ∥ s2 construct is
defined as �♯pJ s1 ∥ s2K ≜ �

♯p
2 J s2K ◦�♯p

1 J s1K on Fig. 3.29, where �p
1J sK ≜ �pJ s ∥ skipK

and �p
2J sK ≜ �pJ skip ∥ sK for simple statement s. Nonetheless, we add some particular

cases on Fig. 3.28, to gain both efficiency and precision on δV , for all variables V , through
simple symbolic simplifications. Note that we use the syntactic renaming operator τ ′2,
defined by induction on the syntax, to replace the variables V2 of the right version of a
double program by their abstraction V1 + δV .

78 CHAPTER 3. PATCH ANALYSIS

�♯pJ sK ∈ D♯ → D♯

�♯pJ s1 ∥ s2K ≜ �
♯p
2 J s2K ◦�♯p

1 J s2K
�

♯p
1 J sK ≜ S̃♯pJ τ1(s) K

�
♯p
2 J sK ≜ S̃♯pJ τ ′2(s) K

�♯pJ c1? ∥ c2?K ≜ �
♯p
2 J c2?K ◦�♯p

1 J c1?K
�

♯p
1 J c?K ≜ C̃♯pJ τ1(c) K

�
♯p
2 J c?K ≜ C̃♯pJ τ ′2(c) K

�♯pJ s ; tK ≜ �
♯p
2 J tK ◦�♯p

1 J sK
�♯pJ if c1 ∥ c2 then s else tK ≜ �♯pJ sK ◦�♯pJ c1? ∥ c2?K

∪̇♯
�♯pJ tK ◦�♯pJ¬c1? ∥ ¬c2?K

∪̇♯
�♯pJπ1(s) ∥ π2(t)K ◦�♯pJ c1? ∥ ¬c2?K

∪̇♯
�♯pJπ1(t) ∥ π2(s)K ◦�♯pJ¬c1? ∥ c2?K

�♯pJ if c then s else tK ≜ �♯pJ if c ∥ c then s else tK
�♯pJ while c1 ∥ c2 do sKR♯ ≜ �♯pJ¬c1? ∥ ¬c2?K (limHR♯)
�♯pJ while c do sK ≜ �♯pJ while c ∥ c do sK

where

HR♯(S♯) ≜ S♯ ▽
(
R♯ ∪♯

(�♯pJ sK ◦�♯pJ c1? ∥ c2?K ∪̇♯)
(S♯)

)
�

♯p
1 Jπ1(s)K ◦�♯pJ c1? ∥ ¬c2?K ∪̇♯

�
♯p
2 Jπ2(s)K ◦�♯pJ¬c1? ∥ c2?K

τ ′2(x) ≜
{
x1 + δx if x ∈ V
x if x ∈ Q

Figure 3.29: Abstract semantics of compound double statements with the Delta numer-
ical domain

Inputs and assignments. The first particular case is that of input statements V ←
input(a, b) for both program versions, in environments such that both programs have
read the same number of input values, i.e. δ⋆ = 0, where δ⋆ represents the difference
between input indexes. In this case, we may assign δV ← 0 directly, and leave δ⋆

unchanged. For instance, after statement a ← input(−1000, 1000) at line 1 of the
Unchloop example on Fig. 3.3(c), we have a ∈ [−1000, 1000], and δa = 0. The second
particular case is that of affine assignments V ← e, where e = µ+∑x∈V λx×x. We call
such expressions “differentiable”, as it is easy to compute δV directly as a function of
all the δx variables. A third particular case is that of arbitrary (non necessarily affine)
assignments V ← e, when e is deterministic, and all the variables x occurring in e are
such that δx = 0. Then δV = 0, as we know that both expressions always evaluate to
equal values in P1 and P2.
Remark 22 (deterministic expression). We say that an expression e ∈ expr is deter-
ministic if its value is entirely determined by the memory state ρ ∈ E , i.e. EJ e Kρ is a

3.6. EVALUATION 79

singleton. In the case of Nimp expressions, it suffices to check that e does not contain
any sub-expression rand(a, b) to ensure that e is deterministic.

To further enhance precision on some examples, we slightly generalize these partic-
ular cases to double assignments V ← e1 ∥ e2, when expressions e1 and e2 are found
syntactically equal, modulo some semantics preserving transformations, such as associa-
tivity, commutativity, and distributivity. We also generalize symbolic simplifications to
some double assignments V ← e ∥ e+α, when α is a constant. For instance, for line 9 of
the Unchloop example on Fig. 3.3(c), we have �♯p

2 J r ← c ∥ c+ 1K = S̃♯pJ δr ← δc+ 1 K .
As a consequence, the interval domain is able to infer the invariant δr = 0 for

semantics �♯p at line 10 of Unchloop example, resulting in a conclusive analysis with
linear cost, which is much more efficient than using polyhedra with D̃♯p.

Tests. The default transfer function for double tests c1? ∥ c2? is defined as �♯pJ c1? ∥
c2?K = C̃♯pJ τ ′2(c2) K ◦ C̃♯pJ τ1(c1) K . We nonetheless introduce symbolic simplifications
to improve efficiency and precision in two common cases introduced by the semantics
of if and while statements. Statements of the form if e ▷◁ 0 then s else t introduce
indeed two stable tests of the form e ▷◁ 0? ∥ e ▷◁ 0? and two unstable tests of the form
e ▷◁ 0? ∥ e ̸▷◁ 0?. If e is a deterministic expression, and the environment is such that
δx = 0 holds for all the variables x occurring in e, then τ ′2(e) and τ1(e) have equal
values. In that case, unstable tests are contradictory, and stable tests are redundant:
�♯pJ e ▷◁ 0? ∥ e ̸▷◁ 0?K = ⊥ and �♯pJ e ▷◁ 0? ∥ e ▷◁ 0?K = �

♯p
1 J e ▷◁ 0?K . The former

optimization is beneficial to both efficiency and precision, while the latter improves
efficiency, with no effect on precision. For instance, the loop guard of the Unchloop
example is proved stable, so the two unstable branches are not analyzed, and each of
the two stable tests is analyzed only once.

3.6 Evaluation
We implemented a prototype abstract interpreter for the semantics D̃♯p and �♯p of the
Nimp2 language introduced in this chapter. It is about 2,500 lines of OCaml source code.
It uses the Apron [94] library to experiment with the polyhedra and octagon abstract
domains, and the BddApron [95] library to implement state partitioning.

3.6.1 Benchmarking

We compare results on small examples selected from other authors’ benchmarks [173,
154, 155]. Some examples are based on synthetic C programs, while others originate
from real patches in GNU core utilities. The source code of benchmarks is available in
appendix C.1. We added a larger benchmark (also from a Coreutils patch), to evaluate
scalability. For most benchmarks, patches preserve most of the loop and branching struc-
ture, except for the seq benchmark from [154, 155], which features deep modifications
of the control structure. The related works do not address streams. As a consequence,
these benchmarks do not feature unbounded reads into input streams, except for the

80 CHAPTER 3. PATCH ANALYSIS

remove benchmark, which we presented in the introduction: see Fig. 3.1 and Fig. 3.2.
Note that we simplified this benchmark to fstatat caching for a single file, in order to
compare with [154].

[173, 154, 155] analyze pairs of C programs directly, albeit in restricted subsets of
C featuring mostly integer programs. In particular, the code from GNU core utilities
is simplified. In contrast, we encode their benchmarks as double programs in our toy
language Nimp2 for now. We will address the automatic construction of double programs
in chapter 4, and the direct analysis of C programs in Chapters 5 and 6. In addition, [173,
154, 155] not only prove equivalences, but also characterize differences, while we focus
on equivalence for now. We therefore selected benchmarks relevant to equivalence only,
except for the [173, Fig. 2] example, which we modified slightly to restore equivalence
of terminating executions: see App.C.1.3. On the other hand, [173] provide multiple
versions of some of their benchmarks, depending on the maximum numbers of loop
iterations of the examples. Indeed, the symbolic execution technique they use is very
sensitive to this parameter. We do not have this constraint, as we use widening instead
of fully unrolling loops, so that we handle directly unbounded loops in a sound way.

Figure 3.30 summarizes the results of our analysis. It shows the analysis timings and
results of our prototype, as well as timings of the analyses of the related work, when
they are available (their analyses are all successful). All experiments were conducted on
a Intel® Core-i7™ processor. The precision of our analyses is comparable with that of
the original authors, with speedups of one order of magnitude or more. Some timing
differences, of the order of milliseconds, cannot be considered significant, especially as
the experiments are not performed on the same machines. A significant point, however,
is that the benchmark UnchLoop takes 2.8 seconds in [173] when the loop is limited to
five iterations. This is five times slower than the benchmark Comp. In contrast, with our
method, Const and UnchLoop are analyzed at roughly the same speed, though UnchLoop is
analyzed for an unbounded number of loop iterations. This difference in behaviors can
be explained as a benefit of widening over unrolling loops. Hence, our timing comparison
proves that our method can achieve at worst a similar speed, and it is also much more
scalable for problems difficult in previous work. Note that [173] compared their method
to well-established tools, such as Symdiff [112] and RVT [80], and observed speedups of
one order of magnitude and more with respect to them. Therefore, it is not useful to
compare our prototype with these tools on these benchmarks.

Most benchmarks are analyzed successfully with the polyhedra domain, without
partitioning. The seq benchmark, for instance, is analyzed precisely despite significant
changes in the control structure, as the matching of statements is established as part
of the syntax of double programs. Only the remove benchmark requires partitioning for
a successful analysis with the polyhedra domain. Four other benchmarks are analyzed
very efficiently with the non relational interval domain, thanks to the �♯p semantics.
Partitioning the state with respect to the values of Booleans improves the precision on
three other, but reduces efficiency. Nonetheless, some benchmarks, such as LoopSub,
cannot be analysed conclusively using a non relational numerical domain with semantics
D̃♯p nor �♯p. Indeed, related patches exchange the roles of two variables a and b, so

3.6. EVALUATION 81

that the challenge is not to infer a1 = a2 ∧ b1 = b2, but a1 = b2 ∧ b1 = a2. We there-
fore developed a dedicated abstract domain, to refine D̃♯p with automatically inferred
variable equalities. This domain is based on union-find data structure that maintains
a partitioning of the set V1 ∪ V2 ∪ Q of program variables. Two variables are part of
the same equivalence class if they are guaranteed to be equal. The associated abstract
lattice is the dual of the standard geometric lattice of partitions of a finite set: a ⊑ b
means that partition b refines partition a, i.e. every equivalence class of a is a union of
classes of b; ⊤ is the set of singleton variables; and the smallest non ⊥ element is the
whole set of variables. This abstract lattice has finite height, so we use union in place
of widening. The LoopSub benchmark is analysed successfully using a reduced product
between intervals and this domain.

82 CHAPTER 3. PATCH ANALYSIS

D
♯1

(p
ol

yh
ed

ra
)

D
♯1

(o
ct

ag
on

)
�

♯1
(in

te
rv

al
)

R
el

at
ed

Be
nc

hm
ar

k
Se

e
LO

C
R

el
at

ed
Pa

rt
iti

on
in

g
Pa

rt
iti

on
in

g
Pa

rt
iti

on
in

g
or

ig
in

A
pp

.
tim

e
N

o
Ye

s
N

o
Ye

s
N

o
Ye

s

[1
73

]

C
om

p
C

.1
.1

13
53

9
m

s
14

m
s

✓
18

m
s

✗
2

m
s

✗

C
on

st
C

.1
.2

9
54

1
m

s
7

m
s

✓
17

m
s

✓
1

m
s

✓

Fi
g.

2
C

.1
.3

14
–

4
m

s
✓

5
m

s
✓

1
m

s
✓

Lo
op

M
ul

t2
C

.1
.4

14
49

s
31

m
s

✓
16

5
m

s
✗

1
m

s
✗

Lo
op

Su
b

C
.1

.5
15

1.
2

s
19

m
s

✓
53

m
s

✗
2

m
s

✗

U
nc

hL
oo

p
C

.1
.6

13
2.

83
s

15
m

s
✓

36
m

s
✗

2
m

s
✓

[1
54

]
sig

n
C

.1
.7

12
–

6
m

s
✓

8
m

s
✗

42
0

m
s

✓
2

m
s

✗
40

0
m

s
✓

su
m

C
.1

.8
14

4
s

14
m

s
✓

30
m

s
✓

6
m

s
✗

3.
2

s
✓

4

[1
54

,1
55

]
co

py
1

C
.1

.9
37

2
s

23
m

s
✓

31
m

s
✓

9
m

s
✓

re
m

ov
e1

C
.1

.1
0

19
3

s
31

.6
s

✗
48

1
m

s
✓

42
m

s
✗

32
2

m
s

✓
7

m
s

✗

se
q1

C
.1

.1
1

41
11

s
75

m
s

✓
50

0
m

s
✗

2
m

s
✗

te
st

1
C

.1
.1

2
15

8
–

96
m

s
✓

52
1

m
s

✓
4

m
s

✓

Fi
gu

re
3.

30
:

Be
nc

hm
ar

ks

1
C

or
eu

til
s

2
on

ly
20

lo
op

ite
ra

tio
ns

3
on

ly
5

lo
op

ite
ra

tio
ns

4
on

ly
32

va
lu

es
of

le
n

3.7. RELATED WORK 83

s = input(-5,5);
b = input(0,1);
{ x = input(0,10); } ∥ {/* skip */}
while (b == 1) {

{/* skip */} ∥ { x = input(0,10); }
s = s + x;
b = input(0,1);
{ x = input(0,10); } ∥ {/* skip */}

}
assert_sync(s);

Figure 3.31: Reordering reads from an input stream

3.6.2 Handling streams

All the benchmarks of Table 3.30 were analyzed using fixed-length queues of length 1,
as the related works do not handle input streams. Note that abstracting infinite input
streams with fixed-length queues of length 1 is also enough to analyze some patches of
infinite-state programs with unbounded loops reading from a stream (e.g. a file), even
when patches reorder input statements across the body of unbounded loops.

Fig.3.31 shows an example. This patch reorders input statements in the loop, and
changes the number of input statements in terminating executions. The loop is un-
bounded, and the program is infinite-state. Terminating executions of the left and right
projections compute equal values for s, though possibly not for x. This double program
is analyzed successfully with D̃♯1, using any relational numerical domain: 33 ms for
polyhedra, 43 ms for octagon, and 18 ms for the reduced product between the domains
of intervals and variable equalities. To the best of our knowledge, no previous work has
sound and precise automatic analyses for patches of this type.

In the bounded abstraction of streams, the unbounded FIFO queue represents the
subsequence of input values read by the program ahead in the sequence, and not yet read
by the program behind. Though we are bounding this queue in the abstract, we retain
precise information on executions reading arbitrary long input sequences. The bounded
queue allows retaining relational information between all input values read with delays
less or equal to the bound, while non relational (interval) information is retained for
values read with larger delays. Fig. 3.32 shows a simple example. Using a queue of
length 1 is enough to infer the range of variable s in both projections of the double
program. On the contrary, a queue of length at least 2 is necessary to prove that both
programs compute equal values for s.

3.7 Related work

The problem of proving the functional equivalence of two programs, or program parts,
is fundamental [77]. It aims at comparing the behaviors of two programs running in the

84 CHAPTER 3. PATCH ANALYSIS

{ a = input(0,5); a = input(-5,0); } ∥ {/* skip */}
x = input(0,5);
x = input(-5,0);
s = a ∥ x;
assert(-5 <= s && s <= 0); // inferred with with a queue of length p ≥ 1
assert_sync(s); // inferred with a queue of length p ≥ 2

Figure 3.32: Relational and non relational information versus lengths of queues

same environment, i.e. their input-output relationships. Our approach to patch analysis
is an instance of this general problem, primarily focused on proving the equivalence of
syntactically close versions of a program. We thus first compare our work to other state-
of-the-art formal approaches in this field in Sec. 3.7.1. Then, we comment in Sec. 3.7.2 on
related work on other candidate applications of our analysis, such as inferring information
flow properties.

3.7.1 Program equivalence

[93] pioneered the field of semantic differencing between two versions of a procedure by
comparing dependencies between input and output variables. While they relied on un-
sound program analysis techniques, several formal approaches have been developed since
this work, leveraging symbolic execution, deductive methods or abstract interpretation.

Symbolic execution

Symbolic execution methods [157, 173, 142] have proposed analysis techniques for pro-
grams with small state space and bounded loops, which may support modular regression
verification. Unlike that line of work, we can soundly handle programs with unbounded
loops like the example of Figs. 3.1 and 3.2, by covering the (possibly infinite) set of exe-
cution paths. Some approaches [123] combine symbolic execution and program analysis
techniques to improve the coverage of patches with tests suites, but such testing coverage
criteria bring no formal guarantee of correctness, unlike our method.

Deductive methods

RVT [80] and SymDiff [112, 113] combine two versions of the same program, with
equality constraints on their inputs, and compile equivalence properties into verification
conditions to be checked by SMT solvers. Rêve [73] uses Horn constraint solving to infer
coupling relations and relational procedure summaries, which works well for similarly
structured integer programs. They rely on user-provided relational invariants to enable
proofs of equivalence. [110] improves automation by leveraging SMT solvers for Horn
constraints to infer relational invariants, in a CEGAR-based approach. On the contrary,
we rely on abstract domains to infer equivalence properties. [110] targets pointer pro-
grams, which our type Nimp−2 toy language does not support. Yet, we will present our

3.7. RELATED WORK 85

implementation of patch analysis for C programs including full support for pointers in
Chapter 5. We will evaluate this implementation on benchmarks from [110] in Sec. 5.4.1.

Abstract interpretation

The Dizy [154] and Score [155] tools leverage numerical abstract interpretation to
establish equivalence under abstraction. In particular, the authors give a semi-formal
description of an operational concrete trace semantics. This semantics is not defined
by induction on the syntax, and does not support streams. Our main contribution,
with respect to this work, is a novel, fully formalized, denotational concrete collecting
semantics by induction on the syntax, which can deal with programs reading from infinite
input streams, and a novel numerical domain to bound differences between the values
of the variables in the two programs. Another difference is that [154] relies on program
transformations to build a correlating program, which they analyze according to simple
program semantics, while our semantics is defined for double programs directly. In their
follow-up paper [155], the authors of [154] improve the precision of their analysis in
the case of program versions with very different control structures: they use analysis
results to choose an interleaving of the statements of program versions that minimizes
abstract semantic difference. We will show in Chapter 4 our approach to automating
the construction of a double program from a pair of program versions, and compare it
informally to [155].

The Fluctuat [124, 81] static analyzer compares the real and floating-point seman-
tics of numerical programs to bound errors in floating-point computations. Like in our
concrete semantics, they address unstable test analysis [82]. The authors use the zono-
tope abstract domain to bound the difference between real and floating-point values.
In future work, we plan to experiment combining the Delta domain with the zonotope
abstract domain to bound the differences between the variables of two program versions.

3.7.2 Information flow

Program equivalence is concerned with comparing pairs of executions of two programs
P and P ′ running in the same environment. The case P = P ′ is of little interest for de-
terministic programs, as they obviously have the same behavior. However, it is relevant
for non-determistic programs, such as Nimp−2 programs using the rand primitive. In
that case, the program semantics P2JP K from Definition 25 maps an input stream to a
set of reachable pairs of output sequences of program P . Such a set is a program prop-
erty coined “2-safety property” in [170], which defines it informally as a “property that
can be refuted by observing two finite traces”. 2-safety properties are a class of hyper-
properties [43] that includes information flow properties such as termination insensitive
noninterference and secrecy.

As a side-effect of our method, our analysis is able to prove that two sets of executions
of the same program write equal values into some output variables. This is useful for
proving information flow properties, such as secrecy. For instance, Fig. 3.33 shows two
programs with public variable pub and secret variable sec. These programs read pub as

86 CHAPTER 3. PATCH ANALYSIS

pub = input(-10,10);
sec = rand(-5,5);
if (sec < 0) pub = 1;
pub = 0;
assert_sync(pub); // OK

(a) secure program

pub = input(-10,10);
sec = rand(-5,5);
if (sec < 0) pub = 1;
pub = pub + 1;
assert_sync(pub); // failed

(b) insecure program

Figure 3.33: Proving information flow properties

an input value, and choose sec non-deterministically. For all pairs of executions reading
equal values in pub, but possibly different values in sec, Program 3.33(a) computes equal
values for pub, hence ensuring secrecy. On the contrary, Program 3.33(b) leaks the sign
of sec. Our analysis is able to distinguish these two programs. Indeed, it compares the
semantics of two versions of each program. In this case, both versions have exactly the
same code.

[21] introduced self-composition, as part of a proof method for information flow prop-
erties. Given a simple programs P , they prove safety properties of the simple program
P1;P2, where Pk denotes program P with variables x renamed to xk to avoid conflicts.
Their proof method is sound and relatively complete. However, unlike our method, it
cannot be automated, as it would require computing the input-output relations of P1
and P2 before comparing them, i.e. their concrete semantics. Yet, the proofs derived
with their method are equivalent to successful analyses of P ∥ P in our setting, which
is the same as analyzing directly P as a double program, the two versions having ex-
actly the same code. Our double program semantics can thus be seen as a form of
self-composition in this context. [170] generalized the applicability of self-composition
to the verification of any 2-safety property, and several works [18, 20, 61, 146, 111, 144]
rely on product programs based on self-compositions for the analysis of hyperproperties.
In particular, [19, 111, 144] can deal with syntactically dissimilar programs, as in our
method. In addition, [111, 144] automate both the construction of the self-composition
(of control-flow graphs) and the verification of 2-hypersafety properties (by abstract
interpretation). Though hyperproperties are not the primary focus of this thesis, we
conducted preliminary experiments on small pieces of code from the papers of other
authors [71, 170, 20, 18], demonstrating that our analysis could prove automatically in-
formation flow properties such as secrecy and noninterference. For instance, our analysis
of double C programs proves successfully noninterference on a C benchmark from [20, 18].
This will be reported as part of our experimental evaluation in Sec. 5.4.1.

This new application of our analysis is worth exploring in future work. In particular,
we could investigate various abstractions of our concrete semantics to infer different
kinds of information flow properties, and tackle some challenges such as declassification.

3.8. CONCLUSION 87

3.8 Conclusion
In this chapter, we have presented a static analysis for software patches. Given two
syntactically close versions of a program, our analysis can infer a semantic difference, and
prove that both programs compute the same outputs when run on the same inputs. Our
method is based on abstract interpretation, and parametric in the choice of an abstract
domain. We presented a novel concrete collecting semantics, expressing the behaviors
of two syntactically close versions of a program at the same time. This semantics deals
with programs reading from unbounded input streams. We also introduced a novel
numerical domain to bound differences between the values of the variables in the two
programs, which has linear cost. We implemented a prototype for a toy language, and
experimented on a few small examples from the literature.

Our analysis does not directly run on a pair of program versions. Instead, we analyze
a double program, which we have assumed given so far. We will show how to automate
the construction of a double program in Chapter 4. Then, we will show in Chapter 5
how to implement our analysis on the Mopsa platform, to enable the analysis of realistic
patches of non purely numerical C programs. In the following chapters, we will consider
optimizations and generalizations of our approach to address portability analysis, a
related problem where we wish to compare the semantics of the same program in two
different environments.

In future work, we plan to experiment with other abstract domains for our analysis,
such as zonotopes, to investigate different trade-offs between precision and cost of our
analysis. We will also explore the connections between our semantics and information
flow problems.

Chapter 4

Double program construction

The patch analysis presented in Chapter 3 is designed to run on a double program, a
syntactic structure introduced in Sec. 3.2. We have so far assumed this structure given.

Yet, finding a suitable double program is no trivial issue. Indeed, given two simple
programs P1 and P2, one can construct multiple double programs P such that P1 = π1(P)
and P2 = π2(P). In addition, as we will demonstrate on examples in Sec. 4.1, the
expressiveness of the invariants that need to be inferred to prove equivalence properties
between P1 and P2 may depend critically on the chosen double program P .

The design of a front-end that constructs a suitable double program P from a pair of
program versions P1 and P2 is thus subject to a trade-off between its computational cost
and that of the subsequent patch analysis. Our a approach relies on syntactic similarities
to merge simple statements of P1 and P2 into double statements of P . Our heuristic will
be presented in Sec. 4.2.

Finally, we will present related works in Sec. 4.3.

4.1 Motivating examples
In this section, we give three examples selected from related works. Each example
consists of a pair of program versions P1 and P2, both of which contain an unbounded
loop.

1. Example 25 is inspired by a motivating example from [18], also referred to as
barthe2 in [73, 108, 110]. P1 and P2 are syntactically similar and feature identical
control structures. Yet P2 features an unrolling of the loop of P1.

2. Example 26 is a simplified version of the seq benchmark from [154], which is also
the motivating example of [155]. P1 and P2 feature significant syntactic difference
and dissimilar control structures.

3. Example 27 is a variant of Example 25, and a simplified version of the motivating
example of [40]. Wit respect to P1, P2 features a loop optimization known as
vectorization, which results in a significant change in the number of loop iterations.

89

90 CHAPTER 4. DOUBLE PROGRAM CONSTRUCTION

For each example, we describe multiple possible double programs, sorted by increas-
ing sophistication of the construction:

• The simplest double program is the parallel composition P1 ∥ P2;
• A straightforward double program can be constructed by merging identical state-

ments at matching lines, while double statements or double expressions are intro-
duced wherever syntactic differences arise.

• More involved double program constructions are also demonstrated: program
transformations such as loop unrollings are applied to P1 and P2 before statements
are merged in the straightforward way.

Each such double program features a different trade-off between the sophistication the
construction, and the expressiveness of the invariants that should be inferred for a suc-
cessful patch analysis.

Example 25 (Loop unrolling). Consider the program versions P1 and P2 on Fig. 4.1 –
inspired by a motivating example from [18]. Both versions write equal outputs c = a× b
at line 9, assuming they have read equal inputs in a and b at lines 1 and 2. Multiple
double programs can be built from P1 and P2. We describe three options below, sorted
by increasing tuning of the double program structure, and decreasing expressiveness of
the invariants required for a successful analysis.

1. The most naive double program is the parallel composition P1 ∥ P2. A successful
analysis of this double program requires computing the input-output relations of P1
and P2, and comparing these relations. This amounts to computing their concrete
semantics, which requires inferring non-linear loop invariants of the form c1 =
i1× b1 and c2 = (i2 + 1)× b2. Such invariants require an expressive domain, which
may be detrimental to scalability.

2. A second possible double program P is shown on Fig. 4.1(c). P is built in a
straightforward way: identical statements at equal lines are merged, while double
statements or expressions are introduced in case of syntactic differences. A suc-
cessful analysis of P requires inferring the loop invariant c2 = c1 + b2 ∧ i2 = i1 + 1.
This invariant can be inferred by the polyhedra domain.

3. A third possible double program P ′ is shown on Fig. 4.1(d). The design of P ′ is
more slightly more involved: the first iteration of the loop of P1 is unrolled before
aligning statements straightforwardly. A successful analysis of P ′ requires inferring
the trivial loop invariant c2 = c1 ∧ i2 = i1. This invariant can be inferred by the
polyhedra domain, a simple equality domain, or a weakly relational domain with
near-linear cost, such as the �♯ domain.

Example 26 (Simplified Coreutils seq benchmark). Fig. 4.2 shows a simplified version
of the seq benchmark from [154], which is also the motivating example of [155]. This
benchmark is based on a patch of the print_numbers(first,step,last) function of the
GNU Coreutils seq program. This function prints out a sequence of numbers, starting
from first and ending with last, in intervals of length step. Fig. 4.2 focuses on a constant
step = 2 and a single point of output for simplicity. Figs. 4.2(a) and 4.2(b) show two
versions of print_numbers, denoted P1 and P2. We give line numbers for both versions,

4.1. MOTIVATING EXAMPLES 91

1 : a← input(1, 100);
2 : b← input(−100, 100);
3 : c← 0;
4 : i← 0;
5 : while (i < a) {
6 : c← c+ b;
7 : i← i+ 1
8 : }
9 : output(c)

(a) Left version P1

1 : a← input(1, 100);
2 : b← input(−100, 100);
3 : c← b;
4 : i← 1;
5 : while (i < a) {
6 : c← c+ b;
7 : i← i+ 1
8 : }
9 : output(c)

(b) Right version P2

1 : a← input(1, 100);
2 : b← input(−100, 100);
3 : c← 0 ∥ b;
4 : i← 0 ∥ 1;
5 : while (i < a) {
6 : c← c+ b;
7 : i← i+ 1
8 : }
9 : output(c)

(c) Straightforward
double program P

1 : a← input(1, 100);
2 : b← input(−100, 100);
3 : c← 0 ∥ b;
4 : i← 0 ∥ 1;

if (i < a) {
c← c+ b; skip
i← i+ 1;
}

5 : while (i < a) {
6 : c← c+ b;
7 : i← i+ 1
8 : }
9 : output(c)

(d) Double program with unrolling P ′

Figure 4.1: Equivalent program versions

as a support for explanations. Note that we added some blank lines in P1, solely to
help the human eye match its statements with those of P2 – the way we build double
programs does not rely on line numbers.

P1 computes the current number x of the sequence (line 9), as part of a loop starting
from index i = 0, and writing x to the output r as long as x ≤ last (line 10). P2,
in contrast, first checks whether first ≤ last (line 5) before computing the sequence
of numbers. It then pre-computes the first number and enters the loop with index
i = 1. While the body of the loop of P1 computes the number x before writing it to
r, the body of the loop of P2 starts with writing the previous number x to r (line 9)
before computing the next number (line 12). P2 may print an extra number under some
conditions, modelled by Boolean more on Fig. 4.2(b). We assume more = false, as this
is a necessary condition for equivalence.

Multiple double programs can be constructed from P1 and P2. The most naive one
is parallel composition P1 ∥ P2. To prove equivalence on the resulting double program,
the analysis must infer loop invariants of the form r = first+ 2×max{n ∈ N | 0 ≤ n <

92 CHAPTER 4. DOUBLE PROGRAM CONSTRUCTION

1 : first← input(0, 100);
2 : last← input(0, 100);
3 : break ← false;
4 :
5 :
6 :
7 : i← 0;
8 : while (¬break) {
9 : x← first+ i× 2;
10 : if (last < x)
11 : then break ← true
12 : else r ← x;
13 :
14 : i← i+ 1
15 : }
16 :
17 : output(r)

(a) P1 (Coreutils v6.9)

1 : first← input(0, 100);
2 : last← input(0, 100);
3 : break ← false;
4 : out← (last < first);
5 : if (¬out) {
6 : x← first;
7 : i← 1;
8 : while (¬break) {
9 : r ← x;
10 : if (out)
11 : then break ← true
12 : else { x← first+ i× 2; out← (last < x);
13 : if (out ∧ ¬more) then break ← true };
14 : i← i+ 1
15 : }
16 : }
17 : output(r)

(b) P2 (Coreutils v6.10)

1 : first← input(0, 100);
2 : last← input(0, 100);
3 : break ← false;
4 : i← 0 ∥ out← (last < first);
5 : if (true ∥ ¬out) {
6 : skip x← first;
7 : i← 1;
8 : while (¬break) {
9 : x← first+ i× 2 ∥ r ← x;
10 : if (last < x ∥ out)
11 : then break ← true
12 : else

r ← x
x← first+ i× 2; out← (last < x);

13 : if (out ∧ ¬more) then break ← true
14 : i← i+ 1
15 : }
16 : }
17 : output(r)

(c) Double program P

Figure 4.2: Simplified Coreutils seq benchmark

i ∧ first+ 2× n ≤ last }, which would require an expressive domain.
Like with Example 25, a straightforward double program may be built by merging

identical statements at equal lines. This strategy will merge only the statements at

4.1. MOTIVATING EXAMPLES 93

lines 1, 2, 3 and 17. Indeed, the test on line 5 of P2 has no counterpart in P1. As a
consequence, lines 7 to 15 of P1 and lines 5 to 16 P2 can only be aligned in “raw” double
statement P 7..15

1 ∥ P 5..16
2 . To prove equivalence with the resulting double program,

the analysis must infer the same invariants as with the most naive alignment P1 ∥ P2.
Yet, the resulting double program may be improved by first applying a simple program
transformation to P1: rewrite P 7..15

1 to if (true) P 7..15
1 , in order to match the test on line

5 of P2. Then, applying the straightforward merging strategy to the resulting P ′1 and
P2, we obtain the double program P shown on Fig. 4.2(c). P aligns the loops of P1 and
P2. As a consequence, a successful patch analysis of P must infer a single loop invariant,
of the form r1 = first1 + 2 × (i1 − 1) ∧ i2 = i1 + 1 ∧ r2 = first2 + 2 × (i1 − 2). Such
invariants may be inferred by the polyhedra domain.

A more involved double program P ′ may be constructed, by applying aggressive
program transformations to P ′1 and P2 before merging statements. Let P ′′1 and P ′′2
denote the results of these preliminary program transformations. They are shown on
Figs. 4.3(a) and 4.3(b), respectively.

Consider P ′′1 . The assignment of x line 9 of P1 has been moved before the loop (line
7), and after incrementation of the loop counter (line 14). It has also been transformed
into a trivial test statement if (false) then skip else x ← . . . (line 13), mimicking
the control structure of lines 10, 11, and 12 of P2. Line 9 of P ′′2 exhibits a similar
transformation, mimicking the control structure of lines 9, 10 and 11 of P ′′1 . Finally,
independent lines 6 and 7 of P2 are swapped.

Let us now construct a double program from P ′′1 and P ′′2 . We merge the test at lines
9, 10 and 11 of P ′′1 with the trivial test at line 9 of P ′′2 . We also merge the trivial test at
line 13 of P ′′1 with the test at lines 10, 11, and 12 of P ′′2 . We obtain the double program
P ′ shown on Fig. 4.3(c), which ensures that statements x← first+ i× 2 and r ← x are
analyzed jointly, with the double program semantics. As a consequence, a simple domain
maintaining equalities between the left and right version of every program variable is
expressive enough for a successful analysis of double program P ′. Note that [155] comes
up with a similar alignment of program versions, by heuristically searching for an optimal
interleaving of statements of P1 and P2 during their analysis.

Example 27 (vectorization). Fig. 4.4 shows a variant of Example 25. This variant is also
a simplified version of the motivating example of [40]. Fig.4.4(a) shows program P1, while
Fig.4.4(b) shows program P2. P2 vectorizes the loop of P1. The original example of [40]
motivates this optimization by featuring 32-bit operations for P1 and 64-bit operations
for P2. Like with Example 25, both versions write equal outputs c = a×b at line 13, and
a successful analysis of the parallel composition P1 ∥ P2 requires inferring non-linear loop
invariants. Yet, unlike with Example 25, a straightforward double program P obtained
by merging identical statements at equal lines does not improve the situation. Though
the loops of P1 and P2 are (partly) merged, a successful analysis requires inferring non-
linear invariants, as loops do not run a the same paces: linear invariants of the form
i2 = 2× i1 ∧ c2 = 2× c1 (if a2 is even) or i2 = 2× i1 + 1 ∧ c2 = 2× c1 + b1 (if a2 is odd)
hold only as long as i2 < a2.

94 CHAPTER 4. DOUBLE PROGRAM CONSTRUCTION

1 : first← input(0, 100);
2 : last← input(0, 100);
3 : break ← false;
4 :
5 : if (true) then
6 : i← 0;
7 : x← first+ i× 2;
8 : while (¬break) do
9 : if (last < x)
10 : then break ← true
11 : else r ← x;
12 : i← i+ 1;
13 : if (false) then skip
14 : else x← first+ i× 2
15 : output(r)

(a) P ′′
1 (P1 transformed)

1 : first← input(0, 100);
2 : last← input(0, 100);
3 : break ← false;
4 : out← (last < first);
5 : if (¬out) then
6 : i← 1;
7 : x← first;
8 : while (¬break) do
9 : if (false) then skip else r ← x;
10 : if (out)
11 : then break ← true
12 : else { x← first+ i× 2; out← (last < x);
13 : if (out ∧ ¬more) then break ← true };
14 : i← i+ 1
15 : output(r)

(b) P ′′
2 (P2 transformed)

1 : first← input(0, 100);
2 : last← input(0, 100);
3 : break ← false;
4 : skip ∥ out← (last < first);
5 : if (true ∥ ¬out) then
6 : i← 0 ∥ 1;
7 : x← first+ i× 2 ∥ first;
8 : while (¬break) do
9 : if (last < x ∥ false)
10 : then break ← true ∥ skip
11 : else r ← x;
12 : i← i+ 1 ∥ skip;
13 : if (false ∥ out) then skip ∥ break ← true
14 :

else
{ x← first+ i× 2; }

;skip x← first+ i× 2; out← (last < x);
if (out ∧ ¬more) then break ← true

skip ∥ i← i+ 1
15 : output(r)

(c) Double program P ′

Figure 4.3: More involved double program construction

For a successful analysis using only linear invariants, the loop of P1 must be unrolled
before the construction of the double program, as shown on Fig 4.4(c). The first iteration
of the loop is unrolled to match the test at line 5 of P2, and cyclic unrolling is applied to
the loop body, to match the increment of the loop counter of P2. The resulting simple

4.1. MOTIVATING EXAMPLES 95

1 : a← input(1, 100);
2 : b← input(−100, 100);
3 : c← 0;
4 : i← 0;
5 :
6 :
7 :
8 :
9 : while (i < a) {
10 : c← c+ b;
11 : i← i+ 1
12 : }
13 : output(c)

(a) Left version P1

1 : a← input(1, 100);
2 : b← input(−100, 100);
3 : c← 0;
4 : i← 0;
5 : if (a % 2 = 1) {
6 : c← b;
7 : i← 1
8 : }
9 : while (i < a) {
10 : c← c+ 2× b;
11 : i← i+ 2
12 : }
13 : output(c)

(b) Right version P2

1 : a← input(1, 100);
2 : b← input(−100, 100);
3 : c← 0;
4 : i← 0;
5 : if (i < a) {
6 : c← c+ b;
7 : i← i+ 1
8 : }
9 : while (i < a) {
10 : if (i+ 1 < a) {
11 : c← c+ b;
12 : i← i+ 1;
13 : c← c+ b;
14 : i← i+ 1;
15 : } else {
16 : c← c+ b;
17 : i← i+ 1
18 : }
19 : }
20 : output(c)

(c) Left version P ′
1 after unrollings

1 : a← input(1, 100);
2 : b← input(−100, 100);
3 : c← 0;
4 : i← 0;
5 : if (i < a ∥ a % 2 = 1) {
6 : c← c+ b ∥ b;
7 : i← i+ 1 ∥ 1
8 : }
9 : while (i < a) {
10 : if (i+ 1 < a ∥ true) {
11 : c← c+ b ∥ c+ 2× b;
12 : i← i+ 1 ∥ i+ 2;
13 : c← c+ b;
14 : i← i+ 1;
15 : } else {
16 : c← c+ b; skip
17 : i← i+ 1
18 : }
19 : }
20 : output(c)

(d) Double program P ′ after unrollings

Figure 4.4: Simplified motivating example of [40]

program P ′1 is then merged with a simple program P ′2 obtained by wrapping the body
of the loop of P2 inside an if (true) statement – to match the test line 10 of P ′1. The
resulting double program P ′ is shown on Fig. 4.4(d).

96 CHAPTER 4. DOUBLE PROGRAM CONSTRUCTION

P1 ∥ P2 P P ′

Example 25 non-linear linear equalities
Example 26 non-linear linear equalities
Example 27 non-linear non-linear equalities

Figure 4.5: Summary of possible double programs and invariants

Discussion Fig. 4.5 shows a summary of possible double programs for Examples 25,
26 and 27, with the classes of invariants that need be inferred to prove equivalence. For
all three examples, we have been able to construct double programs such that proofs of
equivalence only require inferring linear invariants (or weaker invariants), which can be
done by the polyhedra abstract domain (or less expressive domains such as an equality
domain or the �♯ domain). As noted by multiple authors [60, 40, 85], this observation
generalizes to most programs transformations, including some of the loop optimizations
performed by compilers: such a double program exists in most cases. Nonetheless,
as demonstrated by Examples 26 and 27, automating the construction of such a double
program may be challenging. Example 27, in particular, features an optimization known
as vectorization that changes the number of iterations of a loop significantly. As noted
by [40], this is also the case of other loop optimizations, such as loop unrolling, and
loop peeling. For such cases, syntactic similarity is not enough to guide the construction
of a double program: alignments of loop iterations should be guided by semantical
information. Such cases occur typically in the context of translation validation, when
targeting black-box verification of optimizations performed by modern compilers [122].
On the contrary, such challenging benchmarks occur rarely in patches of hand-written
code, which is our primary target. In our experiences on open source and industrial code,
we have encountered patches of this kind solely in some hand-crafted optimizations of
C library functions such as memcpy.

4.2 Program merging algorithm
In this section, we present our approach to the construction of a double programs P
from a pair of simple program versions P1 and P2. It takes the form of an algorithm,
named merge_stmt, which computes a double statement s ∈ dstat from two simple
statements s1, s2 ∈ stat.

As shown in Sec. 4.1, a successful patch analysis relies on a trade-off between the
computational resources invested in the construction of a “suitable” double program P ,
and the expressive power of the abstract domain used to infer necessary invariants. As
we primarily target patch analysis – rather than translation validation, our approach
focuses on heuristics based on syntactic similarity and simple program transformations,
leaving more advanced approaches for future work.

As a consequence, merge_stmt exhibits the following results on the examples of
Sec. 4.1:

• When run on Example 25 it produces the double program P shown on Fig. 4.1(c).

4.2. PROGRAM MERGING ALGORITHM 97

• When run on Example 26, it produces the double program P shown on Fig. 4.2(c).
• When run on Example 27, it produces the straightforward double program P

obtained by merging identical statements at equal lines.
The resulting double programs enable successful patch analyses of Examples 25 and 26
with the polyhedra abstract domain (linear invariants). In constrast, the analysis of
Example 27 (vectorization) is inconclusive.

In the remainder of this section, we describe our merge_stmt algorithm. Our
implementation leverages the Mopsa [98] platform to support C programs. We thus
delay experimental evaluation to the related Chapter 5. We nonetheless use the more
restraint syntax of Nimp and Nimp2 to simplify the presentation in the present chapter.

4.2.1 Overview

Let us start with a high-level overview of our merge_stmt heuristic, which constructs
a double statement s from two input simple statements s1 and s2. s can be seen as a
refinement of s1 ∥ s2. A natural idea is therefore to “push” ∥ symbols from the root of
the abstract syntax tree down to nested nodes, as deeply as possible. The goal of this
approach is to benefit from our double program semantics, which takes advantage of
syntactic similarities to enable joint analyses of program versions, by induction on the
syntax. This makes it possible to infer relations between variables of different program
versions, without the need for very expressive abstract domains.

To this aim, our merge_stmt algorithm operates in three steps. First, identical
statements from top-level sequences are merged. Then, sequences of unmerged pairs
of statements from P1 and P2 are gathered into maximal pairs of sequences. Finally,
similar control structures are aligned in each maximal pair.

First step: merging identical statements

In a first step, assume s1 and s2 are sequences of statements. merge_stmt merges the
representations of identical statements in these sequences, leaving version-specific state-
ments unmatched. This first step creates simple statements for every pair of matched
statements, and double statements for all unmatched statements.

For instance, starting with simple statements P1 and P2 of Example 26 on Fig. 4.2,
this first step produces the double statement Φ1:

Φ1 ≜ P 1..3 ; (P 7
1 ∥ skip) ; (P 8..15

1 ∥ skip) ; (skip ∥ P 4
2) ; (skip ∥ P 5..16

2) ; P 17

where si..j denotes the sub-statement of s at lines i to j, and si is short for si..i. The
subsequence (P 7

1 ∥ skip) ; (P 8..15
1 ∥ skip) ; (skip ∥ P 4

2) ; (skip ∥ P 5..16
2) of Φ1

demonstrates that this first step may create sequences of top-level double statements.
Such subsequences are obvious candidates for further merging heuristics. A natural idea
is to gather these subsequences and construct, for each of them, a new pair of simple
statements s′1 and s′2 to be merged further. For instance, s′1 ≜ P 7

1 ; P 8..15
1 = P 7..15

1 and
s′2 ≜ P 4

2 ; P 5..16
2 = P 4..16

2 in the case of Example 26.

98 CHAPTER 4. DOUBLE PROGRAM CONSTRUCTION

Second step: merging sequences of top-level double statements

In a second step, merge_stmt thus greedily merges sequences of top-level double state-
ments into top-level double sequences of simple statements.

For instance, in the case of Example 26, this second step reduces Φ1 to Φ2 ≜
P 1..3 ; (s′1 ∥ s′2) ; P 17. The problem is now to find a good alignment of the sequences s′1
and s′2, which are known to contain no identical statements. Yet, we would like to “push”
∥ symbols further down in the syntax tree. A simple idea is thus to consider syntactic
similarities between statements that are part of the sequences s′1 and s′2, e.g. similar
control structures, which may provide opportunities for partial merges of statements.

Third step: aligning similar control structures

In a third step, merge_stmt attempts indeed to merge every remaining top-level double
statement into a sequence of simple or double statements, using heuristics based on
syntactic similarity. For instance, assignments to identical targets and loops with similar
bodies are merged together.

No obvious similarity occurs between s′1 and s′2 in the case of Example 26: P 7
1 and P 4

2
feature assignments to different targets, while P 8..15

1 and P 5..16
2 feature dissimilar control

structures. Yet, P 5..16
2 includes the nested P 8..15

2 statement, which exhibits similarities to
P 8..15

1 : P 8..15
1 and P 8..15

2 feature loops with identical guards and bodies including identical
statements (P 14

1 = P 14
2 and P 11

1 = P 11
2), as well as similar control structures (P 10..12

1 and
P 10..13

2). A natural semantics-preserving program transformation is to rewrite P 8..15
1 to

the equivalent if true P 8..15
1 , in order to match the enclosing control structure of P 5..16

2 .
Finally, our problem is now to merge P 7

1 ; if true P 8..15
1 and s′2. By merging similar con-

trol structures at identical lines, we obtain the double statement P 4..16 shown on Fig. 4.2
of Sec. 4.1, which completes the construction of double program P for Example 26.

4.2.2 Formalization

Let us now formalize the description of merge_stmt. To this aim, we use a set of
term-rewriting systems:

merge_stmt(s1, s2) = s
△⇐⇒ s1 ∥ s2 −→?

eq−→ω
glue−→?

ctrl s

The three rewriting systems −→?
eq, −→?

ctrl and −→ω
glue formalize the three steps

introduced in the informal overview (Sec. 4.2.1). The definitions for −→?
eq, −→?

ctrl and
−→ω

glue are shown on Figs. 4.8 and 4.9. We use the formalism of rewriting systems with
conditionals and priority ordering [12, 13, 137]. We use priorities to enforce determinism,
while keeping conditionals compact. Indeed, while rewriting systems are often used
to describe relations or non-deterministic procedures, merge_stmt is a deterministic
algorithm. Priorities are defined as a partial ordering over rewrite rules, which is also
a total order for every pair of conflicting rules. We use Hasse diagrams to define rule
priorities. For instance, rule Nominal has priority over rule Default1 in Fig. 4.8:
−→?

eq (resp. −→?
ctrl) attempts to reduce the input s1 ∥ s2 with −→eq (resp. −→ctrl),

4.2. PROGRAM MERGING ALGORITHM 99

id.stmt
s ∥ s −→r s

seq1.1
s1 ∥ s2 −→r s s′1 ∥ s′2 −→r s

′

(s1; s′1) ∥ (s2; s′2) −→r s; s′
s1 ∥ s2 −→r s

(s1; s′1) ∥ (s2; s′2) −→r s; (s′1 ∥ s′2)
seq1.2

seq2.1
(s1; s′1) ∥ s′2 −→r s s′1 ∥ (s2; s′2) −→r s

′ =⇒ |s′| < |s|
(s1; s′1) ∥ (s2; s′2) −→r (skip ∥ s2); s

seq2.2
s′1 ∥ (s2; s′2) −→r s

′ (s1; s′1) ∥ s′2 −→r s =⇒ |s| ≤ |s′|
(s1; s′1) ∥ (s2; s′2) −→r (s1 ∥ skip); s′

seq3.1
s1 ∥ s2 −→r s

s1 ∥ (s2; s′2) −→r s; (skip ∥ s′2)
s1 ∥ s2 −→r s

(s1; s′1) ∥ s2 −→r s; (s′1 ∥ skip)
seq3.2

seq3.3
s1 ∥ s′2 −→r s

′

s1 ∥ (s2; s′2) −→r (skip ∥ s2); s′
s′1 ∥ s2 −→r s

′

(s1; s′1) ∥ s2 −→r (s1 ∥ skip); s′
seq3.4

Figure 4.6: Common reduction rules of double program rewriting systems −→r for
r ∈ { eq, ctrl }.

and defaults to the identity if reduction fails. −→ω
glue, defined on Fig. 4.9, greedily

merges sequences of top-level double statements, in order to implement the second step
introduced in Sec. 4.2.1.

First step: merging identical statements

The definition of −→eq is given by Figs. 4.6 and 4.7. Reduction rules are defined on
Fig. 4.6 (with r = eq), while the priority ordering between rules is depicted in blue
on the Hasse diagram shown in Fig. 4.7. Rule id.stmt has the highest priority. It
is is an axiom that states that every pair of syntactically equal simple statements
is merged into a shared simple statement. The lower-priority rules seqx.y merge se-
quences of simple statements. They reduce a pair of sequences of simple statements
s1 ∥ s2 = (s0

1; . . . ; sn
1) ∥ (s0

2; . . . ; sp
2) to a sequence of simple and double statements

s = s0; . . . ; sq, such that q ≤ n+ p, and

∀i < q : ∃i1 < n, i2 < p :
(si = si1

1 = si2
2 ∈ stat ∨)

∃j1 < n, j2 < p : si = (si1
1 ; . . . ; sj1

1) ∥ (si2
2 ; . . . ; sj2

2)

Note that we use the convention si
k; . . . ; sj

k = skip if j < i. Moreover, the subsequence
of statements in s that are simple statements is the longest common subsequence of

100 CHAPTER 4. DOUBLE PROGRAM CONSTRUCTION

seq3.3 seq3.4

seq3.1 seq3.2

seq2.1 seq2.2

seq1.2

seq1.1

id.stmt

if2.2 if2.3

if1.2 if2.1 if1.3

dass if1.1

while1

while2

while-if

if-while

Figure 4.7: Hasse diagram for the priority ordering between rules from Fig. 4.6 and
Fig. 4.10.

nominal
s1 ∥ s2 −→r s

s1 ∥ s2 −→?
r s

default1
s1 ∥ s2 −→?

r s1 ∥ s2

Nominal

Default1

Figure 4.8: Rewriting systems −→?
r for r ∈ { eq, ctrl }.

glue
(s1 ∥ s2); (s′1 ∥ s′2) −→glue (s1; s′1) ∥ (s2; s′2)

s0 −→glue . . . −→glue s −̸→ glue

s0 −→ω
glue s

iter

Figure 4.9: rewriting system −→ω
glue

statements of s1 and s2. This property is ensured by rules seq2.1 and seq2.2, with the
measure |s| ≜ |{ i ∈ N | si ∈ stat }|.

Consider the case of Example 26. Fig. 4.11 shows a derivation tree for the reduction
P1 ∥ P2 −→eq Φ1 introduced in Sec. 4.2.1. Note that some premises are omitted in the
two occurrences of rule seq2.2, for readability: for both occurrences, either reduction
in the premises produces the longest common subsequence.

Remark 23 (Implementation with dynamic programming). A straightforward recursive
implementation1 of these rules is inefficient, as intermediate results are recomputed
multiple times. It can be improved through memoization2 techniques. We nonethe-
less use a classical iterative algorithm3 based on standard dynamic programming tech-

1https://rosettacode.org/wiki/Longest_common_subsequence#Recursion_5
2https://rosettacode.org/wiki/Longest_common_subsequence#Memoized_recursion
3https://rosettacode.org/wiki/Longest_common_subsequence#Dynamic_programming_6

https://rosettacode.org/wiki/Longest_common_subsequence#Recursion_5
https://rosettacode.org/wiki/Longest_common_subsequence#Memoized_recursion
https://rosettacode.org/wiki/Longest_common_subsequence#Dynamic_programming_6

4.2. PROGRAM MERGING ALGORITHM 101

id.cond
c ∥ c −→ctrl c

id.exp
e ∥ e −→ctrl e

x1 ∥ x2 −→ctrl x

(x1 ← e1) ∥ (x2 ← e2) −→ctrl (x← e1 ∥ e2)
dass

while1
c1 ∥ c2 −→ctrl c s1 ∥ s2 −→ctrl s

while c1 do s1 ∥ while c2 do s2 −→ctrl while c do s

while2
s1 ∥ s2 −→ctrl s

while c1 do s1 ∥ while c2 do s2 −→ctrl while c1 ∥ c2 do s

if1.1
c1 ∥ c2 −→ctrl c s1 ∥ s2 −→ctrl s s′1 ∥ s′2 −→ctrl s

′

if c1 then s1 else s′1 ∥ if c2 then s2 else s′2 −→ctrl if c then s else s′

if1.2
c1 ∥ c2 −→ctrl c s′1 ∥ s′2 −→ctrl s

′

if c1 then s1 else s′1 ∥ if c2 then s2 else s′2 −→ctrl if c then s1 ∥ s2 else s′

if1.3
c1 ∥ c2 −→ctrl c s1 ∥ s2 −→ctrl s

if c1 then s1 else s′1 ∥ if c2 then s2 else s′2 −→ctrl if c then s else s′1 ∥ s′2

if2.1
s1 ∥ s2 −→ctrl s s′1 ∥ s′2 −→ctrl s

′

if c1 then s1 else s′1 ∥ if c2 then s2 else s′2 −→ctrl if c1 ∥ c2 then s else s′

if2.2
s′1 ∥ s′2 −→ctrl s

′

if c1 then s1 else s′1 ∥ if c2 then s2 else s′2 −→ctrl if c1 ∥ c2 then s1 ∥ s2 else s′

if2.3
s1 ∥ s2 −→ctrl s

if c1 then s1 else s′1 ∥ if c2 then s2 else s′2 −→ctrl if c1 ∥ c2 then s else s′1 ∥ s′2

while-if
while c1 do s1 ∥ s2 −→ctrl s

while c1 do s1 ∥ if c2 then s2 −→ctrl if true ∥ c2 then s

if-while
s1 ∥ while c2 do s2 −→ctrl s

if c1 then s1 ∥ while c2 do s2 −→ctrl if c1 ∥ true then s

Figure 4.10: ctrl rewriting system

102 CHAPTER 4. DOUBLE PROGRAM CONSTRUCTION

seq1.1

id.stmt
P 1

1 ∥ P 1
2 −→eq P

1

seq1.1

id.stmt
P 2

1 ∥ P 2
2 −→eq P

2

seq1.1

id.stmt
P 3

1 ∥ P 3
2 −→eq P

3

id.stmt
P 17

1 ∥ P 17
2 −→eq P

17

P 17 ∥ P 5..17
2 −→eq (skip ∥ P 5..16

2);P 17 seq3.3

P 17 ∥ P 4..17
2 −→eq (skip ∥ P 4

2); (skip ∥ P 5..16
2);P 17 seq3.3

P 8..17
1 ∥ P 4..17

2 −→eq (P 8..15
1 ∥ skip); (skip ∥ P 4

2); (skip ∥ P 5..16
2);P 17 seq2.2

P 7..17
1 ∥ P 4..17

2 −→eq (P 7
1 ∥ skip); (P 8..15

1 ∥ skip); (skip ∥ P 4
2); (skip ∥ P 5..16

2);P 17 seq2.2

P 3..17
1 ∥ P 3..17

2 −→eq P
3 ; (P 7

1 ∥ skip); (P 8..15
1 ∥ skip); (skip ∥ P 4

2); (skip ∥ P 5..16
2);P 17

P 2..17
1 ∥ P 2..17

2 −→eq P
2..3 ; (P 7

1 ∥ skip); (P 8..15
1 ∥ skip); (skip ∥ P 4

2); (skip ∥ P 5..16
2);P 17

P1 ∥ P2 −→eq Φ1

Figure 4.11: Derivation tree of −→eq for Example 26

niques [175, 88], as this algorithm exhibits slightly better performance than memoized
recursion in our experiments.
−→eq is sound, as every reduction rule satisfies property 4.1:

∀s1, s2 ∈ stat : s1 ∥ s2 −→eq s =⇒ π1(s) = s1 ∧ π2(s) = s2 (4.1)

where we use the version extraction functions π1 and π2 defined in Sec. 3.3 of Chapter 3.
Note that −→eq is also deterministic by construction, as every pair of non comparable
rules either operate on different nodes of the AST, or have incompatible sets of assump-
tions. In addition, −→eq always terminates (or blocks), as every reduction rule R enjoys
the following property: to reduce some term t, R requires the reductions of only finitely
many terms t′, such that t′ is strictly smaller than t. −→eq is not complete, but −→?

eq

complements it, so the first step of our heuristic does not block. Consequently, the first
step of our heuristic is a terminating algorithm.
Remark 24 (Algorithm cost). The cost of this algorithm is dominated by the compu-
tations of longest common subsequences of statements performed when merging two
sequence of statements s1 and s2. As noted in Remark 23 we rely on dynamic program-
ming techniques that iterate over 2-dimensional arrays of size n1 × n2, where ni = |si|.
Such a scheme features quadratic asymptotic complexity. Also note that the overall cost
of the overall merge_stmt heuristic is quadratic, as these longest common subsequences
computations dominate the algorithm cost both theoretically and practically.

Second step: merging sequences of top-level double statements

−→glue, defined on Fig. 4.9, features a single rule glue. glue reduces a sequence of
pairs to a pair of sequences. −→glue is derministic, incomplete and terminating. −→ω

glue

4.2. PROGRAM MERGING ALGORITHM 103

id.cond
¬break ∥ ¬break −→ctrl ¬break

id.stmt
P 14

1 ∥ P 14
2 −→ctrl P

14

id.stmt
P 11

1 ∥ P 11
2 −→ctrl P

11

P 10..12
1 ∥ P 10..13

2 −→ctrl P
10..13 if2.3

P 9..12
1 ∥ P 10..13

2 −→ctrl (P 9
1 ∥ skip);P 10..13 seq2.2

P 9..12
1 ∥ P 9..13

2 −→ctrl P
9..13 seq2.1

P 9..14
1 ∥ P 9..14

2 −→ctrl P
9..14 seq1.1

P 8..15
1 ∥ P 8..15

2 −→ctrl P
8..15 while1

P 8..15
1 ∥ P 7..15

2 −→ctrl (skip ∥ P 7
2);P 8..15 seq3.3

P 8..15
1 ∥ P 6..15

2 −→ctrl P
6..15 seq3.3

P 8..15
1 ∥ P 5..16

2 −→ctrl P
5..16 if-while

P 8..15
1 ∥ P 4..16

2 −→ctrl (skip ∥ P 4
2);P 5..16 seq3.3

P 7..15
1 ∥ P 4..16

2 −→ctrl P
4..16 seq2.2

Figure 4.12: Derivation tree of −→ctrl for Example 26

iterates −→glue until reduction blocks, and returns the final irreducible term. This
process terminates, as the number of ∥ nodes in the AST decreases strictly at every
iteration.

In the case of Example 26, Φ1 −→3
glue Φ2 −̸→ glue is a derivation for the greedy merge

introduced in Sec. 4.2.1.

Third step: aligning similar control structures

The −→ctrl rewrite system is defined by two sets of reduction rules: rules defined by
Fig. 4.6 (with r = ctrl), and rules defined by Fig. 4.10. The priority ordering between
rules is defined by Fig. 4.7: rules from Fig. 4.6 are shown in blue, while rules from
Fig. 4.10 are shown in black. The goal of −→ctrl is to merge statements with similarities,
in particular control structures such as loops and tests. To this aim, rules while1 and
while2 merge loops if their bodies can be merged, rules if1.1 to if2.3 merge tests if one
of the branches can be merged, and rule dass merges assignments to identical targets.
All these rules are supported by the axioms id.exp and id.cond, of maximum priority,
which state that every pair of syntactically equal simple expressions (resp. conditions)
is merged into a shared simple expression (resp. condition). id.exp and id.cond are
omitted from Fig. 4.7 for clarity. Additional rules can be added, to represent further
similarities between program versions, despite refactoring of control structures. For
instance, if-while and while-if merge dissimilar control structures that include similar
loops. Our implementation features more of such additional rules, which are omitted for
conciseness.

Note that rule while-if is necessary for our algorithm to construct the double pro-
gram P shown on Fig. 4.2(c) for Example 26. Indeed, it is used by the derivation tree

104 CHAPTER 4. DOUBLE PROGRAM CONSTRUCTION

for the reduction s′1 ∥ s′2 −→ctrl P
4..16 introduced in Sec. 4.2.1. This tree is shown

on Fig. 4.12. Note that P 4..16 is slightly rearranged with respect to the exact output
of −→ctrl, for the sake readability. For instance, the exact output of −→ctrl for P 4 is
(i← 0 ∥ skip); (skip ∥ out← (last < first));. Such rearrangements have no impact on
our subsequent static analysis.

Unlike that of −→eq, the reduction rules of −→ctrl do not satisfy property 4.1. Be-
cause of rules if-while and while-if, they only satisfy the weaker property:
∀s1, s2 ∈ stat : s1 ∥ s2 −→eq s =⇒ flatten(π1(s)) = flatten(s1)

∧ flatten(π2(s)) = flatten(s2)
where flatten is defined by induction on the syntax, and greedily reduces to s any simple
sub-statement of the form if true then s. This property is sufficient for soundness. In
addition, −→ctrl is deterministic, incomplete, and always terminates or blocks, for the
same reasons as −→eq. −→?

ctrl complements −→ctrl, so the third step of our heuristic
does not block. Consequently, our heuristic is a terminating algorithm.

4.3 Related works

Multiple independent works on translation validation, patch analysis, security analysis
and relational verification rely on product programs, a general class of constructions
which informally transform two programs P1 and P2 into a single program P that cap-
tures the behaviors of P1 and P2. Our own double program structure is a form of product
program.

Some works, like ours, use product programs as part of a two-step analysis: first
construct the product program, then perform an analysis on the result of the construc-
tion. In contrast, other works construct product programs during the analysis, in order
to guide the construction with semantical information. We term the former approaches
“static product constructions” and the latter approaches “dynamic product construc-
tions”. In this section, we report on related works on both approaches.

4.3.1 Static product constructions

Various kinds of product constructions have been introduced by multiple authors: self-
compositions, cross-products, program products, biprograms and correlating programs.
We present them briefly below, and compare them with our approach.

Self-composition

[21] introduced self-composition, as part of a proof method for information flow prop-
erties. Given a simple programs P , they prove safety properties of the simple program
P1;P2, where Pk denotes program P with variables x renamed to xk to avoid conflicts.
Their method is sound and relatively complete. Yet, their method is equivalent to ana-
lyzing P1 ∥ P2 in our setting. As demonstrated on Example 25 of Sec. 4.1, this requires
computing the input-output relations of P1 and P2 before comparing them, i.e. their

4.3. RELATED WORKS 105

concrete semantics, which cannot be automated. [170] showed limitations to the practi-
cal usability of this method with of-the-shelf software verification tools, and proposed a
type-based generalization. Yet their approach does not reduce the expressiveness of the
invariants required for the proofs.

Cross-product

[176] introduced the notion of cross-product of two input programs in the context of
translation validation of compiler optimizations in unstructured languages. Their ap-
proach is limited to so-called “consonant” programs, i.e. programs exhibiting equivalent
control structures, and where executions follow the same control flows (no unstable
tests).

General product programs

[18, 20] define a more general notion of product program, that overcomes the limita-
tions of self-composition or cross-products, and formalize rules for constructing valid
product programs. Their product program structure supports combinations of so-called
“synchronous steps”, in which statements of P1 and P2 are executed in lockstep, and
“asynchronous steps”, in which statements of P1 and P2 are executed separately. The
former is supported by simple statements with stable tests in our setting, while the lat-
ter is supported by double statements or unstable branches. Their system includes a
rule called refinement (or unfolding) that allows preliminary transformations over the
components of the product. Simple transformations such as our if-while and while-if
reduction rules are inspired by this approach. Their approach allows to build products
between programs with different control flow structures, so as to address complex loop
optimizations. Yet, their product construction is non-deterministic and usually interac-
tive, in contrast to our approach. The authors acknowledge that developing methods
and tools for building products is an important goal for further work.

Product programs are also used in SymDiff [112, 113].

Biprograms

[16] introduce biprograms, a variant of product programs that are syntactically similar
to our double programs. Biprograms are designed to support relational reasoning using
deductive methods. They make explicit the reasoner’s choice of program alignments,
using a “weaving relation” that rewrites biprograms to equivalent forms, while aligning
control points. This weaving relation has connections with the term-rewriting systems
we presented in Sec. 4.2.2. Yet, biprogram construction is not automated, in contrast
to our work. Their approach has some setbacks: the semantics of the language must be
kept deterministic, and procedures with relational specifications must be called by both
executions. Our approach does not have these limitations. Note that our treatment of
C function calls will be explained in chapter 5.

106 CHAPTER 4. DOUBLE PROGRAM CONSTRUCTION

Correlating programs

[154] present an algorithm for constructing a kind of product program, coined “correlat-
ing program”. This algorithm takes two program versions as inputs, and processes them
in two steps:

1. both program versions are compiled to a guarded command language. Every block
is broken down into a set of atomic statements prefixed by a guard encoding the
path to the block.

2. guarded commands of both versions are interleaved into a common correlating
program. The interleaving is based on a textual diff.

[79] report a soundness issue in this construction, due to the textual diff not taking
unstructured control flow into account. They propose an improved algorithm, which
they formalize and check mechanically within the Coq proof assistant. While [154] is as
source of inspiration for our own work, our double program construction does not have
a similar issue, as it proceeds by merging abstract syntax trees.

4.3.2 Dynamic product constructions

Speculative correlation

[155] is a follow-up paper to [154]. In this work, the authors move away from their
original correlating program structure that defines a fixed interleaving of statements
for the subsequent analysis. Instead, they let the analysis alternate between multiple
interleavings, and use a speculative search algorithm to choose an interleaving minimizing
abstract semantic difference. This approach benefits from semantic information to guide
the alignment of program versions, reducing the need for syntactic similarity of program
versions. Yet it is costly, as the exploration process involves performing all possible
analyses, in all possible interleavings, of pairs of sequences of statements with lengths
below some parameter of the analysis. Note that analyses are run with an expressive
abstract domain – a power-set domain similar to polyhedra with trace partitioning.

Implicit product programs

[165] present a logic, and a related automatic verification algorithm. This algorithm
constructs multiple partial product programs implicity, rather than constructing a single
full product program explicitly. Yet they only align syntactically equal statements, as
they target hyperproperties of simple programs.

LLRêve [108] relies on program transformations to align two program versions,
rather than constructing a product program explicitly. It especially focuses on harmo-
nizing the structures of unbounded loops. To this aim, its exploits dynamic analyses of
concrete executions traces to suggest suitable program transformations.

4.3. RELATED WORKS 107

Product-CFGs

A line of work targeted at translation validation rely on SMT-solving to construct prod-
uct programs. Programs are represented at control-flow graphs (CFGs), and product
programs are product-CFGs.

[40] rely on a data-driven approach to align a source program P1 and compiled pro-
gram P2. They first guess an “alignment predicate” (AP) that must hold at all nodes of
the product-CFG to build. Then, they construct a candidate product-CFG, using con-
crete execution traces of P1 and P2 (on equal inputs). Execution traces are used to find
pairs of program points satisfying the guessed AP, and correlated transitions between
these pairs. The obtained candidate product-CFG is called a “Program Alignment Au-
tomaton” (PAA). The PAA accepts the available concrete traces by construction. This
approach exploits semantic information to find correlations that do not depend on syntac-
tic similarity. In addition, it allows to generate multiple candidate PAAs, on which proof
of equivalence is attempted. As a consequence, it can successfully prove the correctness
of vectorization optimizations, such as Example 27 of Sec. 4.1. Yet it has shortcomings:
it requires execution traces with sufficient path coverage of P1 and P2, and relies on a
good guess for the AP: a weak AP may result in a large number of candidate PAAs, most
of which would not allow for a proof of equivalence, while too strong an AP may rule
out the desired PAA. In addition, considering this work targets pairs of small programs
from compiler test suites [122], it is not clear to us why guessing “good” APs should
be significantly easier than building a products programs by hand. This approach was
successfully evaluated on single-loop source programs with no control flow within loop
bodies. AP synthesis for programs with multiple loops is left for future work.

[60] addresses the shortcomings of [40]. They build a product-CFG incrementally,
through counterexample-guided pruning of the exponentially large search space. They
do not rely on concrete execution traces, but generate concrete machine states through
SMT queries. Pairs of concrete machines states are used to add new nodes to the
product-CFG. They also rely on SMT-solvers to find optimal correlations across sets
of paths, and add new edges to the product-CFG. This approach achieves robust and
efficient equivalence checking across vectorizing transformations in the presence multiple
loops. Yet it is fitted towards translation validation purposes. In particular, it is not
symmetric: exchanging P1 and P2 may give different results. As a consequence, their
algorithm fails in some cases from patch analysis where our simpler approach based on
syntactic partners succeeds. In addition, their approach is costly: their tool runs in
minutes on benchmarks of a few tenths of lines of assembly code. It thus cannot be used
directly for patch analysis.

108 CHAPTER 4. DOUBLE PROGRAM CONSTRUCTION

4.4 Conclusion
In this chapter, we presented the merge_stmt algorithm. merge_stmt constructs a
double program P from two program versions P1 and P2. We used the Nimp and Nimp2
syntax to describe merge_stmt in Sec. 4.2, in order to keep the presentation simple.
Yet our implementation is a front-end to the analysis of double C programs, which will be
presented in chapter 5. merge_stmt will thus be evaluated as part of chapter 5. We will
show that in most pratical patch cases, the double program constructed by merge_stmt
is sufficient to enable a successful patch analysis relying on linear invariants only.

Chapter 5

Implementing patch analysis with
Mopsa

Chapters 3 and 4 have introduced patch analyses for a purely numerical toy language,
Nimp2. In this chapter, we extend this work to the analysis of realistic patches of low-
level C programs. We also extend the scope of the analysis to patches of data structures,
e.g. adding, removing or permuting fields of C structs, changing the lengths of arrays,
etc. Such patches are typically syntactically small, but they may have a large semantic
impact, as they may change the semantics of any statements involving data of a patched
type. In addition, they may be viewed as a way to address a first kind of portability
property: robustness to variations of the offsets of scalar fields, such as those introduced
by changes in the Application Binary Interface (ABI), compiler options or language
extensions such as attributes of types or variables.

We describe our implementation on top of Mopsa, a framework which supports the
modular design of static analyzers for multiple programming languages, among which C.
Our implementation relies on distinctive features of Mopsa that enable highly modular
development of abstract interpreters. We therefore start with a presentation of the
Mopsa platform in Sec. 5.1. In particular, Mopsa enabled us to reuse directly most
of the implementation of the analysis of simple C programs into our analysis of double
C programs. We therefore introduce the analysis of simple C programs with Mopsa in
Sec. 5.2. This section stresses the presentation of the cell-based memory model originally
introduced in [128], and used by Mopsa to analyze precisely low-level programs that
abuse unions and pointers to bypass the type system of C. Note that this memory
model will be extended in later chapters (Chapters 6 and 7). Then, we describe our
implementation of patch analysis for C programs in Sec. 5.3. Finally, Sec. 5.4 provides
an experimental evaluation of our implementation, Sec. 5.5 describes related works, and
Sec. 5.6 concludes.

109

110 CHAPTER 5. IMPLEMENTING PATCH ANALYSIS WITH MOPSA

5.1 The Mopsa platform

During this thesis, I was part of the Mopsa project [135, 98], which aims at the modular
development of a family of static analyzers for multiple languages and multiple proper-
ties. Mopsa stands for Modular Open Platform for Static Analysis. Mopsa supports the
design of semantics-based abstract interpreters that operate by induction on the syntax,
compute sound program invariants and report run-time errors, undefined behaviors, and
uncaught exceptions. A distinctive feature of Mopsa is its highly extensible, modular
design: semantic abstractions of numeric values, pointers, objects, control, as well as
syntax-driven iterators, are defined in small, reusable domains with loose coupling, that
can be combined and reused to analyze widely different programming languages. Mopsa
currently supports:

• Universal, a toy-language featuring elementary control structures (loops, condi-
tionals, functions) and an idealized data-type (unbounded integers);

• most of C [101], through Clang’s parser, and a contract annotation language [149]
inspired by ACSL [59] to model library functions;

• a large subset of Python 3 [78, 140, 138] (using a dedicated parser);
• multi-language programs mixing Python and C [141].

Mopsa is written in OCaml. The analysis of C programs consists in 11,700 LOC, while
the analysis of Python takes 12,600 LOC. The analysis of multi-language Python and C
programs is implemented with 2,500 additional LOC. All these analyses rely on Universal
domains, representing 5,600 LOC, and a common framework consisting in 13,200 LOC.
Parsers and utilities account for 19,000 additional lines of code.

In this section, we present the Mopsa platform, closely following previously pub-
lished descriptions [98, 100, 139].

5.1.1 Extensible syntax

Many static analyzers operate on a predefined intermediate language, rather than the
source language of analyzed programs. For instance, Ikos [31], from NASA, relies on
LLVM bitcode [114]. Such analyzers may nonetheless support multiple source languages:
a front-end is developed for each source language, which translates it into the fixed in-
termediate language. The goal of this approach is to factor the development of transfer
functions for multiple source languages. The number of transfer functions may addition-
ally be minimized, if the design of the intermediate language minimizes the number of
nodes of the Abstract Syntax Tree (AST). Moreover, the semantics of elementary nodes
may be kept simple. For instance, the Infer [70, 169] static analyzer, from Meta, targets
Java and C/C++/Objective-C programs. Input programs are translated statically into
a reduced intermediate representation called SIL, using only four instructions1. How-
ever, this approach has also downsides. In particular, translating to a fixed intermediate
language does not preserve the high-level structure of programs, which may be detrimen-
tal to the precision or the performance of static analyses. For instance, LLVM forgets

1https://github.com/facebook/infer/blob/v1.1.0/infer/src/IR/Sil.mli#L40

https://github.com/facebook/infer/blob/v1.1.0/infer/src/IR/Sil.mli#L40

5.1. THE MOPSA PLATFORM 111

the sign of integer types, and compilation to bytecode or 3-address code makes static
analysis harder [119, 145]: the cost of relational analysis is increased, due to a large
number of additional variables, while the precision of non relational analysis is likely to
be decreased.

In contrast, Mopsa aims at supporting the development of precise static analyses by
induction on the syntax of source programs, taking advantage of their high-level structure
to discover relational invariants. Analyses are implemented on top of a single Abstract
Syntax Tree (AST), defined using an extensible data-type. It is extended in practice to
support new languages, or new language constructs. Any module of a Mopsa analyzer
can add variants for syntactic objects: statements, expressions, types, variables, etc. For
instance, the abstract syntax for while loops of the Universal language is introduced as
follows, using OCaml’s extensible variant types:
type stmt_kind += S_while of expr * stmt

Then, the C syntax module defines loops as:
type stmt_kind += S_c_for of stmt * expr option * expr option * stmt

| S_c_do_while of stmt * expr

We do not redefine while loops for C, as they share the syntax of Universal loops.
However, we add AST nodes for C’s for and do-while loops, to keep them separate as
long as possible in the program representation, instead of lowering them to while loops in
the front-end. Additional AST nodes can be added for other languages, such as Python:
type stmt_kind += S_py_for of expr * expr * stmt * stmt

| S_py_while of expr * stmt * stmt

They feature an additional statement for the else clause of Python loops, the semantics
of which is very different from that of C’s for loops, as they can iterate on arbitrary
objects.

Adding a support for the double program structure defined in this thesis required
only, for the AST part, introducing a new kind of statement node and a new expression
node. Indeed, the nodes for double expressions expr ∥ expr and double statements
stat ∥ stat introduced in Sec. 3.3 are defined as follows:
type expr_kind += E_double of expr * expr

type stmt_kind += S_double of stmt * stmt

5.1.2 Distributed iterator

Compound statements of the AST are handled by the global iterator of an analyzer. The
definition of this iterator can be distributed among multiple modules in Mopsa, just like
the AST is. Each module contributing to the global iterator implements a partial exec
function, which handles a given subset of the AST, and returns None for other AST nodes.
The central controller of the global iterator calls exec functions in turn, until one of them
returns a value different from None. For instance, the semantics of Universal while loops

112 CHAPTER 5. IMPLEMENTING PATCH ANALYSIS WITH MOPSA

is defined as SJ while c do s KX = SJ¬c? K(lfp f), where f(X ′) = X ∪ SJ s K(SJ c? KX ′),
using the notations of Sec. 2.2.2. Its abstract tranfer function is implemented as part of
a U.loops iterator for the Universal language as:

let exec stmt man flow = match stmt_kind stmt with
| S_while (c, s) ->

let f flow’ = Flow.join
flow
(man.exec s (man.exec (mk_assume c) flow’))

in Some (man.exec (mk_assume (mk_not c)) (lfp f))

| _ ->
None (* pass-through to the next domain *)

where:
• flow represents an abstraction of the set of concrete execution traces. It is organised

as a structure that contains the representation of the current abstract state. This
structure will be presented with Fig. 5.1;

• Flow.join computes the abstract union;
• mk_not is a helper function to construct an expression denoting the negation of

another expression;
• mk_assume is a helper function to construct an assume statement (of kind S_assume

);
• lfp implements an accelerated fixpoint computation, as introduced in Sec 2.2.4.

The above exec function implements the transfer function for Universal loops by com-
bining the semantics of the loop body s with that of conditions c and E_not c. To this
aim, it calls the global iterator man.exec of the whole analysis recursively, which will
in turn find the proper domain-module to handle these statements. This is the role of
the man argument of exec functions, a manager recording the global abstract state. The
manager is aware of all the domains in the analysis. It dispatches every exec call to the
appropriate domains.

Now, a C.loops iterator for C programs defines the transfer function of for loops by
rewriting them to Universal loops at analysis time:

let exec stmt man flow = match stmt_kind stmt with
| S_c_for (init, cond, incr, body) ->

let body’ = mk_block [body;incr] in
let stmt’ = mk_block [init; mk_while (cond, body’)]
in Some (man.exec stmt’ flow)

| _ ->
None

This way, the C.loops iterator delegates the fixpoint computation to the U.loops iterator.

5.1. THE MOPSA PLATFORM 113

module type DOMAIN =
sig

(* Lattice operators *)
type t
val bottom: t
val top: t
val is_bottom: t -> bool
val subset: t -> t -> bool
val join: t -> t -> t
val meet: t -> t -> t
val widen: ’a ctx -> t -> t -> t

(* Transfer functions *)
val init : program -> (’a, t) man -> ’a flow -> ’a flow
val exec : stmt -> (’a, t) man -> ’a flow -> ’a post option
val eval : expr -> (’a, t) man -> ’a flow -> ’a eval option

end

Figure 5.1: Unified domain signature

5.1.3 Domains

Most static analyzers distinguish iterators from abstract domains. The former iterate on
control-flow graphs, or compound statements of ASTs, letting the later handle atomic
statements, such as assignments and tests. In constrast, Mopsa uses the same signature
for modules implementing iterators, and modules implementing abstract domains.

Unified domain signature

Key elements of this signature are displayed on Fig. 5.1. Each domain defines a local
type t to represent the set of abstract values it can handle, together with associate
lattice operators: join, meet, etc. The internal abstract state of a domain is private:
the representation of type t is opaque to other domains. This separation, together with
the common signature, aims at modularity: minimizing inter-domain coupling so that
domains may be easily plugged in and out.

Nonetheless, domains receive the global abstract state of the analysis as an argument
of their local transfer functions. The type of this global abstract state is known only
at analysis run-time, therefore it is represented as a type variable ’a in Fig. 5.1. More
specifically, ’a is a parameter to the signature of functions init, exec and eval, which
implement the domain’s transfer functions. init initializes the domain, while exec (resp.
eval) implements the abstract semantics for statements (resp. expressions). The init
transfer function returns the global abstract state after local initialization of the domain,
while the exec (resp. eval) transfer function returns the postcondition of a statement
(resp. an evaluation of an expression).

114 CHAPTER 5. IMPLEMENTING PATCH ANALYSIS WITH MOPSA

These three functions are parameterized by a flow, of type ’a flow. This flow,
introduced in Sec. 5.1.2, is a wrapper for the global abstract state. Mopsa iterators
proceed by induction on the syntax of programs, using continuations to handle non-
local control flow operators such as C’s break and goto statements. Therefore the flow
represents the global abstraction as a map from a finite, extensible set of control-flow
identifiers, termed tokens, to continuations of type ’a. The flow also stores additional
context- and flow-insensitive information that may be used throughout the analysis, such
as:

• a report of previously raised alarms. Note that some non-recoverable alarms warn
that the analysis of some control flows was interrupted: for example, the effect of
writing through an invalid pointer is ignored by the analysis.

• a flow-insensitive analysis context, of type ’a ctx. This context is used, in par-
ticular, to store the name of the currently analyzed function, and to collect a list
of constants of the program, to be treated as candidate widening thresholds. This
context is thus an argument of widen lattice operators. It can also be used to
tag abstract states of double programs with information on the current program
version, as will be presented in Sec. 5.3.5.

Domains need to handle the global abstract state of the analysis, of type ’a, in order
to access their own abstract element in the global abstraction, apply lattice operations,
and execute transfer functions. This is the role of the manager, of type (’a, t) man,
which was introduced in Sec. 5.1.2. As shown on Fig 5.2, a manager provides get and
set functions, join, meet and widen operators, as well as exec and eval transfer functions
on the global state.

Iterators as stateless domains

Loop iterators such as C.loops and U.loops are defined using this unified signature, as
abstract domains with empty abstract state: t is OCaml’s primitive type unit. Such
iterators must be combined to implement the global distributed iterator introduced in
Sec 5.1.2. In particular, the policy of finding the first domain that handles a specific
statement is an example of domain composition, called sequence. Other domain compo-
sition operators, such as reduced and Cartesian products, are discussed in Sect. 5.1.5.
A typical analysis instance contains dozens of domains. This is illustrated in Fig. 5.3
for the case of the C analyzer, which we will comment further in Sect. 5.2.5. Note that
many domains defined for Universal are reused in the C analysis. Also not that Fig. 5.3
shows a slightly simplified C analysis: for instance, it does not include Mopsa’s analysis
of stubs for external libraries [98, 148].

5.1.4 Dynamic expression rewriting

The ASTs of analyzed programs undergo multiple transformations at analysis time. For
instance, control structures may be rewritten, as already shown in Sec. 5.1.2 for the case
of loops. In addition, expressions may also be transformed at analysis time, in order
to take maximum advantage of relational information available in the program syntax,

5.1. THE MOPSA PLATFORM 115

type ’a lattice = {
bottom: ’a;
top: ’a;
is_bottom: ’a -> bool;
subset: ’a ctx -> ’a -> ’a -> bool;
join: ’a ctx -> ’a -> ’a -> ’a;
meet: ’a ctx -> ’a -> ’a -> ’a;
widen: ’a ctx -> ’a -> ’a -> ’a;

}

type (’a, ’t) man = {
get : ’a -> ’t;
set : ’t -> ’a -> ’a;

lattice : ’a lattice;

exec : stmt -> ’a flow -> ’a post;
eval : expr -> ’a flow -> ’a eval;

}

Figure 5.2: Type of a manager

and in the current abstract state. More precisely, expressions of analyzed programs are
not directly evaluated to abstract values in Mopsa, but rather translated into symbolic
expressions, to be evaluated further by a sequence of abstract domains. This feature
is key to inter-domain communication in Mopsa, and contributes to the precision of
relational analyses.

Example 28 (Rewriting pointer expressions to numerical expressions). For instance,
consider the assignment
*p = *q + 1;

where p and q are pointers to int. A domain handling abstract points-to information,
such as C.pointers in Fig. 5.3, allows rewriting it as

*((char *)&x + offset(p)) = *((char *)&y + offset(q)) + 1;

provided inferred points-to information ensures that p and q point to x and y, respectively.
Then, synthetic variables offset(p) (resp. offset(q)) may be rewritten to 4 (resp. 8)
using information inferred by some Universal numerical domain. Then, a domain in
charge of abstracting the memory of C programs, such as C.cells , may rewrite the whole
assignment to

⟨x, 4, int⟩ ← ⟨y, 8, int⟩+ 1

using synthetic numerical variables ⟨x, 4, int⟩ and ⟨y, 8, int⟩, termed cells. Cells represent
contiguous sequences of bytes at some offset in a memory block, interpreted in some type
to provide a scalar (integer or pointer) value. Mopsa’s cell-based memory abstraction

116 CHAPTER 5. IMPLEMENTING PATCH ANALYSIS WITH MOPSA

C.program # C.interproc # C.loops #

C.intraproc # U.intraproc # U.loops #

U.interproc # C.libraries # C.Aggregates #

C.cells

◦

×

C.machineNum C.pointers

◦

∧ U.linearRel

∧

U.intervals U.congruences

Sequence

∧ Reduced product

× Cartesian product

◦ Composition

Universal

C specific

C memory

Scalars

Numbers

Figure 5.3: Configuration for the analysis of C programs

for C programs will be presented in detail in Sec. 5.2.4. Finally, the right-hand side is
rewritten from machine integer arithmetics with implicit wrap-around (in C) to mathe-
matical integer arithmetics (handled by Universal) – by domain C.machineNum . Explicit
modular operators are introduced in the translation if the analyzer cannot prove the ab-
sence of overflow given the current abstract range of ⟨y, 8, int⟩. On the contrary, if the
right-hand side can be guaranteed to not overflow, the statement may be fed unchanged
to some Universal numerical relational abstract domain operating on unbounded inte-
gers, such as polyhedra [52] (U.linearRel), which are able to represent and maintain the
linear relation ⟨x, 4, int⟩ = ⟨y, 8, int⟩+ 1.

5.1.5 Domain combination

Domains must be combined in multiple ways to enable rich cooperation schemes, such
as the one illustrated in Example 28. To this aim, Mopsa supports several domain
combinators, allowing users to construct complex abstractions from elementary domains.

The sequence D1 # D2 first executes the transfer functions of domain D1 . It
only calls the transfer functions of domain D2 if D1 returns None, i.e. D1 does
not support the AST node of interest. The sequence combinator # is primarily
used to combine iterators defining transfer functions for disjoint parts of the AST,

5.1. THE MOPSA PLATFORM 117

u8 *p = (u8 *) &V;
for (int i=0; i<sizeof(V); i++)
*p++ = 0;

Figure 5.4: Relation between an integer variable and the offset of a pointer

such as loops, function calls, etc. For instance, the sequence C.loops # U.loops

supports C’s for loop as described in Sec. 5.1.2.

∧ Reduced products are a standard form of cooperation between domains of abstract
interpreters [50, 51]. A reduced product computes the intersection of abstract val-
ues approximating the same concrete objects in different ways. Transfer functions
of D1 ∧ D2 call that of both D1 and D2 , before reductions are performed
that allow mutual refinement of abstract values. For instance, consider the classic
example of reducing intervals and congruences [133]. Given an interval [0, 5] and
a congruence 4Z+ 2, we can refine both abstract values in two steps. First, using
congruence information, the interval is refined to [2, 2]. Then, since the interval
is now a singleton, the congruence is refined into 0Z + 2. As another example,
Fig. 5.3 features a reduced product (U.intervals ∧ U.congruences) ∧ U.linearRel
between the interval, congruence [83] and polyhedra domains. Note that we use
use intervals in addition to polyhedra, although polyhedra are more expressive.
This is because intervals may be more precise than polyhedra for some non-linear
operations, such as modular wrap-around arithmetic expressions.

× Cartesian products combine domains abstracting orthogonal semantic objects, e.g.
numeric variables and pointers. For instance, Fig. 5.3 features C.machineNum ×

C.pointers . These domains are assembled in a Cartesian product as their semantics
do not overlap: unlike reduced products, they target orthogonal expressions, hence
no reduction can happen between abstract values.

◦ The composition of domains D1 ◦ D2 implements the complete mediation of
D1 by D2 : D1 is a functor domain parameterized by D2 . For instance, Fig. 5.3

shows a composition between C.machineNum × C.pointers and the underlying Uni-
versal numerical domain. Indeed, as explained in Example 28, both C.machineNum
and C.pointers delegate a part of their abstract state to an underlying numerical
domain: integer C variables for the former, and pointer offsets for the latter. A dis-
tinctive feature of Mopsa is to let them share this underlying part of their abstract
state. This makes it possible for the numerical domain to infer relations between
integer variables and pointer offsets, such as the loop invariant offset(p) = i in the
snippet of Fig. 5.4.

118 CHAPTER 5. IMPLEMENTING PATCH ANALYSIS WITH MOPSA

5.2 Analysis of C programs
After this overview of distinctive features of the Mopsa platform, we are ready to
move on to the implementation of the analysis of C programs shown on Fig. 5.3. This
implementation predates the thesis, and was presented in several papers [135, 99, 98, 148].
A key ingredient to the analysis of C, with respect to that of programs written in a toy
language such as Nimp, is the memory model. In this section, we therefore start with a
presentation of the memory model for C implemented on top of Mopsa, and depicted
in light gray on Fig. 5.3. Then, we will present in Sec. 5.2.5 the other domains used by
the abstraction of C programs, and shown on Fig. 5.3.

Let us start with a presentation of Mopsa’s memory model for C programs. This
cell-based memory model was first introduced in [128], and further developed in [132].
In the sequel, we closely follow the presentation from [132, Sec. 5.2].

5.2.1 Motivation

The C standard [92] leaves the encoding of scalar types and the layout of fields in
structures partly unspecified. The precise representation of types is standardized in
implementation-specific Application Binary Interfaces (ABI), such as the System V
ABI [11], to ensure the interoperability of compiled programs, libraries, and operat-
ing systems. Although it is possible to write fully portable, ABI-neutral C code, the
vast majority of C programs rely on assumptions on the ABI of the platform.

We are interested in analyzing not only well-behaved, fully portable C programs,
but also software that make explicit use of architecture-dependent features. The case
occurs typically with low-level C software, such as device drivers or embedded software,
for efficiency reasons.

Example 29. Type puning
struct {char c; int x;} s = {0};
char *p = (char *) &s;
p[4] = 1;

For instance, Example 29 abuses pointers to bypass the C type system, a common
practice in low-level programming known as type punning. The final value of s.x depends
on the offset of field x in struct s and on the size and representation of type int. Let us
assume a 32-bit architecture: sizeof(int)=4. If Example 29 is compiled for a platform
implementing the System V ABI, then 3 padding bytes are introduced between fields
c and x, and value 1 is written to the lowest-address byte of s.x. This is the default
behavior of gcc when compiling for a host Linux x86 machine. In contrast, value 1 is
written to the highest-address byte of s.x if the structure s is packed. Such packing can
be obtained, for instance, using gcc’s -fpack-struct option or __attribute__((packed
)) attribute. In either case, the final value of s.x depends on the weight of individual
bytes in scalar values (a.k.a. endianness of the platform). The final value of s.x for the
4 possible ABI are shown on Fig. 5.5.

5.2. ANALYSIS OF C PROGRAMS 119

Endianness System V alignments Packed structs
Little-endian 1 224

Big-endian 224 1

Figure 5.5: Final value of s.x in Example 29

int-sign ::= signed | unsigned
int-type ::= char | short | int

| long | long long
scalar-type ::= int-sign int-type

| ptr

type ::= scalar-type
| type [n] n ∈ N
| struct {type1, . . . , typen}
| union {type1, . . . , typen}

lval ::= ∗scalar-type expr

◦ ::= - |˜ | (scalar-type)

⋄ ::= + | - | * | / | % | & | | | ^ | >> | <<

expr ::= lval
| &V
| rand(c1, c2) c1, c2 ∈ Z
| ◦ expr
| expr ⋄ expr

stat ::= lval ← expr
| if cond then stat else stat
| . . .

cond ::= expr ▷◁ 0 ▷◁ ∈ {≤,≥, =, ̸=, <, >}

Figure 5.6: Syntax of simple C-like programs.

5.2.2 Syntax

The current implementation on top of Mopsa supports C programs directly. We
nonetheless use a simplified C-like language to simplify the presentation of this sec-
tion. This language is defined as an extension of the Nimp language defined in Sec. 2.1.
Its syntax is shown on Fig. 5.6. Statements stat are built on top of expressions expr and
Boolean conditions cond. This is a difference with C, which does not distinguish condi-
tions from expressions. Expressions rely on a C-like type-system. Integer and pointer
types are collectively referred to as scalar types (floats are omitted from the presen-
tation for simplicity). Expressions support pointer arithmetic, expressed as byte-level
offset arithmetic. All left-values are assumed to be pre-processed to dereferences ∗τ e
(i.e. *((τ*)e) in C) where τ is a scalar type, and e is a pointer expression.
Remark 25 (Scalar dereferences only). Dereferences are limited to scalar types, and the
dereferenced type is explicit in the syntax.

The language allows structured types: arrays of fixed size, structures and unions.
For instance, struct s of Example 29 features a field x of type int. Assume the System
V ABI is used, for a 32-bit architecture. The offset of x in s is 4. Any occurrence of the
left-value s.x in the program is assumed to be pre-processed to ∗int (&s+ 4).

We assume a fixed, finite set V of program variables, and a function typeof ∈ V → type
that provides their types.
Remark 26 (Extensions controlling the layout of C structs). Our implementation sup-
ports standard C extensions (through Clang’s parser) used to control the alignment of
structure fields, or the packing of structures. Such extensions include local compiler

120 CHAPTER 5. IMPLEMENTING PATCH ANALYSIS WITH MOPSA

directives, such as type attributes, or global directives, such as #pragma directives or
compiler options. We assume the relevant layout information is part of the syntax of
types (and of the output of the typeof function), though we do not reflect this in Fig. 5.6
for brevity.

5.2.3 Semantics of low-level C programs

In this section, we present a semantics that supports unions and pointers, and is able
to model the behavior of non-portable C programs such as Example 29 precisely. This
semantics relies on a byte-based representation of C variables.

As introduced in Sec. 5.2.1, the semantics of C programs is parameterized by an ABI,
which defines the sizes of scalar types, the ordering of bytes in scalar types (endianness),
and the offsets of fields in structs. The low-level semantics therefore makes these choices
explicit. In the rest of this section, unless otherwise specified, we assume a 32-bit little-
endian System V ABI. We assume a function sizeof ∈ type → N given, which provides
the sizes of types (in bytes).

Pointer values are modeled as (semi-)symbolic addresses of the form ⟨V, i⟩ ∈ V × Z,
which indicates an offset of i bytes from the first byte of V . Special pointer values are
defined for C’s NULL and dangling pointers:

Ptr ≜ V × Z ∪ {NULL, invalid}

An important subset of Ptr is the set of pointers to addressable memory bytes:

Addr ≜ { ⟨V, o⟩ |V ∈ V ∧ 0 ≤ o < sizeof (typeof (V)) } ⊆ Ptr

We rely on the byte-level modeling of memory contents from [132, Sec. 5.2]. Each
concrete memory byte has a value in [0, 255] which may be (part of) the representation of
a concrete numerical value, or part of the representation of a pointer. As the the precise
numeric values of pointers depend on memory allocation strategies outside the scope
of the analysis, we use a symbolic representation for pointer values: ⟨p, i⟩ ∈ Ptr × N
denotes the i−th byte in the memory representation of the pointer value p. We thus
denote the set of byte values as B ≜ [0, 255]∪ (Ptr×N). Expressions manipulate scalar
values, which may be numeric (machine integers) or pointer values. We denote the set of
values as V ≜ Z ∪ Ptr. The definition of the most concrete semantics requires a family
of representation functions bencτ ∈ V → P(B∗), that convert a scalar value of a given
type τ ∈ scalar-type into a sequence of sizeof (τ) byte values. We denote as bdecτ ∈
B∗ → P(V) the reverse conversion. For instance, on a 32-bit little-endian platform,
bencunsigned int(1) = { (1, 0, 0, 0) }, bdecunsigned short(0, 1) = { 216 }, and bencptr(p) =
{ (⟨p, 0⟩, ⟨p, 1⟩, ⟨p, 2⟩, ⟨p, 3⟩) }. This seemingly trivial encoding allows modeling copying
pointer values byte per byte, as done e.g. by memcpy. Note that the bencτ and bdecτ

functions return a set of possible values. For instance, reinterpreting a pointer value
as an integer, as in bdecint ◦ bencptr(p), returns the full range of type int. In contrast,
reinterpreting an integer value as a pointer returns the singleton { invalid }. We do not

5.2. ANALYSIS OF C PROGRAMS 121

EJ ∗τ e Kµ ≜ { v | ⟨V, o⟩ ∈ EJ e Kµ ∧ 0 ≤ o ≤ sizeof (typeof (V))− sizeof (τ)
∧ v ∈ bdecτ (µ⟨V, o⟩, . . . , µ⟨V, o+ sizeof (τ)− 1⟩) }

SJ ∗τ e1 ← e2 KM ≜⋃
µ∈M{µ[∀i < sizeof (τ) : ⟨V, o+ i⟩ 7→ bi] | ⟨V, o⟩ ∈ EJ e1 Kµ

∧ 0 ≤ o ≤ sizeof (typeof (V))− sizeof (τ) ∧ (b0, . . . , bsizeof (τ)−1) ∈ bencτ (EJ e2 Kµ) }

Figure 5.7: Concrete semantics of memory reads and writes.

detail the definitions of these functions here, for the sake of conciseness. An example
may be found in [132, Sec. 5.2].

Concrete byte-level memory states are elements of M ≜ Addr → B. The semantics
EJ expr K ∈M→ P(V) and SJ stat K ∈ P(M)→ P(M) of expressions and statements is
defined by standard induction on the syntax. We therefore only show, on Fig. 5.7, the
semantics of memory reads and writes EJ ∗τ e K and SJ ∗τ e1 ← e2 K. Bytes are fetched
and decoded with bdecτ when reading from memory in expression ∗τ e, while values
computed by expression e2 are encoded into bytes with bencτ when writing to memory
in assignment ∗τ e1 ← e2. Note that illegal memory accesses are silently omitted to
simplify the presentation.

This byte-based concrete semantics is very expressive. It allows modelling all scalar
expressions precisely. This includes both single-byte and multi-byte accesses to memory.
For instance, given 2-byte variables x and y of type unsigned short, the transfer function
for the assignment x=y+1; is{

⟨x, 0⟩ = (⟨y, 0⟩+ 28 × ⟨y, 1⟩+ 1) mod 28

⟨x, 1⟩ = ⌊((⟨y, 0⟩+ 28 × ⟨y, 1⟩+ 1) mod 216)/28⌋

However, it is not advisable to abstract this semantics with numerical domains di-
rectly. Indeed, abstracting such transfer functions would require an expressive numer-
ical domain, able to both represent linear equalities and handle modular arithmetic
precisely. This would prevent the use of scalable abstract domains such as intervals.
As another example, if x has type unsigned short, while y has pointer type, then
EJ y Kµ = EJ ∗int &y Kµ = bdecint ◦ bencptr(y) is the full range of type int. Hence the
transfer function assigns the full range of numeric bytes [0, 255] to both ⟨x, 0⟩ and ⟨x, 1⟩.
As a final example, if x and y have pointer type, then the individual bytes ⟨x, i⟩ of x are
set to the symbolic representation of the pointer y + 1, without loss of precision.

5.2.4 Cell-based memory model

We rely instead on a more abstract semantics, based on the Cells memory model first
introduced in [128]. In order to handle C programs computing with machine integers of
multiple sizes, with byte-level access to their encoding through type-punning, memory
is represented as a dynamic collection of multi-byte scalar variables termed cells. Cells
hold values for the scalar memory dereferences discovered during the analysis, without
requiring to abstract each byte individually. The Cells memory domain maintains a
consistent abstract state despite the introduction of overlapping cells by type-punning.

122 CHAPTER 5. IMPLEMENTING PATCH ANALYSIS WITH MOPSA

Memory abstraction

Let Cell ⊆ V × N × scalar-type denote the finite set of possible scalar dereferences.
Each cell ⟨V, o, τ⟩ ∈ Cell is denoted as a variable V , an offset o, and a scalar type τ
indicating the encoding of values. The cell ⟨V, o, τ⟩ represents the value of the dereference
∗τ (&V + o).

Cell ≜ { ⟨V, o, τ⟩ |V ∈ V, τ ∈ scalar-type, 0 ≤ o ≤ sizeof (typeof (V))− sizeof (τ) }

All bytes in a cell are addressable by construction:

∀⟨V, o, τ⟩ ∈ Cell : ∀i < sizeof (τ) : ⟨V, o+ i⟩ ∈ Addr

Domain. We define an abstract memory state as a set of pairs, consisting of a set of
cells C ⊆ Cell and a scalar environment over C. Let E denote the associated abstract
domain:

E ≜
⋃

C⊆Cell

{ ⟨C, ρ⟩ | ρ ∈ C → V }

An abstract property X ∈ P(E) represents the set of concrete byte-level memory states
γCell(X) ∈ P(M) satisfying environment constraints over cells. The values of the bytes
of these memories must satisfy all of the numerical constraints implied by the scalar
environment over some set of cells:

γCell(X) ≜

 µ ∈M

∣∣∣∣∣∣∣
∃(C, ρ) ∈ X : ∀⟨V, o, τ⟩ ∈ C :
∃(b0, . . . , bsizeof (τ)−1) ∈ bencτ (ρ⟨V, o, τ⟩) :
∀i < sizeof (τ) : µ⟨V, o+ i⟩ = bi

This semantics captures the intuition that union types and type punning provide several
typed views of the same underlying sequences of bytes, and that all these views are
compatible. The lattice of properties (P(E),≼,∪) is equipped with partial order

X ≼ X ′
△⇐⇒ ∀(C, ρ) ∈ X : ∃(C ′, ρ′) ∈ X ′ : C ′ ⊆ C ∧ ρ′ = ρ|C′

where ρ|C′ denotes the restriction of ρ to C ′.
Note that [128] and [132, Sec. 5.2] use a slightly more abstract domain. They define

abstract states as a choice of a set of cells C ⊆ Cell and a set of scalar environments
on C. Our definition is more flexible, as it allows retaining several environments with
heterogenous support (cell set). This will ease the extension of the memory model to
double programs in Chapters 6 and 7.

Transfer functions: cell addition and removal. Removing any cell is always
sound: it amounts to losing information. It is also possible to add new cells, provided
the values assigned to them are consistent with those of existing overlapping cells. This
consistency is ensured by a value synthesize function ϕ ∈ Cell → P(Cell) → expr such
that ϕ(c)(C) returns a syntactic expression denoting (an abstraction of) the value of the
cell c as a function of cells in C.

5.2. ANALYSIS OF C PROGRAMS 123

ϕ⟨V, o, t⟩(C) ≜

⟨V, o, t⟩ if ⟨V, o, t⟩ ∈ C
wrap(⟨V, o, t′⟩, range(t)) else if ⟨V, o, t′⟩ ∈ C ∧ t, t′ ∈ int-type ∧ sizeof (t) = sizeof (t′)
byte(⟨V, o− b, t′⟩,w(L, b, sizeof (t′)))

else if ⟨V, o− b, t′⟩ ∈ C ∧ t = u8 ∧ t′ ∈ int-type ∧ b < sizeof (t′)
wrap(∑sizeof (t)−1

i=0 28×w(L,i,sizeof (t)) × ⟨V, o+ i,u8⟩, range(t))
else if ∀i < sizeof (t) : ⟨V, o+ i,u8⟩ ∈ C ∧ t ∈ int-type

range(t) else if t ∈ scalar-type
invalid else if t = ptr

Figure 5.8: Generic cell synthesizing function.

An example implementation is proposed in Fig. 5.8. Firstly, if the cell already exists
(c ∈ C), it is directly returned by ϕ. Otherwise, ϕ looks for integer cells of the same size
and different signedness, and converts them using function wrap to model wrap-around,
and function range for the range of the type:
wrap(v, [l, h]) ≜ min { v′ ∈ [l, h] | ∃k ∈ Z : v = v′ + k(h− l + 1) }

range(t) ≜

{
[0, 28×sizeof (t) − 1] if t is unsigned
[−28×sizeof (t)−1, 28×sizeof (t)−1 − 1] if t is signed

If no matching cell is found and t = u8 ≜ unsigned char, ϕ attempts to extract an
unsigned byte from an existing integer cell. If this does not work, ϕ aggregates unsigned
bytes into integers. A final wrap-around is used to support negative numbers and signed
types. Function w ∈ {L,B }×N2 → N is used to model the endianness-dependent weight
of bytes in integers: w(L, b, s) ≜ b for little-endian encoding, and w(B, b, s) ≜ s − b − 1
for big-endian encoding. Recall that we only consider a little-endian platform for now:
therefore ϕ synthesizes cells with little-endian encoding only. The value of the byte of
weight 28w in an unsigned integer x is: byte(x,w) = ⌊x/28w⌋ mod 28. When all fails, ϕ
returns the full range of the type (or invalid, for a pointer).

Cell addition, add-cell ∈ Cell→ P(E)→ P(E), then simply adds the cell and initial-
izes its value using the ϕ function:

add-cell(c)(X) ≜ { ⟨C ∪ {c}, ρ[c 7→ v]⟩ | v ∈ EJϕ(c)(C) Kρ, (C, ρ) ∈ X }

Many definitions are possible for ϕ, e.g. adding cases to support floats, or to synthesize
integer cells from cells of opposite endianness. Note that the latter extension will be
addressed in Chapter 7. Also, some of the above patterns of ϕ for integer cells may
be extended for pointers cells, e.g. extracting 1-byte cells from existing pointer cells,
and aggregating existing 1-byte cells into a pointer cell. The choice of the memory
patterns supported by ϕ is part of a trade-off between the efficiency and the precision
of the subsequent analysis. The sole requirement for soundness is that add-cell should
over-approximate the identity function:

∀X ∈ P(E), c ∈ Cell : γCell(add-cell(c)(X)) ⊇ γCell(X)

124 CHAPTER 5. IMPLEMENTING PATCH ANALYSIS WITH MOPSA

(P(E),≼) −−−→←−−−
α♭

γ♭

(E♭,≼♭)

α♭(X)≜ ⟨C̄, { ρ|C̄ | ⟨C, ρ⟩ ∈ X }⟩ where C̄ = ⋂
{C | ⟨C, ρ⟩ ∈ X }

γ♭⟨C,R⟩≜ { ⟨C, ρ⟩ | ρ ∈ R } and ⟨C,R⟩ ≼♭ ⟨C ′, R′⟩ △⇐⇒ C ′ ⊆ C ∧ { ρ|C′ | ρ ∈ R } ⊆ R′

Figure 5.9: Unified cell environments

In practice, we have equality. Indeed the converse inclusion holds, as states of add-cell(c)(X)
feature more cells and constraints than states of X.

Transfer functions: assignments and tests. The semantics of C programs running
on a 32-bit, little-endian, System V platform is given in [132, Sec. 5.2]. We briefly sketch
transfer functions EJ expr K ∈ E → P(V) and SJ stat K ∈ P(E)→ P(E) below.

Expressions are first transformed into purely scalar expressions by resolving left-
values bottom up. More precisely, any left-value ∗τ e where e does not contain any
dereference is transformed into a cell set by: evaluating e into a set of pointer values P ,
gathering the set of cells L corresponding to valid pointers in P , and realizing all the
cells in L using add-cell: L ≜ { ⟨V, o, τ⟩ ∈ Cell | ⟨V, o⟩ ∈ P } ⊆ Addr.

The semantics of cell sets EJ { c1, . . . , cn } Kρ appearing in expressions boils down to
standard scalar evaluation { ρ(c1) . . . ρ(cn) }. The semantics of assignments SJ { c1, . . . , cn } ←
e K is more involved. Because of the conjunctive semantics, it is not sufficient to update
the value of c1, . . . , cn using standard scalar transfer functions SJ ci ← e K. It is also
necessary to update the values of any cells overlapping c1, . . . , cn. A simple and efficient
solution is to remove them. The semantics of other statements is standard.

Unification

Like in [128] and [132, Sec. 5.2], we aim at abstracting S further, using numerical do-
mains. Yet, this cannot be done directly, as states have heterogeneous cell support, while
a numerical abstract element naturally represents a set of environments with homoge-
nous support. We therefore unify cell sets first. To this aim, we only retain cells which
are part of every state in a set, soundly disregarding all others. Our new domain is thus
a choice of a set of cells C and a set of scalar environments on C:

E♭ ≜
⋃

C⊆Cell

{ ⟨C,R⟩ |R ∈ P(C → V) }

A formalization is shown on Fig. 5.9.

Proposition 10. The pair (α♭, γ♭) defined in Fig. 5.9 is a Galois connection.

The adaptation of add-cell ∈ Cell→ E♭ → E♭ to this new domain is straightforward.
Adaptations of transfer functions S♭J stat K ∈ E♭ → E♭ are also straightforward, assuming
a sound abstract join is provided.

5.2. ANALYSIS OF C PROGRAMS 125

Yet, such a join must merge environment sets defined on heterogeneous sets of cells.
We therefore define a unification function unify ∈ E♭×E♭ → E♭×E♭. (⟨C ′1, R′1⟩, ⟨C ′2, R′2⟩) =
unify(⟨C1, R1⟩, ⟨C2, R2⟩) adds, with add-cell♭, any missing cells to ⟨C1, R1⟩ and ⟨C2, R2⟩:
respectively C2 \C1 and C1 \C2. Thus C ′1 = C ′2 = C1 ∪C2. The abstract join may now
be defined as:

⟨C1, R1⟩ ⊔♭ ⟨C2, R2⟩ ≜ ⟨C ′1 ∪ C ′2, R′1 ∪R′2⟩

Pointer and numerical abstractions

We finally rely on numerical abstractions to abstract further S♭ into a computable ab-
stract semantics S♯, resulting in an effective static analysis.

Like in [132, Sec. 5.2], we assume that we are given, for each set of cells C ⊆ Cell, an
abstract domain E♯

C , with concretization γC . It abstracts P(C → Z) ≃ P(Z|C|), i.e., sets
of points in a |C|−dimensional vector space. A cell of integer type naturally corresponds
to a dimension in an abstract element. We also associate a distinct dimension to each
cell of pointer type; it corresponds to the offset o of a symbolic pointer ⟨V, o⟩ ∈ Ptr. In
order to abstract fully pointer values, we enrich numerical abstract environments with
a map P associating to each pointer cell the set of variables it may point to. Hence, the
abstract domain becomes:

E♯ ≜ { ⟨C,R♯, P ⟩ |C ⊆ Cell, R♯ ∈ E♯
C , P ∈ PC → P(V ∪ {NULL, invalid }) }

where PC ⊆ C is the subset of cells of pointer type. We refer to [132, Sec. 5.2] for a
formal presentation of the concretization and abstract operators.

5.2.5 Analysis of C programs with Mopsa

After this presentation of the memory model, we are now ready to describe the current
implementation of the analysis of C programs on top of the Mopsa infrastructure.
Fig. 5.3 shows a configuration of Mopsa for the analysis of C programs. This analysis
aims at inferring invariant properties of reachable program states, and prove the absence
of run-time errors, such as arithmetic overflows, invalid memory dereferences, and failed
assertions.

Mopsa first parses the source files using a front-end based on Clang, and converts
the AST to OCaml, keeping the C syntax and type information at a high-level. The
individual ASTs corresponding to each compilation unit (compiled C file) are then linked,
i.e. merged into a single AST by resolving symbol definitions. Then, the analyzer
is called on the main entry-point, using an abstraction defined by the combination of
abstract domains shown on Fig. 5.3. Many other configurations are possible, and existing
configurations may evolve as new abstractions are introduced.

Iterators

The configuration starts with a sequence of C and Universal iterators, from C.program
to C.Aggregates . As explained in Sec 5.1.3, they are implemented as stateless abstract

126 CHAPTER 5. IMPLEMENTING PATCH ANALYSIS WITH MOPSA

domains, and handle distinct subsets of the AST nodes of the C and Universal languages.
For instance, C.program handles the analysis of the program startup from its main func-
tion, while C.loops supports for and do-while loops. C-specific iterators often delegate
to Universal iterators, e.g. C.loops delegates fixpoint computation to U.loops . As an-
other example, Mopsa currently handles function calls by semantic inlining, i.e. calling
the iterator recursively on the function body at every call site. Inlining is implemented
in the Universal iterator U.interproc . A C-specific iterator, C.interproc , translates C
function calls into Universal calls, taking care of C-specific aspects, such as calls through
function pointers. Further iterators support intraprocedural statements (C.intraproc and
U.intraproc), calls to analyzer built-in functions (C.libraries), and the static initialization

of C aggregates at program startup (C.Aggregates .

Domains

Following these iterators, the C analysis contains a combination of domains that handle
atomic statements such as assignments and tests. The C.cells memory model presented
in Sec. 5.2.4 decomposes program variables into a set of cells. The C.cells domain
leverages the cell abstraction from [128] to handle union types and type-punning in a
transparent way. Synthetic cells are then handled by a Cartesian product:

• C.machineNum translates machine integer arithmetic into mathematical arithmetic
on unbounded integers, handling overflow-checking and wrap-around semantics;

• C.pointers maintains points-to information, and translates pointer arithmetic into
offset arithmetic at the level of bytes.

This Cartesian product rewrites scalar expressions into mathematical expressions on
unbounded integers, which are then handled natively by classic Universal numerical
abstract domains. We use a reduced product between intervals (U.intervals), congruences
(U.congruences) and polyhedra (U.linearRel).

5.3 Analysis of double C programs

After this presentation of the analysis of C programs with Mopsa, we are now ready to
design a patch analysis for C. Our analysis of double C programs reuses indeed most of
the domain-modules introduced in Fig. 5.3 of Sec. 5.1.3 and 5.2.5. In this section, we
first describe two analysis front-ends we implemented to construct analyzable double C
programs, either automatically or manually. Then, we will first assume double C pro-
grams, and describe our implementation of patch analysis on top of Mopsa, leveraging
the semantics introduced in Sec. 3.6 for the toy Nimp2 language, and the memory model
introduced in Sec. 5.2.4 for C programs.

5.3.1 Front-ends

Our patch analysis operates on the AST of a double C program. Yet, a patch consists
in a pair of C programs in practice. We must thus construct a suitable double program

5.3. ANALYSIS OF DOUBLE C PROGRAMS 127

before running the analysis. Our implementation on top of Mopsa supports two front-
ends: double programs can be constructed automatically from simple programs, like in
Chapter 4, or encoded by hand using dedicated primitives, like in Chapter 3. We present
both approaches in this section.

Merging the AST of simple programs automatically

Let us start with the former approach. It consists in merging the AST of two simple
programs P1 and P2 into the AST of a double program P .

Double parsing. We first rely on Clang to parse P1 and P2 independently, with
possibly different pre-processing options. Note that Clang may yield different AST
nodes for identical source statements. Indeed, we are interested not only in patches of
program statements and expressions, but also in patches of type definitions, e.g. of the
definitions of C structs. Some program constants depend on the offsets of struct fields
in memory, e.g. sizeof and symbolic constants. Identical syntactic expressions may
thus yield different constants. We thus obtain different AST nodes after resolution of
identifiers and constants by Clang.

An example is shown on Fig. 5.10. Program P1 is displayed on the first column.
Programs P2 and P are displayed on the second and third columns, respectively. See
line 8: the patch adds field x of type int to struct S. This changes the offset of field
b, and the size of struct S. Assuming P1 and P2 are compiled for 32-bit platforms
implementing the System V Application Binary Interfaces (ABI) [11], sizeof(struct S

1)=8 and sizeof(struct S2)=12 . Line 31 is thus simplified to l=8; for program P1 and
l=12; for program P2.

Clang produces two AST for P1 and P2, which are then normalized by Mopsa. Let
A1 and A2 denote the resulting AST for P1 and P2, and let A denote the AST for P .
Our goal is then to merge A1 and A2 into A.

Gathering syntactic objects. We say that P1 and P2 share some syntactic object
(function or variable) named x if x is found in P1 and P2 with the same scope – e.g.
source file with the same name, or local variable of a shared function. Note that we do
not rely on syntactic locations: a shared syntactic object may be declared at different
lines P1 and P2. For instance on Fig. 5.10, programs P1 and P2 share function main,
function init, variable s and variable s0. In contrast, function f and variable x are
defined by program P1 only.

We rely on A1 and A2 to distinguish syntactic objects defined by one program version
only from syntactic objects shared by both program versions. A single instance of the
former are added to A, with side information. For instance, double program P features
a single instance of function f, and the declaration of variable x (line 33) is defined as a
simple statement in P , for the left version only.

We also rely on A1 and A2 to distinguish syntactic objects shared by both program
versions with identical definitions, from syntactic objects shared by program versions

128 CHAPTER 5. IMPLEMENTING PATCH ANALYSIS WITH MOPSA

1 typedef struct S0 {
2 int a;
3 int b;
4 } T0;
5
6 typedef struct S {
7 int a;
8
9 int b;

10 } T;
11
12 void init(T0 ∗p0, T ∗p) {
13 p0−>a = 0;
14 p0−>b = 23;
15 p−>a = 0;
16 p−>b = 42;
17
18 }
19
20 int f(T *p) {
21 int c;
22 c = p->a + p->b;
23 return c;
24 }
25
26 void main(void) {
27 T0 s0;
28 T s;
29 unsigned int l0, l;
30 l0 = sizeof(s0);
31 l = sizeof(s);
32 init(&s0, &s);
33 int x;
34 x = f(&s);
35 }

typedef struct S0 {
int a;
int b;

} T0;

typedef struct S {
int a;
int x;
int b;

} T;

void init(T0 ∗p0, T ∗p) {
p0−>a = 0;
p0−>b = 23;
p−>a = 0;
p−>b = 42;
p->x = 666;

}

void main(void) {
T0 s0;
T s;
unsigned int l0, l;
l0 = sizeof(s0);
l = sizeof(s);
init(&s0, &s);

}

struct S0 {
int a;
int b;

};

struct S1 { int a; int b1; };

struct S2 { int a; int x; int b2; };

void init1(struct S0 ∗p0, struct S1 ∗p) ∥
void init2(struct S0 ∗p0, struct S2 ∗p) {

p0−>a = 0;
p0−>b = 23;
p−>a = 0;
p−>b1 = 42 ∥ p−>b2 = 42;
skip ∥ { p−>x = 666; }

}

signed int f(struct S1 ∗p) {
signed int c;
c = (p−>a + p−>b1);
return c;

}

void main1(void) ∥ void main2(void) {
struct S0 s0;
{ struct S1 s1; } ∥ { struct S2 s2; }
unsigned int l0, l;
l0 = 8;
l = 8 ∥ 12;
init1∥init2(&s0, &s1 ∥ &s2);
{ signed int x;

x = f(&s1); } ∥ skip
}

Figure 5.10: Merging two versions of a C program

with different definitions. A pair of syntactic objects is added to A in the latter case.
For instance, function main and variable s have different definitions in P1 and P2: main
features extra statements in P1 (lines 32 and 33) while the type struct S of variable s
features an extra field in P2 (line 8). As a consequence, two versions of main (line 26)
are declared: main1 and main2. Likewise, the declaration of s (line 8) is translated to a
pair of simple statements, declaring s1 in main1 and s2 in main2. s1 has type struct S1

(P1’s definition of struct S), while s2 has type struct S2 (P2’s definition of struct S).
The case of the init function is an additional interesting example: It enjoys different
prototypes in P1 and P2 (line 12) as the second parameters have incompatible pointer

5.3. ANALYSIS OF DOUBLE C PROGRAMS 129

types. The semantics of the dereference p->b (line 16) is also changed, as is the offset of b
in struct S: offsetof (struct S1, b1)=4, while offsetof (struct S2, b2)=8. P2 also features
an additional assignment (line 17). Two versions of init (line 12) are thus declared in
A: init1 and init2.

In contrast, syntactic objects shared by both program versions with identical defini-
tions are represented by a single syntactic object in A. For instance, the same variable
s0 is declared in main1 and main2 (line 27) as its type struct S0 is not changed by the
patch.

Populating the bodies of simple functions. The previous step has introduced
version-specific functions into the AST A of P , such as f, main1 and init2, which we call
(left or right) “simple functions”. We then construct the body of every left (resp. right)
simple function from the body of the associate function of P1 (resp. P2), by renaming
all references to syntactic objects from A1 (resp. A2) to references to the corresponding
objects of A. For instance, main1 calls init1, with &s0 as a first argument, &s1 as a
second argument.

Merging simple functions. Every (left or right) simple function has a prototype, and
its body is a simple statement. As a third step, we merge left and right simple functions
into so-called “double functions”. For instance, init1 and init2 are merged into a double
function named init1∥init2. init1∥init2 enjoys a double prototype, shown line 11 of
Fig. 5.10.

In contrast, init1∥init2 has a single body, which is a double statement obtained
by merging the bodies of init1 and init2. The merge procedure implements the
merge_stmt algorithm described in Chapter 4. It adapts it to the C syntax (instead
of the Nimp2 syntax used in Chapter 4). Consistently, identical statements of init1 and
init2 are merged into simple statements of the body of init1∥init2. This is the case
of assignments to fields of a C struct of type struct S0 (unchanged by the patch) lines
13 and 14. It is also the case of assignments to field a of a C struct of type struct S
(line 15), as this field has the same type and and offset in struct S1 and struct S2.
It is however not the case of assignments p->b = 42; to field b of a C struct of type
struct S (line 16). Indeed, as fields b1 and b2 have different offsets in struct S1 and
struct S2, assignments to fields b are represented by a double statement, although P1
and P2 feature syntactically identical assignments at line 16. This double statement
is p->b1 = 42 ∥ p->b2 = 42; i.e. *((int *)(((char *) p + offsetof (struct S1, b1)))
= 42 ∥ *((int *)(((char *) p + offsetof (struct S2, b2))) = 42; .

Our merge procedure for function bodies strives to align loops and tests, as explained
in Chapter 4. In addition, it also strives to align function calls. Note that all references
to simple functions are replaced by references to appropriate double functions before the
merge procedure is applied. For instance, as main1 calls init1(&s0,&s1) and main2 calls
init2(&s0,&s2), main1∥main2 calls init1∥init2(&s0,&s1∥&s2) in a double statement (line
32).

130 CHAPTER 5. IMPLEMENTING PATCH ANALYSIS WITH MOPSA

1 int x = _patch(0,2);
2 if (_patch(1,0)) x++; else x--;

int x = 0 ∥ 2;
x++; ∥ x--;

Figure 5.11: Encoding double C programs by hand

Fall-back front-end

The double program constructed automatically by our merge_stmt algorithm is not
optimal in all cases. In Chapter 4, we have described some cases where it does not allow
for successful patch analyses of Nimp2 using only linear invariants. Recall Example 27
of Sec. 4.1 for instance.

Our patch analysis therefore supports a fall-back front-end, allowing the user to
encode double programs manually when automatic alignment is too coarse. We also
use it in Sec. 5.4 as a means to evaluate the performance of our automatic merging
procedure. The input language of this fall-back front-end is plain C, extended with a
dedicated _patch built-in function. Given two simple C expressions e1 and e2, _patch(e1

,e2) is translated into the double expression e1∥e2. Fig. 5.11 shows an example. The left
column features a C program using the _patch built-in, while the right column features
its translation to a double program. Line 2 of this example shows how double statements
can be encoded with if statements and _patch built-ins. Note that this fall-back front-
end is not without limitations: it currently allows encoding patches of expressions and
statements, but not patches of type definitions.

Remark 27 (Mixing automatic merge and manual hints). Our two approaches to the
construction of double C programs are not exclusive. The user may instrument P1 and
P2 with some _patch statements to help the automatic merge procedure in difficult cases.

5.3.2 Semantics

After this presentation of our front-ends to synthesize double C programs, let us come
back to double program analysis. To this aim, we will define the semantics, the memory
model, and the abstraction.

As a first step, we lift the semantics S of C programs introduced in Sec. 5.2.4 to
double programs. To this aim, we adapt the semantics of Nimp programs introduced
on Fig. 2.6 of Sec. 2.1.2 to the case of C programs. The simple program semantics
for low-level C programs presented in Sec. 5.2.4 is parameterized by an ABI. P1 and
P2 are assumed to run under the same 32-bit little-endian ABI, up to the offsets of
fields in structs, which may differ. Differences in the layouts of structs are assumed to
be reflected in the syntax of types, as noted in Remark 26. We thus assume a single
function sizeof ∈ type → N given, which provide the sizes of types (in bytes) for P1 and
P2. Simple C programs P1 and P2 have variables in V1 and V2, respectively. As described
in Sec. 5.3.1, our front-end renames variables with the same names, but different types in
P1 and P2. We can thus assume a single function typeof ∈ V → N given, which provides
the types of variables V ∈ V ≜ V1 ∪ V2 for P1 and P2. We also let Ptr ≜ Ptr1 ∪ Ptr2

5.3. ANALYSIS OF DOUBLE C PROGRAMS 131

and Addr ≜ Addr1 ∪ Addr2, where the set Ptrk of pointer values of Pk and the subset
Addrk of pointers to addressable memory bytes are defined as in Sec. 5.2.3. The (finite)
universe of cells that may be dereferenced by program Pk is

Cellk ≜ { ⟨V, o, τ⟩ |V ∈ Vk, τ ∈ scalar-type, 0 ≤ o ≤ sizeof (typeof (V))− sizeof (τ) }

As Cell1 ̸= Cell2, we particularize the simple program semantics S1 and S2 of P1 and P2.
The simple C program Pk has memory states in

Ek =
⋃

C⊆Cellk

{ ⟨C, ρ⟩ | ρ ∈ C → V }

A natural choice to lift the semantics of C programs to programs reading inputs and
writing outputs would be to parameterize Sk with an infinite input stream ι ∈ Zω, and
let Σk = Ek × N × Z⋆ denote the sets of programs states, as in Sec. 2.1.2. A triple
(⟨C, ρ⟩, n, o) ∈ Σk denotes a memory state ⟨C, ρ⟩, an index n in the input sequence ι,
and an output sequence o. Let then P be a double C program. As simple programs
versions P1 = π1(P) and P2 = π2(P) have states in Σ1 and Σ2, respectively, P has states
in D ≜ Σ1 × Σ2, and semantics DJ dstat K ∈ Zω → P(D) → P(D). DJ s Kι describes
the relation between input and output states of s, which are pairs of states of simple
C programs. We do not detail the definition of DJ s K for C, as it is the same as the
definition for Nimp2 shown on Figs. 3.8 and 3.11 of Chapter 3, up to the representation
of simple program states, the particularization of simple program semantics, and the
replacement of Nimp2 variables with C left-values.

This semantics is very expressive, as it allows modeling arbitrary desynchronizations
of input reads and output writes between P1 and P2. Such expressivity is not necessary
to analyze the patches of C programs that we address in this chapter. Although it
is possible to use bounded FIFO queues to abstract sequences of inputs and outputs
precisely, as in Chapter 3, we decided, for this first implementation of patch analysis for
C programs, to focus on double programs such that P1 and P2 read inputs and write
outputs in lockstep, which is the vast majority of practical cases, and the only situation
addressed by the related works.

We thus leverage the more abstract semantics D̃0 introduced in Sec. 3.5.4 for the
simplified Nimp⋆

2 dialect of Nimp2. Nimp⋆
2 has no simple statements V ← input(a, b)

and output(V) for reading inputs and writing outputs. Instead, it defines double state-
ments V ← input_sync(a, b) and assert_sync(V). Executing these statements with
the simple program semantics is an error. Any desynchronization of P1 and P2 in the
execution of these simplified statements is detected and propagated as an error, and no
resynchronization is possible. Double program states are pairs (m1,m2), where m1 and
m2 are memory states of P1 and P2. The complete semantics of simple and double pro-
grams is available in Appendix A.4. To adapt the semantics D̃0 of Nimp⋆

2 to the case of
double C programs, we use the “memory-only” domain D ≜ E1 × E2 for double program
states, and the semantics DJ s K ∈ P(D)→ P(D) shown on Fig. 5.12. This semantics is
the same as the semantics D̃0 shown on Fig. A.8 of App. A.4, up to the representation
of simple program states, the particularization of simple program semantics, and the

132 CHAPTER 5. IMPLEMENTING PATCH ANALYSIS WITH MOPSA

DJ dstat K ∈ P(D)→ P(D)

DJ skip K ≜ λX.X

DJ s1 ∥ s2 KX ≜
⋃

(⟨C1,ρ1⟩,⟨C2,ρ2⟩)∈X (S1J s1 K { ⟨C1, ρ1⟩ } × S2J s2 K { ⟨C2, ρ2⟩ })
DJ l← e K ≜ DJ l← e ∥ l← e K
DJ assert(c) K ≜ DJ assert(c) ∥ assert(c) K
DJ l← input_sync(a, b) K ≜

⋃̇
v∈[a,b]DJ l← v K

DJ assert_sync(l) KX ≜
⋃

v∈V{ (⟨C1, ρ1⟩, ⟨C2, ρ2⟩) ∈ X |E1J l K ⟨C1, ρ1⟩ = E2J l K ⟨C2, ρ2⟩ = { v } }
DJ s ; t K ≜ DJ t K ◦DJ s K
DJ if e1 ▷◁ 0 ∥ e2 ▷◁ 0 then s else t K ≜ DJ s K ◦ FJ e1 ▷◁ 0 ∥ e2 ▷◁ 0 K

∪̇ DJπ1(s) ∥ π2(t) K ◦ FJ e1 ▷◁ 0 ∥ e2 ̸▷◁ 0 K
∪̇ DJπ1(t) ∥ π2(s) K ◦ FJ e1 ̸▷◁ 0 ∥ e2 ▷◁ 0 K
∪̇ DJ t K ◦ FJ e1 ̸▷◁ 0 ∥ e2 ̸▷◁ 0 K

DJ if c then s else t K ≜ DJ if c ∥ c then s else t K
DJ while e1 ▷◁ 0 ∥ e2 ▷◁ 0 do s KX ≜ FJ e1 ̸▷◁ 0 ∥ e2 ̸▷◁ 0 K(lfp H)
DJ while c do s K ≜ DJ while c ∥ c do s K

where FJ e1 ▷◁ 0 ∥ e2 ▷◁ 0 KX ≜

{
(⟨C1, ρ1⟩, ⟨C2, ρ2⟩) ∈ X

∣∣∣∣ ∃v1 ∈ E1J e1 K ⟨C1, ρ1⟩ : v1 ▷◁ 0
∃v2 ∈ E2J e2 K ⟨C2, ρ2⟩ : v2 ▷◁ 0

}
and H(I) ≜ X

∪̇ DJ s K ◦ FJ e1 ▷◁ 0 ∥ e2 ▷◁ 0 KI
∪̇ DJπ1(s) ∥ skip K ◦ FJ e1 ▷◁ 0 ∥ e2 ̸▷◁ 0 KI
∪̇ DJ skip ∥ π2(s) K ◦ FJ e1 ̸▷◁ 0 ∥ e2 ▷◁ 0 KI

Figure 5.12: Denotational semantics of double C programs.

replacement of Nimp⋆
2 variables with C left-values. Note that D can be rewritten in the

same form as D̃0, as
DJ s1 ∥ s2 K = D2J s2 K ◦D1J s1 K = D1J s1 K ◦D2J s2 K
FJ e1 ▷◁ 0 ∥ e2 ▷◁ 0 K = F2J e2 ▷◁ 0 K ◦ F1J e1 ▷◁ 0 K = F1J e1 ▷◁ 0 K ◦ F2J e2 ▷◁ 0 K

where D1J s K ≜ DJ s ∥ skip K, D2J s K ≜ DJ skip ∥ s K
and F1J c K ≜ FJ c ∥ skip K, F2J c K ≜ FJ skip ∥ c K

5.3.3 Memory model

Like for S in Sec. 5.2.4, we aim at abstracting D using numerical domains, which natu-
rally represent sets of environments with homogenous support. As in Sec. 5.2.4, double
states have heterogeneous cell support, so we first unify pairs of sets of cells. To this
aim, we only retain left or right versions of cells which are part of every double state in a
set, soundly disregarding all others. Our new domain is thus a choice of a set of labeled
cells C and a set of scalar environments on C:

D♭ ≜
⋃

C⊆τ1(Cell1)∪τ2(Cell2)
{ ⟨C,R⟩ |R ∈ P(C → V) }

5.3. ANALYSIS OF DOUBLE C PROGRAMS 133

(P(D),≼2) −−−→←−−−
α♭

2

γ♭
2 (D♭,≼♭

2)

α♭
2(X) ≜ ⟨C̄X , R̄X⟩
C̄X = ⋂

{ τ1(C1) ∪ τ2(C2) | ⟨⟨C1, ρ1⟩, ⟨C2, ρ2⟩⟩ ∈ X }
R̄X = { ⟨Vk, o, t⟩ 7→ ρk⟨V, o, t⟩ | ⟨⟨C1, ρ1⟩, ⟨C2, ρ2⟩⟩ ∈ X }

γ♭
2⟨C,R⟩ ≜

⋃
ρ∈R { ⟨⟨τ−1

1 (C), ρ ◦ τ1⟩, ⟨τ−1
2 (C), ρ ◦ τ2⟩⟩ }

⟨C,R⟩ ≼♭
2 ⟨C ′, R′⟩

△⇐⇒ C ′ ⊆ C ∧ { ρ|C′ | ρ ∈ R } ⊆ R′

Figure 5.13: Unified cell environments for double C programs

where we extend the notation of the syntactic renaming operator τ1 (resp. τ2), introduced
in Sec. 3.5.5 to distinguish the variables of the left (resp. right) version of a double
program with suffix 1 (resp. 2): τk⟨V, o, t⟩ ≜ ⟨τk(V), o, t⟩ = ⟨Vk, o, t⟩. A formalization is
shown on Fig. 5.13, where ≼2 lifts the partial order ≼ over P(E) to pairs of states, and
≼♭

2 lifts the partial order ≼♭ over E♭ to labeled cells. Note that we write τ−1
k (C) for the

preimage of C under τk. Fig. 5.13 is very similar to Fig. 5.9, but using cells renamed
with a subscript 1 (resp. 2) to denote cells coming from the memory of P1 (resp. P2).

Proposition 11. The pair (α♭
2, γ

♭
2) defined in Fig. 5.13 is a Galois connection.

Adaptations of transfer functions D♭J dstat K ∈ D♭ → D♭ of atomic statements to this
new domain are straightforward. For instance,

D
♭J s1 ∥ s2 K ⟨C,R⟩ ≜ ⟨τ1(C1) ∪ τ2(C2), { ⟨Vk, o, t⟩ 7→ ρk⟨V, o, t⟩ | ρk ∈ Rk ∧ k ∈ { 1, 2 } }⟩

where (Ck, Rk) = S♭
kJ sk K ⟨τ−1

k (C), { ρ ◦ τk | ρ ∈ R }⟩ for k ∈ { 1, 2 }.
Adaptations of transfer functions of compound statements are also straightforward,

assuming a sound abstract join ⊔♭
2 is provided. ⊔♭

2 must merge environment sets defined
on heterogeneous sets of labeled cells. We therefore define a unification function unify2 ∈
D♭ ×D♭ → D♭ ×D♭, which lifts the unification function unify from Sec. 5.2.4 to labeled
cells. (⟨C ′1, R′1⟩, ⟨C ′2, R′2⟩) = unify2(⟨C1, R1⟩, ⟨C2, R2⟩) adds, with add-cell♭, any missing
labeled cells to ⟨C1, R1⟩ and ⟨C2, R2⟩: respectively C2 \C1 and C1 \C2. Thus C ′1 = C ′2 =
C1 ∪ C2. The abstract join is defined as:

⟨C1, R1⟩ ⊔♭
2 ⟨C2, R2⟩ ≜ ⟨C ′1 ∪ C ′2, R′1 ∪R′2⟩

5.3.4 Abstraction

We rely on numerical abstractions to abstract D♭ further, into a computable abstract
semantics D♯ resulting in an effective static analysis. Like [132, Sec. 5.2], our memory
domain translates memory reads and writes into purely numerical operations on synthetic

134 CHAPTER 5. IMPLEMENTING PATCH ANALYSIS WITH MOPSA

cells, that are oblivious to the double semantics of double programs: each cell is viewed
as an independent numeric variable, and each numeric operation is carried out on a single
bi-cell store, as if emanated from a single program. This property is a key motivation
for the Cell domain, and the lifting to double C programs presented in this chapter.
Bi-cells may thus be fed, as variables, to a numerical abstract domain for environment
abstraction.

Pointer and numerical abstractions

Like with S♭ in Sec. 5.2.4, we assume that we are given, for each set of labeled cells
C ⊆ τ1(Cell1) ∪ τ2(Cell2) an abstract domain D♯

C , with concretization γC . It abstracts
P(C → Z) ≃ P(Z|C|), i.e., sets of points in a |C|−dimensional vector space. A cell
of integer type naturally corresponds to a dimension in an abstract element. We also
associate a distinct dimension to each cell of pointer type; it corresponds to the offset o
of a symbolic pointer ⟨V, o⟩ ∈ Ptr. In order to abstract fully pointer values, we enrich
numerical abstract environments with a map P associating to each pointer cell the set
of variables it may point to. Hence, the abstract domain becomes:

D♯ ≜ { ⟨C,R♯, P ⟩ |C ⊆ τ1(Cell1)∪τ2(Cell2), R♯ ∈ D♯
C , P ∈ PC → P(V∪{NULL, invalid }) }

where PC ⊆ C is the subset of cells of pointer type. Note that the map P does not
need to distinguish variables of P1 and P2. Indeed, a given labeled cell ⟨V1, o, t⟩ (resp.
⟨V2, o, t⟩) can ony refer to the version of variable V in the memory of P1 (resp. P2).

Connecting to numerical domains

Any numerical abstract domain may be used to abstract sets of labeled cells: standard
generic domains such as polyhedra, and specific domains dedicated to patch analysis,
such as the �♯p numerical abstraction presented in Sec. 3.5.6. Our primary target is
memory abstraction, in order to handle patches of statements and data structures, as well
as portability properties such as endian portability, which will be presented in Chapter 7.
We therefore implemented in Mopsa only a subset of the patch analysis techniques
developed in Chapter 3 for now, leaving the remainder for future work. In particular,
we left the implemention into Mopsa of the �♯p numerical domain for future work, and
focused on using standard numerical domains, such as intervals, congruences, octagons
and polyhedra. The result is an analysis that may not be as optimized as it could be
(e.g., requiring polyhedra for precision, while the more efficient �♯p domain would have
sufficied), but nevertheless allows us to evaluate its precision. Moreover, Chapter 6 will
present a refinement of the memory domain that can improve its performance without
the need for the specific numerical abstractions from Sec. 3.5.6.

Coarse stream abstraction

As explained in Sec. 5.3.2, we also decided to start with patches of C programs where
both versions execute input statements in lockstep. We thus did not implement, for now,

5.3. ANALYSIS OF DOUBLE C PROGRAMS 135

the bounded abstraction of FIFO queues presented in Sec. 3.5.2. Hence, our analysis
does not allow any desynchronizations of input reads or output writes. More precisely,
we implemented an analysis based on the numerical abstraction of the semantics D̃0 of
Nimp⋆

2 programs over variables in Cell1 ∪ Cell2. D̃0 defined in Fig. 3.23 of Sec. 3.5.4.
It is parameterized by the standard semantics S̃0 for simple programs introduced in
Sec. 3.5.4. The numerical domain provides abstractions S̃♯JV ← e K and C̃♯J e ▷◁ 0 K
of assignments S̃0JV ← e K and tests S̃0J e ▷◁ 0? K of simple programs. The abstract
semantics for double programs D̃♯0 (D̃♯ for short) is the same as the abstract semantics
D̃♯p defined in Fig. 3.25 of Sec. 3.5.5 for Nimp−2 , except for the treatment of input reads.
Any desynchronization of inputs is treated as a semantic error:

D̃
♯
1JV ← input_sync(a, b) K ≜ ⊤ ≜ D̃

♯
2JV ← input_sync(a, b) K

and an error is returned and propagated. Consistently, any reachable double input reads
the same value for both program versions:

D̃
♯JV ← input_sync(a, b) K ≜ C̃

♯JV1 = V2 K ◦ S̃♯JV1 ← rand(a, b) K

Note that S̃♯ and C̃♯ are denoted as S̃♯p and C̃♯p in Fig. 3.25, respectively.

5.3.5 Domains

Fig. 5.14 shows the combination of domains used to construct this abstraction. This
configuration of Mopsa reuses the configuration for the analysis of C programs from
Fig. 5.3, and introduces additional domains:

• double programs iterators D.program , D.intraproc , D.loops , and D.interproc ;
• the memory domain lifter D.patch ;
• the D.builtins domain.

Iterators

The role of double program iterators is to handle coumpound double statements, by in-
duction on the syntax. In practice, they do it by rewriting double expressions and double
statements dynamically to compositions of simple expressions and simple statements, as
prescribed by the semantics D̃♯ (see Fig. 3.25).

Side, context and flow Indeed, the abstract semantics of double programs D̃♯ relies
on transfer functions S̃♯ and C̃♯ for simple statements and conditions provided by the
memory model and underlying numerical domain. The transfer functions of most double
statements are defined as compositions of transfer functions of double statements with
transfer functions of simple statements, alternating between left and right versions. The
transfer functions of simple statements reuse Mopsa’s domain for the analysis of C

136 CHAPTER 5. IMPLEMENTING PATCH ANALYSIS WITH MOPSA

D.program # C.program # D.builtins #

D.interproc # C.interproc # U.interproc #

D.intraproc # C.intraproc # U.intraproc #

D.loops # C.loops # U.loops #

C.libraries # C.Aggregates #

D.patch

◦

C.cells

◦

×

C.machineNum C.pointers

◦

∧ U.linearRel

∧

U.intervals U.congruences

Sequence

∧ Reduced product

× Cartesian product

◦ Composition

Universal

C specific

Double C

Double memory

Scalars

Numbers

Figure 5.14: Configuration for patch analysis of C programs

programs without modification. For instance,

D̃♯J if c then s else t K = D̃♯J s K ◦ C̃♯Jµ2(c) K ◦ C̃♯Jµ1(c) K
∪̇♯
D̃♯J t K ◦ C̃♯J¬µ2(c) K ◦ C̃♯J¬µ1(c) K

∪̇♯
S̃♯Jµ2(t) K ◦ S̃♯Jµ1(s) K ◦ C̃♯J¬µ2(c) K ◦ C̃♯Jµ1(c) K

∪̇♯
S̃♯Jµ2(s) K ◦ S̃♯Jµ1(t) K ◦ C̃♯Jµ2(c) K ◦ C̃♯J¬µ1(c) K

where µ1 ≜ τ1 ◦ π1 (resp. µ2 ≜ τ2 ◦ π2) extracts the left (resp. right) version of syntactic
objects with π1 (resp. π2), and renames the variables of the numerical domain (i.e.
cells) with τ1 (resp. τ2). S̃♯Jµ1(s) K formalizes the analysis of the left version of s, while
S̃♯Jµ2(s) K formalizes the analysis of its right version, and D̃♯J s K formalizes the joint
analysis of both versions. Mopsa encourages distributed iterators and loose coupling
between domains. Iterators know only a subset of existing AST nodes, and none of the

5.3. ANALYSIS OF DOUBLE C PROGRAMS 137

variables used by the underlying numerical abstraction. Therefore our implementation
does not define centralized operators τk and πk. Instead, it distributes over multiple do-
mains, the support for µk by maintaining information on the currently analyzed program
version(s) into the flow-insensitive context of the analysis introduced in Sec. 5.1.3:
type side = LEFT | RIGHT | BOTH

The side indicates on which version of a double program a double statement is executed,
or a double expression is evaluated. Domains for the double program semantics may
read and set it, to control on which memory, or memories, accesses should ultimately be
interpreted. In particular, the side context is set by double program iterators, such as
D.intraproc , before delegating implicitly to simple program iterators that are unaware

of the side context, but delegate in turn to memory abstract domains such as D.patch ,
that use the side context to tag variables. Implicit delegation is implemented in practice
by recursive man.exec calls to the top-level iterator, as explained in Sec. 5.1.2. We will
illustrate this cooperation in Figs. 5.15 and 5.16(c) of Sec. 5.3.5. In addition, some
domains of the memory abstraction of simple C program, such as C.cells and C.pointers
rely on a sizeof function to read the sizes of variables. This function is parameterized
by the ABI of the target. The side context is used to chose the right one for non-scalar
types a analysis time.

Programs The D.program iterator features a single transfer function: the transfer
function for whole-program execution. This transfer function first zero-initializes global
variables of both program versions. Then, it constructs a double statement, where both
versions call the entry point resulting from the syntactic merge of the main functions of
both program versions, as explained in Sec. 5.3.1. Finally, it delegates to some iterator
for double statements. In practice, this statement will be handled by D.intraproc .

Intraprocedural statements D.intraproc implements tranfer functions for if and
assume statements, as well a patch statements s1 ∥ s2. An implementation of the trans-
fer function of if e then s else s′ is shown on Fig. 5.15. It handles if statements if the side
is BOTH, delegating other cases to a simple statement iterator such as C.intraproc . It fol-
lows closely the theoretical abstract transfer function, as the join of four cases. There are
indeed two stable cases, and two unstable cases, depending on whether program versions
agree or disagree on the value of the condition. Stable cases are implemented by func-
tions stable_then and stable_else, while unstable cases are implemented by functions
stable_then_else and stable_else_then. Slightly simplified implementations of these
functions are shown on Fig. 5.16. For instance, The implementation of the first unstable
case S̃♯Jµ2(s′) K ◦ S̃♯Jµ1(s) K ◦ C̃♯J¬µ2(e) K ◦ C̃♯Jµ1(e) K as stable_then_else e s s’ is
shown in Fig. 5.16(c). It illustrates how the side context is used to alternate between
the left and right versions. It calls the global transfer function man.exec recursively on
the then or else branch of either version, after setting the side context to LEFT or RIGHT.
Subsequent transfer function are thus be delegated implicitly to other domains. For
instance, statement assume e is delegated to the simple program iterator C.intraproc

138 CHAPTER 5. IMPLEMENTING PATCH ANALYSIS WITH MOPSA

let exec stmt man flow =
match skind stmt with
| S_if (e,s,s’) when get_side flow = BOTH ->

(* compute branches for stable tests *)
let ttss = stable_then e s flow in
let ffs’s’ = stable_else e s’ flow in
(* compute branches for unstable tests *)
let tfss’ = unstable_then_else e s s’ flow in
let fts’s = unstable_else_then e s s’ flow in
(* Union of stable and unstable branches *)
Flow.join_list man.lattice [ttss; ffs’s’; tfss’; fts’s]

Figure 5.15: Transfer function of if statements

let stable_then e s flow =
man.exec (mk_assume e) flow |>
man.exec s

(a) Stable then branch

let stable_else e s flow =
man.exec (mk_assume (mk_not e)) flow |>
man.exec s

(b) Stable else branch

let unstable_then_else e s s’ flow =
flow |> set_side LEFT |>
man.exec (mk_assume e) |>
set_side RIGHT |>
man.exec (mk_assume (mk_not e))
set_side LEFT |>
man.exec s |>
set_side RIGHT |>
man.exec s’ |>
set_side BOTH

(c) First unstable branch

let unstable_else_then e s s’ flow =
flow |> set_side LEFT |>
man.exec (mk_assume (mk_not e))
set_side RIGHT |>
man.exec (mk_assume e) |>
set_side LEFT |>
man.exec s’ |>
set_side RIGHT |>
man.exec s |>
set_side BOTH

(d) Second unstable branch

Figure 5.16: Stable and unstable branches

which, in turn, delegates the evaluation of conditional expression e to the compound
domain implementing the double memory abstraction. The result of evaluation depends
on the current side context.

The implementation of the three other branches of the transfer function for if is
similar. The D.loops iterator uses the same approach to implement transfer functions
of while statements.

Note that the if transfer function is slightly simplified in Figs. 5.15 and 5.16(c). It
omits some book-keeping details of the flow-insensitive context, as well as management of
control-flow tokens and continuations stored in the flow to support non-local control flow
instructions. Additionally, optimized implementations may use monadic mechanisms to
detect when some transfer function returns ⊥, and bypass subsequent transfer functions.
This is indeed a common case in practice: there is no need to analyze unstable branches

5.3. ANALYSIS OF DOUBLE C PROGRAMS 139

when a condition is stable.

Interprocedural statements The D.interproc iterator rewrites double function calls
to simple function calls. Double function calls occur when P1 and P2 call two versions
of the same function, i.e. functions with equal names and different bodies, that are
defined in source files with equal names. Note that the two versions of the function may
have different lists of parameters, or return types. The bodies of the two versions of the
function are assumed to be merged into a double statement, as explained in Sec. 5.3.1.
The transfer function in D.interproc for a double function call generates assignments of
arguments to parameters, only for parameters that are specific to a program version.
It then translates the function call to a Universal function call, handled in practice
by U.interproc . This generic call assigns arguments to the remaining parameters, i.e.
parameters that are shared by both versions of the called function.

D.interproc also handles returns from double calls, as well as indirect calls through
function pointers. Indirect calls are treated as double function calls or as a pair of in-
dependent function calls, depending on the resolution of the function pointer by the
pointer domain. The former case is called a “stable call”, as P1 and P2 call their re-
spective versions of the same function, while the latter case is called an “unstable call”.
Unstable calls occur when P1 and P2 call functions that have not been merged by the
front-end, e.g. functions with different names f1 and f2. In that case the pair of calls
is evaluated by the default generic transfer function of double expressions f1(x) ∥ f2(y).
On the other hand, D.interproc does not handle the case of simple function calls. Simple
function calls occur when P1 and P2 call a function f featuring identical bodies in both
versions, with the same actual argument expressions. The vast majority of direct or
indirect function calls in double programs are simple function calls in practice. In this
frequent case, the syntactic merge of f is a simple statement, and the evaluation of the
call are delegated implicitly to the corresponding transfer function of C.interproc .

Memory abstraction

The memory domain for double programs depicted in light gray in Fig. 5.14 is designed
as a parameterized abstraction. The D.patch iterator lifts the C memory domain from
Fig. 5.3 to double programs. It implements the memory model and the abstraction
introduced in Sec. 5.3.3 and 5.3.4. To this aim, it maintains a left and right version
V1 and V2 for every variable V of the double program, and handles the evaluation of
expressions, and the assignments to left-values, by routing them to the version of the
memory corresponding to the current side context. The C.cells domain accordingly
synthesizes cells ⟨V1, o, t⟩ and ⟨V2, o

′, t′⟩, which account for the scalar dereferences of
program versions P1 and P2 in the bytes of every variable V . The implementation of
the C.cells domain is exactly the same as for the analysis of simple C programs: it does
not use side information from the flow-insensitive context, and is unaware that cells are
labeled to represent two versions of the same memory.

140 CHAPTER 5. IMPLEMENTING PATCH ANALYSIS WITH MOPSA

1 struct { u32 a; u32 b; } s; ∥ struct { u32 a; u32 x; u32 b; } s;
2 s.a = input_sync(0,1000); // ⟨s2, 0,u32⟩ = ⟨s1, 0,u32⟩ ∈ [0, 1000]
3 u32 x = input_sync(0,10); // ⟨x2, 0,u32⟩ = ⟨x1, 0,u32⟩ ∈ [0, 10]
4 s.b = s.a + x; // ⟨s1, 4,u32⟩ = ⟨s1, 0,u32⟩+ ⟨x1, 0,u32⟩ ∧
5 // ⟨s2, 8,u32⟩ = ⟨s2, 0,u32⟩+ ⟨x2, 0,u32⟩
6 assert_sync(s.b); // ⟨s1, 4,u32⟩ ?= ⟨s2, 8,u32⟩

Figure 5.17: Sum of scalar fields (Example 30)

1 struct { u32 a; u32 b; } s; ∥ struct { u32 a; u32 x; u32 b; } s;
2 ∗u32 (&s+ 0) = input_sync(0,1000);
3 u32 x; ∗u32 (&x+ 0) = input_sync(0,10);
4 ∗u32 (&s+ 4) = ∗u32 (&s+ 0) + ∗u32 (&x+ 0) ∥
5 ∗u32 (&s+ 8) = ∗u32 (&s+ 0) + ∗u32 (&x+ 0);
6 assert_sync(∗u32 (&s+ 4) ∥ ∗u32 (&s+ 8));

Figure 5.18: Example 30 after pre-processing of scalar dereferences

Numerical abstraction

As mentioned in the introduction of the current section, we use the same standard numer-
ical domains as for the analysis of C programs – intervals, congruences and polyhedra.
We leave for future work the implemention into Mopsa of the �♯ numerical abstraction
presented in Sec. 3.5.6. This abstraction can be implemented as a Universal numeri-
cal domain. It can for instance replace U.linearRel in the global abstraction defined in
Fig. 5.14. The equality abstract domain mentioned in Sec. 3.6 can be treated alike.

Built-in functions

The D.builtins domain mainly supports syntax extensions such as the _patch built-in
function introduced in Sec. 5.3.1.

Examples

Let us demonstrate our double C program analysis on two examples: Example 30 and
Example 31.

Example 30 (Preserving cell equalities through linear computations). Consider the
code snippet on Fig. 5.17. The C struct s features different definitions in P1 and P2 (line
1): the right version has an extra field s.x, which changes the size of s and the offset
of field s.b. Scalars s.a and x are initialized with values read from an input stream
shared between program versions P1 and P2 (lines 2 and 3). Their sum is assigned to
s.b (line 4). The assertion (line 6) expresses that s.b holds equal values in P1 and

5.3. ANALYSIS OF DOUBLE C PROGRAMS 141

1 struct { u32 a; u32 b; } s; ∥ struct { u32 a; u32 x; u32 b; } s;
2 s.a = input_sync(0,1000); // ⟨s2, 0,u32⟩ = ⟨s1, 0,u32⟩ ∈ [0, 1000]
3 u32 x = input_sync(0,10); // ⟨x2, 0,u32⟩ = ⟨x1, 0,u32⟩ ∈ [0, 10]
4 u32 *pa = (u32 *)&s; // pta1 7→ {s1} ∧ offset(pta1) = 0 ∧
5 // pta2 7→ {s2} ∧ offset(pta2) = 0
6 u32 *pb = pa+1; // ptb1 7→ {s1} ∧ offset(ptb1) = 4 ∧
7 // ptb2 7→ {s2} ∧ offset(ptb2) = 4
8 skip ∥ pb++; // offset(ptb2) = 8
9 *pb = *pa + x; // ⟨s1, 4,u32⟩ = ⟨s1, 0,u32⟩+ ⟨x1, 0,u32⟩ ∧

10 // ⟨s2, 8,u32⟩ = ⟨s2, 0,u32⟩+ ⟨x2, 0,u32⟩
11 assert_sync(s.b); // ⟨s1, 4,u32⟩ ?= ⟨s2, 8,u32⟩

Figure 5.19: Sum of scalar fields (Example 31)

P2 after this assignment. Fig. 5.18 shows a version of the snippet that makes the pre-
processing of scalar dereferences explicit. s.a and x are pre-processed to ∗u32 (&s+0) and
∗u32 (&x+0), respectively. s.b is pre-processed to ∗u32 (&s+4) in P1 and ∗u32 (&s+8)
in P2. The assignment of line 4 is thus merged into a double statement, following the
merge procedure described in Sec. 5.3.1. The D.patch iterator lifts the C memory domain
to the double program by maintaining variables s1, s2, x1, and x2 to account for P1 and
P2. Accordingly, for i ∈ { 1, 2 }, cells ⟨si, 0,u32⟩, ⟨xi, 0,u32⟩ and ⟨si, 4 × i,u32⟩ are
synthesized by the ϕ function introduced Fig. 5.8 of Sec. 5.2.4.

Fig. 5.17 shows the invariants inferred after each statement from line 2 to line 4, and
the property to be checked line 6. These invariants result straightforwardly from the
semantics of input_sync and assign statements.

Our analysis proves the assertion (line 6 of Example 30) by leveraging relational
numerical domains to abstract the values of cells. The configuration shown on Fig. 5.14
uses indeed the polyhedra abstract domain, which is able to represent the necessary
invariants exactly. Note that the use of such an expressive domain may hamper the scal-
ability of the analysis. The cheaper �♯ numerical abstraction is also expressive enough
for a conclusive analysis of Example 30. In addition, we will introduce in Chapter 6
an optimization of our memory model that allows for a successful analysis of Exam-
ple 30 using only non-relational numerical domains, by maintaining cell equality inside
the memory domain.

Example 31 (Pointer version of Example 30). The alternate version of Example 30
shown on Fig. 5.19 makes the interest of the cell based memory model more obvious.
Fields of struct s are read and written both directly and through pointers, and pointer
arithmetic is used. Note that P1 and P2 use different pointer arithmetic expressions
to access field s.b, as this field has different offsets in P1 and P2. In addition to the
numeric cells synthesized for Example 30, the memory domain synthesizes pointer cells
ptai = ⟨pai, 0,ptr⟩ and ptbi = ⟨pbi, 0,ptr⟩, for i ∈ { 1, 2 }. The memory domain

142 CHAPTER 5. IMPLEMENTING PATCH ANALYSIS WITH MOPSA

Related Benchmark LOC #P Related Small proto. Mopsa
work time Nimp2 Simpl. C Simpl. C
origin Manual align. Manual align. Auto. align.

[173]

Comp 13 2 539 ms 14 ms ✓ 31 ms ✓ 48 ms ✓
Const 9 3 541 ms 7 ms ✓ 25 ms ✓ 28 ms ✓
Fig. 2 14 1 – 4 ms ✓ 19 ms ✓ 31 ms ✓
LoopMult1 14 2 49 s 33 ms ✓ 136 ms ✓ 166 ms ✓
LoopSub 15 2 1.2 s 19 ms ✓ 55 ms ✓ 60 ms ✓
UnchLoop 13 2 2.8 s 15 ms ✓ 52 ms ✓ 69 ms ✓

[73, 110] loop 11 3 50 ms 12 ms ✓ 32 ms ✓ 43 ms ✓
while-if 11 3 80 ms 15 ms ✓ 55 ms ✓ 66 ms ✓

[8, 73, 110] digits10 24 19 1.12 s 47 ms ✓ 325 ms ✓ 312 ms ✓

[18, 73, 110] barthe 13 2 120 ms 33 ms ✓ 83 ms ✓ 93 ms ✓
Example 25 11 2 150 ms 40 ms ✓ 71 ms ✓ 81 ms ✓

[71, 20, 18] iflow 79 0 – – – 808 ms ✓ 808 ms ✓

[154] sign 12 2 – 6 ms ✓ 19 ms ✓ 29 ms ✓
sum 14 4 4 s 14 ms ✓ 57 ms ✓ 71 ms ✓

[154, 155]

copy2 37 1 2 s 23 ms ✓ 78 ms ✓ 132 ms ✓
remove2 19 5 3 s 481 ms ✓3 ✗ ✗
seq2 41 13 11 s 75 ms ✓ 194 ms ✓ 293 ms ✓
pr2 111 8 1149 s – – 2.654 s ✓ 2.686 s ✓

test2 158 10 – 96 ms ✓ 740 ms ✓ 916 ms ✓

Figure 5.20: Polyhedral analyses of synthetic and simplified Coreutils benchmarks, with
manual or automatic double program constructions.

synthesizes the same cells for the statement *pb = *pa + x of Example 31 and for the
statement s.b = s.a + x of Example 30. Therefore the analysis is also successful.

5.4 Evaluation

We implemented the patch analysis for C programs presented in Sec. 5.3 on top of
Mopsa. Our implementation is 3,300 lines of OCaml, 66% of which for automating
double program construction. In this section, we give an experimental evaluation of this
implementation.

5.4.1 From Nimp2 to C

We evaluate our implementation on a set of C benchmarks from other authors [173, 154,
155], already introduced in Sec. 3.6 of Chapter 3. Unlike in Chapter 3, we analyze the
C source code of all benchmarks directly – instead of encoding them into the Nimp2
syntax. We add some additional benchmarks from related works on patch analysis of C
programs [20, 18, 8, 73, 110]: loop, while-if, digits10, barthe and Example 25. We
also include a benchmark related to information flow analysis: iflow, called “Joining
Two Database Tables” in [71], and analyzed as “non-interference product” in [20, 18].

5.4. EVALUATION 143

Fig. 5.20 summarizes the results of our analyses. For each example, we show the
origin of the example (original publication), the number of lines (LOC: maximum number
of lines between the two versions), the number of lines affected by the patch (#P), and
the analysis time reported by the related works using their analysis – related works
analyze their respective examples successfully. We reproduce the analysis times of our
prototype for the Nimp2 language, from Sec. 3.6 of Chapter 3. We also analyze Nimp2
encodings of additional benchmarks for completeness, except for iflow and pr that need
C pointers, arrays and structures. Then, we show analysis times with our analyzer for
double C programs, implemented on top of Mopsa. We give two analysis results for
each benchmark. For the first analysis, the double program is provided by hand, using
the front-end described in Sec. 5.3.1. For the second analysis, the double program is
constructed automatically, using the merge_stmt heuristic presented in Chapter 4 –
see Sec. 5.3.1. All experiments were conducted on a Intel® Core-i7™ processor.

We only show analysis results with the polyhedra numerical abstract domain without
partitioning. Indeed, we have not yet implemented into Mopsa the �♯ domain intro-
duced in Chapter 3. Moreover, partitioning is not supported by Mopsa yet – thus the
remove benchmark cannot be analyzed successfully. Finally, polyhedra outperform oc-
tagons on these benchmarks both in precision and efficiency, as already demonstrated in
Sec. 3.6: octagons allow for successful analyzes of 30% of these benchmarks, while taking
computing roughly four times longer than polyhedra. We will nonetheless discuss the
result of the analysis with octagons of the synthetic C benchmarks from the related work
in Sec. 6.4.2, as part of a comparison with the results obtained with a different memory
model, which will be introduced in Chapter 6. We will additionally demonstrate the
successful use of octagons on real-world patches from which the rest of the benchmarks
originate in Sec. 5.4.2.

Fig. 5.20 shows the impact of moving from Nimp2 to manually constructed double C
programs on these small benchmarks: the global analysis time roughly triples. A large
part of the extra cost is due to the use the Clang parser, the rest is due to powerful Mopsa
features to support modularity, such as distributed iterators and dynamic expression
rewriting. In constrast, the impact of automating the construction of the double program
is relatively small. In particular, the impact of our merge_stmt algorithm, presented
in Chapter 4, is negligible on these benchmarks, featuring only small C functions: from
0.04 ms for UnchLoop to 1.4 ms for pr. Note that this observation does not generalize
to large C functions, as we will demonstrate in Sec. 5.4.3.

Though our patch analysis for C programs is less efficient than our analysis of Nimp2
programs, it still outperforms the related works on their own examples. It is at least one
order of magnitude faster than [73, 173, 154, 155], and slightly faster than [110]. Recall
that [173, 154, 155] characterize differences, while we focus on inferring equivalences
for now. Also note that moving from Nimp2 to manually or automatically constructed
double C programs does not affect the precision of our analyses on these benchmarks.

1only 20 loop iterations 2 Coreutils 3 with partitioning

144 CHAPTER 5. IMPLEMENTING PATCH ANALYSIS WITH MOPSA

Simplified code Original code
Related Bench. Related Mopsa LOC #P Mopsa
origin time polyhedra octagon polyhedra octagon

[154, 155]
copy1 2 s 132 ms ✓ 373 ms ✓ 95 1 157 ms ✓ 482 ms ✓
seq1 11 s 293 ms ✓ ✗ 46 16 570 ms ✓ ✗
pr1 1149 s 2.686 s ✓ 11.672 s ✓ 114 8 1.421 s ✓ 6.469s ✓

test1 916 ms ✓ 3.371 s ✓ 352 10 9.188 s ✓ ✗
kvm2 248 1/11 2.707 s ✓ 4.214 s ✓
sched2 194 7/12 65 ms ✓ ✗
dma2 270 5/23 285 ms ✓ 1.235 s ✓
block2 324 22/6 80 ms ✓ ✗
iucv2 179 10/9 403 ms ✓ 1.757 s ✓
io_uring2 1569 10/14 868.701 s ✓ ✗

Figure 5.21: Analyses of real patches from Coreutils and Linux

5.4.2 From simplified benchmarks to real code

Most of the benchmarks from the related works are synthetic C programs, written in
a small subset of C featuring mostly well-typed scalar programs without pointers or
pointer arithmetic. Nonetheless, the copy2, remove3, seq4, pr5 and test6 benchmarks
originate from real patches of the GNU core utilities. For these examples, we have
started with analyzing the source codes used in the benchmarks of [154, 155]. Their
tools Dizy [154] and Score [155] support smaller subsets of C than Mopsa does. The
source codes of these examples are thus simplified to fit in the subsets of C supported by
these analyzers: only scalar variables are used, function calls are inlined or replaced by
uninterpreted functions, Booleans are replaced with integers, writes to memory through
pointers are replaced by calls to instrumentation functions, etc.

In contrast, the large subset of C supported by Mopsa enables us to restore the
original source codes, with the real data structures used in the GNU core utilities.
For instance, the set_owner function of the copy benchmark features multiple calls to
POSIX or helper functions; the char_to_clump function of the pr benchmark writes to a
string buffer using pointer arithmetic and multiple local loops; and the test benchmark
features bi-dimensional arrays, and multiple layers of function calls passing C structs by
reference. Fig. 5.21 compares the analysis results obtained with the real code, with those

1Coreutils 2 Linux
2https://github.com/coreutils/coreutils/commit/fc92148eac1cd2f8a5e99b3facc21e630e815b

ef
3https://github.com/coreutils/coreutils/commit/e73dfc3899c2a622c91c0948610a1c5c1e1972

d1
4https://github.com/coreutils/coreutils/commit/32f31bad5e40f785488a325e114eaa19fd0e1f

b4
5https://github.com/coreutils/coreutils/commit/6856089f7bfaca2709b303f01dae001a30930b

61
6https://github.com/coreutils/coreutils/commit/7fd7709a7a5f3537f2f373dcc57e1700183059

1e

https://github.com/coreutils/coreutils/commit/fc92148eac1cd2f8a5e99b3facc21e630e815bef
https://github.com/coreutils/coreutils/commit/fc92148eac1cd2f8a5e99b3facc21e630e815bef
https://github.com/coreutils/coreutils/commit/e73dfc3899c2a622c91c0948610a1c5c1e1972d1
https://github.com/coreutils/coreutils/commit/e73dfc3899c2a622c91c0948610a1c5c1e1972d1
https://github.com/coreutils/coreutils/commit/32f31bad5e40f785488a325e114eaa19fd0e1fb4
https://github.com/coreutils/coreutils/commit/32f31bad5e40f785488a325e114eaa19fd0e1fb4
https://github.com/coreutils/coreutils/commit/6856089f7bfaca2709b303f01dae001a30930b61
https://github.com/coreutils/coreutils/commit/6856089f7bfaca2709b303f01dae001a30930b61
https://github.com/coreutils/coreutils/commit/7fd7709a7a5f3537f2f373dcc57e17001830591e
https://github.com/coreutils/coreutils/commit/7fd7709a7a5f3537f2f373dcc57e17001830591e

5.4. EVALUATION 145

obtained on the simplified C code. The test benchmark is analyzed less efficiently on the
real code, as it features over 40 syntactic function call sites on 4 levels, which are inlined
in the simplified code. In contrast, the pr benchmark is analyzed more efficiently on the
real code, as Mopsa’s memory domain allows for efficient analyses of writes to a string
buffer through a pointer, as opposed to multiple calls to instrumentation functions on
the simplified code. Note that we analyze the real code at least one order of magnitude
faster than the related works [154, 155] analyze the simplified code. Also note that all
benchmarks of Fig. 5.21 rely on the automatic construction of double programs, which
has no impact on the precision on the analysis for these examples, and only negligible
impact on performance.

Fig. 5.21 shows additional patches, handpicked from the Linux GitHub repository:
kvm7, sched8, dma9, block10, iucv11 and io_uring12. These patches mainly change
the definitions of C structs, and were selected to test our memory model for double
programs, which has no equivalent in the Nimp2 language from previous chapters, nor
in previous work. dma adds a field to a struct. kvm removes an unused field. sched
changes the offset of a field by moving it out of an enclosed C struct to an enclosing
one, and tunes the global layout with explicit alignment attributes. block changes the
layout of a struct by moving multiple fields. iucv groups unions into a struct. io_uring
flattens a struct and reduces padding, which changes the offsets of some fields. Such
patches change the offsets of multiple fields in structs, and thus the effect of reads and
writes of struct members, both directly and through pointers. For instance, kvm removes
a single line in a header file (definition of an unused field), which changes the semantics
of 11 statements in source files: this is the meaning of the notation “1/11” in the #P
column of Fig. 5.21. Note that kvm features doubly-linked lists, while block, iucv, and
io_uring feature C unions. sched and io_uring use explicit packing and alignment
attributes to control the precise layout of structs or unions. iucv additionally features
incompatible pointer casts, computed calls, and memcpys intentionally reading across
neighboring fields. The equivalence (and correctness) of program versions can thus only
be established by inferring precise information on the low-level representation of the
memory. Thus this benchmark cannot be simplified by hand to be handled by other
tools.

We analyze these original low-level programming constructs without modification. To
the best of our knowledge, no related work on patch analysis is able to do so. Nonethe-
less, we analyze some bitwise computations of the original code imprecisely, as we rely
on linear domains such as polyhedra. The successful analyses summed up on Fig. 5.21
have thus been obtained by replacing these bitwise computations with linear computa-
tions. Fig. 5.22 shows a code sample from the io_uring benchmark where we replaced
a bitwise arithmetic expression (sqe_flags & 2 in Fig. 5.22(a)) with a linear expression

7https://github.com/torvalds/linux/commit/678a305b85d95f288c12e3d69a32d3351b34f2bb
8https://github.com/torvalds/linux/commit/ceeadb83aea28372e54857bf88ab7e17af48ab7b
9https://github.com/torvalds/linux/commit/da5a11d75d6837c9c5ef40810f66ce9d2db6ca5e

10https://github.com/torvalds/linux/commit/b60876296847e6cd7f1da4b8b7f0f31399d59aa1
11https://github.com/torvalds/linux/commit/5140aaa4604ba96685dc04b4d2dde3384bbaecef
12https://github.com/torvalds/linux/commit/9ba6a1c06279ce499fcf755d8134d679a1f3b4ed

https://github.com/torvalds/linux/commit/678a305b85d95f288c12e3d69a32d3351b34f2bb
https://github.com/torvalds/linux/commit/ceeadb83aea28372e54857bf88ab7e17af48ab7b
https://github.com/torvalds/linux/commit/da5a11d75d6837c9c5ef40810f66ce9d2db6ca5e
https://github.com/torvalds/linux/commit/b60876296847e6cd7f1da4b8b7f0f31399d59aa1
https://github.com/torvalds/linux/commit/5140aaa4604ba96685dc04b4d2dde3384bbaecef
https://github.com/torvalds/linux/commit/9ba6a1c06279ce499fcf755d8134d679a1f3b4ed

146 CHAPTER 5. IMPLEMENTING PATCH ANALYSIS WITH MOPSA

sqe.flags = input(0,63);

if (unlikely(sqe_flags & 2))
(a) original code

IOSQE_FIXED_FILE_bit = input(0,1);
IOSQE_IO_DRAIN_bit = input(0,1);
IOSQE_IO_LINK_bit = input(0,1);
IOSQE_IO_HARDLINK_bit = input(0,1);
IOSQE_ASYNC_bit = input(0,1);
IOSQE_BUFFER_SELECT_bit = input(0,1);

sqe.flags = (IOSQE_FIXED_FILE_bit * 1 +
IOSQE_IO_DRAIN_bit * 2 +
IOSQE_IO_LINK_bit * 4 +
IOSQE_IO_HARDLINK_bit * 8 +
IOSQE_ASYNC_bit * 16 +
IOSQE_BUFFER_SELECT_bit * 32);

if (unlikely(IOSQE_IO_DRAIN_bit * 2))
(b) modified code

Figure 5.22: Stubbing bitwise computations in the io_uring benchmark

(IOSQE_IO_DRAIN_bit * 2 in Fig. 5.22(b)). This limitation of our analysis will be ad-
dressed and solved in future chapters: Chapter 7 will introduce a symbolic predicate
domain able to abstract some bitwise arithmetic computations, while Chapter 6 will
introduce a memory domain able to represent some equalities symbolically, and infer
equalities between expressions approximated imprecisely by the numerical abstraction.

Up to these slight modifications of bitwise expressions, we analyze these original
Linux benchmarks precisely with the polyhedra domain. Half of them are also analyzed
successfully with the octagon domain. We also analyze these benchmarks efficiently,
except for the io_uring benchmark. This larger benchmark features indeed a large
number of variables and scalar dereferences (over a thousand). The memory domain
thus synthesizes accordingly many numerical variables to represent scalar cells. These
numerous numerical variables are then handled by the polyhedra abstract domain, to
represent linear relations (about a thousand). The polyhedra domain has exponential
cost in the worst-case, which can hamper the scalability of the analysis. This limitation
will be lifted in Chapter 6: the symbolic memory domain introduced in this chapter will
allow for precise analyses of patches of data structures with less expressive, near-linear
numerical domains.

5.4.3 Practical complexity of double program construction

Chapter 4 and Sec. 5.3.1 presented our merge_stmt heuristic for automating double
program construction. As noted in Remark 24, the cost of this heuristic is expected
to be polynomial in the size of functions, and linear in the number of functions. The
practical complexity of merge_stmt should be evaluated on patches of C functions
featuring a large number of statements. As noted in Sec. 5.4.1, the functions of previous

5.5. RELATED WORKS 147

0.1

1

10

100

1000

10000

100000

105 106 107 108

m
er
g
e_
st
m
t(
s 1
,s

2)
tim

e
(s

ec
on

ds
)

|s1| × |s2| (LOC2)

ϵ× |s1| × |s2|10× ϵ× |s1| × |s2|

Figure 5.23: Quadratic complexity of merge_stmt on large C functions

benchmarks are too small for an experimental evaluation. In our experience, such large
functions are not commonplace in open source software. Yet, they occur in industrial
automatically generated code. We use a large avionics software benchmark which will
be presented in detail in Chapter 7, as it is concerned with endian portability analysis
rather than patch analysis. This benchmark features C functions of several thousand
lines, each of which feature several hundred patches.

Fig. 5.23 shows the run-times of merge_stmt on these large functions, in log-log
plot. Each dot denotes a patched function. The abscissa measures the product of
lengths |s1| × |s2|, where s1 and s2 denote the original and patched versions of its body,
respectively. The ordinate measures the run-time t12 of merge_stmt(s1, s2). 94% of
the measurements are between the blue and red lines, hence satisfy the relation ϵ×|s1|×
|s2| ≤ t12 ≤ 10 × ϵ × |s1| × |s2|, where ϵ = 3.6 × 10−6s/LOC2. These experiments are
thus consistent with the quadratic asymptotic complexity stated in Chapter 4: t12 =
O(|s1| × |s2|).

5.5 Related works

We have already discussed related works on patch analysis in Chapter 3, and on product
program construction in Chapter 4. In this section, we mainly focus on the support of
the C language by related works on patch analysis.

148 CHAPTER 5. IMPLEMENTING PATCH ANALYSIS WITH MOPSA

[154, 155] address numerical programs in the C syntax, but their memory model
does not allow tracking pointer equivalences, let alone analyzing patches of low-level C
software abusing the weak type system of C.

[173] develop an implementation on top of the CProver framework, which supports
a large subset of C. Programs are analyzed at the level of goto-language, the inter-
mediate language used in the CProver framework. Yet their experimental evaluation
focuses on small well-typed integer programs.

[73] use Horn constraint solving to infer coupling relations and relational procedure
summaries, which works well for similarly structured integer programs. They rely on
user-provided synchronization marks to help the alignment of program versions with
dissimilar control structures, and user-provided relational invariants to enable proofs
of equivalence. [110] adds support for pointer programs, as well as inference of invari-
ants, in a CEGAR-based approach. Yet, this approach cannot handle union types and
heterogeneous pointer casts, which our memory model supports.

[40] support some low-level C constructs, such as incompatible pointer casts. Yet the
supported subset of C and the memory model are not described formally. In addition,
they compare pairs of procedures, assuming freedom from aliases. Likewise, the Symdiff
tool [112] operates at the level of the Boogie [17] intermediate language. The Havoc [46]
front-end is used to translate input C programs. Havoc assumes that the input C
programs are “field safe”, i.e. different field names cannot alias, and maintains a map
per word-valued (scalar or pointer) field and type. In contrast, we rely on the C memory
model of Mopsa, based on the cell abstract domain, which allows for sound analyses
despite the presence of aliases.

Like us, [60] rely on a C memory model based on [26], which gives a well-defined
semantics to low-level programming constructs. Unlike us, they do not formalize this
semantics and the related abstraction.

5.6 Conclusion

In this chapter, we presented an implementation of our patch analysis for C programs, on
top of the Mopsa platform. This implementation benefits a lot from Mopsa’s features to
support modular development: the domains for the analysis of C programs are reused in
a straightforward way. This includes the cell-based memory model [128], which enables
precise analyses of architecture-dependent low-level C programs. We therefore needed
to implement only the syntactic construction of double programs, a domain lifting the
cell-based memory model to double programs, and iterators for the double program
semantics. These iterators are quite lightweight (only 1,100 lines of OCaml), as they
delegate to simple program iterators.

Our implementation competes with the state-of-the-art, both in efficiency and pre-
cision. It also extends the scope of the analysis to patches of data structures, which has
no equivalent in the related works. Such patches may be viewed as a way to address a
first kind of portability property: robustness to variations of the offsets of scalar fields,

5.6. CONCLUSION 149

such as those introduced by changes in ABI, compiler options or language extensions
such as attributes of types or variables.

The scalability of the approach, in contrast, is hampered by the use of expressive
relational numerical domains: the io_uring benchmark, for instance, is not analyzed
efficiently. This can be improved by using less expressive domains, such as an equality
domain and the �♯ domain introduced in Chapter 3. A complementary optimization
of the memory model will be presented in Chapter 6. Finally, we will present an addi-
tional extension of the memory model in Chapter 7, which allows inferring an additional
portability property in a scalable way.

Chapter 6

Sharing cells in the memory
abstraction

Chapter 5 presented an analysis of double C programs on top of the Mopsa platform.
This analysis reuses generic abstract domains, as well as specific domains developed
for the analysis of simple C programs. In particular, it takes advantage of the C.cells
memory abstraction, which implements the cell based memory model for C originally
introduced in [128]. This memory model is key to allow sound and precise analyses of
programs that abuse unions and pointers to bypass the type system of C, a commonplace
practice in low-level programming known as type punning.

Most experiments of Sec. 5.4 were conducted with the polyhedra numerical domain,
an approach that does not scale to large programs. In this chapter, we present an
optimization of the memory model designed to reduce the burden of the numerical ab-
straction. We extend the memory model so that it can represent most relevant equalities
symbolically, thus reducing the number of dimensions in the numerical abstraction. This
new memory model will additionally allow successful analyses of some patches using only
non-relational numerical domains.

This chapter is organized as follows. We first motivate the memory model opti-
mization with idiomatic examples in Sec. 6.1. Then, we describe our extension of the
memory abstraction in Sec. 6.2, and its implementation on top of Mopsa in Sec. 6.3.
Finally, Sec. 6.4 provides an experimental evaluation of our implementation, and Sec. 6.5
concludes.

6.1 Motivating examples
In this section, we show the need for optimizing the cell based memory abstraction, and
suggest directions for optimizations. To this aim, we give two motivating examples of
double C programs: Example 30 and Example 32. Example 30 is analyzed successfully
with the patch analysis presented in Chapter 5, at the cost of an expressive numerical
abstraction such as polyhedra or affine equalities [103]. Example 32 cannot be analyzed
successfully, even with polyhedra.

151

152 CHAPTER 6. SHARING CELLS IN THE MEMORY ABSTRACTION

1 struct { u32 a; u32 b; } s; ∥ struct { u32 a; u32 x; u32 b; } s;
2 s.a = input_sync(0,1000); // ⟨s2, 0,u32⟩ = ⟨s1, 0,u32⟩ ∈ [0, 1000]
3 u32 x = input_sync(0,10); // ⟨x2, 0,u32⟩ = ⟨x1, 0,u32⟩ ∈ [0, 10]
4 s.b = s.a + x; // ⟨s1, 4,u32⟩ = ⟨s1, 0,u32⟩+ ⟨x1, 0,u32⟩ ∧
5 // ⟨s2, 8,u32⟩ = ⟨s2, 0,u32⟩+ ⟨x2, 0,u32⟩
6 assert_sync(s.b); // ⟨s1, 4,u32⟩ ?= ⟨s2, 8,u32⟩

Figure 6.1: Sum of scalar fields (Example 30).

1 struct { u16 a; u16 b; } s; ∥ struct { u16 b; } s;
2 s.b = input_sync(0,1000); // ⟨s2, 0,u16⟩ = ⟨s1, 2,u16⟩ ∈ [0, 1000]
3 u8 *p = (u8 *) &s + 1; // pt1 7→ {s1} ∧ offset(pt1) = 1 ∧
4 // pt2 7→ {s2} ∧ offset(pt2) = 1
5 p+=sizeof(s.a) ∥ skip; // offset(pt1) = 3
6 assert_sync(*p); // ⟨s1, 3,u8⟩ = ⌊⟨s1, 2,u16⟩/28⌋ mod 28 ∧
7 // ⟨s2, 1,u8⟩ = ⌊⟨s2, 0,u16⟩/28⌋ mod 28 ∧
8 // ⟨s1, 3,u8⟩ ?= ⟨s2, 1,u8⟩

Figure 6.2: Byte extraction, with numerical invariants over cells (Example 32).

To start with, let us come back to Example 30 from Sec. 5.3.5. The source code and
invariants are reproduced on Fig. 6.1 for convenience. The goal of the patch analysis
for C programs presented in Chapter 5 is to prove the assertion (line 6) by leveraging
numerical domains to abstract the values of cells. However, such invariants require an
expressive relational domain, such as polyhedra or linear equalities, which may hamper
the scalability of the analysis. In particular, we note that we need to infer many equalities
between the left and right versions of the same scalar fields. This is no surprise as we
expect most variables to hold equal values in the left and right memories most of the
time, with only local differences. Rather than relying completely on the expressiveness of
the underlying numerical domain, we will optimize our memory model for this common
case. In this chapter, we will present our approach to this optimization, which consists
in sharing the representations of pairs of cells associated to pairs of “matching” scalar
fields from P1 and P2. For instance, our optimized memory model will synthesize a
single so-called shared bi-cell to hold the value of scalar field s.a, which is the same in
both program version, instead the pair of equal cells ⟨s1, 0,u32⟩ and ⟨s2, 0,u32⟩. Cell
sharing will act as a symbolic representation of cells equality. This optimization will
allow a successful analysis of Example 30 using only non-relational numerical domains
with linear cost.

Example 32 (Preserving cell equalities through modular computations from the mem-
ory abstraction). While Example 30 featured well-typed, portable C code, Fig. 6.2 shows
a related example relying on type-puning to read the second byte of field s.b (line 6).
Note that this non portable code requires different pointer arithmetic expressions for P1

6.2. MEMORY MODEL OPTIMIZATION 153

⟨s1, 2, u16⟩

⟨s1, 3, u8⟩

s1

pt1 = ⟨p1, 0, ptr⟩

p1

(a) Program 1

⟨s2, 0, u16⟩

⟨s2, 1, u8⟩

s2

pt2 = ⟨p2, 0, ptr⟩

p2

(b) Program 2

Figure 6.3: Memory cells of Example 32: ∈ [0, 1000], = ⌊ /28⌋ mod 28.

and P2 to reference the “same” byte of field s.b (line 5), due to the additional structure
field in P1 and the associated shift in field offets. Fig. 6.3 shows the cells synthesized at
the end of the program. The invariants inferred by the analysis presented in Chapter 5
are displayed in blue on Fig. 6.2. The property to be proved is displayed in red at line
8. It holds indeed if P1 and P2 run on platforms with the same byte-order – a 32-bit
little-endian System V ABI is assumed here. 1-byte cells ⟨s1, 3,u8⟩ and ⟨s2, 1,u8⟩ are
synthesized by the function ϕ of the memory model to account for the dereference *p line
6. Function ϕ defines the values of these 1-byte cells as modular arithmetic functions
of the values of 2-byte cells ⟨s1, 2,u16⟩ and ⟨s2, 0,u16⟩, respectively. Such non-linear
relations are not represented precisely by linear abstract domains such as polyhedra.
As consequence, this example is not analyzed successfully by the analysis presented in
Chapter 5. Several options exist to improve the precision. For instance, a more ex-
pressive numerical abstract domain can be used, e.g. by combining polyhedra with a
symbolic numerical abstraction. Yet this approach would not improve the scalability
of the analysis. In this chapter, we present another solution: a symbolic abstraction
of the memory model that allows a successful analysis of this example using only a
non-relational numerical abstract domain with linear cost.

6.2 Memory model optimization

In this section, we optimize the cell-based memory model introduced in Sec. 5.2.4 for
double program analysis. In Sec. 6.1 we noted that we expect most scalar fields to hold
equal values in P1 and P2. We will thus let our new memory model represent all such
equalities symbolically and implicitly, by merging the representations of equal cells in
the representation of states.

6.2.1 Labeling cells with sides

We start with the domain of double cell-based memory states D ≜ E1 × E2 introduced
in Sec. 5.3.2, where Ek = ⋃

C⊆Cellk
{ ⟨C, ρ⟩ | ρ ∈ C → V } is the set of states of simple

154 CHAPTER 6. SHARING CELLS IN THE MEMORY ABSTRACTION

(P(D),≼2) −−−→−→←←−−−−
α̃

γ̃
(P(D̃),≼)

α̃(X)≜⋃⟨⟨C1,ρ1⟩,⟨C2,ρ2⟩⟩∈X { ⟨ι1(C1) ∪ ι2(C2), ⟨c, k⟩ 7→ ρk(c)⟩ }
γ̃(Y) ≜

⋃
⟨C,ρ⟩∈Y { ⟨⟨ι−1

1 (C), ρ ◦ ι1⟩, ⟨ι−1
2 (C), ρ ◦ ι2⟩⟩ }

Figure 6.4: Environments on single cells

C program Pk. Then, we let the cell environment of every double state operate on the
disjoint union of the cells of P1 and the cells of P2, by labeling every cell with its program
version.

We introduce the set of single cells

C̃ell ≜ Cell1 ⊎ Cell2 = (Cell1 × { 1 }) ∪ (Cell2 × { 2 })

to account for both versions. ⟨c, 1⟩ ∈ C̃ell denotes a cell c in the memory of P1, while
⟨c, 2⟩ ∈ C̃ell denotes a cell c in the memory of P2. Abstract double memory states are
thus elements of the domain

D̃ ≜
⋃

C⊆C̃ell

{ ⟨C, ρ⟩ | ρ ∈ C → V }

The lattice of properties (P(D̃),≼,∪) is equipped with partial order

X̃ ≼ X̃ ′
△⇐⇒ ∀(C, ρ) ∈ X̃ : ∃(C ′, ρ′) ∈ X̃ ′ : C ′ ⊆ C ∧ ρ′ = ρ|C′

where ρ|C′ denotes the restriction of ρ to C ′. Note that we reuse the partial order ≼
defined in Sec. 5.2.4 for simple C programs. Indeed the definition is identical, albeit
on a different set. This abstraction does not lose information (Galois isomorphism). A
formalisation is shown on Fig 6.4, where ιk ∈ Cell→ C̃ell labels cells with side k ∈ { 1, 2 }:
ιk(c) ≜ ⟨c, k⟩. Note that we write ι−1

k (C) for the preimage of C under ιk.

Proposition 12 (Isomorphic cell labeling). The pair (α̃, γ̃) defined in Fig. 6.4 is a
Galois isomorphism.

Changes to transfer functions using this representation are straightforward. For
instance, we demonstrate D̃J dstat K ∈ P(D̃) → P(D̃) in the case of two syntactically
different statements:

D̃J s1 ∥ s2 K (X̃) ≜
⋃

⟨C,ρ⟩∈X̃

 ⟨C ′, ρ′⟩
∣∣∣∣∣∣∣
C ′ = ι1(C1) ∪ ι2(C2)
ρ′ : ⟨c, k⟩ 7→ ρk(c)
(Ck, ρk) ∈ SkJ sk K { ⟨ι−1

k (C), ρ ◦ ιk⟩ }

6.2.2 Merging single cells

As a second step, we introduce additional cells in the representation of states, in order
to represent equalities between cells of P1 and cells of P2.

6.2. MEMORY MODEL OPTIMIZATION 155

(P(D̃),≼) −−−→←−−−
α̂

γ̂
(P(D̂),≼)

α̂(X) ≜
⋃

⟨C,ρ⟩∈X

{ ⟨C ∪
{
⟨c1, c2⟩ ∈ C2

∣∣∣∣ Bic⟨c1, c2⟩ ∧
ρ(c1) = ρ(c2)

}
, c 7→

{
ρ(c) if c ∈ C̃ell
ρ(c1) if c = ⟨c1, c2⟩ ∈ C̃ell

2 ⟩ }

γ̂(Y) ≜
⋃

⟨C, ρ⟩ ∈ Y
∧Con⟨C, ρ⟩

{ ⟨(C ∩ C̃ell) ∪
⋃

⟨c1,c2⟩∈C { c1, c2 } , c 7→

ρ⟨c, c′⟩ if ∃c′ : ⟨c, c′⟩ ∈ C
ρ⟨c′, c⟩ else if ∃c′ : ⟨c′, c⟩ ∈ C
ρ(c) otherwise

⟩ }

where
Bic⟨c1, c2⟩

△⇐⇒ ∃τ : ∀i ∈ { 1, 2 } : ∃Vi, oi : ci = ⟨Vi, oi, τ, i⟩

Con⟨C, ρ⟩ △⇐⇒ ∀⟨c1, c2⟩ ∈ C : Bic⟨c1, c2⟩ ∧ ∀c ∈ C ∩ { c1, c2 } : ρ(c) = ρ⟨c1, c2⟩

Figure 6.5: Representing equalities symbolically with shared bi-cells

We denote as Bicell ≜ C̃ell∪(C̃ell×C̃ell) the set of so-called bi-cells. A bi-cell is either
a single cell in C̃ell, or a pair of such cells in C̃ell × C̃ell assumed to hold equal value,
called a shared bi-cell. Bi-cell sharing allows a single representation, in the memory
environment, for two cells from different program versions and holding equal values.
Abstract memory states are thus elements of

D̂ ≜
⋃

C⊆Bicell

{ ⟨C, ρ⟩ | ρ ∈ C → V }

A formalization is shown on Fig 6.5. Note that we overload the partial order ≼ again.
α̂ uses shared bi-cells to represent pairs of single cells from different program versions
and holding equal values, only if these single cells share the same type. This restriction
is modeled by the predicate Bic. The reason for this restriction is that our bi-cell
synthesis relies on the byte-representations of the memories of P1 and P2 to pattern-
match the abstract memory state. In addition, γ̂ uses the predicate Cons to filter away
any inconsistent abstract state from the concretization. An abstract state is consistent
if all its shared bi-cells hold the same values as their left or right projections, if any.

Proposition 13 (Connection between single cells and bi-cells of the same type). The
pair (α̂, γ̂) defined in Fig. 6.5 is a Galois connection.

6.2.3 Bi-cell synthesis

A cornerstone of our optimization of the memory model is bi-cell synthesis. In order to
read or write a scalar value to a given location of memory, we must create a suitable
bi-cell, or retrieve an existing one from the environment. To guarantee the soundness of
the analysis when adding a new bi-cell, it is necessary to ensure that values assigned to
it are consistent with those of existing overlapping bi-cells. Our memory domain first
attempts to synthesize shared bi-cells if an equality can be inferred from the environment,

156 CHAPTER 6. SHARING CELLS IN THE MEMORY ABSTRACTION

1 struct { u16 a; u16 b; } s; ∥ struct { u16 b; } s;
2 s.b = input_sync(0,1000); // ⟨c1, c2⟩ ∈ [0, 1000]
3 u8 *p = (u8 *) &s + 1; // p1 7→ {s1} ∧ offset(p1) = 1 ∧
4 // p2 7→ {s2} ∧ offset(p2) = 1
5 p+=sizeof(s.a) ∥ skip; // offset(p1) = 3
6 assert_sync(*p); // ⟨c′

1, c
′
2⟩ = ⌊⟨c1, c2⟩/28⌋ mod 28

7 // c′
1

?= c′
2

Figure 6.6: Byte extraction, with numerical invariants over bi-cells.

s2

⟨c1, c2⟩

⟨c′
1, c′

2⟩

s1

c1 = ⟨s1, 2, u16, 1⟩

c′
1 = ⟨s1, 3, u8, 1⟩

c2 = ⟨s2, 0, u16, 2⟩

c′
2 = ⟨s2, 1, u8, 2⟩

p1 = ⟨p, 0, ptr, 1⟩

p2 = ⟨p, 0, ptr, 2⟩

p

p1 7→ {s1}

p2 7→ {s2}

offset(p1) = 3

offset(p2) = 1

Figure 6.7: Bi-cells of Example 32: ∈ [0, 1000], = ⌊ /28⌋ mod 28.

by pattern-matching. In case of failure, it safely defaults to a pair of single cells, the
values of which are set according to those of existing overlapping bi-cells.

Let us illustrate bi-cell synthesis in the case of Example 32. Fig. 6.7 shows the bi-
cells obtained after analyzing the program, and Fig. 6.6 shows the numerical invariants
over bi-cells. Since the input_sync statement line 2 assigns equal values to c1 ≜
⟨s1, 2,u16, 1⟩ and c2 ≜ ⟨s2, 0,u16, 2⟩, our memory domain synthesizes a shared bi-cell
⟨c1, c2⟩. In contrast, two single pointer bi-cells p1 = ⟨p, 0,ptr, 1⟩ and p2 = ⟨p, 0,ptr, 2⟩
are synthesized and updated separately lines 3 to 5, as pointer p has different bases
and offsets in P1 and P2. Nonetheless, our memory domain attempts to synthesizes a
shared 1-byte bi-cell ⟨c′1, c′2⟩ for the dereference *p line 6, where c′1 = ⟨s1, 3,u8, 1⟩ and
c′2 = ⟨s2, 1,u8, 2⟩. To this aim, it attempts to match reachable abstract states with a
set of predefined patterns. One of these patterns is as follows: it searches the set of
previously synthesized bi-cells for any shared integer bi-cell x such that ⟨c′1, c′2⟩ extracts
1 byte of x. The match x = ⟨c1, c2⟩ is found. Therefore ⟨c′1, c′2⟩ is synthesized, as a proof
of c′1 = c′2 (recall P1 and P2 are assumed to have the same endianness). The success of
the synthesis relies solely on pattern-matching in this case: the assertion is proved even if
the underlying numerical domain is unable represent the relation ⟨c′1, c′2⟩ = ⌊⟨c1, c2⟩/28⌋
mod 28 precisely. Our implementation proves it with the interval domain. The pattern
we used in this case relies only on the set of synthesized bi-cells. Note that some other

6.2. MEMORY MODEL OPTIMIZATION 157

equal(⟨V, o, τ, k⟩, ⟨V ′, o′, τ, k′⟩)⟨C, ρ⟩ ≜
let c = ⟨V, o, τ, k⟩ and c′ = ⟨V ′, o′, τ, k′⟩ and s = sizeof (τ) in
⟨c, c′⟩ ∈ C ∨ ⟨c′, c⟩ ∈ C ∨
(∃(x, x′) ∈ occ(c, C)× occ(c′, C) : ρ(x) = ρ(x′)) ∨
(∀0 ≤ w < s : equal(⟨V, o+ w,u8, k⟩, ⟨V ′, o′ + w,u8, k′⟩)⟨C, ρ⟩) ∨
∃c⋆, c

′
⋆ ∈ flatten(C) \ { c, c′ } :

c⋆ = ⟨V, o⋆, τ⋆, k⟩ ∧
c′⋆ = ⟨V ′, o′⋆, τ⋆, k

′⟩ ∧
o⋆ ≤ o ∧ o′⋆ ≤ o′ ∧
o+ s ≤ o⋆ + sizeof (τ⋆) ∧
o′ + s ≤ o′⋆ + sizeof (τ⋆) ∧
equal(c⋆, c

′
⋆)⟨C, ρ⟩

Figure 6.8: Equality test between single cells.

patterns involve the bi-cell environments, e.g. tests for bi-cell equalities.

Shared bi-cell synthesis

More generally, given an abstract memory state ⟨C, ρ⟩ ∈ D̂ and a pair of scalar deref-
erences of the same type c1 ∈ Cell1 from P1 and c2 ∈ Cell2 from P2, the function
ϕ̂ ∈ Cell1×Cell2 → D̂ → Bicell∪{⊤} formalizes the patterns matched when attempting
to synthesize a shared bi-cell for c1 and c2:

ϕ̂(c1, c2)⟨C, ρ⟩ ≜

⟨⟨c1, 1⟩, ⟨c2, 2⟩⟩ if equal(⟨c1, 1⟩, ⟨c2, 2⟩)⟨C, ρ⟩
⊤ otherwise

ϕ̂ returns a shared bi-cell ⟨⟨c1, 1⟩, ⟨c2, 2⟩⟩ if ⟨c1, 1⟩ = ⟨c2, 2⟩ may be inferred from the
environment. Otherwise, it returns a failure ⊤.

ϕ̂ relies on the predicate equal to compare two single cells of the same type. An
implementation is shown on Fig. 6.8. equal returns true when compared single cells are
part of a shared bi-cell, or when equality is ensured by the environment. In the formula,
we denote the occurrences of a single cell in the environment as

occ(c, C) ≜ { c′ ∈ C | c′ = c ∨ ∃c′′ : c′ = ⟨c, c′′⟩ ∨ c′ = ⟨c′′, c⟩ }

Otherwise, equal compares individual 1-byte bi-cells of the same weights, i.e. at equal
offsets in the compared single cells, as we assume for now the same endianness encoding
in P1 and P2. Otherwise, equal searches for a pair of larger single cells in the environment,
which are equal and contain the compared cells at equal offsets. Recall that we used
this last pattern for Example 32, in order to synthesize ⟨⟨s1, 3,u8, 1⟩, ⟨s2, 1,u8, 2⟩⟩ from
⟨⟨s1, 2,u16, 1⟩, ⟨s2, 0,u16, 2⟩⟩. In the formula, we denote the set of single cells in the
environment as

flatten(C) ≜ { c ∈ C̃ell | c ∈ C ∨ ∃c′ ∈ C : ⟨c, c′⟩ ∈ C ∨ ⟨c′, c⟩ ∈ C }

158 CHAPTER 6. SHARING CELLS IN THE MEMORY ABSTRACTION

̂add-cell(c1, c2) { ⟨C, ρ⟩ } ≜
if ϕ̂(c1, c2)⟨C, ρ⟩ = ⟨⟨c1, 1⟩, ⟨c2, 2⟩⟩ then
{ ⟨C ∪ { ⟨⟨c1, 1⟩, ⟨c2, 2⟩⟩ } , ρ[⟨⟨c1, 1⟩, ⟨c2, 2⟩⟩ 7→ v]⟩ | v ∈ EJϕ1(⟨c1, 1⟩)(C) Kρ }

else
{ ⟨C ∪ {⟨c1, 1⟩, ⟨c2, 2⟩}, ρ[∀i : ⟨ci, i⟩ 7→ vi]⟩ | ∀i : vi ∈ EJϕi⟨ci, i⟩(C) Kρ }

Figure 6.9: Bi-cell addition.

Finally, the predicate equal returns true in case of success, false otherwise.

Single cell synthesis

If all attempts to synthesize a shared bi-cell for the scalar dereferences c1 and c2 fail,
our memory domain synthesizes the pair of single cells ⟨c1, 1⟩ and ⟨c2, 2⟩ instead. To
set the values of ⟨c1, 1⟩ and ⟨c2, 2⟩ soundly, our memory domain calls ϕ1⟨c1, 1⟩(C) and
ϕ2⟨c2, 2⟩(C), where ϕk⟨c, k⟩(C) returns a syntactic expression denoting (an abstraction
of) the value of ⟨c, k⟩ as a function of bi-cells existing in C. Functions ϕk ∈ C̃ell →
P(Bicell)→ expr are defined as simple extensions of the cell synthesizing function ϕ for
low-level C programs, which we introduced in Fig. 5.8 of Sec. 5.2.4. To define ϕ1 and ϕ2,
we project bi-cells of the appropriate side onto cells, apply ϕ, and lift the resulting cell
expression back to a bi-cell expression. More precisely, to compute ϕ1⟨c, 1⟩(C), we first
project the bi-cell set C to the cells of P1 : C1 ≜ {x | ⟨x, 1⟩ ∈ C ∨ ∃y : ⟨⟨x, 1⟩, ⟨y, 2⟩⟩ ∈
C }. Then, we retrieve the constraints on cell c by applying the generic cell synthesizing
function: e1 ≜ ϕ(c)(C1). Finally, ϕ1⟨c, 1⟩(C) is obtained by substituting every cell x
occurring in e1 with some bi-cell x1 ∈ occ(⟨x, 1⟩, C).
Remark 28 (Choice of x1 ∈ occ(⟨x, 1⟩, C)). e1 is a syntactic expression over cells in C1,
and occ(⟨x, 1⟩, C) ̸= ∅ for all x ∈ C1. We can choose x1 arbitrarily, as all elements of
occ(⟨x, 1⟩, C) are assumed to hold equal values.

The definition of ϕ2⟨c, 2⟩(C) is analogue.

Bi-cell addition

Bi-cell addition, ̂add-cell ∈ Cell1 × Cell2 → P(D̂)→ P(D̂), then simply adds the synthe-
sized bi-cell(s) to the environment, and initializes their value(s), as shown on Fig. 6.9.

Remark 29 (̂add-cell morphism). ̂add-cell(c1, c2) is a complete ∪-morphism for all pairs
of cells c1 and c2.

6.2.4 Semantics of simple statements

Before defining the semantics for double statements in this domain, we need to define
the semantics ÊkJ ∗t e K ∈ D̂ → P(D̂) × P(V) and ŜkJ ∗t e1 ← e2 K ∈ P(D̂) → P(D̂) for
simple memory reads and writes, in program version k ∈ { 1, 2 }.

6.2. MEMORY MODEL OPTIMIZATION 159

Bi-cell synthesis for simple programs.

The transfer functions of assignments and tests rely on bi-cell synthesis for the simple
program Pk. As for double programs, the memory model attempts to synthesize shared
bi-cells whenever possible for dereferences in the memory of Pk, safely defaulting to
single cells on side k.

Shared bi-cell synthesis for simple program Pk. More precisely, the function
ϕ̂k ∈ Cellk → D̂ → Bicell ∪ {⊤} formalizes the patterns matched when attempting to
synthesize a shared bi-cell for a scalar dereference ck ∈ Cellk in the memory of Pk:

ϕ̂k(ck) ≜

ϕ̂(c1, c2) if ∃⟨c1, c2⟩ ∈ B

⊤ otherwise

ϕ̂k assumes a relation B ∈ P(Cell1 × Cell2) given between the possible cells in the
memory of P1 and the possible cells in the memory of P2. For instance, ϕ̂1(c1) relies
on B to search for a candidate cell c2 of P2, such that ⟨c1, 1⟩ = ⟨c2, 2⟩ may be inferred
from the environment. It returns the shared bi-cell ⟨⟨c1, 1⟩, ⟨c2, 2⟩⟩ in case of success,
and a failure ⊤ otherwise. B is a heuristic used as a hint for the memory domain. Its
elements are pairs of cells that are likely to be equal most of the time during program
execution. As a heuristic, B can influence the precision of the memory abstraction, but
not its soundness. Any definition of B would be indeed sound: to choose B = ∅ would
disable the cell sharing optimization, while B = P(Cell1 × Cell2) would maximize cell
sharing opportunities, at the cost of efficiency, as ϕ̂1 and ϕ̂2 would have to test a large
number of possibilities.

In our implementation, B defines a partial bijection between Cell1 and Cell2. It is
computed by the analysis front-end, and contains pairs of cells likely to be equal most of
the time during program execution, namely pairs of cells from different program versions
that represent the “same” scalar variables or fields in P1 and P2. Indeed our implementa-
tion of B matches scalar fields which enjoy the same names, types and scopes in the AST
of P1 and P2. For instance, natural candidates of Example 32 are the cells inside field s.b
and variable p, which occur in both program versions: ⟨⟨s1, 2,u16⟩, ⟨s2, 0,u16⟩⟩ ∈ B
and ⟨⟨p, 0,ptr⟩, ⟨p, 0,ptr⟩⟩ ∈ B. In contrast, we do not attempt to match the cells inside
field s.a of P1, as this field has no counterpart in P2.

Remark 30 (Names of fields versus offsets of cells). Cells corresponding to similar path,
s.b, can have different offsets. For instance, the cell corresponding to s.b has offset 2 in
P1 and 0 in P2. Our heuristics favors cells with the same field name over cells with the
same offset, to detect the likelihood of new fields being inserted in structs and shifting
the position in memory of similar data between P1 and P2.

For each pair of matched cells c1 = ⟨V1, o1, t⟩ and c2 = ⟨V2, o2, t⟩, B additionally
matches any possible cells c′1 = ⟨V1, o1 + p, t′⟩ and c′2 = ⟨V2, o2 + p, t′⟩ such that p +
sizeof (t′) ≤ sizeof (t), i.e. c′1 and c′2 represent corresponding sequences of bytes included

160 CHAPTER 6. SHARING CELLS IN THE MEMORY ABSTRACTION

̂add-cellk(ck) { ⟨C, ρ⟩ } ≜
if ϕ̂(ck)⟨C, ρ⟩ = ⟨⟨c1, 1⟩, ⟨c2, 2⟩⟩ then
{ ⟨C ∪ { ⟨⟨c1, 1⟩, ⟨c2, 2⟩⟩ } , ρ[⟨⟨c1, 1⟩, ⟨c2, 2⟩⟩ 7→ v]⟩ | v ∈ EJϕ1(⟨c1, 1⟩)(C) Kρ }

else
{ ⟨C ∪ {⟨ck, k⟩}, ρ[⟨ck, k⟩ 7→ v]⟩ | v ∈ EJϕk⟨ck, k⟩(C) Kρ }

Figure 6.10: Bi-cell addition for simple program Pk.

in those of c1 and c2. For Example 32:

B ≜ { ⟨⟨s1, o, τ⟩, ⟨s2, o− 2, τ⟩⟩ | 2 ≤ o ∧ o+ sizeof (τ) ≤ 4 }
∪ { ⟨⟨p, o, τ⟩, ⟨p, o, τ⟩⟩ | 0 ≤ o ∧ o+ sizeof (τ) ≤ 4 }

B matches offsets of variables defined in P1 and P2 with equal names but different
types. It also matches offsets of versions of variables when P1 and P2 are compiled with
different options or attributes, changing the layout of memory. The restriction of B to
the set of variables defined in P1 and P2 with identical names and types is the identity.

Single cell synthesis for simple program Pk. If all attempts to synthesize a shared
bi-cell for the scalar dereference ck fail, our memory domain synthesizes the single single
cell ⟨ck, k⟩ instead. As in Sec. 6.2.3, it uses ϕk⟨ck, k⟩(C) to set its value soundly.

Bi-cell addition for simple program Pk. Bi-cell addition, ̂add-cellk ∈ Cellk →
P(D̂)→ P(D̂), then simply adds the synthesized bi-cell to the environment, and initial-
izes its value, as shown on Fig. 6.10.

Remark 31 (̂add-cellk morphism). As in Remark 29, ̂add-cellk(ck) is a complete ∪-
morphism for all ck ∈ Cellk.

Evaluations.

We describe the semantics of ÊkJ ∗t e K ⟨C, ρ⟩, assuming the expression e does not contain
any dereference. This is not restrictive, as expressions can be transformed into purely
scalar expressions by resolving left-values bottom up. To compute ÊkJ ∗t e K ⟨C, ρ⟩, we
first resolve ∗t e into a set Lk of single cells on side k, by evaluating e into a set of pointer
values, and gathering single cells corresponding to valid pointers:

Lk ≜ { ⟨V, o, t, k⟩ ∈ C̃ell | ⟨V, o⟩ ∈ EkJ e K ρ }

Then, we call ̂add-cellk to ensure that all the target bi-cells in Lk occur in the abstract
environment, either directly or via a suitable shared bi-cell. This updates the singleton
state { ⟨C, ρ⟩ } to a set of states X0 ∈ P(D̂):

X0 =
(

̂add-cellk(cn) ◦ · · · ◦ ̂add-cellk(c1)
)
{ ⟨C, ρ⟩ }

6.2. MEMORY MODEL OPTIMIZATION 161

where { ⟨c1, k⟩, . . . , ⟨cn, k⟩ } = Lk. The semantics of ̂add-cellk ensures that occ(c, C0) ̸= ∅
for all ⟨C0, ρ0⟩ ∈ X0 and c ∈ Lk.
Finally,

ÊkJ ∗t e K ⟨C, ρ⟩ = ⟨X0, { ρ0(c0) | c0 ∈ occ(c, C0) ∧ c ∈ Lk ∧ ⟨C0, ρ0⟩ ∈ X0 }⟩

Assignments.

The semantics of assignments ŜkJ ∗t e1 ← e2 K involves more steps. We describe ŜkJ ∗t e1 ←
e2 K { ⟨C, ρ⟩ } on a single state ⟨C, ρ⟩, as ŜkJ ∗t e1 ← e2 K is a complete ∪-morphism.

We first evaluate e2 into a set of values Ve2 ∈ P(V). This may involve synthesizing
bi-cells for the dereferences of e2, which updates the singleton state { ⟨C, ρ⟩ } to a set of
states X̂ ∈ P(D̂): ⟨X̂,Ve2⟩ = ÊkJ e2 K ⟨C, ρ⟩. and ⟨Ĉ, ρ̂⟩ ∈ X̂.

Like for evaluations, we assume the expression e1 does not contain any dereference,
and start with resolving ∗t e1 into a set Lk of single cells on side k. Then, we realize the
bi-cells in Lk using ̂add-cellk, which updates the singleton state { ⟨Ĉ, ρ̂⟩ } to a set of states
X0 ∈ P(D̂). Let ⟨C0, ρ0⟩ ∈ X0. Some of the single cells in Lk may have been realized
into shared bi-cells in C0. Let S0 ≜ (C0 \ C) ∩ C̃ell2 be the set of such shared bi-cells.
Elements of S0 represent equalities between single cells on side k, and on side opposite
to k. Such equalities may no longer hold, after assignment on side k. Therefore, we split
shared bi-cells of S0 into their left and right projections, in a copy-on-write strategy.
Each state ⟨C0, ρ0⟩ ∈ X0 is thus updated to ⟨C ′0, ρ′0⟩ = split(S0, ⟨C0, ρ0⟩) ∈ X ′0, where
split ∈ P(C̃ell2)× P(D̂)→ P(D̂) is defined as

C ′0 ≜ C0 ∪
⋃

⟨c,c′⟩∈S0

{ c, c′ } and ρ′0(c) ≜
{
ρ0(x) if ∃x ∈ occ(c, S0) ̸= ∅
ρ0(c) otherwise.

(6.1)

Finally, we update the environment for the single cells written (elements of Lk), with
the possible values of e2. However, this is not sufficient: it is also necessary to update
the environment for any overlapping bi-cells, including shared bi-cells that have been
split into pairs of single cells.

Indeed, removing any bi-cell is always sound in our memory model: it amounts to
losing information, as we lose constraints on the byte-representation of the memory. Let
Ω′0 ⊆ C ′0 \ Lk be the set of such bi-cells: elements of Ω′0 are shared bi-cells and single
cells on side k, with base variables, offsets and sizes such that they overlap some element
of Lk. The updated environment is:

ŜkJ ∗t e1 ← e2 K { ⟨C, ρ⟩ } =
⋃

⟨C′
0,ρ′

0⟩∈X′
0

{ ⟨C ′0 \ Ω′0, ρ|C′
0\Ω′

0
[∀c ∈ Lk : c 7→ v]⟩ | v ∈ Ve2 }

Remark 32 (Recovering shared bi-cells after simple assignment). As explained above,
removing all shared bi-cells that have been split in a copy-on-write strategy may result
in loss of precision after numerical abstraction in non relational domains. A possible
mitigation is to eagerly attempt to synthesize again the shared bi-cells that have been

162 CHAPTER 6. SHARING CELLS IN THE MEMORY ABSTRACTION

split, immediately after the assignment on side k. An alternate strategy is to lazily let
a subsequent memory reads from the program trigger such attempts.

In addition, an existing shared bi-cell such as ⟨⟨x, 0,u32, 1⟩, ⟨x, 0,u32, 2⟩⟩ should not
be removed when both program versions execute jointly commonplace statements such
as x=42; and x=x+1;. This is ensured by the transfer function of double assignment
statements, which will be presented in Sec. 6.2.5.

6.2.5 Semantics of double statements

We are now ready to define the semantics D̂J dstat K ∈ P(D̂) → P(D̂) of double state-
ments in this domain. Like D, D̂ is defined by induction on the syntax. We focus on
base cases, as inductive cases are unchanged.

The semantics for input_sync, assert_sync(·), and F̂J e1 ▷◁ 0 ∥ e2 ▷◁ 0 K are
mostly unchanged, but for symbolic simplifications taking advantage of symbolic rep-
resentations of equalities in our memory domain, in order to maximize efficiency and
precision after numerical abstraction in non relational domains. In particular, when l
is a deterministic left-value expression ∗τe containing a single dereference, then D̂J l ←
input_sync(a, b) K adds a shared bi-cell for this dereference to every abstract state.
Consistently, D̂J assert_sync(l) K first tests whether l is a left-value expression ∗τe that
evaluates to a single shared bi-cell. If such is the case, then l is guaranteed to evaluate
to equal values in all double memory states, so D̂J assert_sync(l) K raises no alarm.
Otherwise, the semantics uses environment functions ρ to test equalities of bi-cell val-
ues in every state, as for D. A similar symbolic simplification is used for the F̂ filter:
F̂J e ▷◁ 0 ∥ e ̸▷◁ 0 K ⟨C, ρ⟩ = ∅ (hence the test e ▷◁ 0 is stable) when e is deterministic
and all dereferences evaluate to shared bi-cells, which is the common case. For instance,
when evaluating D̂J if (x < y) then s else t K , if the dereferences for variables x and y
evaluate to shared bi-cells in every state, then the two unstable tests cases are ⊥.

Assignments.

In an assignment D̂J ∗t e1 ← e2 K , although both programs execute the same syntactic
assignment, their semantics may differ, as the memory layouts may be different. For
instance, recall Example 29 from Sec. 5.2.1. The value assigned to field s.x by the
statement p[4]=1 depends on the alignments of types defined by the ABI, or compiler
options and directives. In addition, available bi-cells may be different. By default, double
assignments are straightforward extensions of simple assignments: D̂J ∗t e1 ← e2 K =
Ŝ2J ∗t e1 ← e2 K ◦ Ŝ1J ∗t e1 ← e2 K . We introduce two precision optimizations, taking
advantage of implicit equalities represented by shared bi-cells. We discuss these precision
optimizations on a singleton state { ⟨C, ρ⟩ }, as the transfer function is a complete ∪-
morphism. We first transform ∗t e1 and the dereferences in e2 into sets of bi-cells L
and R, respectively. Note that R may be empty, as e2 may be a constant expression.
Then, we realize the cells in L and R, using ̂add-cell, which updates the singleton state
{ ⟨C, ρ⟩ } to a set of states X0 ∈ P(D̂). Two optimizations are possible, depending on
e1, e2, L, and R.

6.2. MEMORY MODEL OPTIMIZATION 163

Optimization 1: Assignment of shared bi-cells. If ∗t e1 and e2 are deterministic
expressions, and if they evaluate to bi-cells that are all shared (L ∪ R ⊆ C̃ell2) in every
state ⟨C0, ρ0⟩ ∈ X0, then P1 and P2 write the same value to the same destination.
We thus update shared destination bi-cells (in L), and remove any overlapping bi-cells.
Formally:

D̂J ∗t e1 ← e2 K { ⟨C, ρ⟩ } =
⋃

⟨C0,ρ0⟩∈X0

{ ⟨C0\Ω0, ρ|C0\Ω[∀c ∈ L : c 7→ v]⟩ | v ∈ snd(Ê1J e2 K ⟨C0, ρ0⟩) }

where Ω0 ⊆ C0 \ L is the set of (shared or single) bi-cells overlapping elements of L.
Remark 33 (Evaluation on arbitrary side after bi-cell synthesis). The choice of evaluating
Ê1J e2 K (rather than Ê2J e2 K) is arbitrary, as they are equal. Indeed, all the necessary
cells are materialized before evaluating expression e2.

Example 33 (Assignment of shared bi-cells). The case occurs typically in commonplace
assignments such as x=x+1;. Fig. 6.11 shows such an example, where a shared bi-cell
represents the bytes of x for all states before the assignment, and a counterexample
where this is not the case.

This optimization can be extended to the case where ∗t e1 is not resolved to a shared
bi-cell, but to a pair of single cells: c1 for P1, and c2 for P2. In this case, we replace c1
and c2 by ⟨c1, c2⟩ in L, and apply the same transfer function.

Example 34 (Extended assignment of shared bi-cells). The case occurs in assignments
such as x=42; Fig. 6.11 shows such an example.

Optimization 2: Copy assignment. If the conditions for optimization 1 are satis-
fied, and if, in addition, e2 = ∗t e′2, and both ∗t e1 and ∗t e′2 evaluate to single bi-cells
(|L| = |R| = 1) in every state ⟨C0, ρ0⟩ ∈ X0, then we are dealing with a copy assign-
ment, as in y=x;. We may thus soundly copy any memory information from the source
{r} = R, to the destination {l} = L, so as to further improve precision. We therefore
remove l, and create a copy of r, and of any smaller bi-cell r′ ∈ C0 for the same bytes,
to a corresponding bi-cell for the bytes of l. Newly created destination bi-cells have
the sides of their sources. The environment is updated accordingly, to reflect equalities
between sources and destinations.

Example 35 (Copy assignment). The case occurs copies between variables, such as
y=x;. Fig. 6.11 shows such an example, where the bi-cell for y is preserved thanks to
that for x, and a counterexample with the bi-cell for y is removed as there is no bi-cell
for x.

This optimization can be extended to the case where ∗t e1 is not resolved to a shared
bi-cell, but to a pair of single cells: c1 for P1, and c2 for P2. In this case, we replace c1
and c2 by ⟨c1, c2⟩ in L, and apply the same transfer function.

Example 36 (Extended copy assignment). The last equality in Fig. 6.11 shows such an
example. y=x; creates a shared bi-cell for y.

164 CHAPTER 6. SHARING CELLS IN THE MEMORY ABSTRACTION

D̂Jx← x+ 1 K { ⟨{x0
1, x

0
2, x12 } , [x0

1 7→ 0, x0
2 7→ 0, x12 7→ 0]⟩, ⟨{x3

1, x
0
2, x12 } , [x3

1 7→ 0, x0
2 7→ 1, x12 7→ 1]⟩ }

= { ⟨{x12 } , [x12 7→ 1]⟩, ⟨{x12 } , [x12 7→ 2]⟩ }

D̂Jx← x+ 1 K { ⟨{x0
1, x

0
2, x12 } , [x0

1 7→ 0, x0
2 7→ 0, x12 7→ 0]⟩, ⟨{x1, x2 } , [x1 7→ 1, x2 7→ 2]⟩ }

= { ⟨{x12 } , [x12 7→ 1]⟩, ⟨{x1, x2 } , [x1 7→ 2, x2 7→ 3]⟩ }

D̂Jx← 42 K { ⟨{x1
1, x

0
2, x1 } , [x1

1 7→ 1, x0
2 7→ 0, x1 7→ 256]⟩, ⟨{x1 } , [x1 7→ 1]⟩ }

= { ⟨{x12 } , [x12 7→ 42]⟩ }

D̂J y ← x K { ⟨{x0
1, x

3
2, x12, y

1
1, y12 } , [x0

1 7→ 8, x3
2 7→ 0, x12 7→ 8, y1

1 7→ 1, y12 7→ 256]⟩ }
= { ⟨{x0

1, x
3
2, x12, y

0
1, y

3
2, y12 } , [x0

1 7→ 8, x3
2 7→ 0, x12 7→ 8, y0

1 7→ 8, y3
2 7→ 0, y12 7→ 8]⟩ }

D̂J y ← x K { ⟨{x0
1, x

3
2, y

1
1, y12 } , [x0

1 7→ 8, x3
2 7→ 0, x12 7→ 8, y1

1 7→ 1, y12 7→ 256]⟩ }
= { ⟨{x0

1, x
3
2, y

0
1, y

3
2 } , [x0

1 7→ 8, x3
2 7→ 0, y0

1 7→ 8, y3
2 7→ 0]⟩ }

D̂J y ← x K { ⟨{x0
1, x

3
2, x12, y

1
1 } , [x0

1 7→ 8, x3
2 7→ 0, x12 7→ 8, y1

1 7→ 1]⟩ }
= { ⟨{x0

1, x
3
2, x12, y

0
1, y

3
2, y12 } , [x0

1 7→ 8, x3
2 7→ 0, x12 7→ 8, y0

1 7→ 8, y3
2 7→ 0, y12 7→ 8]⟩ }

where
xk = ⟨x, 0, int, k⟩ xo

k = ⟨x, o,u8, k⟩ (o, k) ∈ { 0, 1, 2, 3 } × { 1, 2 }
yk = ⟨y, 0, int, k⟩ x12 = ⟨x1, x2⟩ y12 = ⟨y1, y2⟩

Figure 6.11: Assignments to shared bi-cells (Examples 33, 34, 35 and 36)

(P(D̂),≼) −−−→←−−−
α♭

γ♭

(D̂♭,≼♭)

α♭(X)≜ ⟨C̄, { ρ|C̄ | ⟨C, ρ⟩ ∈ X }⟩ where C̄ = ⋂
{C | ⟨C, ρ⟩ ∈ X }

γ♭⟨C,R⟩≜ { ⟨C, ρ⟩ | ρ ∈ R } and ⟨C,R⟩ ≼♭ ⟨C ′, R′⟩ △⇐⇒ C ′ ⊆ C ∧ { ρ|C′ | ρ ∈ R } ⊆ R′

Figure 6.12: Unified bi-cell environments

6.2.6 Unification

Like for S in Sec. 5.2.4 and D in Sec. 5.3.3, we aim at abstracting D̂ using numerical
domains, which naturally represent sets of environments with homogenous support. Yet
states in D̂ have heterogeneous bi-cell support, so we first unify sets of bi-cells. To this
aim, we only retain bi-cells that are part of every state in a set, soundly disregarding
all others. Our new domain is thus a choice of a set of bi-cells C and a set of scalar
environments on C:

D̂♭ ≜
⋃

C⊆Bicell

{ ⟨C,R⟩ |R ∈ P(C → V) }

A formalization is shown on Fig. 6.12. Note that we reuse the partial order ≼♭ and
the abstraction and concretization α♭ and γ♭ defined Fig. 5.9 of Sec. 5.2.4 for simple C

6.2. MEMORY MODEL OPTIMIZATION 165

programs. The definitions are indeed identical, albeit for different sets.

Proposition 14. The pair (α♭, γ♭) defined in Fig. 6.12 is a Galois connection.

The adaptation of ̂add-cell
♭
∈ Cell → D̂♭ → D̂♭ to this new domain is straight-

forward. Adaptations of transfer functions D̂♭J stat K ∈ D♭ → D♭ are also straight-
forward, assuming a sound abstract join ⊔̂♭ is provided. ⊔̂♭ must merge environment
sets defined on heterogeneous bi-cell sets. We therefore define a unification function
ûnify

♭
∈ (D̂♭)2 → (D̂♭)2. ûnify

♭
(⟨C1, R1⟩, ⟨C2, R2⟩) adds, with ̂add-cell

♭
, any missing

cells to ⟨C1, R1⟩ and ⟨C2, R2⟩: respectively C2 \ C1 and C1 \ C2. Let ⟨C ′1, R′1⟩ and
⟨C ′2, R′2⟩ be the resulting abstract states. C ′1 and C ′2 may include both single cells and
shared bi-cells. A shared bi-cell that does not occur in both C ′1 and C ′2 cannot be soundly
included in the unified state, as it conveys equality information that holds for one ab-
stract state only. Such shared bi-cells are elements of Ω = ((C ′1 ∪C ′2) \ C̃ell) \ (C ′1 ∩C ′2).
Elements of Ω are first split into their left and right projections, and then removed before
unification.

Formally, let Ωk = Ω∩Ck and ⟨C ′′k , R′′k⟩ = split♭(Ωk, ⟨C ′k, R′k⟩), for k ∈ { 1, 2 }, where
split♭ ∈ P(C̃ell2)× D̂♭ → D̂♭ is defined as the function split defined by Equation 6.1.

ûnify
♭
(⟨C1, R1⟩, ⟨C2, R2⟩) = (⟨C12, R

′′′
1 ⟩, ⟨C12, R

′′′
2 ⟩)

where C12 = (C ′′1 ∪ C ′′2) \ Ω, and R′′′k = { ρ|C12 | ρ ∈ R′′k }.
The abstract join may now be defined as

⟨C1, R1⟩⊔̂♭⟨C2, R2⟩ ≜ ⟨C12, R
′′′
1 ∪R′′′2 ⟩

Example 37 (Comparing D̂ and D̂♭). The slightly more abstract D̂♭ is oblivious of
some symbolic information expressed by D̂. Consider, for instance, an assignment *p
=33; in a environment where the pointer p may point either to variable a, or to variable
b. As shown by Fig. 6.13, D̂ synthesizes only shared bi-cells, and distinguishes states
where a bi-cell is synthesized for b, from states where no bi-cell is synthesized for b. In
contrast, unification always synthesizes single bi-cells for b, with arbitrary values in most
environments.

6.2.7 Value abstraction

We finally rely on numerical abstractions to abstract further D̂♭ into a computable ab-
stract semantics D̂♯, resulting in an effective static analysis. As in Sec. 5.3.4, our memory
domain translates memory reads and writes into purely numerical operations on synthetic
bi-cells, that are oblivious to the double semantics of double programs: each bi-cell is
viewed as an independent numeric variable, and each numeric operation is carried out on
a single bi-cell store, as if emanated from a single program. In particular, we notice that
the transfer function for simple assignments ŜkJ ∗t e1 ← e2 K described in Sect. 6.2.4 has

166 CHAPTER 6. SHARING CELLS IN THE MEMORY ABSTRACTION

D̂J ∗p← 33 K { ⟨{ a12, p12 } , [a12 7→ 0, p12 7→ ⟨a, 0⟩]⟩, ⟨{ a12, p12 } , [a12 7→ 0, p12 7→ ⟨b, 0⟩]⟩ }
= { ⟨{ a12, p12 } , [a12 7→ 33, p12 7→ ⟨a, 0⟩]⟩, ⟨{ a12, b12, p12 } , [a12 7→ 0, b12 7→ 33, p12 7→ ⟨b, 0⟩]⟩ }

D̂♭J ∗p← 33 K ⟨{ a12, p12 } , { [a12 7→ 0, p12 7→ ⟨a, 0⟩], [a12 7→ 0, p12 7→ ⟨b, 0⟩] }⟩ =
⟨{ a12, b1, b2, p12 } ,

⋃
v1,v2∈Z { [a12 7→ 33, p12 7→ ⟨a, 0⟩, b1 7→ v1, b2 7→ v2] }∪

{ [a12 7→ 0, p12 7→ ⟨b, 0⟩, b1 7→ 33, b2 7→ 33] }⟩

where
a12 = ⟨⟨a, 0, int, 1⟩, ⟨a, 0, int, 2⟩⟩ b12 = ⟨b1, b2⟩
p12 = ⟨⟨p, 0,ptr, 1⟩, ⟨p, 0,ptr, 2⟩⟩ bk = ⟨b, 0, int, k⟩ k ∈ { 1, 2 }

Figure 6.13: Comparing D̂ and D♭ (Example 37)

the form of that of an assignment in a purely numerical language, where bi-cells play
the roles of the numeric variables. This property is a key motivation for the Cell do-
main and the extension presented in this chapter. Bi-cells may thus be fed, as variables,
to a numerical abstract domain for environment abstraction. Any standard numerical
domain may be used, such as intervals, congruences and polyhedra.

We thus assume an abstract domain D̂♯
C given, with concretization γ̂C , for each

bi-cell set C ⊆ Bicell. It abstracts P(C → Z) ≃ P(Z|C|), i.e., sets of points in a
|C|−dimensional vector space. A cell of integer type naturally corresponds to a dimen-
sion in an abstract element. We also associate a distinct dimension to each bi-cell with
pointer type; it corresponds to the offset o of a symbolic pointer ⟨V, o⟩ ∈ Ptr. In order
to abstract fully pointer values, we enrich the abstract numerical environment with a
map P associating to each pointer bi-cell the set of variables it may point to. Hence,
the abstract domain becomes: D̂♯ ≜ { ⟨C,R♯, P ⟩ |C ⊆ Bicell, R♯ ∈ D̂♯

C , P ∈ PC →
P(V ∪ {NULL, invalid }) }, where PC ⊆ C is the subset of bi-cells of pointer type.

6.3 Implementation

We implemented a static analysis based on the D̂♯ abstract semantics on top of Mopsa.
The only difference, with respect to the D̃♯ semantics presented in Sec. 5.3.3, is our
optimized bi-cell based memory model. This change is reflected in a modular way in
the configuration of the analysis shown on Fig. 6.14. The only change, with respect
to Fig. 5.14 from Sec. 5.3.5, is the memory abstraction, composed of domain-modules
D.cells , C.machineNum , and C.pointers . In contrast, all iterator and numerical domains-

modules are unchanged in the configuration of the analysis.
The memory abstraction is updated by replacing the composition D.patch ◦ C.cells

from Fig. 5.14 with the domain D.cells on Fig. 6.14. D.cells stands for the bi-cell abstract
domain. It handles atomic statements and tests. To this aim, it decomposes program
variables into a set of synthetic scalar variables representing bi-cells. It implements
in particular ϕ̂♭, a straightforward adaptation of the bi-cell synthesize function ϕ̂ from

6.4. EVALUATION 167

D.program # C.program # D.builtins #

D.interproc # C.interproc # U.interproc #

D.intraproc # C.intraproc # U.intraproc #

D.loops # C.loops # U.loops #

C.libraries # C.Aggregates #

D.cells

◦

×

C.machineNum C.pointers

◦

∧ U.linearRel

∧

U.intervals U.congruences

Sequence

∧ Reduced product

× Cartesian product

◦ Composition

Universal

C specific

Double C

Double memory

Scalars

Numbers

Figure 6.14: Analysis of double C programs with bi-cells

Sec. 6.2.3 to the D̂b domain of Sec. 6.2.6.
Synthetic bi-cells are then handled by a Cartesian product: C.machineNum × C.pointers

rewrites scalar expressions into mathematical expressions on unbounded integers, which
are then handled natively by classic Universal numerical abstract domains.

In our implementation, the new D.cells domain accounts for 3,400 lines of OCaml.

6.4 Evaluation

In this section, we give an experimental evaluation of our implementation. We evaluate
it against a set of C benchmarks already presented in Sec. 5.4.

6.4.1 Real-world patches

The first set of benchmarks has been introduced in Fig. 5.21 of Sec. 5.4.2. It is composed
of real patches of the GNU core utilities and the Linux GitHub repository. Benchmarks

168 CHAPTER 6. SHARING CELLS IN THE MEMORY ABSTRACTION

Bench. LOC #P cell based D̃♯ bi-cell based D̂♯

polyhedra octagon polyhedra octagon interval
copy1 95 1 157 ms ✓ 482 ms ✓ 113 ms ✓ 156 ms ✓ 41 ms ✓
seq1 46 16 570 ms ✓ ✗ 442 ms ✓ ✗ ✗
pr1 114 8 1.421 s ✓ 6.469s ✓ 4.642s ✓ 3.723 ✓ 88 ms ✓
test1 352 10 9.188 s ✓ ✗ 440 ms ✓ 1.163 s ✓ 96 ms ✓

kvm2 248 1/11 2.707 s ✓ 4.214 s ✓ 1.426 s ✓ 1.568 s ✓ 96 ms ✓
sched2 194 7/12 65 ms ✓ ✗ 63 ms ✓ 104 ms ✓ 38 ms ✓
dma2 270 5/23 285 ms ✓ 1.235 s ✓ 216 ms ✓ 584 ms ✓ 76 ms ✓
block2 324 22/6 80 ms ✓ ✗ 67 ms ✓ 121 ms ✓ 31 ms ✓
iucv2 179 10/9 403 ms ✓ 1.757 s ✓ 7.721 s ✓ 14.423 s ✓ 426 ms ✓
io_uring2 1569 10/14 868.701 s ✓ ✗ 594.481 s ✓ 4170.295s ✓ 288 ms ✓

Figure 6.15: Analyses of real patches from Coreutils and Linux

copy to test feature algorithmic patches, while benchmarks kvm to io_uring feature
changes in data structures.

We analyze these benchmarks with the bi-cell based memory model introduced in
this chapter, together with three numerical domains: polyhedra, octagons and intervals.
The results are shown on Fig. 6.15. We compare these results with the results of ref-
erence analyses of the same benchmarks with the cell based memory model introduced
in Chapter 5. We only show results with the polyhedra and octagon numerical domains
for these reference analyses, as the interval domain allows no successful patch analysis of
these benchmarks with the cell based memory model. Note nonetheless that the running
times of analyses with the interval domain are very similar with both memory models,
which suggests that the bi-cell based memory model does not significantly increase the
cost of the memory abstraction. Fig. 6.15 shows that the bi-cell based memory model
does not significantly improve performance of successful analyses with the polyhedra
domain. This suggests that the reduction of the number of dimensions in the numerical
abstraction allowed by bi-cell sharing is compensated by the polyhedral operations trig-
gered by bi-cell synthesis. However, our bi-cell based memory model allows improving
the precision of analyses with numerical domains less expressive than polyhedra. In
particular, it allows successful analyses of most benchmarks with the interval domain,
which dramatically improves the scalability of the analysis. Consider for instance the
io_uring benchmark, composed of 1,500 lines of C. This benchmark is analyzed suc-
cessfully with bi-cells over the interval domain, whereas the cell based memory model
requires the polyhedra domain. The bi-cell based model allows thus a faster analysis,
by three orders of magnitude.

6.4.2 Synthetic benchmarks

The second set of benchmarks is composed of patches of small synthetic C programs
from the related works. These benchmarks have already been presented as part of

1Coreutils 2 Linux

6.5. CONCLUSION 169

Benchmark LOC #P cell based D̃♯ bi-cell based D̂♯

polyhedra octagon polyhedra octagon interval
Comp 13 2 48 ms ✓ ✗ 107 ms ✓ 209 ms ✓ ✗
Const 9 3 28 ms ✓ ✗ 38 ms ✓ 49 ms ✓ ✗
Fig. 2 14 1 31 ms ✓ 39 ms ✓ 40 ms ✓ 47 ms ✓ 25 ms ✓
LoopMult 14 2 166 ms ✓ ✗ 367 ms ✓ ✗ ✗
LoopSub 15 2 60 ms ✓ ✗ 74 ms ✓ ✗ ✗
UnchLoop 13 2 69 ms ✓ ✗ 71 ms ✓ ✗ ✗

loop 11 3 43 ms ✓ ✗ 52 ms ✓ ✗ ✗
while-if 11 3 66 ms ✓ 156 ms ✓ 66 ms ✓ 97 ms ✓ ✗

digits10 24 19 312 ms ✓ ✗ 207 ms ✓ 313 ms ✓ 47 ms ✓

barthe 13 2 93 ms ✓ ✗ 69 ms ✓ ✗ ✗
Example 25 11 2 81 ms ✓ ✗ 79 ms ✓ ✗ ✗

iflow 79 0 808 ms ✓ ✗ 7.259 s ✓ ✗ ✗

sign 12 2 29 ms ✓ ✗ 33 ms ✓ ✗ ✗
sum 14 4 71 ms ✓ ✗ 162 ms ✓ 349 ms ✓ ✗

Figure 6.16: Analyses of synthetic benchmarks from the related works.

the evaluation of our patch analysis with the cell-based memory model, in Fig. 5.20 of
Sec. 5.4.1. Fig. 6.16 shows the results of analyses with the cell-based and with the bi-
cell based memory models. The polyhedra numerical domain is required for successful
analyses of most benchmarks with the cell-based memory domain, as these benchmarks
are designed to feature expressive relational invariants. Indeed, only two analyses are
successful with octagons with the cell-based memory domain, and none with intervals
(hence we do not show results with intervals for this memory model on Fig. 6.16).
In contrast, the bi-cell based memory domain allows for six successful analyses with
octagons, and two with intervals. Performances are similar with either memory domain.

This experimental evaluation shows that our bi-cell based memory domain allows
successful analyses of two kinds of patches.

1. Patches of small programs that require linear invariants can be analyzed success-
fully with an expressive numerical abstraction such as polyhedra. This also the
case with our cell-based memory domain;

2. Patches of large programs that mainly require equalities between related fields of
data structures in the two versions can be analyzed successfully with less expressive
domains. In the case of patches of type definitions, the interval domain is often
sufficient.

6.5 Conclusion

In this chapter, we presented an optimized implementation of our patch analysis for C
programs, on top of the Mopsa platform. Starting from the implementation of Chap-
ter 5, which reused Mopsa’s cell based memory model directly, we proposed an extension
of this memory model that allows sharing the representations of cells to represent equal-

170 CHAPTER 6. SHARING CELLS IN THE MEMORY ABSTRACTION

ities symbolically. We implemented our new bi-cell based memory model on top of
Mopsa, which resulted in an alternate analysis reusing most of that of Chapter 5, as
Mopsa allows plugging alternate memory domains in a modular way.

While the analysis of Chapter 5 required expressive numerical abstractions, our op-
timized memory domain allows successful analyses of multiple patches of real-world C
programs using only non relational numerical domains, which improves scalability dra-
matically. This is in particular the case for patches of C data structures, where we want
to verify the portability of the user program against changes of the offsets of scalar fields
of C structs.

In Chapter 7, we will extend our memory model further, in order to enable the
inference of another portability property: endian portability, i.e. portability against the
order of bytes in the representation of scalars on the platform.

Chapter 7

Endian portability analysis

Previous chapters have presented patch analyses of Nimp2 and C programs, as well as
a related portability analysis: robustness to variations of the memory layout of C pro-
grams (offsets of fields in C structures). Along the way, we have defined the elementary
components of such analyses. Chapter 4 proposes an algorithm for constructing a dou-
ble program from a pair of program versions. Chapter 3 defines a concrete collecting
semantics for double programs, and tailors an abstract semantics allowing for efficient
patch analysis of numerical programs. Chapter 5 lifts this abstraction to the precise
analysis of double C programs, leveraging a memory model for low-level C. Chapter 6
optimizes the memory model to enable scalable analyses of some patches of low-level C
programs, among which patches changing the memory layout in data structures.

In this chapter, we leverage the results of all previous chapters to define a new
portability analysis, coined endian portability analysis. Our analysis can infer that a
given program, or two syntactically close versions thereof, compute the same outputs
when run with the same inputs on platforms with different byte-orders, a.k.a. endian-
nesses. We target low-level C programs that abuse C pointers and unions, hence rely on
implementation-specific behaviors undefined in the C standard [92].

7.1 Introduction

There is no consensus on the representation of a multi-byte scalar value in computer
memory [44]. Some systems store the least-significant byte at the lowest address, while
others do the opposite. The former are called little-endian, the latter big-endian. Such
systems include processor architectures, network protocols and data storage formats. For
instance, Intel processors are little-endian, while internet protocols and some legacy and
embedded processors are big-endian (e.g. SPARC and PowerPC). As a consequence,
programs relying on assumptions on the encoding of scalar types may exhibit differ-
ent behaviors when run on platforms with different byte-orders, a.k.a. endiannesses.
The case occurs typically with low-level C software, such as device drivers or embedded
software. Indeed, the C standard [92] leaves the encoding of scalar types partly un-
specified. The precise representation of types is standardized in implementation-specific

171

172 CHAPTER 7. ENDIAN PORTABILITY ANALYSIS

1 read_from_network((uint8_t *)&x, sizeof(x));
2 # if __BYTE_ORDER == __LITTLE_ENDIAN
3 uint8_t *px = (uint8_t *)&x, *py = (uint8_t *)&y;
4 for (int i=0; i<sizeof(x); i++) py[i] = px[sizeof(x)-i-1];
5 # else
6 y = x;
7 # endif
8 assert_sync(y);

Figure 7.1: Reading input in network byte-order (Example 38)

Application Binary Interfaces (ABI), such as [11], to ensure the interoperability of com-
piled programs, libraries, and operating systems. Although it is possible to write fully
portable, ABI-neutral C code, the vast majority of C programs rely on assumptions
on the ABI of the platform, such as endianness. Therefore, the typical approach used,
when porting a low-level C program to a new platform with opposite endianness, is to
eliminate most of the byte-order-dependent code, and to wrap the remainder, if any, in
conditional inclusion directives. The result is a pair of syntactically close endian-specific
variants of the same program. A desirable property, which we call endian portability, is
that a program computes the same outputs when run with the same inputs on the little-
and big-endian platforms. By extension, we also say that a program is endian portable if
two endian-specific variants thereof compute the same outputs when run with the same
inputs on their respective platforms. In this chapter, we describe a static analysis which
aims at inferring the endian portability of large real-world low-level C programs.

Motivating example

Example 38 (Reading input in network byte-order). Fig. 7.1 shows a snippet of code
for reading network input. Recall that the order of bytes in the representation of network
data is standardized, platform-independent: it follows the big-endian byte-order. As-
sume variable x has some integer type, of arbitrary byte-size. The sequence of bytes read
from the network is first stored into x. Assume variable y has the same type. x is then
either copied, or byte-swapped into y, depending whether the endianness of the platform
matches the (big-endian) network byte-order, or is the opposite endianness. Our analysis
is able to infer that this snippet is endian portable, i.e. both endian-specific variants
compute the same value for y, whatever the values of the bytes read from the network.
This property is expressed by the assertion at line 8.

Example 38 abuses pointers to bypass the C type system, a common practice in low-
level programming known as type punning. Alternatively, some implementations rely
on bitwise arithmetics. For instance, if x and y have type uint32_t, the little-endian
case may be rewritten as ((x & 0xff000000) >> 24) | ((x & 0xff0000) >> 8) | ((x &
0xff00) << 8) | ((x & 0xff) << 24). Other implementations rely on compiler built-in

functions, or assembly code, possibly using dedicated processor instructions. Examples

7.1. INTRODUCTION 173

can be seen in the Linux implementations of the POSIX htons and htonl functions,
converting values between host and network byte-order. Our analysis is able to analyze
all the above C implementations successfully, as well as alternative implementations
(with stubs for assembly code). In the rest of the chapter, unless otherwise stated, we
will implicitly refer to a version of Example 38 where variables have type uint16_t for
illustration purposes, although our method works for integers of arbitrary byte-size.

Approach

Low-level C programs exhibit different semantics when run on platforms with different
endiannesses. We thus model them as double programs. The little-endian program is
the first (or left, or little-endian) version of the double program, while the big-endian
program is the second (or right, or big-endian) version. Both versions may share the same
source code, or present syntactic differences (if conditional inclusion is used). Recall
that syntactic differences between program versions P1 and P2 may be distinct from
semantic differences. Syntactically different statements may exhibit the same semantics
in P1 and P2, like in Example 38, while syntactically equal statements may exhibit
different semantics, like with the C statement *((char*)&x)=1 when integer variable
x is such that sizeof(x)>1. Our approach to endian portability is to devise a joint,
whole-program static analysis of a double program able to infer equivalences between
the input-output relations of its versions. To this aim, we define a memory model able
to represent a joint abstraction of their memories. We first parameterize the memory
domain for low-level C programs presented in Sec. 5.2.4 with an explicit endianness
parameter. Then, we lift it to double programs, and tailor it to infer, and represent
symbolically, relevant equalities between little- and big-endian memories. We do this by
adapting the construction of the bi-cell based memory model of Chapter 6 to represent
equalitites modulo byte-swapping. We additionally rely on a dedicated numerical domain
based on symbolic predicates, to infer complementarity relations between individual
bytes of program variables, such as those established by bitwise arithmetic operations.
We validate our approach by analyzing large industrial low-level embedded C programs
designed to be endian portable.

Related work

Several approaches to endian portability are developed in the literature. [147] relies on
a source-to-source translation, which is only sound with respect to annotations provided
by the programmer, whereas we require no annotations. [32] extends a compiler to
generate code that executes with the opposite byte order semantics as the underlying
architecture, at the cost of a performance penalty. Annotations are also required for
soundness in some cases. [102] relies on dynamic analysis, which can find portability
errors, but cannot prove endian portability formally, unlike our method. The Sparse [34]
static analysis tool used by Linux kernel developers relies on pervasive type annotations
to detect endiannesses issues, but comes with no formal guarantee.

174 CHAPTER 7. ENDIAN PORTABILITY ANALYSIS

To our knowledge, no prior work uses sound static analysis to infer endian portabil-
ity. Neither are we aware of prior work leveraging patch analysis techniques to address
portability properties. From the perspective of this thesis, patch analysis is viewed as
a particular case of portability analysis, where program versions run in the same en-
vironments. Nonetheless, our approach leverages prior work. We build on a memory
abstract domain [128],[132, Sect. 5.2] developed for run-time error analysis of low-level C
programs able to expose endian-dependent behaviors, and on double program semantics
developed for patch analysis [66, 67]. Our symbolic predicate domain is based on pre-
vious work on predicate domains [131], and symbolic constant propagation [130]. Our
domain is also reminiscent of the Slice domain introduced in [38, 37] for another purpose,
and implemented differently.

Outline of the chapter

The rest of the chapter is organized as follows. Sec. 7.2 parameterizes the concrete seman-
tics of low-level C programs with an explicit endianness parameter. Sec. 7.3 describes
the memory abstraction. Sec. 7.4 describes the numerical abstraction and introduces
a novel numerical domain. Sec. 7.5 presents our prototype implementation on top of
Mopsa. Sec. 7.6 presents experimental results. Sec. 7.7 concludes.

7.2 Concrete semantics
Syntactically identical programs running on platforms with different endiannesses may
exhibit different semantics. Recall Example 29 from Sec. 5.2.1. Assuming a 32-bit
Application Binary Interface (ABI) with System V alignments, the statement p[4]=1
assigns different values to field s.x, depending on the endianness of the platform. The
value is 1 on a little-endian platform, and 224 on a big-endian one (see Fig. 5.5).

In this section, we define a joint semantics for two versions of a C program, running on
platforms with different endiannesses. We start by parameterizing the simple program
semantics with an explicit endianness parameter. Then, we define a double program
semantics able to express jointly the behaviors of the little-endian and the big-endian
versions of a C program.

7.2.1 Semantics of simple endian-aware low-level C programs

The semantics of simple low-level C programs is parameterized by an Application Binary
Interface (ABI). In Sec. 5.2.3, we formalized a semantics for low-level simple C programs,
assuming a 32-bit little-endian System V ABI. In this chapter, we assume program
versions P1 and P2 run on platforms with opposite endiannesses. As in Sec. 5.3.2, C
structs may additionally exhibit different layouts (offset of fields). Besides endianness
and layout, the platforms share the same 32-bit ABI.

Let A ≜ {L,B } denote the possible endiannesses (little- and big-endian). The sizes
of types, in contrast, are the same for both program versions. As in Sec. 5.3.2, we thus
assume a unique function sizeof ∈ type → N given, which provides these sizes (in bytes).

7.2. CONCRETE SEMANTICS 175

EJ ∗τ e Kαµ ≜ { v | ⟨V, o⟩ ∈ EJ e Kαµ ∧ 0 ≤ o ≤ sizeof (V)− sizeof (τ)
∧ v ∈ bdecτ,α(µ⟨V, o⟩, . . . , µ⟨V, o+ sizeof (τ)− 1⟩) }

SJ ∗τ e1 ← e2 KαM ≜⋃
µ∈M{µ[∀i < sizeof (τ) : ⟨V, o+ i⟩ 7→ bi] | ⟨V, o⟩ ∈ EJ e1 Kαµ

∧ 0 ≤ o ≤ sizeof (V)− sizeof (τ) ∧ (b0, . . . , bsizeof (τ)−1) ∈ bencτ,α(EJ e2 Kαµ) }

Figure 7.2: Concrete endian-aware semantics of memory reads and writes with endian-
ness α.

We also reuse notations from Sec. 5.2.3 for the semantics of simple C programs, namely
the sets of:

• pointer values Ptr = V × Z ∪ {NULL, invalid};
• pointers to addressable memory bytes Addr ⊆ Ptr;
• numeric byte values and symbolic pointer bytes B = [0, 255] ∪ (Ptr ×N);
• scalar values V = Z ∪ Ptr.

The definition of the most concrete endian-aware semantics requires a family of rep-
resentation functions bencτ,α ∈ V → P(B∗), that convert a scalar value of given type
τ ∈ scalar-type and endianness α ∈ A into a sequence of sizeof (τ) byte values. We
denote as bdecτ,α ∈ B∗ → P(V) the reverse conversion. These conversion functions are
parametrized by the type and the endianness, which define the binary representation
of scalars. They reflect the endianness-dependent ordering of bytes in integers. For
instance, bencunsigned int,L(1) = { (1, 0, 0, 0) } and bdecunsigned short,B(0, 1) = { 1 } on a
32-bit platform. In contrast, the memory representation b = (⟨p, 0⟩, ⟨p, 1⟩, ⟨p, 2⟩, ⟨p, 3⟩)
of pointers p is kept symbolic: bencptr,B(p) = bencptr,L(p) = { b } and bdecptr,B(b) =
bdecptr,L(b) = { p }. The bencτ and bdecτ functions introduced in Sec. 5.2.3 are the little-
endian versions bencτ,L and bdecτ,L of these representation functions. They are presented
in full detail in [132, Sec. 5.2]. The big-endian versions bencτ,B and bdecτ,B are the same,
up to the order of bytes in the representation of integers: bencτ,B(v) = { bswap(b) | b ∈
bencτ,L(v) } and bdecτ,B = bdecτ,L ◦ bswap if τ ̸= ptr, with the byte-swapping function
bswap ∈ B∗ → B∗ defined as bswap(b0, . . . , bn−1) = (bn−1, . . . , b0). In contrast, we keep
the same symbolic representation of pointers for big-endian: bencptr,B = bencptr,L and
bdecptr,B = bdecptr,L. Reflecting byte-swaps in the machine representation of pointers
is indeed irrelevant here, as our memory model does not allow extracting numeric bytes
from pointer values.

Remark 34 (Endian-neutrality of single-byte values). The endianness encoding α ∈ A
only affects the representation of multibyte scalar values. Indeed, bencτ,B = bencτ,L and
bdecτ,B = bdecτ,L if sizeof (τ) = 1.

Concrete byte-level memory states are elements of M ≜ Addr → B. The semantics
EJ expr K ∈ A → E → P(V) and SJ stat K ∈ A → P(E) → P(E) for simple expressions
and statements is defined by standard induction on the syntax. We therefore only show,
on Fig. 7.2, the semantics EJ ∗τ e Kα and SJ ∗τ e1 ← e2 Kα for memory reads and writes,
given endianness α ∈ A. Bytes are fetched and decoded with bdecτ,α when reading from

176 CHAPTER 7. ENDIAN PORTABILITY ANALYSIS

memory in expression ∗τ e, while values computed by expression e2 are encoded into
bytes with bencτ,α when writing to memory in assignment ∗τ e1 ← e2.

7.2.2 Endian-aware cell-based memory model

The most concrete endian-aware semantics is not suitable for numerical abstraction, as
it would require expressive domains. As in Sec. 5.2.4, we rely instead on a more abstract
semantics, based on an extension of the Cells memory model.

Endian-aware memory abstraction

We first extend the definition of cells to take endianness encoding into account. Let
Cell ⊆ V × N × scalar-type × A denote the finite set of possible endian-aware scalar
dereferences. Each cell ⟨V, o, τ, ε⟩ ∈ Cell is denoted as a variable V , an offset o, and
information specifying the encoding of values: a scalar type τ and endianness ε:

Cell ≜ { ⟨V, o, τ, ε⟩ |V ∈ V, τ ∈ scalar-type, 0 ≤ o ≤ sizeof (typeof (V))−sizeof (τ), ε ∈ A}

All bytes in a cell are addressable by construction.

Remark 35 (Endian-neutrality of single-byte cells). Following Remark 34, the endianness
encoding ε ∈ A of a cell c = ⟨V, o, τ, ε⟩ is only meaningful if c is a multi-byte cell, i.e.
sizeof (τ) > 1.

Domain. As in Sec. 5.2.4, we define an abstract memory state as a set of pairs consist-
ing of a set of cells C ⊆ Cell and a scalar environment over C. The associated memory
domain is:

E ≜
⋃

C⊆Cell

{ ⟨C, ρ⟩ | ρ ∈ C → V }

A property X ∈ P(E) represents the set of endian-aware byte-level memory states
γCell(X) ∈ P(M) satisfying environment constraints over cells. The values of the bytes
of these memories must satisfy all of the numerical constraints implied by any memory
state:

γCell(X) ≜

 µ ∈M

∣∣∣∣∣∣∣
∃(C, ρ) ∈ X : ∀⟨V, o, τ, ε⟩ ∈ C :
∃(b0, . . . , bsizeof (τ)−1) ∈ bencτ,ε(ρ⟨V, o, τ, ε⟩) :
∀i < sizeof (τ) : µ⟨V, o+ i⟩ = bi

As in Sec. 5.2.4, the lattice of properties (P(E),≼,∪) is equipped with partial order

X ≼ X ′
△⇐⇒ ∀(C, ρ) ∈ X : ∃(C ′, ρ′) ∈ X ′ : C ′ ⊆ C ∧ ρ′ = ρ|C′

7.2. CONCRETE SEMANTICS 177

ϕ⟨V, o, t, ε⟩(C) ≜

⟨V, o, t, ε⟩ if ⟨V, o, t, ε⟩ ∈ C
wrap(⟨V, o, t′, ε⟩, range(t)) else if ⟨V, o, t′, ε⟩ ∈ C ∧ t, t′ ∈ int-type ∧ sizeof (t) = sizeof (t′)
byte(⟨V, o− b, t′, ε′⟩,w(ε′, b, sizeof (t′)))

else if ⟨V, o− b, t′, ε′⟩ ∈ C ∧ t = u8 ∧ t′ ∈ int-type ∧ b < sizeof (t′)
wrap(∑sizeof (t)−1

i=0 28×w(ε,i,sizeof (t)) × ⟨V, o+ i,u8, εi⟩, range(t))
else if ∀i < sizeof (t) : ⟨V, o+ i,u8, εi⟩ ∈ C ∧ t ∈ int-type

range(t) else if t ∈ scalar-type
invalid else if t = ptr

where w(ε, i, s) =
{

i if ε = L
s− i− 1 if ε = B

and byte(x,w) = ⌊x/28w⌋ mod 28

Figure 7.3: Endian-aware generic cell synthesizing function.

Transfer functions: cell addition and removal. Removing any cell is always
sound: it amounts to losing information. It is also possible to add new cells, pro-
vided the values assigned to them are consistent with those of existing overlapping cells.
As in Sec. 5.2.4, this consistency is ensured by a value synthesize function ϕ ∈ Cell →
P(Cell)→ expr such that ϕ(c)(C) returns a syntactic expression denoting (an abstraction
of) the value of the cell c as a function of cells in C.

An example implementation is proposed in Fig. 7.3. ϕ is designed as an extension to
multiple endianness encodings of the cell synthesize function originally proposed in [132,
sec. 5.2], and shown on Fig. 5.8 of Sec. 5.2.4. The two implementations of ϕ are identical,
up to the endiannesss encoding ε ∈ A used to compute the weights w(ε, i, sizeof (t)) of
bytes at offsets i < sizeof (t) in the value of a cell of type t. Recall from Sec. 5.2.4 that

• function w ∈ {L,B }×N2 → N models the endianness-dependent weights of bytes
in integers: w(L, i, s) = i for little-endian encoding, and w(B, i, s) = s − i − 1 for
big-endian encoding;

• byte(x,w) models the value of the byte of weight 28w in an unsigned integer x.
The original cell synthesize function from Sec. 5.2.4 only considered a little-endian ABI.
It thus always used little-endian encoding α = L. In contrast, the endian-aware ϕ shown
on Fig. 7.3. uses the endianness encoding ε of a given cell ⟨V, o, t, ε⟩ to compute the
weights w(ε, i, sizeof (t)) of bytes at offsets i < sizeof (t) in the value of ⟨V, o, t, ε⟩.

Cell addition, add-cell ∈ Cell→ P(E)→ P(E), then simply adds the cell and initial-
izes its value using the ϕ function, as in Sec. 5.2.4.

Remark 36 (Alternate sound definitions of ϕ). Multiple definitions can be proposed for
ϕ, provided add-cell soundly over-approximates the identity. For instance, an integer
cell could be synthesized from an existing integer cell of the same size, but opposite
endianness encoding, using a byte-swap expression. We use the definition shown on
Fig. 7.3 because is the simplest that enables successful analyses of examples of interest.

178 CHAPTER 7. ENDIAN PORTABILITY ANALYSIS

Transfer functions: expressions and statements. Simple programs have concrete
states in E , and their semantics is parameterized by the endianness α ∈ A of the platform.
Thus EJ expr K ∈ A → E → P(V), and SJ stat K ∈ A → P(E)→ P(E). Given a platform
of fixed endianness α ∈ A, the transfer functions EJ e Kα and SJ s Kα for simple C programs
are defined as in Sec. 5.2.4, up to the fact that all cells are synthesized with the native
encoding α of the platform.

Remark 37 (Encoding of cells versus native endianness of the platform). With this set-
ting, all cells of a simple program share the same endianness ε = α, where α is the native
endianness of the platform. A natural extension is to support C programs computing
with data encoded with multiple byte-orders. Such variables are typically introduced
using non-portable C extensions for specifying a fixed, platform-independent storage or-
der. For instance, GCC supports #pragma scalar_storage_order <e>, such that <e>
is default, little-endian or big-endian. This scheme assigns a byte-order ε ∈ V → A
to every program variable, using the native endianness α of the platform as the default
value. In that case, transfer function use the specified endiannesses to synthesize cells
⟨V, o, t, ε(V)⟩.

7.2.3 Semantics of endian-diverse double C programs

We now lift the simple endian-aware program semantics S to the double program se-
mantics D. Let P be a double C program, and k ∈ { 1, 2 }. As in Sec. 5.3.2, the
simple program version Pk = πk(P) has variables in Vk, cells in Cellk, and concrete
states in Ek. As described in Sec. 7.2.2, the semantics of Pk is parameterized by its
endianness αk ∈ A: SkJ s K = SJ s Kαk

. In Chapter 6, we have presented an analysis for
one endian-homogenous case, where both program versions run on a little-endian plat-
form: α1 = α2 = L. Our implementation also supports the other endian-homogenous
case, where both program versions run on a big-endian platform: α1 = α2 = B. This
analysis could be formalized in the same way as the little-endian case. In this chapter,
we are interested in heterogeneous endian-diverse cases, where program versions run on
platforms with opposite endiannesses: α1 ̸= α2. We assume, without loss of general-
ity, that P1 is the little-endian version, and P2 the big-endian one, i.e. α1 = L and
α2 = B. We also identify the program version number k ∈ { 1, 2 } with its endianness
αk ∈ {L,B } to simplify notations. For instance, PL = πL(P) denotes the first, or left,
or little-endian version of P , with states in EL, and semantics SL, while PB = πB(P)
denotes the second, or right, or big-endian version of P , with states in EB and semantics
SB. With these notations, the double program P has concrete states in D ≜ EL × EB.
DJ s K ∈ P(D)→ P(D) describes the relation between input and output states of s, which
are pairs of states of simple programs. The definition for DJ s K is shown on Fig. 7.4.
It is the same as that of Fig. 5.12 of Sec. 5.3.2, up to the straightforward replacement
of 1 with L and 2 with B. As in Fig. 5.12 of Sec. 5.3.2, the semantics of input_sync
and assert_sync requires program versions to execute I/Os in lockstep. The seman-
tics DJ sL ∥ sB K for the composition of two syntactically different statements is thus
only valid if neither sL nor sB reads input or writes output. In this case, DJ sL ∥ sB K

7.2. CONCRETE SEMANTICS 179

DJ dstat K ∈ P(D)→ P(D)

DJ skip K ≜ λX.X

DJ sL ∥ sB KX ≜
⋃

(⟨CL,ρL⟩,⟨CB,ρB⟩)∈X (SLJ sL K { ⟨CL, ρL⟩ } × SBJ sB K { ⟨CB, ρB⟩ })
DJ l← e K ≜ DJ l← e ∥ l← e K
DJ assert(c) K ≜ DJ assert(c) ∥ assert(c) K
DJ l← input_sync(a, b) K ≜

⋃̇
v∈[a,b]DJ l← v K

DJ assert_sync(l) KX ≜
⋃

v∈V{ (⟨CL, ρL⟩, ⟨CB, ρB⟩) ∈ X | ELJ l K ⟨CL, ρL⟩ = EBJ l K ⟨CB, ρB⟩ = { v } }
DJ s ; t K ≜ DJ t K ◦DJ s K
DJ if eL ▷◁ 0 ∥ eB ▷◁ 0 then s else t K ≜ DJ s K ◦ FJ eL ▷◁ 0 ∥ eB ▷◁ 0 K

∪̇ DJπL(s) ∥ πB(t) K ◦ FJ eL ▷◁ 0 ∥ eB ̸▷◁ 0 K
∪̇ DJπL(t) ∥ πB(s) K ◦ FJ eL ̸▷◁ 0 ∥ eB ▷◁ 0 K
∪̇ DJ t K ◦ FJ eL ̸▷◁ 0 ∥ eB ̸▷◁ 0 K

DJ if c then s else t K ≜ DJ if c ∥ c then s else t K
DJ while eL ▷◁ 0 ∥ eB ▷◁ 0 do s KX ≜ FJ eL ̸▷◁ 0 ∥ eB ̸▷◁ 0 K(lfp H)
DJ while c do s K ≜ DJ while c ∥ c do s K

where FJ eL ▷◁ 0 ∥ eB ▷◁ 0 KX ≜

{
(⟨CL, ρL⟩, ⟨CB, ρB⟩) ∈ X

∣∣∣∣ ∃vL ∈ ELJ eL K ⟨CL, ρL⟩ : vL ▷◁ 0
∃vB ∈ EBJ eB K ⟨CB, ρB⟩ : vB ▷◁ 0

}
and H(I) ≜ X

∪̇ DJ s K ◦ FJ eL ▷◁ 0 ∥ eB ▷◁ 0 KI
∪̇ DJπL(s) ∥ skip K ◦ FJ eL ▷◁ 0 ∥ eB ̸▷◁ 0 KI
∪̇ DJ skip ∥ πB(s) K ◦ FJ eL ̸▷◁ 0 ∥ eB ▷◁ 0 KI

Figure 7.4: Denotational semantics of endian-diverse double C programs.

reverts to the pairing of the simple program semantics of individual simple statements
sL and sB, executed with the endiannesses of their respective platforms. Note that
DJ sL ∥ sB K = DJ skip ∥ sB K ◦ DJ sL ∥ skip K. The semantics of other statements is the
same as in Sec. 5.3.2.

7.2.4 Endian portability property of interest

We wish to prove the functional equivalence between the little-endian (left) and big-
endian (right) versions of a given double program P ∈ dstat, restricted to a set of
distinguished outputs, specified by assert_sync(l) statements.

For instance, consider the program for Example 38, shown in Fig. 7.1. We show in
Fig. 7.5 the cells synthesized at the end of the program. Let xα ≜ ⟨x, 0,u16, α⟩ denote
2-byte cells for x, encoded with the native endianness in Program α ∈ {L,B }. 1-byte
cells are denoted as xo

α ≜ ⟨x, o,u8, α⟩ where o ∈ { 0, 1 }. The cells for y are defined in
a similar way. Both program versions first call the read_from_network function, which
reads a stream of bytes from an external source, and writes it into a buffer. The same
stream is read by both program versions. A stub for read_from_network is shown in
Fig. 7.6. After completion of the call, we have x0

L = b0 = x0
B and x1

L = b1 = x1
B, where b0

180 CHAPTER 7. ENDIAN PORTABILITY ANALYSIS

x0
L x1

L

x

y0
L y1

L

yL

y

(a) Program PL

x0
B x1

B

xB

x

yB

y

(b) Program PB

Figure 7.5: Memory cells of Example 38: = b0, = b1, = b0 × 28 + b1.

void read_from_network(u8 buf[], u32 size) {
for (int i=0; i<size; i++) {

buf[i] = input_sync(0,255);
}

}

Figure 7.6: Stub for the read_from_network function.

and b1 are the values of the first and second bytes read from the network, respectively.
Then, Program PL swaps the bytes of x into those of y: x0

L = y1
L and x1

L = y0
L. Program

PB, in contrast, assigns x to y. x is thus read as a 2-byte cell, while only 1-byte cells are
present. Therefore, the endian-aware cell-based memory domain introduced in Sec. 7.2.2
synthesizes xB by adding the constraint xB = 28x0

B + x1
B, following the big-endian byte-

order, before performing the assignment yB ← xB. To sum up, we obtain the following
constraints:

x0
L = x0

B = y1
L x1

L = x1
B = y0

L yB = xB (7.1)

In addition to the cell constraints on x and y:

xL = x0
L + 28x1

L yL = y0
L + 28y1

L xB = 28x0
B + x1

B yB = 28y0
B + y1

B
(7.2)

Formally, the set of reachable double program states defined by the semantics D is:

S = { ⟨⟨{x0
L, x

1
L, y

0
L, y

1
L, yL } , ρ

(b0,b1)
L ⟩, ⟨{x0

B, x
1
B, xB, yB } , ρ

(b0,b1)
B ⟩⟩ | (b0, b1) ∈ [0, 255]2 }

where:

ρ
(b0,b1)
L : x0

L 7→ b0, x
1
L 7→ b1, y

0
L 7→ b1, y

1
L 7→ b0, yL 7→ 28b0 + b1

ρ
(b0,b1)
B : x0

B 7→ b0, x
1
B 7→ b1, xB 7→ 28b0 + b1, yB 7→ 28b0 + b1

The portability property of interest

EJ y KL⟨CL, ρ(b0,b1)
L ⟩ = EJ y KB⟨CB, ρ(b0,b1)

B ⟩ = { 28b0 + b1 }

7.3. MEMORY ABSTRACTION 181

can thus be proved for every double program state of S and every pair of input bytes
b0 and b1.

In practice, the goal of endian portability analysis is to infer yL = yB from the
constraints 7.1 and 7.2. To do so, we want to leverage numerical domains to abstract
the values of cells. However, such relational constraints over cells require an expressive
domain, such as polyhedra or linear equalities, that can hamper the scalability of the
analysis. In addition, we notice, as in Chapter 7, that we need to infer many equalities,
most of which between the little-endian and big-endian versions of the same cells. This is
no surprise as we expect most variables to hold equal values in the little- and big-endian
memories most of the time, albeit with reversed byte-level representations. Rather than
relying completely on the expressiveness of the underlying numerical domain, we optimize
our memory model for this common case. To this aim, we reuse the concept of shared
bi-cell introduced in Sec. 6.2.2, in order to represent cells equality symbolically.

7.3 Memory abstraction

7.3.1 Domain

As is Chapter 6, we optimize the memory model by sharing the representation of equal
cells in the memory of different program versions. We only briefly sketch the formal con-
struction, as it is the same as in Sec. 6.2, up to the extended format of cells (with explicit
endianness encoding), and the renaming of P1 and P2 into PL and PB, respectively.

As a first step, as in Sec. 6.2.1, we introduce the set of single cells

C̃ell ≜ CellL ⊎ CellB = (CellL × {L}) ∪ (CellB × {B })

to account for program versions PL and PB. ⟨V, o, τ, ε,L⟩ ∈ C̃ell denotes a cell ⟨V, o, τ, ε⟩
in the memory of PL, while ⟨c,B⟩ ∈ C̃ell denotes a cell ⟨V, o, τ, ε⟩ in the memory of PB.
Remark 38 (Endianness of a cell versus endianness of a platform). The endian encoding
ε of a single cell ⟨V, o, τ, ε, α⟩ ∈ C̃ell may be different from the native endianness α of the
platform. For instance, ⟨V, 0,u16,L,L⟩ denotes a 2-byte cell with native little-endian
encoding in the memory of PL, while ⟨V, 0,u16,B,L⟩ denotes an overlapping cell en-
coded in big-endian in the same memory. In a consistent memory model, we should have
⟨V, 0,u16,L,L⟩ mod 28 = ⌊⟨V, 0,u16,B,L⟩/28⌋ and ⌊⟨V, 0,u16,L,L⟩/28⌋ = ⟨V, 0,u16,B,L⟩
mod 28. Cells with endianness opposite to that of the platform can be used to represent
equalities modulo byte-swapping as simple equalities. In the case of Example 38, shown
in Fig. 7.1, the PL could synthesize a cell with big-endian encoding xBL = ⟨x, 0,u16,B,L⟩,
with the constraint xBL = xB.

As a second step, as in Sec. 6.2.2, we introduce additional cells in the representation
of states, in order to represent equalities between cells of PL and cells of PB. We let
Bicell ≜ C̃ell∪(C̃ell×C̃ell) denote the set of bi-cells. A bi-cell is either a single cell in C̃ell,
or a shared bi-cell in C̃ell × C̃ell, e.g. a pair of single cells assumed to hold equal value.
Bi-cell sharing allows a single representation, in the memory environment, for two cells

182 CHAPTER 7. ENDIAN PORTABILITY ANALYSIS

from different program versions and holding equal values. For instance, in the context
of Example 38, shown in Fig. 7.1, ⟨yL, yB⟩ is a shared bi-cell expressing the equality
yL = yB, where yL and yB use the native endianness of their respective plateforms.
⟨yL, yB⟩ represents the fact that PL and PB read the same value for variable y, using
their respective native endiannesses. In contrast, ⟨xBL, xB⟩ is a shared bi-cell expressing
the equality xBL = xB, where xBL = ⟨x, 0,u16,B,L⟩ is a cell of PL with opposite byte-
order, while xB uses the native endianness of PB. ⟨xBL, xB⟩ captures the fact that variable
x contains a big-endian number in both program versions, which is stems from the fact
that x is read from the network (as the standard network byte-order is big-endian). In
particular, ⟨xBL, xB⟩ expresses the fact that the memories for x are byte-wise equal in the
little- and big-endian versions.

As a third step, as in Sec. 6.2.6, we unify sets of bi-cells. Our memory domain for
endian-diverse double programs is thus a choice of a set of bi-cells C and a set of scalar
environments on C:

D♭ ≜
⋃

C⊆Bicell

{ ⟨C,R⟩ |R ∈ P(C → V) }

The domain D♭ is equipped with the partial order ≼♭ defined Fig. 5.9 of Sec. 5.2.4 in
the context of simple C programs.

⟨C,R⟩ ≼♭ ⟨C ′, R′⟩ △⇐⇒ C ′ ⊆ C ∧ { ρ|C′ | ρ ∈ R } ⊆ R′

An abstract state represents a set of concrete byte-level memories. The formal con-
struction from Sec. 6.2 ensures that the values of the bytes of these memories satisfy all
the numerical constraints on bi-cells implied by the environments:

γBicell⟨C,R⟩ ≜

 (µL, µB) ∈ML ×MB

∣∣∣∣∣∣∣∣∣
∃ρ ∈ R :
∀c = ⟨V, o, τ, ε, α⟩ ∈ C̃ell : ∀c′ ∈ occ(c, C) :
∃(b0, . . . , bsizeof (τ)−1) ∈ bencτ,ε(ρ(c′)) :
∀i < sizeof (τ) : µα⟨V, o+ i⟩ = bi

where occ ∈ C̃ell × P(Bicell) → P(Bicell) records occurrences of a single cell among

bi-cells, as in Sec. 6.2.3:

occ(c, C) ≜ { c′ ∈ C | c′ = c ∨ ∃c′′ : c′ = ⟨c, c′′⟩ ∨ c′ = ⟨c′′, c⟩ }

In Fig. 7.7, we depict the bi-cells obtained after analyzing the program shown in
Example 38. We adapt notations from Fig. 7.5 of Sec. 7.2.4 to the bi-cell based mem-
ory domain: xα ≜ ⟨x, 0,u16, α, α⟩ denotes 2-byte cells for x, encoded with the native
endianness in Program α ∈ {L,B }, while xo

α ≜ ⟨x, o,u8, α, α⟩ denotes 1-byte cells at
offset o ∈ { 0, 1 }. The cells for y are defined in a similar way. For variable x, since
read_from_network writes the same value to x0

L and x0
B, we can synthesize the shared bi-

cell ⟨x0
L, x

0
B⟩ to represent the equality x0

L = x0
B. In a similar way, we synthesize the shared

bi-cell ⟨x1
L, x

1
B⟩. Therefore, as opposed to the separate representation of the memories

of Programs PL and PB in Fig. 7.5, the joint representation induced by bi-cell sharing

7.3. MEMORY ABSTRACTION 183

⟨x0
L, x0

B⟩ ⟨x
1
L, x1

B⟩

xB

x

y0
L y1

L

yB

⟨yL, yB⟩

y

Figure 7.7: Bi-cells of Example 38.

allows reducing the burden on numerical domains, by embedding useful equalities. In
the following, we describe more involved cell synthesis operations that allow us to realize
⟨yL, yB⟩, and thus to infer that yL = yB.

7.3.2 Bi-cell synthesis for double programs

Bi-cell synthesis is indeed a cornerstone of our memory domain, as in Sec. 6.2.3. In
order to read or write a scalar value to a given location of memory, we must create
a suitable bi-cell, or retrieve an existing one from the environment. To guarantee the
soundness of the analysis when adding a new bi-cell, it is necessary to ensure that values
assigned to it are consistent with those of existing overlapping bi-cells. Our memory
domain first attempts to synthesize shared bi-cells if an equality can be inferred from
the environment, by pattern-matching. In case of failure, it safely defaults to a pair of
single cells, the values of which are set according to those of existing overlapping bi-cells.

We have already used shared bi-cell synthesis implicitly on Fig. 7.7. When reading
variable y at the end of Example 38, the memory domain attempts to synthesize ⟨yL, yB⟩,
as a proof of yL = yB. To this aim, it searches, among possible patterns, for an existing
cell, equal to both yL and yB. xB is a candidate, assuming the equality xB = yB is
recorded in (an abstraction of) the environment. Therefore, the domains looks for a
proof that xB = yL holds too. To this aim, it looks for 1-byte bi-cells inside yL and
xB, and finds the four blue and red bi-cells ⟨x0

L, x
0
B⟩, ⟨x1

L, x
1
B⟩, y0

L, and y1
L from Fig. 7.7.

As yL and xB have opposite endian encodings, it queries the environment for equalities
y0
L = ⟨x1

L, x
1
B⟩ and y1

L = ⟨x0
L, x

0
B⟩. The success of the synthesis relies on pattern-matching,

and three equalities which may be inferred by a numerical domain implementing simple
symbolic propagation.

Shared bi-cell synthesis

More generally, given α ∈ A, let Cell−α denote the set of possible scalar dereferences in
the memory of program version Pα:

Cell−α ≜ { ⟨V, o, τ⟩ | ⟨V, o, τ, ε⟩ ∈ Cellα }

Consider a pair of scalar dereferences of the same type, coming from different pro-
gram versions: c ∈ Cell−L from PL and c′ ∈ Cell−B from PB. We define the function

184 CHAPTER 7. ENDIAN PORTABILITY ANALYSIS

ϕ♭(c, c′)⟨C,R⟩ ≜

⟨⟨c,L,L⟩, ⟨c′,B,B⟩⟩ if equal(⟨c,L,L⟩, ⟨c′,B,B⟩)⟨C,R⟩
⟨⟨c,B,L⟩, ⟨c′,B,B⟩⟩ else if equal(⟨c,B,L⟩, ⟨c′,B,B⟩)⟨C,R⟩
⟨⟨c,L,L⟩, ⟨c′,L,B⟩⟩ else if equal(⟨c,L,L⟩, ⟨c′,L,B⟩)⟨C,R⟩

⊤ otherwise

Figure 7.8: Shared bi-cell synthesizing function.

equal(⟨V, o, τ, ε, α⟩, ⟨V ′, o′, τ, ε′, α′⟩)⟨C,R⟩ ≜
let c = ⟨V, o, τ, ε, α⟩ and c′ = ⟨V ′, o′, τ, ε′, α′⟩ and s = sizeof (τ) in
⟨c, c′⟩ ∈ C ∨ ⟨c′, c⟩ ∈ C ∨
(∃(x, x′) ∈ occ(c, C)× occ(c′, C) : ∀ρ ∈ R : ρ(x) = ρ(x′)) ∨
(∀0 ≤ w < s : equal(⟨V, o+ offset(w, s, ε),u8, ε, α⟩, ⟨V ′, o′ + offset(w, s, ε),u8, ε′, α′⟩)⟨C, ρ⟩) ∨
(∃x ∈ flatten(C) \ { c, c′ } : equal(c, x)⟨C,R⟩ ∧ equal(c′, x)⟨C,R⟩)

Figure 7.9: Equality test between single cells.

ϕ♭ ∈ Cell−L × Cell
−
B → D♭ → Bicell ∪ {⊤} to formalize the patterns matched when

attempting to synthesize a shared bi-cell for such a pair of dereferences. An imple-
mentation is proposed in Fig. 7.8. Firstly, ϕ♭ returns a shared bi-cell with the endian
encodings of the hosts ⟨⟨c,L,L⟩, ⟨c′,B,B⟩⟩ if ⟨c,L,L⟩ = ⟨c′,B,B⟩ may be inferred from
the environment. For instance, the shared bi-cell ⟨yL, yB⟩ of Fig. 7.7 is such a host bi-
cell, with c = c′ = ⟨y, 0,u16⟩. Otherwise, ϕ♭ returns a shared bi-cell with big-endian
encoding ⟨⟨c,B,L⟩, ⟨c′,B,B⟩⟩ if ⟨c,B,L⟩ = ⟨c′,B,B⟩ holds. For instance, such a shared
big-endian bi-cell will be synthesized, with c = c′ = ⟨x, 0,u16⟩, if variable x is read
after the end of Example 38. This synthesis is consistent with the fact that x is indeed
encoded in network byte-order in Example 38. Otherwise, ϕ♭ returns a shared bi-cell
with little-endian encoding ⟨⟨c,L,L⟩, ⟨c′,L,B⟩⟩ if ⟨c,L,L⟩ = ⟨c′,L,B⟩ holds. Finally, if
all fails, ϕ♭ returns an error ⊤.

ϕ♭ relies on the predicate equal to compare two single cells of the same type, with
specified endianness encodings. An implementation is shown on Fig. 7.9. equal returns
true when compared cells are part of a shared bi-cell, or when equality is ensured by
the environment. Otherwise, equal uses the function offset ∈ N × N × A → N to
compare individual 1-byte bi-cells of the same weights at endianness-dependent offsets.
offset(w, s, ε) models the offset of the byte of weight 28w in an unsigned integer of size
s and endianness ε: offset(w, s,L) ≜ w, and offset(w, s,B) ≜ s − w − 1. Otherwise,
equal searches for candidate single cells in the environment, equal to both c and c′. As
in Sec. 6.2.3, we denote the set of single cells in the environment as

flatten(C) ≜ { c ∈ C̃ell | c ∈ C ∨ ∃c′ ∈ C : ⟨c, c′⟩ ∈ C ∨ ⟨c′, c⟩ ∈ C }

equal returns true in case of success, false otherwise.

7.3. MEMORY ABSTRACTION 185

add-cell♭(c, c′)⟨C,R⟩ ≜
if ϕ♭(c, c′)⟨C,R⟩ = ⟨xL, xB⟩ then
⟨C ∪ { ⟨xL, xB⟩ } , { ρ[⟨xL, xB⟩ 7→ v] | ρ ∈ R, v ∈ ELJϕL(xL)(C) K ρ }⟩

else
⟨C ∪ {cL, cB}, { ρ[∀α : cα 7→ vα] | ρ ∈ R, ∀α : vα ∈ EαJϕα(cα)(C) K ρ }⟩

where cL = ⟨c,L,L⟩ and cB = ⟨c′,B,B⟩

Figure 7.10: Bi-cell addition.

Single cell synthesis

If all attempts to synthesize a shared bi-cell for the scalar dereferences c and c′ fail, our
memory domain synthesizes the pair of single cells ⟨c,L,L⟩ and ⟨c′,B,B⟩ instead. These
bi-cells use the native endianness encoding of their respective host. To set their values
soundly, it calls ϕL⟨c,L,L⟩(C) and ϕB⟨c′,B,B⟩(C), where ϕα⟨V, o, τ, ε, α⟩(C) returns a
syntactic expression denoting (an abstraction of) the value of ⟨V, o, τ, ε, α⟩ as a function
of bi-cells existing in C. For instance, ϕL⟨y, 0,u16,B,L⟩(C) = 28y0

L + y1
L at the end

of Example 38 (see Fig. 7.7). Functions ϕα ∈ C̃ell → P(Bicell) → expr are defined
as simple extensions of the cell synthesizing function ϕ for endian-aware low-level C
programs, which we introduced in Sec. 7.2.2. The functions ϕL and ϕB are defined
exactly like the functions ϕ1 and ϕ2 in Sec. 6.2.3: we project bi-cells of the appropriate
side onto cells, apply ϕ, and lift the resulting cell expression back to a bi-cell expression.
We do not detail these definitions here, and refer the reader to Sec. 6.2.3 for a precise
description.

Bi-cell addition

Bi-cell addition, add-cell♭ ∈ Cell−L ×Cell
−
B → D♭ → D♭, then simply adds the synthesized

bi-cell(s) to the environment, and initializes their value(s), as shown on Fig. 7.10.

Remark 39 (Initializing a shared bi-cell from either single cell). The choice of using
ELJϕL(xL)(C) K (rather than EBJϕB(xB)(C) K) to initialize ⟨xL, xB⟩ is arbitrary, as they
are equal.

7.3.3 Abstract join

As in Sec. 6.2.6, the abstract join must merge environment sets defined on heterogeneous
bi-cell sets. We therefore use a unification function unify♭ ∈ (D♭)2 → (D♭)2. unify♭ is
defined exactly like the unification ûnify

♭
from Sec. 6.2.6. The join is defined as

⟨C1, R1⟩ ⊔♭ ⟨C2, R2⟩ ≜ ⟨C ′1 ∪ C ′2, R′1 ∪R′2⟩

where (⟨C ′1, R′1⟩, ⟨C ′2, R′2⟩) = unify♭(⟨C1, R1⟩, ⟨C2, R2⟩).

186 CHAPTER 7. ENDIAN PORTABILITY ANALYSIS

7.3.4 Semantics of simple and double statements

In Sec. 6.2.4 and 6.2.5 of Chapter 7, we introduced the transfer functions for simple and
double statements in the context of program versions P1 and P2 running on plateforms
with the same endianness. The adaptation to platforms with different endianness is
straightforward. Besides the replacement of the identifiers k ∈ { 1, 2 } of program versions
by the native endiannesses α ∈ {L,B } of their execution plateforms and the replacement
of states ⟨C, ρ⟩ ∈ X ∈ P(D̂) by unified states ⟨C,R⟩ ∈ D♭, the only significant change
is bi-cell synthesis, as Chapters 6 and 7 rely on different bi-cell synthesizing functions.
We already presented bi-cell synthesis for double programs in Sec. 7.3.2. In this section,
we first describe bi-cell synthesis for for simple programs. Then, we provide a brief
overview of the transfer functions of statements, and refer the reader to Appendix B.1
for a complete description.

Bi-cell synthesis for simple programs.

The transfer functions of assignments and tests for the simple program Pα rely on bi-cell
synthesis. As for double programs, the memory model attempts to synthesize shared bi-
cells whenever possible for dereferences in the memory of Pα, safely defaulting to single
cells on side α.

Shared bi-cell synthesis for simple program Pα. More precisely, the function
ϕ♭

α ∈ Cell−α → D♭ → Bicell ∪ {⊤} formalizes the patterns matched when attempting to
synthesize a shared bi-cell for a scalar dereference cα ∈ Cell−α in the memory of Pα:

ϕ♭
α(cα) ≜

ϕ
♭(cL, cB) if ∃⟨cL, cB⟩ ∈ B

⊤ otherwise

As in Sec. 6.2.4, ϕ♭
α assumes a relation B ∈ P(Cell−L ×Cell

−
B) given between the possible

scalar dereferences in the memory of PL and the possible scalar dereferences in the
memory of PB. B is a heuristic used as a hint for the memory domain, that we already
introduced in Sec. 6.2.4. Its elements are pairs of scalar dereferences that are likely
to be equal most of the time during program execution. In our implementation, B
defines a partial bijection from Cell−L to Cell−B . It is computed by the analysis front-
end, and contains pairs of scalar dereferences likely to be equal most of the time during
program execution, namely pairs of scalar dereferences from different program versions
that represent the “same” scalar variables or fields in PL and PB. We refer the reader
to Sec. 6.2.4 for further details on our implementation of B.

Single cell synthesis for simple program Pα. If all attempts to synthesize a shared
bi-cell for the scalar dereference c fail, our memory domain synthesizes the single single
cell ⟨c, α, α⟩ instead, using ϕα⟨c, α, α⟩(C) to set its value soundly.

7.3. MEMORY ABSTRACTION 187

add-cell♭
α(c)⟨C,R⟩ ≜

if ϕ♭
α(c)⟨C,R⟩ = ⟨xL, xB⟩ then
⟨C ∪ { ⟨xL, xB⟩ } , { ρ[⟨xL, xB⟩ 7→ v] | ρ ∈ R, v ∈ ELJϕL(xL)(C) K ρ }⟩

else
⟨C ∪ {cα}, { ρ[cα 7→ v] | ρ ∈ R, v ∈ EαJϕα(cα)(C) K ρ }⟩

where cα = ⟨c, α, α⟩

Figure 7.11: Bi-cell addition for simple program Pα.

Bi-cell addition for simple program Pα. Bi-cell addition, add-cell♭
α ∈ Cell−α →

D♭ → D♭, then simply adds the synthesized bi-cell to the environment, and initializes its
value, as shown on Fig. 7.11.

Remark 40 (Initializing a shared bi-cell from either single cell). As with Remark 39, the
choice of using ELJϕL(xL)(C) K (rather than EBJϕB(xB)(C) K) to initialize ⟨xL, xB⟩ is
arbitrary, as they are equal.

Transfer functions for simple and double statements

Semantics of simple statements. Let α ∈ A. Simple memory reads and writes in
program version Pα enjoy the semantics E♭

αJ ∗t e K ∈ D♭ → D♭ × P(V) and S♭
αJ ∗t e1 ←

e2 K ∈ D♭ → D♭ in this domain. The transfer functions are defined as in Sec. 6.2.4.
To read from memory, the domain enriches the abstract state with the bi-cells corre-
sponding to valid dereferences. Expression evaluation is then performed classically with
environment fonctions. To write to memory, the domain materializes the bi-cells for the
target location, taking care to split any shared bi-cells, in a copy-on-write strategy. The
transfer function for assignments then updates environments for these bi-cells, removing
any overlapping bi-cells for soundness.

Semantics of double statements. The semantics D♭J dstat K ∈ D♭ → D♭ for double
statements is also defined as in Sec. 6.2.5. D♭J l ← input_sync(a, b) K adds a shared
bi-cell for l if l is a deterministic left-value expression ∗τe containing a single dereference.
D♭J assert_sync(l) K tests whether l is a left-value expression ∗τe that evaluates to a
single shared bi-cell. The semantics for tests also uses shared bi-cells to detect conditions
that can be symbolically guaranteed to be stable.

In an assignment D♭J ∗t e1 ← e2 K ⟨C,R⟩, although both programs execute the same
syntactic assignment, their semantics are different, as are their endiannesses. For in-
stance, recall Example 29 from Sec. 5.2.1. The value assigned to field s.x by the state-
ment p[4]=1 depends on the endianness of the platform. In addition, available bi-cells
may be different. By default, double assignments are straightforward extensions of sim-
ple assignments: D♭J ∗t e1 ← e2 K = S♭

2J ∗t e1 ← e2 K ◦ S♭
1J ∗t e1 ← e2 K . As in Sec. 6.2.5,

we introduce two precision optimizations, taking advantage of implicit equalities repre-
sented by shared bi-cells.

188 CHAPTER 7. ENDIAN PORTABILITY ANALYSIS

1. If ∗t e1 and e2 are deterministic expressions, and if they evaluate to bi-cells that
are all shared, then PL and PB write the same value to the same destination. The
case occurs typically for pervasive statements such as x=x+1; if the environment
already contains shared bi-cells for x. We thus update shared destination bi-cells,
and remove any overlapping bi-cells for soundness. This is more efficient than
composing simple assignments, as a single (shared bi-cell) variable is updated by a
single transfer function for both program versions at the same time. This scheme
is also precise, as it preserves shared bi-cells representing equalities. For instance,
consider the source code of Example 38 on Fig. 7.1, extended with a final assign-
ment y++;. The shared bi-cell ⟨yL, yB⟩ is synthesized before this assignment. It is
therefore preserved by the transfer function.

2. If, in addition, e2 = ∗t e′2, and both ∗t e1 and ∗t e′2 evaluate to single bi-cells, then
we are dealing with a copy assignment, as in y=x;. In that case we copy any bi-cell
for the bytes of x to a corresponding bi-cell for the bytes of y. For instance, consider
the source code of Example 38 on Fig. 7.1, extended with a final copy assignment
u16 z=y;. Before this statement, the synthesized bi-cells for the bytes of variable y
are y0

L, y1
L, yB and ⟨yL, yB⟩. The transfer function for copy assignments synthesizes

the bi-cells z0
L, z1

L, zB and ⟨zL, zB⟩ for the bytes of variable z. It additionally records
equalities in (an abstraction of) the environment:

y0
L = z0

L y1
L = z1

L yB = zB ⟨yL, yB⟩ = ⟨zL, zB⟩

7.4 Numerical abstraction
We now rely on numerical abstractions to abstract further D♭ into a computable abstract
semantics D♯, resulting in an effective static analysis.

Connecting to numerical domains. As in Sec. 6.2.7, our memory domain translates
memory reads and writes into purely numerical operations on synthetic bi-cells, that
are oblivious to the double semantics of double programs: each bi-cell is viewed as an
independent numeric variable, and each numeric operation is carried out on a single bi-
cell store, as if emanated from a single program. Bi-cells may thus be fed, as variables,
to a numerical abstract domain for environment abstraction. Any standard numerical
domain, such as polyhedra [52], may be used. Yet, as we aim at scaling to large programs,
we restrict ourselves to combinations of efficient non-relational domains, intervals and
congruences [83], together with a dedicated symbolic predicate domain.

Introducing a dedicated symbolic predicate domain. Recall Example 38 from
Sect. 7.1. Various implementations are possible for the byte-swaps enforcing endian
portability of software. Though Example 38 shows an implementation relying on type-
punning, implementations relying on bitwise arithmetics are also commonplace. In addi-
tion, system-level software, such as Linux device drivers [158], often rely on combinations
of type-punning and bitwise arithmetics.

7.4. NUMERICAL ABSTRACTION 189

1 u16 x; u8 *p = (u8 *)&x;
2 u8 y = input_sync(0,255);
3 # if __BYTE_ORDER == __LITTLE_ENDIAN
4 x = y | 0xff00;
5 # else
6 x = (y << 8) | 0xff;
7 # endif
8 assert_sync(p[0]); assert_sync(p[1]);

Figure 7.12: Byte-wise equal memories in different endiannesses (Example 39)

Example 39 (Byte-wise equal memories in different endiannesses). Fig. 7.12 shows a
simplified instance of such programming idioms: as y has type unsigned char, y|0xff00
and (y<<8)|0xff represent the same 16-bit word in different endiannesses. For a suc-
cessful analysis of this example, the numerical domain must interpret bitwise arithmetic
expressions precisely, and infer relations such as: the low-order (respectively high-order)
byte of the little-endian (respectively big-endian) version of integer x is equal to y. Then,
the interpretation of dereferences of p by the memory domain introduces similar rela-
tions between cells, thanks to the bi-cell synthesizing function. In this example, it infers
that the little-endian version of the low-address (respectively high-address) byte cell in
x is equal to the low-order (respectively high-order) byte of x – and the converse for
big-endian. More precisely, let xα ≜ ⟨x, 0,u16, α, α⟩ denote 2-byte cells for x, encoded
with the native endianness of Pα, and let xo

α ≜ ⟨x, o,u8, α, α⟩ denote 1-byte cells at
offset o ∈ { 0, 1 }. Let yα ≜ ⟨y, 0,u8, α, α⟩ denote 1-byte cells for y in the memory of Pα.
The analysis of the snippet on Fig. 7.12 synthesizes the bi-cells ⟨yL, yB⟩, xL, xB, x0

L, x1
L,

x0
B and x1

B, with the constraints:

xL = ⟨yL, yB⟩+ 65280 xB = 256× ⟨yL, yB⟩+ 255 (7.3)

in addition to the cell constraints on x:

xL = x0
L + 256× x1

L xB = 256× x0
B + x1

B

The goal of the analysis is to infer the invariants x0
L = x0

B and x1
L = x1

B. To infer these
invariants from such relational constraints over bi-cells with an expressive numerical
domain such as linear equalities might hamper the scalability of the analysis. In this
section, we introduce a dedicated symbolic domain with near-linear cost that expresses
the right invariants for a successful analysis.

7.4.1 The bit-slice symbolic predicate domain

We use a domain based on pattern-matching of expressions to detect arithmetic manip-
ulations of byte values commonly implemented as bitwise arithmetics. It is not sufficient
to match each expression independently, as computations are generally spread across

190 CHAPTER 7. ENDIAN PORTABILITY ANALYSIS

Bits ::= ⊤ | Slice
Slice ::= n | c |

−−−→
c[i, j)

k
| (Slice | Slice) (n ∈ Z, c ∈ C, i, j, k ∈ N)

Figure 7.13: Bits, a language of syntactic expressions

sequences of statements. We need, in addition, to maintain some state that retains
and propagates information between statements. We maintain this state in a predicate
domain Pred♯ ⊆ C → Bits, which maps each bi-cell c ∈ C ⊆ Bicell to a syntactic
expression e in a language Bits, as a symbolic representation of predicate c = e. The
precise definition of Pred♯ will be stated by Equation 7.4. Fig. 7.13 shows the syntax of
Bits. ⊤ denotes the absence of information. Otherwise, a syntactic predicate expression
may be either a bit-slice, or a bitwise OR of bit-slices. A bit-slice may be an integer con-
stant n, a bi-cell c, or a slice expression

−−−→
c[i, j)

k
denoting the value obtained by shifting

the bits of the bi-cell c between i and j−1 to position k:
−−−→
c[i, j)

k
≜ ⌊(c mod 2j)/2i⌋×2k.

We assume 0 ≤ i < j ≤ n, k ≥ 0 and k + j − i ≤ n, where n = 4 × sizeof (τ) and c has
unsigned type τ . Each term of a bitwise OR of bit-slices represents an interval of bits,
e.g. [k, k + j − i) for a term

−−−→
c[i, j)

k
. We assume that bit-intervals do not overlap: each

bit from the result comes from a single cell or constant. For instance, the constraints of
Equation 7.3 of Example 39 can be expressed as Bits expressions:

xL = ⟨yL, yB⟩ | 65280 xB = 255 |
−−−−−−−−−→
⟨yL, yB⟩[0, 8)

8

They can be rewritten as normal forms that make explicit the interval of bits represented
by each term of a bitwise OR of bit-slices:

xL =
−−−−−−−−−→
⟨yL, yB⟩[0, 8)

0
|
−−−−−→
255[0, 8)

8
xB =

−−−−−→
255[0, 8)

0
|
−−−−−−−−−→
⟨yL, yB⟩[0, 8)

8

Remark 41 (Bit-slice predicates for signed bi-cells are ⊤). Bi-cells representing scalar
dereferences with signed types are mapped to ⊤, which is sound but coarse. This is suf-
ficient for most practical examples, as bitwise arithmetic is mostly used with unsigned
integers. This is considered best practice for portability, as the effect of right-shifting
negative integers is implementation-defined in the C standard [92]. Most practical im-
plementations use arithmetic shifts with sign extensions. We did not implement sign
extension to keep our bit-slice domain simple.

Remark 42 (Bit-slices as bitwise expressions).
−−−→
c[i, j)

k
can be defined as C bitwise expres-

sions: −−−→
c[i, j)

k
=
((
x % 2j

)
>> i

)
<< k =

((
x & (2j − 1)

)
>> i

)
<< k

The ordering of the domain is flat, based on syntactic predicate equality:

X♯ ⊑♯ Y ♯ △⇐⇒ ∀c ∈ C : X♯(c) = Y ♯(c) ∨ Y ♯(c) = ⊤

7.4. NUMERICAL ABSTRACTION 191

Concretization

An abstract element X♯ ∈ Pred♯ denotes the set of environments that satisfy all the
predicates in X♯, where predicates are evaluated as expressions:

γPred(X♯) ≜ { ρ ∈ C → V | ∀c ∈ C : X♯(c) = ⊤ ∨ ρ(c) ∈ EJX♯(c) Kρ }

Abstract operators

The bit-slice predicate domain can be seen as a specialized instance of the more general
symbolic constant domain [130], which maps cells to arbitrary expressions from the
source language (instead the selected expressions of interest in Bits). We thus give a
similar description in this section, following the structure of [130, Sec. 5.1].

Enriched Expressions. The language of C expressions is enriched with the Bits
language, where bi-cells play the role of variables, e.g. V ≜ C. Let CBits denote the
resulting set of syntactic expressions. We use two functions on expression trees:

• occ ∈ CBits → P(V) returns the set of variables occurring in an expression;
• subst ∈ CBits×V×CBits → CBits substitutes, in its first argument, every occurrence

of a given variable with its last argument.
The definition of occ and subst is standard for non-⊤ expressions. As in [130, Sec. 5.1],
we extend them to CBits with:

• occ(⊤) ≜ ∅;

• subst(e, V,⊤) ≜
{
⊤ if V ∈ occ(e)
e otherwise

.

Abstract Symbolic Environments. We impose a restriction on the domain of sym-
bolic bit-slice predicates: a valid predicate map P ∈ Pred♯ should feature no cyclic
dependencies. More precisely,

Pred♯ ≜

 P ∈ V → Bits

∣∣∣∣∣∣∣
∀n ∈ N : ∀ (V1, . . . , Vn) ∈ Vn :
Vn ∈ occ(P (V1)) ∧ ∀i < n : Vi ∈ occ(P (Vi+1))
=⇒ n = 0

 (7.4)

In particular, V ̸∈ occ(P (V)).
This restriction allows defining an additional function expand ∈ CBits×Pred♯ → CBits

that substitutes every variables by their (non-⊤) bindings:

expand(e, P) ≜ subst(. . . , (subst(subst(e, x1, P (x1))), x2, P (x2)), . . . , xn, P (xn))

where {x1, . . . , xn } ≜ {x ∈ occ(e) |P (x) ̸= ⊤} is such that ∀i, j : xj ∈ occ(P (xi)) =⇒
i < j. It also allows defining the function expand⋆ ∈ CBits × Pred♯ → CBits, such that
expand⋆(e, P) iterates x 7→ expand(x, P) from e until a fixpoint is reached.

192 CHAPTER 7. ENDIAN PORTABILITY ANALYSIS

to-bits ∈ CBits → Bits

Notation: n ≜ 8× sizeof (typeof (e))
to-bits(e) ≜ e if e ∈ N ∪ V

to-bits(
−−−→
e[i, j)

k
) ≜
−−−−−−−−−→
to-bits(e)[i, j)

k

to-bits(e | e′) ≜ to-bits(e) | to-bits(e′)

to-bits(byte(e, w)) ≜
−−−−−−−−−−−−−−−→
to-bits(e)[8w, 8w + 7)

0
byte(e, w) = ⌊e/28w⌋ mod 28

to-bits(e << q) ≜
−−−−−−−−−−→
to-bits(e)[0, n)

q

to-bits(e >> q) ≜
−−−−−−−−−−→
to-bits(e)[0, n)

−q

to-bits((e >> q)&m) ≜ to-bits((e& (m << q)) >> q)
to-bits((e << q) &m) ≜ to-bits((e& (m >> q)) << q)

to-bits(e& 0xff 00 . . . 00︸ ︷︷ ︸
2m

) ≜
−−−−−−−−−−−−−−−−−→
to-bits(e)[8m, 8(m+ 1))

8m

to-bits(e) ≜ ⊤ in all other cases.
(a) Translating expressions to bit-slices

J stat K♯ ∈ Num♯ × Pred♯ → Pred♯

JV ← e K♯⟨I, P ⟩ ≜ x 7→
{

nf ⟨I, to-bits(subst(e, V, P (V)))⟩ if x = V

nf ⟨I, to-bits(subst(P (x), V, P (V)))⟩ otherwise

J e ▷◁ e′ K♯⟨I, P ⟩ ≜ P

P ⊔♯ P ′ ≜ x 7→
{
P (x) if P (x) = P ′(x)
⊤ otherwise

P ⊓♯ P ′ ≜ P
(b) Transfer functions and lattice operators

Figure 7.14: Expression translation, transfer functions and lattice operators.

Abstract lattice operators and transfer functions. The abstract operators are
shown on Fig. 7.14(b). Like that of the related symbolic constant domain [130], they are
based on symbolic propagation, and implement simple algebraic simplifications. They
exhibit similar, near-linear time cost in our experiments.

The transfer function of assignments V ← e first substitutes V with P (V) in P and
e before updating the mapping of V in P . This is necessary to remove all prior informa-
tion on V , that is no longer valid after the assignment, and to prevent the apparition of
dependency cycles. This is also more precise than replacing with ⊤ the mapping of every
variable V ̸= W such that V ∈ occ(P (W)). Then, it translates the transformed e into
the Bits language, and maps V to the result of the translation. This translation relies
on the function to-bits ∈ CBits → Bits, which converts a general expression to a Bits

7.4. NUMERICAL ABSTRACTION 193

expression, and on function nf ∈ Num♯×CBits → Bits, which rewrites a Bits expression
to a normal form: either a bit-slice of a variable or a constant, or bitwise OR of disjoint
bit-slices, or 0, or ⊤. The definition of to-bits is shown on Fig. 7.14(a). to-bits trans-
lates commonplace bitwise arithmetic expressions. For instance, x << 16 is translated
to
−−−−→
x[0, 16)

16
if sizeof(x)=4, and x & 0xff00 is translated to

−−−−→
x[8, 16)

8
. to-bits addition-

ally recognizes some arithmetic expressions from the memory domain. For instance, it
translates to

−−−−−−−−−−−−−−−→
to-bits(c)[8w, 8w + 7)

0
bi-cell expressions byte(c, w) introduced by the bi-

cell synthesizing functions ϕL and ϕB: see Figs. 7.3 and 7.10. to-bits safely defaults to ⊤
when failing to recognize a pattern. nf rewrites the output of to-bits to a normal form.
Normal forms ensure that each term of a bitwise OR of bit-slices represents a disjoint
interval of bits, sorted by increasing lower bounds. To this aim, nf normalizes the rep-
resentation of constants and variables to bit-slices of themselves. For instance, it relies
on the numerical abstraction to derive tight slices for variables x: nf ⟨I, x⟩ ≜

−−−→
x[0, j)

0
,

where j = min{ 0 ≤ q < n |CNumJx ≥ 2q K ♯I = ⊥} and n = 8 × sizeof (typeof (x)). We
refer the reader to Fig. B.1 of App. B.2 for the complete definition of nf .

As we are primarily interested in propagating assignments, tests are abstracted as
the identity, which is sound, though coarse.

Our join only keeps syntactically equal expressions. This corresponds to the least up-
per bound with respect to ⊑♯. Our meet keeps only the information of the left argument.
All these operators respect the non-cyclicity condition.
Remark 43. One could be tempted to refine the meet by mixing information from the
left and right arguments in order to minimize the number of variables mapping to ⊤.
Unfortunately, careless mixing may break the non-cyclicity condition. As in [130, Sec.
5.1], we settled, as a simpler but safe solution, to keep the left argument.

Finally, we do not need any widening, as the domain is flat.

7.4.2 Integration with the numerical and memory abstractions

As seen in Sec. 7.4.1, our bit-slice symbolic predicate domain cooperates with the nu-
merical abstraction. The cooperation is one-way, in that the symbolic domain relies on
variable ranges from the numerical domain to infer tighter slices for variables. The bit-
slice domain is additionally queried by our memory domain for equalities, or equalities
modulo byte-swapping. We have already introduced queries for equality in Sec. 7.3.2:
the ϕ♭ function of Fig. 7.8 relies on the predicate equal of Fig. 7.9 to synthesize shared bi-
cells. That version of equal enables ϕ♭ to synthesize shared bi-cells representing equalities
modulo byte-swapping, when byte-swaps are implemented by type-puning techniques.
For instance, x is byte-swapped into y by type-puning in Example 38, and the shared
bi-cell ⟨yL, yB⟩ of Fig. 7.7 is synthesized. Unfortunately, such synthesis fails if some byte
operations are performed through bitwise arithmetic, rather than type-puning.

Example 40 (Constructing a big-endian number). More precisely, Fig. 7.16 shows a
snippet of code that converts a 2-byte variable x, in host byte-order, into a variable
y, in big-endian byte order. The little-endian version of the program relies on bitwise

194 CHAPTER 7. ENDIAN PORTABILITY ANALYSIS

equal(⟨V, o, τ, ε, α⟩, ⟨V ′, o′, τ, ε′, α′⟩)⟨C,R⟩ ≜
let c = ⟨V, o, τ, ε, α⟩ and c′ = ⟨V ′, o′, τ, ε′, α′⟩ and s = sizeof (τ) in
⟨c, c′⟩ ∈ C ∨ ⟨c′, c⟩ ∈ C ∨
(∃(x, x′) ∈ occ(c, C)× occ(c′, C) : ∀ρ ∈ R : ρ(x) = ρ(x′)) ∨
(∀0 ≤ w < s : equal(⟨V, o+ offset(w, s, ε),u8, ε, α⟩, ⟨V ′, o′ + offset(w, s, ε),u8, ε′, α′⟩)⟨C, ρ⟩) ∨
(∃x ∈ flatten(C) \ { c, c′ } : equal(c, x)⟨C,R⟩ ∧ equal(c′, x)⟨C,R⟩) ∨
let ε̄ ̸= ε and c̄ = ⟨V, o, τ, ε̄, α⟩ in is-bswap(c̄, c′)⟨C,R⟩

where
is-bswap(c, c′)⟨C,R⟩ ≜ ∃(x, x′) ∈ occ(c, C)× occ(c′, C) : bswap-query(x, x′, R)
bswap-query(c, c′, R) ≜

let c = ⟨V, o, τ, ε, α⟩ and c′ = ⟨V ′, o′, τ, ε′, α′⟩ and n = sizeof (τ) in
∀ρ ∈ R : ρ(c) = bswap(ρ(c′), n)

Figure 7.15: Extension of the equal predicate of the memory abstraction
to equalities modulo bitwise arithmetic byte-swapping.

1 u16 x = input_sync(0,65535);
2 u16 y;
3 # if __BYTE_ORDER == __LITTLE_ENDIAN
4 y = ((x >> 8) & 0xff) | ((x & 0xff) << 8);
5 # else
6 y = x;
7 # endif
8 y;

Figure 7.16: Constructing a big-endian number (Example 40)

arithmetic to byte-swap x into y, while the big-endian version performs an assignment.
Then, both program versions read the value of y. Using the equal predicate from Fig. 7.9,
the ϕ♭ function of our memory domain fails to synthesize any shared bi-cell for the
dereference c = ⟨y, 0,u16⟩. Nonetheless, the shared bi-cells cB = ⟨⟨c,B,L⟩, ⟨c,B,B⟩⟩
and cL = ⟨⟨c,L,L⟩, ⟨c,L,B⟩⟩ would both be sound. For instance, the memory domain
should infer the invariant ⟨c,L,L⟩ = bswap(⟨c,B,B⟩, sizeof (u16)) to synthesize cB, where
the function bswap(x, n) byte-swaps the unsigned machine integer x of byte-size n:

bswap(x, n) =
−−−−−−−−−−→
x[8(n− 1), 8n)

0
| . . . |

−−−−−−−−−−−−−−−−−−→
x[8(n− k − 1), 8(n− k))

8k
| . . . |

−−−−→
x[0, 8)

8(n−1)

To this aim, we extend the equal predicate of Fig. 7.9 to query for such equalities
modulo bitwise byte-swapping. The new version of equal is shown on Fig. 7.15. It
appends a case at the end of the disjunction that tests single cells c and c′ for equality.

7.4. NUMERICAL ABSTRACTION 195

This case tests whether c̄ and c′ are arithmetic byte-swaps of each other, where c̄ is a
single cell representing the same bytes as c, albeit with opposite endianness encoding.

This test relies on the bswap-query predicate. In the numerical abstraction, this pred-
icate is supported by a query from the memory domain to the bit-slice domain. Given
an abstract state ⟨I, P ⟩, the bit-slice domain first expands recursively the mappings of
c̄ and c′, and reduces the resulting Bits expressions to normal forms:{

s̄ = nf ⟨I, expand⋆(c̄, P)⟩
s′ = nf ⟨I, expand⋆(c′, P)⟩

Then it tests whether s̄ and s′ have the forms̄ =
−−−−−−−−−−−−−→
xn−1[8(n− 1), 8n)

0
| . . . |

−−−−−−−−−−−−−−−−−−−−−−−→
xn−k−1[8(n− k − 1), 8(n− k))

8k
| . . . |

−−−−→
x0[0, 8)

8(n−1)

s′ =
−−−−→
x0[0, 8)

0
| . . . |

−−−−−−−−−−−→
xk[8k, 8(k + 1))

8k
| . . . |

−−−−−−−−−−−−−→
xn−1[8(n− 1), 8n)

8(n−1)

where (x0, . . . , xn−1) are single cells or constants. In this case, the answer from the
bit-slice domain to the bswap-query query is true. Otherwise it is false.

In the case of Example 40, this version of equal enables the synthesis of the shared
big-endian bi-cell cB by the memory domain, and the bit-slice predicate domain records
the equality: cB = ⟨⟨x, 0,u16,L,L⟩, ⟨x, 0,u16,B,B⟩⟩
Remark 44 (Queries for variable equality). The bit-slice domain handles equality queries
in a similar way. The third case of the disjunction of the equal predicate, ∀ρ ∈ R : ρ(x) =
ρ(x′), is indeed supported in the numerical abstraction by another dedicated query from
the memory domain to the bit-slice domain, to test the equality of x and x′. Given an
abstract state ⟨I, P ⟩, the bit-slice domain interprets this test as

nf ⟨I, expand⋆(V, P)⟩ = nf ⟨I, expand⋆(V ′, P)⟩ ≠ ⊤

i.e. x and x′ are equal if they can be expanded to identical non-⊤ normal Bits expres-
sions.

7.4.3 Analysis of Example 39

After this integration of our bit-slice predicate domain with our bi-cell based memory ab-
straction, we are now ready to analyze Example 39, using any underlying non-relational
numerical domain, such as intervals.

Four cells are synthesized by the memory domain before line 8:

C8 = {xL, xB, ⟨yL, yB⟩, ⟨pL, pB⟩ }

xL = ⟨x, 0,u16,L,L⟩ is a little-endian single cell for the bytes of variable x, and
xB = ⟨x, 0,u16,B,B⟩ is a big-endian one. ⟨yL, yB⟩ = ⟨⟨y, 0,u8,L,L⟩, ⟨y, 0,u8,B,B⟩⟩
and ⟨pL, pB⟩ = ⟨⟨p, 0,ptr,L,L⟩, ⟨p, 0,ptr,B,B⟩⟩ are shared bi-cells for variable y and
pointer p.

196 CHAPTER 7. ENDIAN PORTABILITY ANALYSIS

– ⟨yL, yB⟩ is created at line 2, and represents the fact that variable y has the same value
in the little- and big-endian versions.

– The transfer function for assignment of the symbolic predicate domain infers invariants
xL = ⟨yL, yB⟩ | 65280 from line 4, and xB = 255 |

−−−−−−−−−→
⟨yL, yB⟩[0, 8)

8
from line 6.

– Then, the dereferences of pointer p at line 8 are interpreted by the memory domain.
Four more cells {xo

α | (α, o) ∈ {L,B }×{ 0, 1 } } are added to the abstract environment,
to denote the bytes of variable x in the little- and big-endian programs. More precisely,
xo
L = ⟨x, o,u8,L,L⟩, and xo

B = ⟨x, o,u8,B,B⟩, at offsets o ∈ { 0, 1 }. Following
the definition of add-cell♭ on Fig. 7.10, these new bi-cells are initialized with values
computed from the outputs of the bi-cell synthesizing functions ϕL and ϕB. In practice,
these initializations are xo

L = byte(xL, o), and xo
B = byte(xL, 1 − o), for offsets o ∈

{ 0, 1 }, with byte(n, k) = ⌊n/28k⌋ mod 28. These assignments are then interpreted
by the numerical domain, and by the symbolic predicate domain in particular, as
xo
L = byte′(xL, o), and xo

B = byte′(xB, 1− o), with byte′(n, k) =
−−−−−−−−−→
n[8k, 8k + 8)

0
.

– Finally, the memory domain attempts to synthesize the shared bi-cells ⟨x0
L, x

0
B⟩ and

⟨x1
L, x

1
B⟩ as a proof of the assertions line 8. To this aim, it queries the bit-slice

domain for the equalities x0
L = x0

B and x1
L = x1

B. As shown in Remark 44, the
bit-slice domain replaces bi-cells with the symbolic expressions bound to them, if

any. The tests are thus
−−−−−−−−−−−−−−−−→
(⟨yL, yB⟩ | 65280) [0, 8)

0
=
−−−−−−−−−−−−−−−−−−−−−→(

255 |
−−−−−−−−−→
⟨yL, yB⟩[0, 8)

8)
[8, 16)

0

and

−−−−−−−−−−−−−−−−−→
(⟨yL, yB⟩ | 65280) [8, 16)

0
=
−−−−−−−−−−−−−−−−−−−−→(

255 |
−−−−−−−−−→
⟨yL, yB⟩[0, 8)

8)
[0, 8)

0

. Both tests evaluate to true,
using symbolic simplifications (and integer arithmetic computations) supported by
the normalization of bit-slice expressions (see App. B.2). Indeed the first test is
normalized to

−−−−−−−−−→
⟨yL, yB⟩[0, 8)

0
=
−−−−−−−−−→
⟨yL, yB⟩[0, 8)

0
, while the second test is normalized to

−−−−−→
255[0, 8)

0
=
−−−−−→
255[0, 8)

0
.

Hence, the assertions line 8 are proved correct: at the end of the program, the memories
for variable x are byte-wise equal in the little and big-endian versions.

7.5 Implementation

We implemented a static analysis based on the D♯ abstract semantics on top of Mopsa.
The main differences, with respect to the D̂♯ semantics presented in Sec. 6.3, are:
– an extended representation of the platforms of the two program versions, to record

their native endiannesses;
– the extended representation of bi-cells, which features their endianness encoding;
– the extended bi-cell synthesizing function ϕ♭;
– the integration of our symbolic domain of bit-slice predicates.
This additional domain is reflected in a modular way in the configuration of the anal-
ysis shown on Fig. 6.14. The only change, with respect to Fig. 6.14 from Sec. 6.3, is
the abstraction of scalar values. The domain C.machineNum is replaced by the prod-

7.6. EVALUATION 197

D.program # C.program # D.builtins #

D.interproc # C.interproc # U.interproc #

D.intraproc # C.intraproc # U.intraproc #

D.loops # C.loops # U.loops #

C.libraries # C.Aggregates #

D.cells

◦

×

∧

C.machineNum C.bitSlices

C.pointers

◦

∧ U.linearRel

∧

U.intervals U.congruences

Sequence

∧ Reduced product

× Cartesian product

◦ Composition

Universal

C specific

Double C

Double memory

Scalars

Numbers

Figure 7.17: Analysis of double endian-diverse C programs
with bi-cells and bit-slice predicates

uct C.machineNum ∧ C.bitSlices . C.machineNum translates machine integer arithmetic
into mathematical arithmetic on unbounded integers, while C.bitSlices implements our
symbolic domain of bit-slice predicates directly at the level of C (not mathematical)
expressions. Both domains abstract the machine integer values of scalar bi-cells syn-
thesized by the memory domain. As opposed to purely numerical domains such as
U.intervals , both C.machineNum and C.bitSlices rely on the ranges and bit-sizes of ma-

chine integer expressions. The C.bitSlices domain accounts for 1000 lines of OCaml in
our implementation.

7.6 Evaluation

We have experimented our prototype on small idiomatic examples, open source software,
and large industrial software. The analyses were run on a 3.4 GHz Intel® Xeon® CPU,

198 CHAPTER 7. ENDIAN PORTABILITY ANALYSIS

using a single core as the analysis is not multi-threaded.

7.6.1 Idiomatic examples

We first check the precision and robustness of our analysis against a collection of small
double C programs (between 20 and 100 LOC), inspired by various implementations of
byte-swaps in Linux drivers, POSIX htonl functions, and industrial software.

A set of 9 programs illustrate network data processing. These programs are similar
to Example 38 of Sect. 7.1. They receive an integer from the network, increment it, and
send over the result. Necessary byte-swaps are implemented for little-endian versions of
these programs. Each example program implements a different byte-swapping technique
on a 2, 4, or 8-byte integer: type-punning with pointer casts (like in Example 38), unions,
or bitwise arithmetics. Refer to Examples 42 and 43 of App. C.2.1 and Example 44 of
App. C.2.2 for the source codes, and to Fig. C.1(a) of App. C.2 for analysis times. We
also analyze Example 39 from Fig. 7.12 to demonstrate the efficiency of our symbolic
predicate domain.

Our prototype also handles floating-point data, which was omitted in the formaliza-
tion for the sake of conciseness. We developed small floating-point examples represen-
tative of industrial use-cases of Sect. 7.6.3. They include byte-swappings of simple or
double precision floating-point numbers sent to or received from the network, on archi-
tectures where integers and floats are guaranteed to have the same byte-order. Type-
punning is used to reinterpret floats as integers of the same size, which are byte-swapped
using bitwise arithmetics. Also, a combination of type-punning and byte-swapping is
used to extract exponents from double precision floats. The source codes of these Ex-
amples 46 and 47 are available in App. C.2.3.

All analyses run in less than 200 ms and report no false alarm, thus proving the
functional equivalence of the little-endian and big-endian versions of each program with
respect to the values of outputs. Analysis times are shown on Fig. C.1(b) of App. C.2.
These results can be reproduced by analyzing the benchmarks with reference num-
bers 4, 5, 6, 8 and 9 in the companion artifact [69] to our related paper [68].

7.6.2 Open source benchmarks

We then check the soundness, precision, and modularity of our analysis on three bench-
marks based on open source software available on GitHub, with multiple commits for
bug-fixes related to endianness portability. We analyze slices between 100 and 250 LOC,
using primitives input_sync and assert_sync for modular specifications of program
parts. Refer to Examples 48, 49, and 50 in App. C.2.4 for relevant source codes excerpts.

Our first benchmark is an implementation of a tunneling driver [158] based on the
Geneve [84] encapsulation network protocol, which uses big-endian integers as tunnel
identifiers. The driver was introduced in 20141 in the Linux kernel, and patched several

1https://github.com/torvalds/linux/commit/0b5e8b8eeae40bae6ad7c7e91c97c3c0d0e57882

https://github.com/torvalds/linux/commit/0b5e8b8eeae40bae6ad7c7e91c97c3c0d0e57882

7.6. EVALUATION 199

times2 for endianness-related issues detected by Sparse [34]. Then, a performance
optimization introduced in 20163 a new endianness portability bug, which Sparse failed
to detect. It was fixed a year later4. Our analysis soundly reports this bug, as well as
previous issues detected by Sparse. It reports no alarm on the fixed code.

Our second benchmark is a core library of the mlx5 Linux driver [126] for ethernet
and RDMA net devices [121]. We analyze a slice related to a patch5, committed to fix
an endianness bug introduced 3 years earlier6, and undetected by Sparse despite the
use of relevant annotations. The fix turned out to be incomplete, and was updated 6
months later7. Our analysis soundly reports bugs on the two first versions, and no alarm
on the third.

Our third benchmark is extracted from a version of Squashfs [172], a compressed
read-only filesystem for Linux, included in the LineageOS [171] alternative Android
distribution. We analyze a slice related to a patch8, committed to fix an endianness bug
undetected by Sparse due to a lack of type annotations. Our analysis soundly reports
the bug, and no alarm on the fixed version.

All the analyses run within 1 second. Analysis times are shown on Fig. C.1(b) of
App. C.2. These results can be reproduced by analyzing the benchmarks with reference
numbers 10, 11, and 12 in the companion artifact [69] to our related paper [68].

7.6.3 Industrial case study

We analyzed two components of a prototype avionics application, developed at Airbus for
a civil aircraft. This application is written in C, and primarily targets an embedded big-
endian processor. Nonetheless, it must be portable to little-endian commodity hardware,
as its source code is reused as part of a simulator used for functional verification of
SCADE [24] models. The supplement to the applicable aeronautical standard [4] related
to model-based development [5] mandates, in this case, that “an analysis should provide
compelling evidence that the simulation approach provides equivalent defect detection
and removal as testing of the Executable Object Code”. Airbus, known to rely on formal
methods for other verification objectives [62, 167, 65, 134, 29], is currently considering
the use of static analysis to verify this portability property.

Endianness is the main difference between the ABIs of the embedded computer and
the simulator. We thus experimented our prototype analyzer on the modules of the
application integrated to the simulator, to which we refer as A and S. For both modules,
the analysis aims at proving the functional equivalence of the little-endian and the big-
endian versions with respect to the values of outputs. Modules A and S are data-

2https://github.com/torvalds/linux/commit/42350dcaaf1d8d95d58e8b43aee006d62c84bc2e
https://github.com/torvalds/linux/commit/0a5d1c55faa5414858857875496f6f6a9926fa51

3https://github.com/torvalds/linux/commit/2e0b26e1035253bda7587f705f346385352e942d
4https://github.com/torvalds/linux/commit/772e97b57a4aa00170ad505a40ffad31d987ce1d
5https://github.com/torvalds/linux/commit/404402abd5f90aa90a134eb9604b1750c1941529
6https://github.com/torvalds/linux/commit/2b64beba025109f64e688ae675985bbf72196b8c
7https://github.com/torvalds/linux/commit/82198d8bcdeff01d19215d712aa55031e21bccbc
8https://github.com/LineageOS/android_kernel_sony_msm8960t/commit/5f61dc71accfea6c946

7499d0e3eb5462dab8d63

https://github.com/torvalds/linux/commit/42350dcaaf1d8d95d58e8b43aee006d62c84bc2e
https://github.com/torvalds/linux/commit/0a5d1c55faa5414858857875496f6f6a9926fa51
https://github.com/torvalds/linux/commit/2e0b26e1035253bda7587f705f346385352e942d
https://github.com/torvalds/linux/commit/772e97b57a4aa00170ad505a40ffad31d987ce1d
https://github.com/torvalds/linux/commit/404402abd5f90aa90a134eb9604b1750c1941529
https://github.com/torvalds/linux/commit/2b64beba025109f64e688ae675985bbf72196b8c
https://github.com/torvalds/linux/commit/82198d8bcdeff01d19215d712aa55031e21bccbc
https://github.com/LineageOS/android_kernel_sony_msm8960t/commit/5f61dc71accfea6c9467499d0e3eb5462dab8d63
https://github.com/LineageOS/android_kernel_sony_msm8960t/commit/5f61dc71accfea6c9467499d0e3eb5462dab8d63

200 CHAPTER 7. ENDIAN PORTABILITY ANALYSIS

intensive reactive software, processing thousands of global variables, with very flat call
graphs. Module A is in charge of acquiring and emitting data through aircraft buses.
It is composed of about 1 million LOC, most of which generated automatically from
a description of the avionics network. It handles integers, Booleans, single and double
precision floats, and outputs about 3,500 individual scalar data. The code features
bounded loops, memcpys, pointer arithmetics, and type-punning with unions and pointer
casts. It also uses bitwise arithmetics, among which several thousand byte-swaps related
to endianness portability. Module S is in charge of the main applicative functions. It is
composed of about 300,000 LOC, most of which generated automatically from SCADE
models. It handles mostly Booleans and double precision floats, and outputs about 200
individual scalar data. It features bounded loops and bitwise arithmetics, but no type-
punning. The target application is required to meet its specifications for long missions.
We therefore use unbounded loops to emulate the main reactive loop of the application
in the analysis drivers of modules A and S.

Both analyses run in 5 abstract iterations. The analysis of A runs in 20.4 hours
and uses 5.5 GB RAM. The analysis of S runs in 9.7 hours and uses 2.7 GB RAM. We
worked with the development and simulation teams to analyze early prototypes, and
incorporate findings into the development cycle. Therefore analyses report zero alarm
on current versions of modules A and S.

7.7 Conclusion
In this chapter, we presented a sound static analysis of endian portability for low-level C
programs. Our method is based on abstract interpretation, and parametric in the choice
of a numerical abstract domain. To this aim, we first parameterized the cell-based
semantics of low-level C programs introduced in Chapter 5 with an explicit endianness
parameter. Then, we reused the bi-cell based memory model introduced in Chapter 6
to lift this semantics to double programs. We tailored this memory model to support
the synthesis of shared bi-cells representing either equalities, or equalities modulo byte-
swapping. Finally, we introduced a novel symbolic predicate domain with near-linear
cost, that is able to infer relations between individual bytes of the variables in the two
programs, such as those established by bitwise arithmetic operations. We implemented
a prototype static analyzer, able to scale to large real-world industrial software, with
zero false alarms.

For future work, we are starting a project to industrialize this prototype, towards
an industrial deployment of endian portability analysis as a means to address avionics
certification objectives related to simulation fidelity. We are also considering extending
our analysis to further ABI-related properties, such as portability between different sizes
of machine integers. We anticipate that our bi-cell sharing approach will benefit to such
analyses.

Chapter 8

Conclusion

In this thesis, we have contributed to the design of methods for the analysis of software
patches, and the analysis of endian and structure layout portability, in the context of
low-level C programs manipulating memory at the byte-level. We have successfully ex-
perimented our analyses on real-world open source and industrial software. In particular,
our prototype static analyzer for endian portability analyzes successfully large avionics
programs up to one million lines of C in less than a day of computation.

Contributions

Our main contributions are a semantics for double programs, a memory abstraction for
double C programs, numerical domains for patch and endian portability analysis, and a
prototype static analyzer for patch and portability analysis of C programs.

Double program semantics. Our first contribution is a novel concrete collecting
semantics, expressing the behaviors of two versions of a program at the same time. It
is defined by induction on the syntax of a joint syntactic representation of two program
versions, coined double program. Our semantics allows for modular, joint analyses of
double programs that maintain input-output relations on the variables. It allows proving
the functional equivalence of two program versions running in the same environment and
reading from the same input stream, which is the goal of regression verification. Patch
analysis is subject to a trade-off between the computational resources invested in the
construction of a suitable double program and the expressive power of the abstract
domain used to infer the necessary invariants. We propose a heuristic algorithm for
constructing a double program from a pair of program versions that allows, in most
practical cases, successful patch analyses relying on linear invariants only.

Bi-cell memory domain. Our second contribution is a memory domain for double
low-level C programs. This domain allows representing symbolically some relations be-
tween the bytes of the two memories. This improves the scalability of patch analysis, as

201

202 CHAPTER 8. CONCLUSION

it enables successful analyses of some real-world patches of C programs using only non-
relational numerical abstractions. This domain additionally enables scalable portability
analyses. Indeed, it can be tailored to support pairs of programs running in environ-
ments with different representations of the computer memory, due to different ABIs.
Our implementation supports differences in the memory layout (offsets of scalar fields
in C structs) and in the order of bytes in the representation of scalars (endianness). It
allows successful analyses of large, real-world avionics software.

Numerical domains. Our third contribution is a pair of numerical domains with
near-linear cost to support patch and portability analysis. The Delta domain relies on
an underlying numerical abstraction and symbolic simplifications to bound differences
between the values of the variables in the two program versions. The bit-slice domain
infers relations between individual bytes of the variables in the two programs, such
as those established by bitwise arithmetic operations. It is able to recognize patterns
commonly used to make C programs endian-portable.

Implementation and experimentation. Our last contribution is a prototype static
analyzer on top of the Mopsa platform. Our prototype supports both patch and porta-
bility analysis. We experimented it on real-world open source and industrial software. It
is able to analyze successfully real patches from the repositories of the GNU core utilities
and the Linux kernel. It is also able to prove the endian portability of small slices of
open source software, such as Linux drivers. Moreover, it allows analyzing successfully
two modules of an avionics application designed to be endian portable. The first module
features about 300,000 lines of C, and is analyzed in 9.7 hours. The second module
features about a million lines of C, and is analyzed in 20.4 hours.

Future work
This thesis leaves multiple directions for future investigation.

Industrialization. A first objective is to industrialize our prototype implementation
on top of Mopsa, so that it may be used as part of industrial processes. Candidate
applications of our portability analysis include the support of avionics certification ac-
tivities related to simulation fidelity. Candidate applications of our patch analysis include
automating component change impact analyses in product-line architectures.

This objective involves improvements, such as addressing the portability across plat-
forms where the plain char type has different signednesses, improving the performance
of our algorithm for double program synthesis, supporting C bit-fields, most non-local
control flow operators, and C extensions specifying a fixed, platform-independent storage
order for some variables.

Portability analysis. Our portability analysis could be extended to additional prop-
erties, especially ABI-related properties.

203

For instance, an important property is portability between platforms where machine
integers have different sizes. The case occurs typically when porting C programs from a
32-bit architecture to a 64-bit architecture. In addition, different operating systems may
rely on different 64-bit data models. For instance, Linux uses the LP64 model, where
sizeof(long)=8, while Windows uses the LLP64 model, where sizeof(long)=4, which
may result in different behaviors. The definition of the portability property of interest
is not obvious, as increasing the range of integers may remove arithmetic wrap-arounds,
some of which may be intended.

Moreover, porting existing C software developed for x86 or PowerPC to a new pro-
cessor such as ARM has additional pitfalls, such as the sign of the plain char type for the
former, and endianness for the latter. In addition, unaligned data accesses well-tolerated
by x86 may trigger unexpected behaviors on some ARM processors, such as exceptions,
swapped memory bytes, or poor performance. Our analysis could be extended to avoid
such pitfalls.

In addition, our patch analysis and our structure layout portability analysis could be
tailored to ensure the portability of applications against changes in operating systems
data types. Practical problems include the representation of file offsets, as well as date
and time to prepare Unix-based systems for the Year 2038 problem (a.k.a. Epochalypse).

Finally, a different kind of portability property should be considered when software
is reused in an environment where input values have different ranges. For instance, the
failure of Ariane 5’s maiden flight was caused by the reuse of part of the software of the
Ariane 4 launcher in an environment where the ranges of some inputs from sensors were
significantly different.

Semantic differencing. Our work on patch analysis has focused on proving equiva-
lence so far, while other authors characterize the semantic differences between two non
equivalent versions of a program. Our method can be extended to address this problem.
In particular, our method could be used to infer a semantic distance between program
versions. Instead of proving that they compute the same values for all outputs, we could
bound the differences between program versions for selected outputs. The analysis could
additionally evaluate the cost of a patch, e.g. the worst-case increases of the sizes of
arrays, of the numbers of loop iterations, etc. Finally, another interesting extension
could be to define a relational “improvement” property between two program versions,
that the analysis could infer. For instance, improving a program could mean removing
only unwanted behaviors such as run-time errors.

Hyperproperties and information flow. When two program versions share exactly
the same code, our double program structure defines a form of self-composition [21, 144].
Our double program semantics is then able to express 2-safety properties [170], which
are hyperproperties [43, Sec. 4]. In practice, we conducted preliminary experiments on
small pieces of code from the papers of other authors [71, 170, 20, 18], demonstrating that
our analysis could prove automatically information flow properties such as secrecy and
noninterference. Yet, the theoretical connections between our semantics and information

204 CHAPTER 8. CONCLUSION

flow problems remain to be investigated, as well as practical experimentation on larger,
more complex programs and more varied 2-safety properties, that may raise the need
for new abstract domains.

Double trace semantics. Our concrete collecting semantics for double programs is
based on pairs of program states. This semantics could be redefined as an abstraction
of a semantics based on pairs of traces, the same way classic state semantics can be
seen as an abstraction of trace semantics [54]. Such a lower-level semantics could help
study the cases of equivalent program versions with traces of different lengths, and
partitioning strategies for double program analysis. It may also allow developing static
analyses inferring more refined program equivalence properties, e.g. taking termination
into account. It may finally enable analyses for (hyper-)liveness properties relating the
behaviors of two program versions.

Bibliography

[1] The Be Book, https://www.haiku-os.org/legacy-docs/bebook/index.html

[2] The Haiku Operating System, https://www.haiku-os.org/

[3] DO-178B: Software considerations in airborne systems and equipment certification
(1992)

[4] DO-178C: Software considerations in airborne systems and equipment certification
(2011)

[5] DO-331: Model-based development and verification supplement to DO-178C and
DO-278A (2011)

[6] DO-333 formal methods supplement to do-178c and do-278a. Tech. rep. (Dec 2011)

[7] National Highway Traffic Safety Administration – Toyota Unintended Acceleration
Investigation. Technical assessment report, NASA Engineering and Safety Center
(2011)

[8] Alexandrescu, Andrei: Three optimization tips for c++. A presentation at Face-
book NYC (2012), http://www.facebook.com/notes/facebook-engineering
/three-optimization-tips-for-c/10151361643253920

[9] Alglave, J., Cousot, P.: Ogre and pythia: An invariance proof method
for weak consistency models. In: Proceedings of the 44th ACM SIG-
PLAN Symposium on Principles of Programming Languages. p. 3–18. POPL
’17, Association for Computing Machinery, New York, NY, USA (2017).
https://doi.org/10.1145/3009837.3009883, https://doi.org/10.1145/300983
7.3009883

[10] Amato, G., Rubino, M., Scozzari, F.: Inferring linear invariants with parallelo-
topes. Sci. Comput. Program. 148, 161–188

[11] AT & T, The Santa Cruz Operation Inc.: System V application binary interface
(1997)

205

http://www.facebook.com/notes/facebook-engineering/three-optimization-tips-for-c/10151361643253920
http://www.facebook.com/notes/facebook-engineering/three-optimization-tips-for-c/10151361643253920
https://doi.org/10.1145/3009837.3009883
https://doi.org/10.1145/3009837.3009883

206 BIBLIOGRAPHY

[12] Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: Term rewriting systems with prior-
ities. In: Lescanne, P. (ed.) Rewriting Techniques and Applications. pp. 83–94.
Springer Berlin Heidelberg, Berlin, Heidelberg (1987)

[13] Baeten, J., Bergstra, J., Klop, J., Weijland, W.: Term-rewriting systems
with rule priorities. Theoretical Computer Science 67(2), 283–301 (1989).
https://doi.org/https://doi.org/10.1016/0304-3975(89)90006-6, https://www.sc
iencedirect.com/science/article/pii/0304397589900066

[14] Bagnara, R., Hill, P.M., Zaffanella, E.: The parma polyhedra library: Toward a
complete set of numerical abstractions for the analysis and verification of hard-
ware and software systems. Sci. Comput. Program. 72(1–2), 3–21 (jun 2008).
https://doi.org/10.1016/j.scico.2007.08.001, https://doi.org/10.1016/j.sc
ico.2007.08.001

[15] Bagnara, R., Rodríguez-Carbonell, E., Zaffanella, E.: Generation of basic semi-
algebraic invariants using convex polyhedra. In: Hankin, C., Siveroni, I. (eds.)
Static Analysis. pp. 19–34. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

[16] Banerjee, A., Naumann, D.A., Nikouei, M.: Relational Logic with Framing and
Hypotheses. In: Lal, A., Akshay, S., Saurabh, S., Sen, S. (eds.) 36th IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence (FSTTCS 2016). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 65, pp. 11:1–11:16. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany (2016). https://doi.org/10.4230/LIPIcs.FSTTCS.2016.11, ht
tp://drops.dagstuhl.de/opus/volltexte/2016/6846

[17] Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.P. (eds.) Formal Methods for Components
and Objects. pp. 364–387. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

[18] Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product pro-
grams. In: Butler, M., Schulte, W. (eds.) FM 2011: Formal Methods. pp. 200–214.
Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

[19] Barthe, G., Crespo, J.M., Kunz, C.: Beyond 2-safety: Asymmetric product pro-
grams for relational program verification. In: Artemov, S., Nerode, A. (eds.)
Logical Foundations of Computer Science. pp. 29–43. Springer Berlin Heidelberg,
Berlin, Heidelberg (2013)

[20] Barthe, G., Crespo, J.M., Kunz, C.: Product programs and relational program
logics. Journal of Logical and Algebraic Methods in Programming 85(5, Part 2),
847–859 (2016). https://doi.org/https://doi.org/10.1016/j.jlamp.2016.05.004, ht
tps://www.sciencedirect.com/science/article/pii/S235222081630044X,
articles dedicated to Prof. J. N. Oliveira on the occasion of his 60th birthday

https://www.sciencedirect.com/science/article/pii/0304397589900066
https://www.sciencedirect.com/science/article/pii/0304397589900066
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1016/j.scico.2007.08.001
http://drops.dagstuhl.de/opus/volltexte/2016/6846
http://drops.dagstuhl.de/opus/volltexte/2016/6846
https://www.sciencedirect.com/science/article/pii/S235222081630044X
https://www.sciencedirect.com/science/article/pii/S235222081630044X

BIBLIOGRAPHY 207

[21] Barthe, G., D’argenio, P.R., Rezk, T.: Secure information flow by self-composition.
Mathematical. Structures in Comp. Sci. 21(6), 1207–1252 (Dec 2011)

[22] Bedin França, R., Favre-Felix, D., Leroy, X., Pantel, M., Souyris, J.: Towards
formally verified optimizing compilation in flight control software. In: PPES 2011.
OASIcs, vol. 18, pp. 59–68 (2011)

[23] Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.: Revising hull and box
consistency. In: ICLP (1999)

[24] Berry, G.: Scade: Synchronous design and validation of embedded control soft-
ware. In: Ramesh, S., Sampath, P. (eds.) Next Generation Design and Verification
Methodologies for Distributed Embedded Control Systems. pp. 19–33. Springer
Netherlands, Dordrecht (2007)

[25] Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.:
Static analysis and verification of aerospace software by abstract interpretation.
In: AIAA Infotech@Aerospace. pp. 1–38. No. 2010-3385, AIAA (Apr 2010)

[26] Besson, F., Blazy, S., Wilke, P.: A precise and abstract memory model for c using
symbolic values. In: Garrigue, J. (ed.) Programming Languages and Systems. pp.
449–468. Springer International Publishing, Cham (2014)

[27] Blazy, S., Leroy, X.: Mechanized semantics for the Clight subset of the C language.
Journal of Automated Reasoning 43(3), 263–288 (2009), http://xavierleroy.
org/publi/Clight.pdf

[28] Brahmi, A., Delmas, D., Essoussi, M.H., Randimbivololona, F., Atki, A., Marie,
T.: Formalise to automate: deployment of a safe and cost-efficient process for
avionics software. In: 9th European Congress on Embedded Real Time Software
and Systems (ERTS 2018). Toulouse, France (Jan 2018), https://hal.archives
-ouvertes.fr/hal-01708332

[29] Brahmi, A., Delmas, D., Essoussi, M.H., Randimbivololona, F., Atki, A., Marie,
T.: Formalise to automate: deployment of a safe and cost-efficient process for
avionics software. In: 9th European Congress on Embedded Real Time Software
and Systems (ERTS 2018). Toulouse, France (Jan 2018), https://hal.archives
-ouvertes.fr/hal-01708332

[30] Brahmi, A., Essoussi, M.H., Lacabanne, P., Moya Lamiel, V., Souyris, J., Carolus,
M.J., Delmas, D., Randimbivololona, F.: Industrial use of a safe and efficient
formal method based software engineering process in avionics. In: 10th European
Congress on Embedded Real Time Software and Systems (ERTS 2020). Toulouse,
France (Jan 2020)

[31] Brat, G., Navas, J.A., Shi, N., Venet, A.: Ikos: A framework for static analy-
sis based on abstract interpretation. In: Giannakopoulou, D., Salaün, G. (eds.)

http://xavierleroy.org/publi/Clight.pdf
http://xavierleroy.org/publi/Clight.pdf
https://hal.archives-ouvertes.fr/hal-01708332
https://hal.archives-ouvertes.fr/hal-01708332
https://hal.archives-ouvertes.fr/hal-01708332
https://hal.archives-ouvertes.fr/hal-01708332

208 BIBLIOGRAPHY

Software Engineering and Formal Methods. pp. 271–277. Springer International
Publishing, Cham (2014)

[32] Brevnov, E., Domeika, M., Loenko, M., Ozhdikhin, P., Tang, X., Willkinson, H.:
Bec: Bi-endian compiler technology for porting byte order sensitive applications
16 (2012)

[33] Briere, D., Traverse, P.: Airbus a320/a330/a340 electrical flight controls
- a family of fault-tolerant systems. In: FTCS-23 The Twenty-Third In-
ternational Symposium on Fault-Tolerant Computing. pp. 616–623 (1993).
https://doi.org/10.1109/FTCS.1993.627364

[34] Brown, N.: Sparse: a look under the hood (2016), https://lwn.net/Articles/6
89907/

[35] Buxton, J.N., Randell, B. (eds.): Software Engineering Techniques. Report on a
conference sponsored by the NATO Science Committee. NATO, Science Commit-
tee, Brussels 39, Belgium (April 1970), rome, Italy, 27th to 31th October 1969;
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF –
geprüft: 28. März 2004

[36] Chernikova, N.V.: Algorithm for discovering the set of all the solutions of a lin-
ear programming problem. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi
Fiziki 8(6), 1387—-1395, (In Russian), English version: USSR Computational
Mathematics and Mathematical Physics, 1968, 8:6, 282–293

[37] Chevalier, M.: Proving the Security of Software-Intensive Embedded Systems by
Abstract Interpretation. Ph.D. thesis, Université PSL (Nov 2020)

[38] Chevalier, M., Feret, J.: Sharing ghost variables in a collection of abstract domains.
In: Beyer, D., Zufferey, D. (eds.) Verification, Model Checking, and Abstract Inter-
pretation. pp. 158–179. Lecture Notes in Computer Science, Springer International
Publishing (2020)

[39] Church, A.: A formulation of the simple theory of types. Journal of Symbolic Logic
5(2), 56–68 (1940). https://doi.org/10.2307/2266170

[40] Churchill, B., Padon, O., Sharma, R., Aiken, A.: Semantic program alignment
for equivalence checking. In: Proceedings of the 40th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. p. 1027–1040.
PLDI 2019, Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3314221.3314596, https://doi.org/10.1145/3314221.
3314596

[41] Clarisó, R., Cortadella, J.: The octahedron abstract domain. Sci. Comput. Pro-
gram. 64(1), 115–139

https://lwn.net/Articles/689907/
https://lwn.net/Articles/689907/
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF
https://doi.org/10.1145/3314221.3314596
https://doi.org/10.1145/3314221.3314596

BIBLIOGRAPHY 209

[42] Clarke, E.M., Grumberg, O., Kroening, D., Peled, D.A., Veith, H.: Model check-
ing, 2nd Edition. MIT Press (2018), https://mitpress.mit.edu/books/model
-checking-second-edition

[43] Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6),
1157–1210 (sep 2010)

[44] Cohen, D.: On holy wars and a plea for peace. Computer 14(10), 48–54 (1981).
https://doi.org/10.1109/C-M.1981.220208

[45] Comar, C., Kanig, J., Moy, Y.: ntegrating Formal Program Verification with
Testing. In: Embedded Real Time Software and Systems (ERTS2012). Toulouse,
France (Feb 2012), https://hal.archives-ouvertes.fr/hal-02263435

[46] Condit, J., Hackett, B., Lahiri, S.K., Qadeer, S.: Unifying type checking and
property checking for low-level code. SIGPLAN Not. 44(1), 302–314 (jan 2009).
https://doi.org/10.1145/1594834.1480921, https://doi.org/10.1145/1594834.
1480921

[47] Cousot, P.: Principles of Abstract Interpretation. MIT Press (2021), https://mi
tpress.mit.edu/books/principles-abstract-interpretation

[48] Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: Proc. of the 2d Int. Symp. on Programming. pp. 106–130. Dunod, Paris, France
(1976)

[49] Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL’77.
pp. 238–252. ACM (Jan 1977)

[50] Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Conf. Rec. of the 6th Annual ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages (POPL’79). pp. 269–282. ACM Press, New York, NY
(1979)

[51] Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Ri-
val, X.: Combination of abstractions in the Astrée static analyzer. In: Proc. of
ASIAN’06. LNCS, vol. 4435, pp. 272–300. Springer (Dec 2006)

[52] Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among vari-
ables of a program. In: POPL’78. pp. 84–97. ACM (1978)

[53] Cousot, P.: Types as abstract interpretations. In: Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. p.
316–331. POPL ’97, Association for Computing Machinery, New York, NY, USA
(1997). https://doi.org/10.1145/263699.263744, https://doi.org/10.1145/26
3699.263744

https://mitpress.mit.edu/books/model-checking-second-edition
https://mitpress.mit.edu/books/model-checking-second-edition
https://hal.archives-ouvertes.fr/hal-02263435
https://doi.org/10.1145/1594834.1480921
https://doi.org/10.1145/1594834.1480921
https://mitpress.mit.edu/books/principles-abstract-interpretation
https://mitpress.mit.edu/books/principles-abstract-interpretation
https://doi.org/10.1145/263699.263744
https://doi.org/10.1145/263699.263744

210 BIBLIOGRAPHY

[54] Cousot, P.: Constructive design of a hierarchy of semantics of a transition sys-
tem by abstract interpretation. Theor. Comput. Sci. 277(1–2), 47–103 (apr 2002).
https://doi.org/10.1016/S0304-3975(00)00313-3, https://doi.org/10.1016/S0
304-3975(00)00313-3

[55] Cousot, P., Cousot, R.: Comparing the galois connection and widening/narrowing
approaches to abstract interpretation. In: Bruynooghe, M., Wirsing, M. (eds.)
Programming Language Implementation and Logic Programming. pp. 269–295.
Springer Berlin Heidelberg, Berlin, Heidelberg (1992)

[56] Cousot, P., Cousot, R.: Temporal abstract interpretation. In: Proceedings of the
27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. p. 12–25. POPL ’00, Association for Computing Machinery, New York,
NY, USA (2000). https://doi.org/10.1145/325694.325699, https://doi.org/10
.1145/325694.325699

[57] Cousot, P., Cousot, R.: Systematic design of program transformation frame-
works by abstract interpretation. SIGPLAN Not. 37(1), 178–190 (jan 2002).
https://doi.org/10.1145/565816.503290, https://doi.org/10.1145/565816.5
03290

[58] Cuoq, P., Delmas, D., Duprat, S., Lamiel, V.M.: Fan-C, a Frama-C plug-in for
data flow verification. In: ERTS’12. SIA (2012)

[59] Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-c - A software analysis perspective. In: SEFM. Lecture Notes in Computer
Science, vol. 7504, pp. 233–247. Springer

[60] Dahiya, M., Bansal, S.: Black-box equivalence checking across compiler optimiza-
tions. In: Chang, B.Y.E. (ed.) Programming Languages and Systems. pp. 127–147.
Springer International Publishing, Cham (2017)

[61] Darvas, A., Hähnle, R., Sands, D.: A theorem proving approach to analysis of
secure information flow. In: Proceedings of the Second International Conference
on Security in Pervasive Computing. p. 193–209. SPC’05, Springer-Verlag, Berlin,
Heidelberg (2005), https://doi.org/10.1007/978-3-540-32004-3_20

[62] Delmas, D., Souyris, J.: Astrée: from research to industry. In: SAS’07, LNCS,
vol. 4634, pp. 437–451. Springer (Aug 2007)

[63] Delmas, D., Duprat, S., Lamiel, V.M., Signoles, J.: Taster, a frama-c plug-in to
enforce coding standards. In: ERTSS 2010: Proceedings of Embedded Real Time
Software and Systems. SIA (2010)

[64] Delmas, D., Duprat, S., Monate, B., Baudin, P.: Proving temporal properties
at code level for basic operators of control/command programs. In: ERTS 2006:
Proceedings of Embedded Real Time Software. SIA (2008)

https://doi.org/10.1016/S0304-3975(00)00313-3
https://doi.org/10.1016/S0304-3975(00)00313-3
https://doi.org/10.1145/325694.325699
https://doi.org/10.1145/325694.325699
https://doi.org/10.1145/565816.503290
https://doi.org/10.1145/565816.503290
https://doi.org/10.1007/978-3-540-32004-3_20

BIBLIOGRAPHY 211

[65] Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine, F.: Towards
an industrial use of fluctuat on safety-critical avionics software. In: Alpuente, M.,
Cook, B., Joubert, C. (eds.) FMICS. Lecture Notes in Computer Science, vol. 5825,
pp. 53–69. Springer (2009)

[66] Delmas, D., Miné, A.: Analysis of Program Differences with Numerical Abstract
Interpretation. In: PERR 2019. Prague, Czech Republic (Apr 2019)

[67] Delmas, D., Miné, A.: Analysis of Software Patches Using Numerical Abstract
Interpretation. In: Chang, B.Y.E. (ed.) Proc. of the 26th International Static
Analysis Symposium (SAS’19). Lecture Notes in Computer Science, vol. 11822,
pp. 225–246. Bor-Yuh Evan Chang, Springer, Porto, Portugal (Oct 2019)

[68] Delmas, D., Ouadjaout, A., Miné, A.: Static Analysis of Endian Portability by
Abstract Interpretation. In: 28th Static Analysis Symposium (SAS 2021). Lecture
Notes in Computer Science, vol. 12913, pp. 102–123. Springer International Pub-
lishing, Chicago, Illinois, United States (Oct 2021). https://doi.org/10.1007/978-
3-030-88806-0_5, https://hal.sorbonne-universite.fr/hal-03450165

[69] Delmas, D., Ouadjaout, A., Miné, A.: Artifact for Static Analysis of Endian Porta-
bility by Abstract Interpretation (2021). https://doi.org/10.5281/zenodo.5206794

[70] Distefano, D., Fähndrich, M., Logozzo, F., O’Hearn, P.W.: Scaling static analyses
at facebook. Commun. ACM (2019)

[71] Dufay, G., Felty, A., Matwin, S.: Privacy-sensitive information flow with jml. In:
Nieuwenhuis, R. (ed.) Automated Deduction – CADE-20. pp. 116–130. Springer
Berlin Heidelberg, Berlin, Heidelberg (2005)

[72] Duprat, S., Favre-Félix, D., Souyris, J.: Formal verification workbench for airbus
avionics software. In: ERTS’08. SIA (2008)

[73] Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating
regression verification. In: 29th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2014). pp. 349–360. ASE ’14, ACM (Sep 2014).
https://doi.org/10.1145/2642937.2642987

[74] Feret, J.: Static analysis of digital filters. In: ESOP’04. LNCS, vol. 2986, pp.
33–48. Springer (2004)

[75] Feret, J.: The arithmetic-geometric progression abstract domain. In: Proc. of
the 6th Int. Conf. on Verification, Model Checking, and Abstract Interpretation
(VMCAI’05). LNCS, vol. 3385, pp. 42–58. Springer (Jan 2005)

[76] Floyd, R.W.: Assigning meanings to programs. In: Proc. of the American Mathe-
matical Society Symposia on Applied Mathematics. vol. 19, pp. 19–32. Providence,
USA (1967)

https://hal.sorbonne-universite.fr/hal-03450165

212 BIBLIOGRAPHY

[77] Floyd, R.W.: Assigning meanings to programs. Proceedings of Symposium on
Applied Mathematics 19, 19–32 (1967)

[78] Fromherz, A., Ouadjaout, A., Miné, A.: Static Value Analysis of Python
Programs by Abstract Interpretation. In: NFM 2018 - 10th International
Symposium NASA Formal Methods. Lecture Notes in Computer Science, vol.
10811, pp. 185–202. Springer, Newport News, VA, United States (Apr 2018).
https://doi.org/10.1007/978-3-319-77935-5_14, https://hal.sorbonne-unive
rsite.fr/hal-01782390

[79] Girka, T., Mentré, D., Régis-Gianas, Y.: A mechanically checked generation of
correlating programs directed by structured syntactic differences. In: Finkbeiner,
B., Pu, G., Zhang, L. (eds.) Automated Technology for Verification and Anal-
ysis - 13th International Symposium, ATVA 2015, Shanghai, China, October
12-15, 2015, Proceedings. Lecture Notes in Computer Science, vol. 9364, pp.
64–79. Springer (2015). https://doi.org/10.1007/978-3-319-24953-7_6, https:
//doi.org/10.1007/978-3-319-24953-7_6

[80] Godlin, B., Strichman, O.: Regression verification. In: Proceedings of DAC ’09.
pp. 466–471. ACM, New York, NY, USA (2009)

[81] Goubault, E., Putot, S.: Static analysis of finite precision computations. In: VM-
CAI. pp. 232–247 (2011)

[82] Goubault, E., Putot, S.: Robustness analysis of finite precision implementations.
In: Programming Languages and Systems. pp. 50–57 (2013)

[83] Granger, P.: Static analysis of arithmetic congruences. Int. Journal of Computer
Mathematics 30, 165–199 (1989)

[84] Gross, J., Ganga, I., Sridhar, T.: Geneve: Generic network virtualization encap-
sulation. RFC 8926, RFC Editor (November 2020)

[85] Gupta, S., Rose, A., Bansal, S.: Counterexample-guided correlation algorithm
for translation validation. Proc. ACM Program. Lang. 4(OOPSLA) (nov 2020).
https://doi.org/10.1145/3428289, https://doi.org/10.1145/3428289

[86] Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (Oct 1969)

[87] Howe, J.M., King, A.: Logahedra: A new weakly relational domain. In: ATVA.
Lecture Notes in Computer Science, vol. 5799, pp. 306–320. Springer

[88] Hunt, J.W., Mcilroy, M.D.: An algorithm for differential file comparison. Com-
puter Science (1975), http://www.cs.dartmouth.edu/%7Edoug/diff.pdf

https://hal.sorbonne-universite.fr/hal-01782390
https://hal.sorbonne-universite.fr/hal-01782390
https://doi.org/10.1007/978-3-319-24953-7_6
https://doi.org/10.1007/978-3-319-24953-7_6
https://doi.org/10.1145/3428289
http://www.cs.dartmouth.edu/%7Edoug/diff.pdf

BIBLIOGRAPHY 213

[89] Nuclear power plants – Instrumentation and control systems important to safety
– Software aspects for computer-based systems performing category A functions.
Standard, International Electrotechnical Commission (2006)

[90] Medical device software – Software life cycle processes. Standard, International
Electrotechnical Commission (2006)

[91] Software and systems engineering – Reference model for product line engineering
and management. Standard, International Organization for Standardization (2015)

[92] ISO/IEC JTC1/SC22/WG14 working group: C standard. Tech. Rep. 1124, ISO
& IEC (2007)

[93] Jackson, D., Ladd, D.A.: Semantic diff: A tool for summarizing the effects of
modifications. In: Proceedings of ICSM ’94. pp. 243–252 (1994)

[94] Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static
analysis. In: Proc. of CAV’09. vol. 5643, pp. 661–667 (June 2009)

[95] Jeannet, B.: Bddapron: A logico-numerical abstract domain library (2009), http:
//pop-art.inrialpes.fr/~bjeannet/bjeannet-forge/bddapron/

[96] Jourdan, J.: Verasco: a Formally Verified C Static Analyzer. (Verasco: un analy-
seur statique pour C formellement vérifié). Ph.D. thesis, Paris Diderot University,
France

[97] Jourdan, J., Laporte, V., Blazy, S., Leroy, X., Pichardie, D.: A formally-verified
C static analyzer. In: POPL. pp. 247–259. ACM

[98] Journault, M., Miné, A., Monat, R., Ouadjaout, A.: Combinations of reusable
abstract domains for a multilingual static analyzer. In: Proc. of the 11th Working
Conference on Verified Software: Theories, Tools, and Experiments (VSTTE19).
Lecture Notes in Computer Science (LNCS), vol. 12031, pp. 1–18. Springer (Jul
2019)

[99] Journault, M., Miné, A., Ouadjaout, A.: Modular static analysis of string ma-
nipulations in C programs. In: Proc. of the 25th International Static Analysis
Symposium (SAS’18). Lecture Notes in Computer Science (LNCS), vol. 11002, pp.
243–262. Springer (Sep 2018). https://doi.org/10.1007/978-3-319-99725-4_16

[100] Journault, M.: Precise and modular static analysis by abstract interpretation for
the automatic proof of program soundness and contracts inference. Theses, Sor-
bonne Université (Nov 2019), https://tel.archives-ouvertes.fr/tel-02947
214

[101] Journault, M., Miné, A., Ouadjaout, A.: Modular static analysis of string manip-
ulations in C programs. In: SAS (2018)

http://pop-art.inrialpes.fr/~bjeannet/bjeannet-forge/bddapron/
http://pop-art.inrialpes.fr/~bjeannet/bjeannet-forge/bddapron/
https://tel.archives-ouvertes.fr/tel-02947214
https://tel.archives-ouvertes.fr/tel-02947214

214 BIBLIOGRAPHY

[102] Kápl, R., Parízek, P.: Endicheck: Dynamic analysis for detecting endianness bugs.
In: Biere, A., Parker, D. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems. pp. 254–270. Springer International Publishing, Cham (2020)

[103] Karr, M.: Affine relationships among variables of a program. Acta Inf. 6, 133–151
(1976)

[104] Kästner, D., Barrho, J., Wünsche, U., Schlickling, M., Schommer, B., Schmidt, M.,
Ferdinand, C., Leroy, X., Blazy, S.: CompCert: Practical Experience on Integrat-
ing and Qualifying a Formally Verified Optimizing Compiler. In: ERTS2 2018 -
9th European Congress Embedded Real-Time Software and Systems. pp. 1–9. 3AF,
SEE, SIE, Toulouse, France (Jan 2018), https://hal.inria.fr/hal-01643290

[105] Kästner, D., Ferdinand, C.: Proving the absence of stack overflows. In: Bondavalli,
A., Giandomenico, F.D. (eds.) Computer Safety, Reliability, and Security - 33rd
International Conference, SAFECOMP 2014, Florence, Italy, September 10-12,
2014. Proceedings. Lecture Notes in Computer Science, vol. 8666, pp. 202–213.
Springer (2014). https://doi.org/10.1007/978-3-319-10506-2_14, https://doi.or
g/10.1007/978-3-319-10506-2_14

[106] Kästner, D., Mauborgne, L., Wilhelm, S., Mallon, C., Ferdinand, C.: Static Data
and Control Coupling Analysis. In: 11th Embedded Real Time Systems European
Congress (ERTS2022). Toulouse, France (Jun 2022), https://hal.archives-o
uvertes.fr/hal-03694546

[107] Kästner, D., Miné, A., Schmidt, A., Hille, H., Mauborgne, L., Wilhelm, S., Rival,
X., Feret, J., Cousot, P., Ferdinand, C.: Finding All Potential Run-Time Errors
and Data Races in Automotive Software. In: WCX™ 2017 - SAE World Congress
Experience. pp. 1–9. SAE International, Detroit , United States (Apr 2017).
https://doi.org/10.4271/2017-01-0054, https://hal.inria.fr/hal-01674831

[108] Kiefer, M., Klebanov, V., Ulbrich, M.: Relational program reason-
ing using compiler ir. J. Autom. Reason. 60(3), 337–363 (mar 2018).
https://doi.org/10.1007/s10817-017-9433-5, https://doi.org/10.1007/s108
17-017-9433-5

[109] King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7),
385–394 (jul 1976). https://doi.org/10.1145/360248.360252, https://doi.org/
10.1145/360248.360252

[110] Klebanov, V., Rümmer, P., Ulbrich, M.: Automating regression verification of
pointer programs by predicate abstraction. Formal Methods in System Design
52(3), 229–259 (Jun 2018). https://doi.org/10.1007/s10703-017-0293-8

[111] Kovács, M., Seidl, H., Finkbeiner, B.: Relational abstract interpretation for
the verification of 2-hypersafety properties. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security. pp. 211–222. CCS

https://hal.inria.fr/hal-01643290
https://doi.org/10.1007/978-3-319-10506-2_14
https://doi.org/10.1007/978-3-319-10506-2_14
https://hal.archives-ouvertes.fr/hal-03694546
https://hal.archives-ouvertes.fr/hal-03694546
https://hal.inria.fr/hal-01674831
https://doi.org/10.1007/s10817-017-9433-5
https://doi.org/10.1007/s10817-017-9433-5
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252

BIBLIOGRAPHY 215

’13, ACM, New York, NY, USA (2013). https://doi.org/10.1145/2508859.2516721,
http://doi.acm.org/10.1145/2508859.2516721

[112] Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: Symdiff: A language-
agnostic semantic diff tool for imperative programs. In: CAV. pp. 712–717 (2012)

[113] Lahiri, S.K., McMillan, K.L., Sharma, R., Hawblitzel, C.: Differential assertion
checking. In: Proceedings of ESEC/FSE 2013. pp. 345–355 (2013)

[114] Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: Proc. of CGO’04 (Mar 2004)

[115] Ponce-de León, H., Furbach, F., Heljanko, K., Meyer, R.: Portability analysis for
weak memory models porthos: One tool for all models. In: Ranzato, F. (ed.) Static
Analysis. pp. 299–320. Springer International Publishing, Cham (2017)

[116] Leroy, X.: Formal verification of a realistic compiler. Communications of the ACM
52(7), 107–115 (2009), http://xavierleroy.org/publi/compcert-CACM.pdf

[117] LeVerge, H.: A note on Chernikova’s algorithm. Tech. Rep. 635, IRISA (1992)

[118] Li, M., Grigg, A., Dickerson, C., Guan, L., Ji, S.: A product line systems engi-
neering process for variability identification and reduction. IEEE Systems Journal
13(4), 3663–3674 (2019). https://doi.org/10.1109/JSYST.2019.2897628

[119] Logozzo, F., Fahndrich, M.: On the relative completeness of bytecode analysis
versus source code analysis. In: Proceedings of the International Conference on
Compiler Construction. Springer Verlag (January 2008), https://www.microsof
t.com/en-us/research/publication/on-the-relative-completeness-of-b
ytecode-analysis-versus-source-code-analysis/

[120] Logozzo, F., Fähndrich, M.: Pentagons: A weakly relational abstract domain for
the efficient validation of array accesses. Sci. Comput. Program. 75(9), 796–807

[121] Mahameed, S.: Mellanox, mlx5 rdma net device support (2017), https://lwn.ne
t/Articles/720074/

[122] Maleki, S., Gao, Y., Garzar´n, M.J., Wong, T., Padua, D.A.: An
evaluation of vectorizing compilers. In: 2011 International Conference on
Parallel Architectures and Compilation Techniques. pp. 372–382 (2011).
https://doi.org/10.1109/PACT.2011.68

[123] Marinescu, P.D., Cadar, C.: Katch: High-coverage testing of software patches. In:
Proceedings of ESEC/FSE 2013. pp. 235–245 (2013)

[124] Martel, M.: Propagation of roundoff errors in finite precision computations: A
semantics approach. In: Programming Languages and Systems. pp. 194–208 (2002)

http://doi.acm.org/10.1145/2508859.2516721
http://xavierleroy.org/publi/compcert-CACM.pdf
https://www.microsoft.com/en-us/research/publication/on-the-relative-completeness-of-bytecode-analysis-versus-source-code-analysis/
https://www.microsoft.com/en-us/research/publication/on-the-relative-completeness-of-bytecode-analysis-versus-source-code-analysis/
https://www.microsoft.com/en-us/research/publication/on-the-relative-completeness-of-bytecode-analysis-versus-source-code-analysis/
https://lwn.net/Articles/720074/
https://lwn.net/Articles/720074/

216 BIBLIOGRAPHY

[125] McMullen, P.: On zonotopes. Trans. Amer. Math. Soc. 159, 91—-110

[126] Mellanox Technologies: mlx5 core library (2020), https://github.com/torvald
s/linux/tree/master/drivers/net/ethernet/mellanox/mlx5/core

[127] Miné, A.: Weakly relational numerical abstract domains. Ph.D. thesis, École Poly-
technique (Dec 2004)

[128] Miné, A.: Field-sensitive value analysis of embedded C programs with union types
and pointer arithmetics. In: Proc. of the ACM SIGPLAN/SIGBED Conf. on Lan-
guages, Compilers, and Tools for Embedded Systems (LCTES’06). pp. 54–63. ACM
(June 2006)

[129] Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation
19(1), 31–100 (2006)

[130] Miné, A.: Symbolic methods to enhance the precision of numerical abstract do-
mains. In: Proc. of the 7th Int. Conf. on Verification, Model Checking, and Ab-
stract Interpretation (VMCAI’06). LNCS, vol. 3855, pp. 348–363. Springer (Jan
2006)

[131] Miné, A.: Abstract domains for bit-level machine integer and floating-point oper-
ations. In: Proc. of the 4th Int. Workshop on Invariant Generation (WING’12).
p. 16. No. HW-MACS-TR-0097, Computer Science, School of Mathematical and
Computer Science, Heriot-Watt University, UK (Jun 2012)

[132] Miné, A.: Static analysis by abstract interpretation of concurrent programs. Tech.
rep., École normale supérieure (May 2013)

[133] Miné, A.: Tutorial on static inference of numeric invariants by abstract inter-
pretation. Foundations and Trends in Programming Languages (FnTPL) 4(3–4),
120–372 (2017). https://doi.org/10.1561/2500000034, http://www-apr.lip6.fr
/~mine/publi/article-mine-FTiPL17.pdf

[134] Miné, A., Delmas, D.: Towards an industrial use of sound static analysis for
the verification of concurrent embedded avionics software. In: Proc. of the 15th
International Conference on Embedded Software (EMSOFT’15). pp. 65–74. IEEE
CS Press (Oct 2015)

[135] Miné, A., Ouadjaout, A., Journault, M.: Design of a Modular Platform for Static
Analysis. In: The Ninth Workshop on Tools for Automatic Program Analysis
(TAPAS’18). Fribourg-en-Brisgau, Germany (Aug 2018), https://hal.sorbonne
-universite.fr/hal-01870001

[136] Miné, A.: A new numerical abstract domain based on difference-bound matrices.
In: PADO. Lecture Notes in Computer Science, vol. 2053, pp. 155–172. Springer

https://github.com/torvalds/linux/tree/master/drivers/net/ethernet/mellanox/mlx5/core
https://github.com/torvalds/linux/tree/master/drivers/net/ethernet/mellanox/mlx5/core
http://www-apr.lip6.fr/~mine/publi/article-mine-FTiPL17.pdf
http://www-apr.lip6.fr/~mine/publi/article-mine-FTiPL17.pdf
https://hal.sorbonne-universite.fr/hal-01870001
https://hal.sorbonne-universite.fr/hal-01870001

BIBLIOGRAPHY 217

[137] Mohan, C.K.: Term rewriting with conditionals and priority orderings. Technical
Reports 56, Electrical Engineering and Computer Science (1989), https://surf
ace.syr.edu/eecs_techreports/56

[138] Monat, R., Ouadjaout, A., Miné, A.: Static type analysis by abstract inter-
pretation of Python programs. In: Proc. of the 34th European Conference on
Object-Oriented Programming (ECOOP’20). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 166, pp. 17:1–17:29. Dagstuhl Publishing (Jul 2020).
https://doi.org/10.4230/LIPIcs.ECOOP.2020.17, http://www-apr.lip6.fr/~m
ine/publi/article-monat-al-ecoop20.pdf

[139] Monat, R.: Static type and value analysis by abstract interpretation of Python
programs with native C libraries. Theses, Sorbonne Université (Nov 2021), https:
//tel.archives-ouvertes.fr/tel-03533030

[140] Monat, R., Ouadjaout, A., Miné, A.: Value and Allocation Sensitivity in Static
Python Analyses. In: 9th ACM SIGPLAN International Workshop on the State
Of the Art in Program Analysis. pp. 8–13. ACM, London, United Kingdom (Jun
2020). https://doi.org/10.1145/3394451.3397205, https://hal.sorbonne-unive
rsite.fr/hal-02876667

[141] Monat, R., Ouadjaout, A., Miné, A.: A multilanguage static analysis of python
programs with native c extensions. In: Drăgoi, C., Mukherjee, S., Namjoshi,
K. (eds.) Static Analysis. pp. 323–345. Springer International Publishing, Cham
(2021)

[142] Mora, F., Li, Y., Rubin, J., Chechik, M.: Client-specific equivalence checking. In:
Proceedings of ASE 2018. pp. 441–451 (2018)

[143] Moy, Y., Ledinot, E., Delseny, H., Wiels, V., Monate, B.: Testing or formal ver-
ification: Do-178c alternatives and industrial experience. IEEE software 30(3),
50–57 (2013). https://doi.org/10/gf59z8

[144] Müller, C., Kovács, M., Seidl, H.: An analysis of universal information flow based
on self-composition. In: CSF 2015. pp. 380–393 (July 2015)

[145] Namjoshi, K.S., Pavlinovic, Z.: The impact of program transformations on static
program analysis. In: Static Analysis. pp. 306–325. Springer, Cham (2018)

[146] Naumann, D.A.: From coupling relations to mated invariants for checking infor-
mation flow. In: Proceedings of the 11th European Conference on Research in
Computer Security. p. 279–296. ESORICS’06, Springer-Verlag, Berlin, Heidelberg
(2006), https://doi.org/10.1007/11863908_18

[147] Nita, M., Grossman, D.: Automatic transformation of bit-level C code to sup-
port multiple equivalent data layouts. In: Hendren, L.J. (ed.) Compiler Construc-
tion, 17th International Conference, CC 2008, Held as Part of the Joint European

https://surface.syr.edu/eecs_techreports/56
https://surface.syr.edu/eecs_techreports/56
http://www-apr.lip6.fr/~mine/publi/article-monat-al-ecoop20.pdf
http://www-apr.lip6.fr/~mine/publi/article-monat-al-ecoop20.pdf
https://tel.archives-ouvertes.fr/tel-03533030
https://tel.archives-ouvertes.fr/tel-03533030
https://hal.sorbonne-universite.fr/hal-02876667
https://hal.sorbonne-universite.fr/hal-02876667
https://doi.org/10.1007/11863908_18

218 BIBLIOGRAPHY

Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hun-
gary, March 29 - April 6, 2008. Proceedings. Lecture Notes in Computer Science,
vol. 4959, pp. 85–99. Springer (2008)

[148] Ouadjaout, A., Miné, A.: A library modeling language for the static analysis
of C programs. In: Proc. of the 27th International Static Analysis Symposium
(SAS’20). Lecture Notes in Computer Science (LNCS), vol. 12389, pp. 223–246.
Springer (Nov 2020). https://doi.org/10.1007/978-3-030-65474-0_11

[149] Ouadjaout, A., Miné, A.: A library modeling language for the static analysis of C
programs. In: SAS (2020)

[150] Oucheikh, R., Berrada, I., Hichami, O.E.: The 4-octahedron abstract domain. In:
NETYS. Lecture Notes in Computer Science, vol. 9944, pp. 311–317. Springer

[151] Oucheikh, R., Berrada, I., Hichami, O.E.: A hypergraph based approach for the
4-constraint satisfaction problem tractability. In: arXiv:1905.09083. p. 23

[152] Oulamara, M., Venet, A.J.: Abstract interpretation with higher-dimensional ellip-
soids and conic extrapolation. In: CAV (1). Lecture Notes in Computer Science,
vol. 9206, pp. 415–430. Springer

[153] Paige, R.: Future directions in program transformations. ACM Comput. Surv.
28(4es), 170–es (dec 1996). https://doi.org/10.1145/242224.242444, https://do
i.org/10.1145/242224.242444

[154] Partush, N., Yahav, E.: Abstract semantic differencing for numerical programs.
In: SAS. pp. 238–258 (2013)

[155] Partush, N., Yahav, E.: Abstract semantic differencing via speculative correlation.
In: Proceedings of OOPSLA’14. pp. 811–828 (2014)

[156] Pei, Y., Biswas, S., Fussell, D.S., Pingali, K.: An elementary introduction to
Kalman filtering. Commun. ACM 62(11), 122–133

[157] Person, S., Dwyer, M.B., Elbaum, S., Pǎsǎreanu, C.S.: Differential symbolic ex-
ecution. In: Proceedings of the 16th ACM SIGSOFT’08/FSE-16. pp. 226–237
(2008)

[158] Red Hat, Inc.: Generic network virtualization encapsulation (2017), https://gi
thub.com/torvalds/linux/blob/master/drivers/net/geneve.c

[159] Rice, H.G.: Classes of recursively enumerable sets and their decision problems.
Trans. Amer. Math. Soc. 74, 358–366 (1953)

[160] Rodríguez-Carbonell, E., Kapur, D.: Program verification using automatic gener-
ation of invariants,. In: Liu, Z., Araki, K. (eds.) Theoretical Aspects of Computing
- ICTAC 2004. pp. 325–340. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

https://doi.org/10.1145/242224.242444
https://doi.org/10.1145/242224.242444
https://github.com/torvalds/linux/blob/master/drivers/net/geneve.c
https://github.com/torvalds/linux/blob/master/drivers/net/geneve.c

BIBLIOGRAPHY 219

[161] Roux, P., Jobredeaux, R., Garoche, P., Éric Feron: A generic ellipsoid abstract
domain for linear time invariant systems. In: HSCC. pp. 105–114. ACM

[162] Simon, A., King, A.: The two variable per inequality abstract domain. Higher-
Order and Symbolic Computation 23(1), 87–143

[163] Simon, A., King, A.: Exploiting sparsity in polyhedral analysis. In: Proceed-
ings of the 12th International Conference on Static Analysis. p. 336–351. SAS’05,
Springer-Verlag, Berlin, Heidelberg (2005)

[164] Singh, G., Püschel, M., Vechev, M.: Fast polyhedra abstract domain. SIGPLAN
Not. 52(1), 46–59 (jan 2017). https://doi.org/10.1145/3093333.3009885

[165] Sousa, M., Dillig, I.: Cartesian hoare logic for verifying k-safety properties. In:
Proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation. p. 57–69. PLDI ’16, Association for Computing Ma-
chinery, New York, NY, USA (2016). https://doi.org/10.1145/2908080.2908092,
https://doi.org/10.1145/2908080.2908092

[166] Souyris, J., Pavec, E.L., Himbert, G., Jégu, V., Borios, G.: Computing the worst
case execution time of an avionics program by abstract interpretation. In: WCET.
pp. 21–24 (2005)

[167] Souyris, J., Wiels, V., Delmas, D., Delseny, H.: Formal verification of avionics
software products. pp. 532–546 (2009)

[168] Tarski, A.: A lattice theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics 5, 285–310 (1955)

[169] development team, T.I.: Infer, a static analysis tool for java, c++, objective-c,
and c. (2021), https://github.com/facebook/infer

[170] Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Proceed-
ings of the 12th International Conference on Static Analysis. p. 352–367. SAS’05,
Springer-Verlag, Berlin, Heidelberg (2005)

[171] The LineageOS Project: Lineageos (2020), https://github.com/LineageOS/

[172] The Squashfs Project: Squashfs (2020), https://github.com/LineageOS/andro
id_kernel_sony_msm8960t/tree/lineage-18.1/fs/squashfs

[173] Trostanetski, A., Grumberg, O., Kroening, D.: Modular demand-driven analysis
of semantic difference for program versions. In: Proceedings of SAS 2017. pp.
405–427 (2017)

[174] Venet, A.J.: The gauge domain: Scalable analysis of linear inequality invariants.
In: CAV. Lecture Notes in Computer Science, vol. 7358, pp. 139–154. Springer

https://doi.org/10.1145/2908080.2908092
https://github.com/facebook/infer
https://github.com/LineageOS/
https://github.com/LineageOS/android_kernel_sony_msm8960t/tree/lineage-18.1/fs/squashfs
https://github.com/LineageOS/android_kernel_sony_msm8960t/tree/lineage-18.1/fs/squashfs

220 BIBLIOGRAPHY

[175] Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21,
168–173 (1974)

[176] Zaks, A., Pnueli, A.: CoVaC: Compiler validation by program analysis of the cross-
product. In: International Symposium on Formal Methods (FM 2008). Turku,
Finland (May 2008)

Appendix A

Double program semantics for
Nimp2

A.1 Abstract semantics with unbounded queues
The complete abstract semantics of simple Nimp programs ŜkJ s K ∈ P(Ê) → P(Ê)
and of double Nimp2 programs D̂J s K ∈ P(D̂) → P(D̂) are displayed on Fig. A.1, and
Fig. A.2, respectively.

A.2 Abstract semantics with bounded queues
The complete abstract semantics of simple Nimp programs Ŝp

kJ s K ∈ P(Êp) → P(Ê)p

and of double Nimp2 programs D̂pJ s K ∈ P(D̂p)→ P(D̂p) are displayed on Fig. A.3, and
Fig. A.4, respectively.

A.3 Abstracting away output sequences
The complete abstract semantics of simple Nimp programs without outputs S̃p

kJ s K ∈
P(Ẽp)→ P(Ẽp) and of double Nimp−2 programs D̃pJ s K ∈ P(D̃p)→ P(D̃p) are displayed
on Fig. A.5, and Fig. A.6, respectively.

A.4 Abstracting away input sequences
The complete abstract semantics of simple Nimp programs without inputs and outputs
S̃0J s K ∈ P(Ẽ0) → P(Ẽ0) and of double Nimp⋆

2 programs D̃0J s K ∈ P(D̃0) → P(D̃0) are
displayed on Fig. A.7, and Fig. A.8, respectively.

221

222 APPENDIX A. DOUBLE PROGRAM SEMANTICS FOR NIMP2

ŜkJ s K ∈ P(Ê)→ P(Ê) ; k ∈ {1, 2}

ŜkJ skip K X̂ ≜ X̂

ŜkJV ← e K X̂ ≜ { ((ρ[V 7→ v], o), δ, q) | ((ρ, o), δ, q) ∈ X̂ ∧ v ∈ EJ e Kρ }

Ŝ1JV ← input(a, b) K X̂ ≜

 ((ρ[V 7→ ν], o), δ − 1, ν · q)

∣∣∣∣∣∣∣
((ρ, o), δ, q) ∈ X̂
δ ≤ 0
a ≤ ν ≤ b

∪

 ((ρ[V 7→ v], o), δ − 1, q)

∣∣∣∣∣∣∣
((ρ, o), δ, q · v) ∈ X̂
δ > 0
a ≤ ν ≤ b

Ŝ2JV ← input(a, b) K X̂ ≜

 ((ρ[V 7→ ν], o), δ + 1, ν · q)

∣∣∣∣∣∣∣
((ρ, o), δ, q) ∈ X̂
δ ≥ 0
a ≤ ν ≤ b

∪

 ((ρ[V 7→ v], o), δ + 1, q)

∣∣∣∣∣∣∣
((ρ, o), δ, q · v) ∈ X̂
δ < 0
a ≤ ν ≤ b

ŜkJ output(V) K X̂ ≜ { ((ρ, o · ρ(V)), δ, q) | ((ρ, o), δ, q) ∈ X̂ }
ŜkJ assert(c) K ≜ ŜJ c? K
ŜkJ if c then s else t K ≜ ŜkJ s K ◦ ŜJ c? K ∪̇ ŜkJ t K ◦ ŜJ¬c? K
ŜkJ while c do s K X̂ ≜ ŜJ¬c? K lfp (λŶ . X̂ ∪ ŜkJ s K ◦ ŜJ c? K Ŷ)
ŜkJ s; t K ≜ ŜkJ t K ◦ ŜkJ s K

where ŜJ c? K X̂ ≜ { ((ρ, o), δ, q) ∈ X̂ | true ∈ CJ c Kρ }

Figure A.1: Abstract semantics of simple programs P1 and P2 with unbounded queues

A.4. ABSTRACTING AWAY INPUT SEQUENCES 223

D̂J s K ∈ P(D̂)→ P(D̂)

D̂J skip K R̂ ≜ R̂

D̂J s1 ∥ s2 K ≜ D̂2J s2 K ◦ D̂1J s1 K
D̂JV ← e1 ∥ e2 K ≜ D̂2JV ← e2 K ◦ D̂1JV ← e1 K
D̂JV ← e K ≜ D̂2JV ← e K ◦ D̂1JV ← e K
D̂J assert(c) K ≜ D̂2J assert(c) K ◦ D̂1J assert(c) K
D̂JV ← input(a, b) K ≜ D̂2JV ← input(a, b) K ◦ D̂1JV ← input(a, b) K
D̂J output(V) K ≜ D̂2J output(V) K ◦ D̂1J output(V) K
D̂J assert_sync K R̂ ≜ { ((ρ1, o1), (ρ2, o2), δ, q) ∈ R̂ | o1 = o2 }
D̂J s ; t K ≜ D̂J t K ◦ D̂J s K
D̂J if c1 ∥ c2 then s else t K≜ D̂J s K ◦ F̂2J c2 K ◦ F̂1J c1 K

∪̇ D̂2Jπ2(t) K ◦ D̂1Jπ1(s) K ◦ F̂2J¬c2 K ◦ F̂1J c1 K
∪̇ D̂2Jπ2(s) K ◦ D̂1Jπ1(t) K ◦ F̂2J c2 K ◦ F̂1J¬c1 K
∪̇ D̂J t K ◦ F̂2J¬c2 K ◦ F̂1J¬c1 K

D̂J if c then s else t K ≜ D̂J if c ∥ c then s else t K
D̂J while c1 ∥ c2 do s K R̂ ≜ F̂2J¬c2 K ◦ F̂1J¬c1 K (lfp HR̂)
D̂J while c do s K ≜ D̂J while c ∥ c do s K

where D̂1J s K R̂ ≜ { (r′1, r2, δ
′, q′) | (r′1, δ′, q′) ∈ Ŝ1J s K { (r1, δ, q) } ∧ (r1, r2, δ, q) ∈ R̂ }

D̂2J s K R̂ ≜ { (r1, r
′
2, δ
′, q′) | (r′2, δ′, q′) ∈ Ŝ2J s K { (r2, δ, q) } ∧ (r1, r2, δ, q) ∈ R̂ }

F̂kJ c K R̂ ≜ { ((ρ1, o1), (ρ2, o2), δ, q) ∈ R̂ | true ∈ CJ c Kρk } ; k ∈ {1; 2}

and HR̂(Ŝ) ≜ R̂

∪ D̂J s K ◦ F̂2J c2 K ◦ F̂1J c1 K Ŝ
∪ D̂1Jπ1(s) K ◦ F̂2J¬c2 K ◦ F̂1J c1 K Ŝ
∪ D̂2Jπ2(s) K ◦ F̂2J c2 K ◦ F̂1J¬c1 K Ŝ

Figure A.2: Abstract semantics of double programs with unbounded queues

224 APPENDIX A. DOUBLE PROGRAM SEMANTICS FOR NIMP2

Ŝ
p
kJ s K ∈ P(Êp)→ P(Êp) ; k ∈ { 1, 2 }

Ŝ
p
kJ skip K X̂p ≜ X̂p

Ŝ
p
kJV ← e K X̂p ≜ { ((ρ[V 7→ v], o), δ, q) | ((ρ, o), δ, q) ∈ X̂p ∧ v ∈ EJ e Kρ }

Ŝ
p
1JV ← input(a, b) K X̂p ≜{

((ρ[V 7→ ν], o), δ − 1, ν · q)
∣∣ δ ≤ 0 ∧ ν ∈ [a, b] ∧ ((ρ, o), δ, q · v) ∈ X̂p ∧ v ∈ Z

}
∪
{

((ρ[V 7→ v], o), δ − 1, q · 0 · r)
∣∣∣∣ δ ∈ (0, p] ∧ v ∈ [a, b]

((ρ, o), δ, q · v · r) ∈ X̂p ∧ ∀n < p− δ − 1 : rn = 0

}
∪
{

((ρ[V 7→ ν], o), δ − 1, q)
∣∣ δ > p ∧ ν ∈ [a, b] ∧ ((ρ, o), δ, q) ∈ X̂p

}
Ŝ

p
2JV ← input(a, b) K X̂p ≜{

((ρ[V 7→ ν], o), δ + 1, ν · q)
∣∣ δ ≥ 0 ∧ ν ∈ [a, b] ∧ ((ρ, o), δ, q · v) ∈ X̂p ∧ v ∈ Z

}
∪
{

((ρ[V 7→ v], o), δ + 1, q · 0 · r)
∣∣∣∣ δ ∈ [−p, 0) ∧ v ∈ [a, b]

((ρ, o), δ, q · v · r) ∈ X̂p ∧ ∀n < p− δ − 1 : rn = 0

}
∪
{

((ρ[V 7→ ν], o), δ + 1, q)
∣∣ δ < −p ∧ ν ∈ [a, b] ∧ ((ρ, o), δ, q) ∈ X̂p

}
Ŝ

p
kJ output(V) K X̂p ≜ { ((ρ, o · ρ(V)), δ, q) | ((ρ, o), δ, q) ∈ X̂p }

Ŝ
p
kJ assert(c) K ≜ ŜpJ c? K

Ŝ
p
kJ if c then s else t K≜ Ŝp

kJ s K ◦ ŜpJ c? K ∪̇ Ŝp
kJ t K ◦ ŜpJ¬c? K

Ŝ
p
kJ while c do s K X̂p ≜ ŜpJ¬c? K lfp (λŶp. X̂p ∪ Ŝp

kJ s K ◦ ŜpJ c? K Ŷp)
Ŝ

p
kJ s; t K ≜ Ŝp

kJ t K ◦ Ŝp
kJ s K

where ŜpJ c? K X̂p ≜ { ((ρ, o), δ, q) ∈ X̂p | true ∈ CJ c Kρ }

Figure A.3: Abstract semantics of simple programs P1 and P2 with queues of length
p ≥ 1.

A.4. ABSTRACTING AWAY INPUT SEQUENCES 225

D̂pJ s K ∈ P(D̂p)→ P(D̂p)

D̂pJ skip K R̂p ≜ R̂p

D̂pJ s1 ∥ s2 K ≜ D̂p
2J s2 K ◦ D̂p

1J s1 K
D̂pJV ← e1 ∥ e2 K ≜ D̂p

2JV ← e2 K ◦ D̂p
1JV ← e1 K

D̂pJV ← e K ≜ D̂p
2JV ← e K ◦ D̂p

1JV ← e K
D̂pJ assert(c) K ≜ D̂p

2J assert(c) K ◦ D̂p
1J assert(c) K

D̂pJV ← input(a, b) K ≜ D̂p
2JV ← input(a, b) K ◦ D̂p

1JV ← input(a, b) K
D̂pJ output(V) K ≜ D̂p

2J output(V) K ◦ D̂p
1J output(V) K

D̂pJ assert_sync K R̂p ≜ { ((ρ1, o1), (ρ2, o2), δ, q) ∈ R̂p | o1 = o2 }
D̂pJ s ; t K ≜ D̂pJ t K ◦ D̂pJ s K
D̂pJ if c1 ∥ c2 then s else t K≜ D̂pJ s K ◦ F̂p

2J c2 K ◦ F̂p
1J c1 K

∪̇ D̂p
2Jπ2(t) K ◦ D̂p

1Jπ1(s) K ◦ F̂p
2J¬c2 K ◦ F̂p

1J c1 K
∪̇ D̂p

2Jπ2(s) K ◦ D̂p
1Jπ1(t) K ◦ F̂p

2J c2 K ◦ F̂p
1J¬c1 K

∪̇ D̂pJ t K ◦ F̂p
2J¬c2 K ◦ F̂p

1J¬c1 K
D̂pJ if c then s else t K ≜ D̂pJ if c ∥ c then s else t K
D̂pJ while c1 ∥ c2 do s K R̂p ≜ F̂p

2J¬c2 K ◦ F̂p
1J¬c1 K (lfp HR̂p)

D̂pJ while c do s K ≜ D̂pJ while c ∥ c do s K

where D̂
p
1J s K R̂p ≜ { (r′1, r2, δ

′, q′) | (r′1, δ′, q′) ∈ Ŝ
p
1J s K { (r1, δ, q) } ∧ (r1, r2, δ, q) ∈ R̂p }

D̂
p
2J s K R̂p ≜ { (r1, r

′
2, δ
′, q′) | (r′2, δ′, q′) ∈ Ŝ

p
2J s K { (r2, δ, q) } ∧ (r1, r2, δ, q) ∈ R̂p }

F̂
p
kJ c K R̂p ≜ { ((ρ1, o1), (ρ2, o2), δ, q) ∈ R̂p | true ∈ CJ c Kρk } ; k ∈ {1; 2}

and HR̂p(Ŝp) ≜ R̂p

∪ D̂pJ s K ◦ F̂p
2J c2 K ◦ F̂p

1J c1 K Ŝp

∪ D̂p
1Jπ1(s) K ◦ F̂p

2J¬c2 K ◦ F̂p
1J c1 K Ŝp

∪ D̂p
2Jπ2(s) K ◦ F̂p

2J c2 K ◦ F̂p
1J¬c1 K Ŝp

Figure A.4: Abstract semantics of double programs with queues of length p ≥ 1

226 APPENDIX A. DOUBLE PROGRAM SEMANTICS FOR NIMP2

S̃
p
kJ s K ∈ P(Ẽp)→ P(Ẽp) ; k ∈ { 1, 2 }

S̃
p
kJ skip K X̃p ≜ X̃p

S̃
p
kJV ← e K X̃p ≜ { (ρ[V 7→ v], δ, q) | (ρ, δ, q) ∈ X̃p ∧ v ∈ EJ e Kρ }

S̃
p
1JV ← input(a, b) K X̃p ≜{

(ρ[V 7→ ν], δ − 1, ν · q)
∣∣ δ ≤ 0 ∧ ν ∈ [a, b] ∧ (ρ, δ, q · v) ∈ X̃p ∧ v ∈ Z

}
∪
{

(ρ[V 7→ v], δ − 1, q · 0 · r)
∣∣∣∣ δ ∈ (0, p] ∧ v ∈ [a, b]

(ρ, δ, q · v · r) ∈ X̃p ∧ ∀n < p− δ − 1 : rn = 0

}
∪
{

(ρ[V 7→ ν], δ − 1, q)
∣∣ δ > p ∧ ν ∈ [a, b] ∧ (ρ, δ, q) ∈ X̃p

}
S̃

p
2JV ← input(a, b) K X̃p ≜{

(ρ[V 7→ ν], δ + 1, ν · q)
∣∣ δ ≥ 0 ∧ ν ∈ [a, b] ∧ (ρ, δ, q · v) ∈ X̃p ∧ v ∈ Z

}
∪
{

(ρ[V 7→ v], δ + 1, q · 0 · r)
∣∣∣∣ δ ∈ [−p, 0) ∧ v ∈ [a, b]

(ρ, δ, q · v · r) ∈ X̃p ∧ ∀n < p− δ − 1 : rn = 0

}
∪
{

(ρ[V 7→ ν], δ + 1, q)
∣∣ δ < −p ∧ ν ∈ [a, b] ∧ (ρ, δ, q) ∈ X̃p

}
S̃

p
kJ assert(c) K ≜ S̃pJ c? K

S̃
p
kJ if c then s else t K≜ S̃p

kJ s K ◦ S̃pJ c? K ∪̇ S̃p
kJ t K ◦ S̃pJ¬c? K

S̃
p
kJ while c do s K X̃p ≜ S̃pJ¬c? K lfp (λỸp. X̃p ∪ S̃p

kJ s K ◦ S̃pJ c? K Ỹp)
S̃

p
kJ s; t K ≜ S̃p

kJ t K ◦ S̃p
kJ s K

where S̃pJ c? K X̃p ≜ { (ρ, δ, q) ∈ X̃p | true ∈ CJ c Kρ }

Figure A.5: Abstract semantics of simple Nimp programs P1 and P2 without outputs
with input queues of length p ≥ 1.

A.4. ABSTRACTING AWAY INPUT SEQUENCES 227

D̃pJ s K ∈ P(D̃p)→ P(D̃p)

D̃pJ skip K R̃p ≜ R̃p

D̃pJ s1 ∥ s2 K ≜ D̃p
2J s2 K ◦ D̃p

1J s1 K
D̃pJV ← e1 ∥ e2 K ≜ D̃p

2JV ← e2 K ◦ D̃p
1JV ← e1 K

D̃pJV ← e K ≜ D̃p
2JV ← e K ◦ D̃p

1JV ← e K
D̃pJ assert(c) K ≜ D̃p

2J assert(c) K ◦ D̃p
1J assert(c) K

D̃pJV ← input(a, b) K ≜ D̃p
2JV ← input(a, b) K ◦ D̃p

1JV ← input(a, b) K
D̃pJ assert_sync(V) K R̃p ≜ { (ρ1, ρ2, δ, q) ∈ R̃p | ρ1(V) = ρ2(V) }
D̃pJ s ; t K ≜ D̃pJ t K ◦ D̃pJ s K
D̃pJ if c1 ∥ c2 then s else t K≜ D̃pJ s K ◦ F̃p

2J c2 K ◦ F̃p
1J c1 K

∪̇ D̃p
2Jπ2(t) K ◦ D̃p

1Jπ1(s) K ◦ F̃p
2J¬c2 K ◦ F̃p

1J c1 K
∪̇ D̃p

2Jπ2(s) K ◦ D̃p
1Jπ1(t) K ◦ F̃p

2J c2 K ◦ F̃p
1J¬c1 K

∪̇ D̃pJ t K ◦ F̃p
2J¬c2 K ◦ F̃p

1J¬c1 K
D̃pJ if c then s else t K ≜ D̃pJ if c ∥ c then s else t K
D̃pJ while c1 ∥ c2 do s K R̃p ≜ F̃p

2J¬c2 K ◦ F̃p
1J¬c1 K (lfp HR̃p)

D̃pJ while c do s K ≜ D̃pJ while c ∥ c do s K

where D̃
p
1J s K R̃p ≜

{
(ρ′1, ρ2, δ

′, q′)
∣∣∣∣∣ (ρ′1, δ′, q′) ∈ S̃

p
1J s K { (ρ1, δ, q) }

(ρ1, ρ2, δ, q) ∈ R̃p

}

D̃
p
2J s K R̃p ≜

{
(ρ1, ρ

′
2, δ
′, q′)

∣∣∣∣∣ (ρ′2, δ′, q′) ∈ S̃
p
2J s K { (ρ2, δ, q) }

(ρ1, ρ2, δ, q) ∈ R̃p

}
F̃

p
kJ c K R̃p ≜ { (ρ1, ρ2, δ, q) ∈ R̃p | true ∈ CJ c Kρk } ; k ∈ {1; 2}

and HR̃p(S̃p) ≜ R̃p

∪ D̃pJ s K ◦ F̃p
2J c2 K ◦ F̃p

1J c1 K S̃p

∪ D̃p
1Jπ1(s) K ◦ F̃p

2J¬c2 K ◦ F̃p
1J c1 K S̃p

∪ D̃p
2Jπ2(s) K ◦ F̃p

2J c2 K ◦ F̃p
1J¬c1 K S̃p

Figure A.6: Abstract semantics of double Nimp−2 programs with input queues of length
p ≥ 1.

228 APPENDIX A. DOUBLE PROGRAM SEMANTICS FOR NIMP2

S̃0J s K ∈ P(Ẽ0)→ P(Ẽ0) ; k ∈ { 1, 2 }

S̃0J skip K X̃0 ≜ X̃0

S̃0JV ← e K X̃0 ≜ { ρ[V 7→ v] | ρ ∈ X̃0 ∧ v ∈ EJ e Kρ }

S̃0J assert(c) K ≜ S̃pJ c? K
S̃0J if c then s else t K ≜ S̃pJ s K ◦ S̃0J c? K ∪̇ S̃0J t K ◦ S̃0J¬c? K
S̃0J while c do s K X̃0 ≜ S̃0J¬c? K lfp (λỸ0. X̃0 ∪ S̃0J s K ◦ S̃0J c? K Ỹ0)
S̃0J s; t K ≜ S̃0J t K ◦ S̃0J s K

where S̃0J c? K X̃0 ≜ { ρ ∈ X̃0 | true ∈ CJ c Kρ }

Figure A.7: Abstract semantics of simple Nimp programs P1 and P2 without inputs and
outputs.

D̃0J s K ∈ P(D̃0)→ P(D̃0)

D̃0J skip K R̃0 ≜ R̃0

D̃0J s1 ∥ s2 K ≜ D̃0
2J s2 K ◦ D̃0

1J s1 K
D̃0JV ← e1 ∥ e2 K ≜ D̃0

2JV ← e2 K ◦ D̃0
1JV ← e1 K

D̃0JV ← e K ≜ D̃0
2JV ← e K ◦ D̃0

1JV ← e K
D̃0J assert(c) K ≜ D̃0

2J assert(c) K ◦ D̃0
1J assert(c) K

D̃0JV ← input_sync(a, b) K R̃0 ≜ { (ρ1[V 7→ v], ρ2[V 7→ v]) | v ∈ [a, b] ∧ (ρ1, ρ2) ∈ R̃0 }
D̃0J assert_sync(V) K R̃0 ≜ { (ρ1, ρ2) ∈ R̃0 | ρ1(V) = ρ2(V) }
D̃0J s ; t K ≜ D̃0J t K ◦ D̃0J s K
D̃0J if c1 ∥ c2 then s else t K ≜ D̃0J s K ◦ F̃0

2J c2 K ◦ F̃0
1J c1 K

∪̇ D̃0
2Jπ2(t) K ◦ D̃0

1Jπ1(s) K ◦ F̃0
2J¬c2 K ◦ F̃0

1J c1 K
∪̇ D̃0

2Jπ2(s) K ◦ D̃0
1Jπ1(t) K ◦ F̃0

2J c2 K ◦ F̃0
1J¬c1 K

∪̇ D̃0J t K ◦ F̃0
2J¬c2 K ◦ F̃0

1J¬c1 K
D̃0J if c then s else t K ≜ D̃0J if c ∥ c then s else t K
D̃0J while c1 ∥ c2 do s K R̃0 ≜ F̃0

2J¬c2 K ◦ F̃0
1J¬c1 K (lfp HR̃0)

D̃0J while c do s K ≜ D̃0J while c ∥ c do s K

where D̃0
1J s K R̃0 ≜ { (ρ′1, ρ2) | ρ′1 ∈ S̃0J s K { ρ1 } ∧ (ρ1, ρ2) ∈ R̃0 }

D̃0
2J s K R̃0 ≜ { (ρ1, ρ

′
2) | ρ′2 ∈ S̃0J s K { ρ2 } ∧ (ρ1, ρ2) ∈ R̃0 }

F̃0
kJ c K R̃0 ≜ { (ρ1, ρ2) ∈ R̃0 | true ∈ CJ c Kρk } ; k ∈ {1; 2}

and HR̃0(S̃0) ≜ R̃0
∪ D̃0J s K ◦ F̃0

2J c2 K ◦ F̃0
1J c1 K S̃0

∪ D̃0
1Jπ1(s) K ◦ F̃0

2J¬c2 K ◦ F̃0
1J c1 K S̃0

∪ D̃0
2Jπ2(s) K ◦ F̃0

2J c2 K ◦ F̃0
1J¬c1 K S̃0

Figure A.8: Abstract semantics of double Nimp⋆
2 programs.

Appendix B

Double program semantics for C

B.1 Semantics of endian-diverse simple and double
statements

A brief overview of the transfer functions of statements is available in 7.3.4. This section
provides a complete description.

B.1.1 Semantics of simple statements

Before defining the semantics for double statements in this domain, we first define the
semantics E♭

αJ ∗t e K ∈ D♭ → D♭ × P(V) and S♭
αJ ∗t e1 ← e2 K ∈ D♭ → D♭ for simple

memory reads and writes, in program version Pα (α ∈ A).

Evaluations.

We describe the semantics of E♭
αJ ∗t e K ⟨C,R⟩, assuming the expression e does not contain

any dereference. This is not restrictive, as expressions can be transformed into purely
scalar expressions by resolving left-values bottom up. To compute E♭

αJ ∗t e K ⟨C,R⟩, we
first resolve ∗t e into a set Lα of single cells of program Pα, by evaluating e into a set of
pointer values, and gathering single cells corresponding to valid pointers:

Lα ≜ { ⟨V, o, t, α⟩ ∈ C̃ellα | ⟨V, o⟩ ∈ EαJ e K ρ, ρ ∈ R }

Then, we call add-cell♭
α to ensure that all the target cells in Lα occur in the abstract

environment, either directly or via a suitable shared bi-cell. This updates the abstract
state ⟨C,R⟩ to ⟨C0, R0⟩. The semantics of add-cell♭

α ensures that occ(c, C0) ̸= ∅ for all
c ∈ Lα.
Finally,

E
♭
αJ ∗t e K ⟨C,R⟩ = ⟨⟨C0, R0⟩, { ρ0(c0) | ρ0 ∈ R0, c0 ∈ occ(c, C0), c ∈ Lα }⟩

229

230 APPENDIX B. DOUBLE PROGRAM SEMANTICS FOR C

Assignments.

The semantics of assignments S♭
αJ ∗t e1 ← e2 K ⟨C,R⟩ involves more steps.

We first evaluate e2 into a set of values Ve2 ∈ P(V). This may involve synthe-
sizing bi-cells for the dereferences of e2, which updates the state ⟨C,R⟩ to ⟨C ′, R′⟩:
⟨⟨C ′, R′⟩,Ve2⟩ = E♭

αJ e2 K ⟨C,R⟩. Like for evaluations, we assume the expression e1 does
not contain any dereference, and start with resolving ∗t e1 into a set Lα of single cells
in the memory of Pα. Then, we realize the bi-cells in Lα using add-cell♭

α: let ⟨C0, R0⟩
be the updated environment. Some of the single cells in Lα may have been realized into
shared bi-cells in C0. Let S0 ≜ (C0\C)∩C̃ell2 be the set of such shared bi-cells. Elements
of S0 represent equalities between cells in the memory of Pα, and cells in the memory of
the other program version Pβ (β ∈ A \ {α }). Such equalities may no longer hold, after
assignment by the simple program Pα only. Therefore, we split shared bi-cells of S0 into
their left and right projections, in a copy-on-write strategy. The updated environment
is

⟨C ′0, R′0⟩ = ⟨C0 ∪
⋃

⟨c,c′⟩∈S

{ c, c′ } , { c 7→
{
ρ(x) if ∃x ∈ occ(c, S) ̸= ∅
ρ(c) otherwise

| ρ ∈ R0 }⟩

Finally, we update the environment for the single cells written (elements of Lα), with
the possible values of e2. However, this is not sufficient: it is also necessary to update the
environment for any overlapping bi-cells, including shared bi-cells that have been split
into pairs of single cells. A sound and efficient (though possibly coarse) solution is to
simply remove them. Indeed, removing any bi-cell is always sound in our memory model:
it amounts to losing information, as we lose constraints on the byte-representation of the
memory. Let Ω′0 ⊆ C ′0 \Lα be the set of such bi-cells: elements of Ω′0 are shared bi-cells
and single cells from the memory of Pα, with base variables, offsets and sizes such that
they overlap some element of Lα. The updated environment is:

S♭
αJ ∗t e1 ← e2 K ⟨C,R⟩= ⟨C ′0 \ Ω,

{ ρ|C′
0\Ω[∀c ∈ Lα : c 7→ v] | ρ ∈ R′0, v ∈ Ve2 }⟩

B.1.2 Semantics of double statements

We are now ready to define the semantics D♭J dstat K ∈ D♭ → D♭ of double statements in
this domain. Like D, D♭ is defined by induction on the syntax. We focus on assignments,
as other the semantics of statements is the same as in Sec. 6.2.5.

In an assignment D♭J ∗t e1 ← e2 K ⟨C,R⟩, although both programs execute the same
syntactic assignment, their semantics are different, as are their endiannesses. For in-
stance, recall Example 29 from Sec. 5.2.1. The value assigned to field s.x by the state-
ment p[4]=1 depends on the endianness of the platform. In addition, available bi-cells
may be different. By default, double assignments are straightforward extensions of sim-
ple assignments: D♭J ∗t e1 ← e2 K = S♭

2J ∗t e1 ← e2 K ◦ S♭
1J ∗t e1 ← e2 K . As in Sec. B.1.2,

we introduce two precision optimizations, taking advantage of implicit equalities repre-
sented by shared bi-cells. We first transform ∗t e1 and the dereferences in e2 into sets

B.2. SYMBOLIC DOMAIN OF BIT-SLICE PREDICATES 231

of bi-cells L and R, respectively. Note that R may be empty, as e2 may be a constant
expression. Then, we realize the cells in L and R, using add-cell♭. Let ⟨C0, R0⟩ be the
updated environment. Two optimizations are possible, depending on e1, e2, L, and R.

Optimization 1: Assignment of shared bi-cells. If e1 and e2 are deterministic
expressions, and if they evaluate to bi-cells that are all shared (L ∪R ⊆ C̃ell2), then PL
and PB write the same value to the same destination. We thus update shared destination
bi-cells (in L), and remove any overlapping bi-cells. Formally,

D♭J ∗t e1 ← e2 K ⟨C,R⟩= ⟨C0 \ Ω,
{ ρ|C0\Ω[∀c ∈ L : c 7→ v] | ρ ∈ R0, v ∈ E♭

LJ e2 K ⟨C0, R0⟩ }⟩

where Ω0 ⊆ C0 \ L is the set of (shared or single) bi-cells overlapping elements of L.
The choice of evaluating E♭

LJ e2 K (rather than E♭
BJ e2 K) is arbitrary, as they are equal.

Indeed, the endianness L is not used by E♭
LJ e2 K , all the necessary cells are materialized

before evaluating expression e2.

Optimization 2: Copy assignment. If the conditions for optimization 1 are satis-
fied, and if, in addition, e2 = ∗t e′2, and both ∗t e1 and ∗t e′2 evaluate to single bi-cells
(|L| = |R| = 1) in every state ⟨C0, ρ0⟩ ∈ X0, then we are dealing with a copy assign-
ment, as in y=x;. We may thus soundly copy any memory information from the source
{r} = R, to the destination {l} = L, so as to further improve precision. We therefore
remove l, and create a copy of r, and of any smaller bi-cell r′ ∈ C0 for the same bytes,
to a corresponding bi-cell for the bytes of l. Newly created destination bi-cells have
the sides and endiannesses of their sources. The environment is updated accordingly, to
reflect equalities between sources and destinations.

B.2 Symbolic domain of bit-slice predicates
Abstract lattice operators and transfer functions of the Pred♯ domain are described in
Sec. 7.4.1. The transfer function for assignments translates general expressions into Bits
expressions. The translation relies on the function nf ∈ Num♯×CBits → Bits to rewrite
bit-slice expressions to normal forms. Fig. B.1 shows the definition of nf . Constants
are normalized to the smallest possible slice of themselves. So are variables, using in-
formation from the numerical abstraction. Bit-slices are pushed down into bitwise OR
of terms, only if each term represents a disjoint interval of bits. nf relies on the predi-
cate disjoint ∈ Bits → B to check this property. The definition of disjoint is shown on
Fig. B.2. Sec. 7.4.1 assumes a version of nf that additionally sorts the disjoint intervals
of bits of each term of a bitwise OR of bit-slices by increasing lower bounds. We do not
show this feature in Fig. B.1 for simplicity.

232 APPENDIX B. DOUBLE PROGRAM SEMANTICS FOR C

nf ∈ Num♯ × CBits → Bits

Notation: n ≜ 8× s where s = sizeof (typeof (e))
e ∈ CBits is the argument of nf

nf ⟨I, 0⟩ ≜ 0

nf ⟨I, c ∈ N \ { 0 }⟩ ≜
−−−→
c[i, j)

i
where i = max{ 0 ≤ p < n |

−−−→
c[p, n)

p
= c }

and j = min{ i < q ≤ n |
−−−→
c[i, q)

i
= c }

nf ⟨I, x ∈ V⟩ ≜
−−−→
x[0, j)

0
where j = min{ 0 ≤ q < n |CNumJx ≥ 2q K ♯I = ⊥}

nf ⟨I,
−−−→
x[i, j)

k
⟩ ≜
−−−→
x[i, j)

k
if 0 ≤ i < j ≤ n ∧ k ≥ 0 ∧ k + j − i ≤ n
∧ (i, j, k) ̸= (0, 0, n)

nf ⟨I,
−−−−→
e[0, N)

0
⟩ ≜ nf ⟨I, e⟩ if N ≥ n

nf ⟨I,
−−−→
e[p, q)

r
⟩ ≜ 0 if p ≥ q ∨ r ≥ n

nf ⟨I,
−−−→
e[p, q)

r
⟩ ≜ nf ⟨I,

−−−−−−→
e[p− r, q)

0
⟩ if p < q ∧ r < 0

nf ⟨I,
−−−→
e[p, q)

r
⟩ ≜ nf ⟨I,

−−−−−−−→
e[p, n− r)

r
⟩ if p < q ∧ 0 ≤ r < n ≤ r + q − p

nf ⟨I,
−−−→
e[p, q)

r
⟩ ≜ nf ⟨I,

−−−→
e[0, q)

r
⟩ if p < 0 ≤ q ∧ r ≥ 0 ∧ r + q − p ≤ n

nf ⟨I,
−−−−−−−−→−−−→
e[i, j)

k
[p, q)

r

⟩ ≜
−−−−→
e[u, v)

w
where u = i+ max { 0, p+ k }∧

and v = i+ min { q − k, j − i }∧
and w = r + max { 0, k − p }

nf ⟨I,
−−−−−−−−→
(e1 | e2)[p, q)

r
⟩ ≜ nf ⟨I, e′1 | e′2⟩ if disjoint(nf ⟨I, e1⟩,nf ⟨I, e2⟩)

and e′k = nf ⟨I,
−−−−→
ek[p, q)

r
⟩

nf ⟨I,
−−−−→
⊤[p, q)

r
⟩ ≜ ⊤

nf ⟨I, e | ⊤⟩ ≜ ⊤ = nf ⟨I,⊤ | e⟩
nf ⟨I, e | 0⟩ ≜ nf ⟨I, e⟩ = nf ⟨I, 0 | e⟩

nf ⟨I, e⟩ ≜ ⊤ in all other cases.

Figure B.1: Rewriting bit-slices to a normal form

disjoint ∈ Bits→ B

disjoint(0, e) ≜ disjoint(0, e) ≜ true
disjoint(⊤, e) ≜ disjoint(⊤, e) ≜ false

disjoint(
−−−→
x[i, j)

k
,
−−−→
y[p, q)

r
) △⇐⇒ [k, k + j − i] ∩ [r, r + q − p] ̸= ∅ x, y ∈ N ∪ V

disjoint(e, e′ | e′′) △⇐⇒ disjoint(e, e′) ∧ disjoint(e, e′′) ∧ disjoint(e′, e′′)

Figure B.2: Disjoint normal form predicate

Appendix C

Examples

C.1 Patch analysis for Nimp−2 programs

C.1.1 Comp example from [173]

{
int x; int y; int z;
x = input (-10,10);
y = input (-100,100);

if (x>y ∥ x<y) z=1; else z=0;

if (z==0 ∥ z!=0) {
int tmp;
tmp=y;
y=x;
x=tmp;

}
assert_sync(y);

}

C.1.2 Const example from [173]

{
int a; int b; int c; int d; int r;
a = input (-10,10);
b = input (-100,100);

{/*skip*/} ∥ d=3;
c = a+b ∥ b+a;
r = c+3 ∥ c+d;
assert_sync(r);

}

233

234 APPENDIX C. EXAMPLES

C.1.3 Modified Fig.2 example (from [173])

{
int x;
x = input (-100,100);

if (x<0) {
x=-1;

}
else {

if (x>=2 ∥ x>=4) {}
else {

while (x==2) x=2;
x=3;

}
}

assert_sync(x); // x=2 ignored
}

x ≥ 2 ∥ x > 4 in [173]

C.1.4 LoopMult example from [173]

{
int a; int b; int c; int i;

a = input(18,20);
b = input(17,21);

c=0;
i=1;
while (i<=b ∥ i<=a) {

c = c+a ∥ c+b;
i=i+1;

}

assert_sync(c);
}

C.1. PATCH ANALYSIS FOR NIMP−2 PROGRAMS 235

C.1.5 Variables switch roles: LoopSub example from [173]

{
int x; int y; int a; int b; int c; int i;
x = input (-100,100);
y = input (-10,1);

a = x ∥ y;
b = y ∥ x;

c = a ∥ b;
i=0;
while (i<3) {

c = c-b ∥ c-a;
i=i+1;

}

assert_sync(c);
}

a1 = b2 ∧ a2 = b1

C.1.6 UnchLoop example from [173]

{
int a; int b; int c; int i; int r;

a = input (-1000,1000);
b = input (-1000,1000);
c = 1 ∥ 0;

i=0;
while (i<a) {

c=c+b;
i=i+1;

}

r = c ∥ c+ 1;
assert_sync(r);

}

236 APPENDIX C. EXAMPLES

C.1.7 sign example from [154]

{
int x; int sgn; int sgn2;

x = input (-1000,1000);
sgn = input (-100,100);

if (x<0) sgn = -1;
else sgn = 1;
{/* skip */} ∥ if (x==0) sgn=0;

if (x!=0) {
sgn2=sgn;
}

assert_sync(sgn2);
}

C.1.8 sum example from [154]

{
int arr; int len;
int i; int result;

bool b0; bool b1; bool b2; bool b3; bool b4;
int v0; int v1; int v2; int v3; int v4;
b0=input(0,1); if (b0==1) v0=1; else v0=0;
b1=input(0,1); if (b1==1) v1=1; else v1=0;
b2=input(0,1); if (b2==1) v2=1; else v2=0;
b3=input(0,1); if (b3==1) v3=1; else v3=0;
b4=input(0,1); if (b4==1) v4=1; else v4=0;

arr = input (-1000,1000);
// len = input (0,100); // works with polyhedra and octagons

len = v0 + 2*v1 + 4*v2 + 8*v3 + 16*v4; // len ∈ [0,31]

result = 0;
i = 1 ∥ 0;
while (i<len ∥ i+1<len) {

{/* skip */} ∥ i=i+1;
result = result + arr;
i = i+2 ∥ i+1;

}
assert_sync(result);

}

C.1. PATCH ANALYSIS FOR NIMP−2 PROGRAMS 237

C.1.9 copy example from Coreutils, and [154]

{
int dest_desc;
bool HAVE_FCHOWN;
int fchown_dest_desc_uid_gid;
int chown_dst_name_uid_gid;
bool chown_failure_ok_x;
int x_require_preserve;
int r;

dest_desc = input(-1,1000);
HAVE_FCHOWN = input(0,1);
chown_failure_ok_x = rand(0,1);
x_require_preserve = rand(0,1);

// equivalence only if if the syscall succeeds
fchown_dest_desc_uid_gid = 0;
chown_dst_name_uid_gid = 0;

r = 1 ∥ 0;

if (HAVE_FCHOWN == 1 && dest_desc != -1) {
if (fchown_dest_desc_uid_gid == 0) {

r = 1;
} else {

if (chown_failure_ok_x == 0) {
if (x_require_preserve == 1) {

r = 0 ∥ -1;
}

}
}

} else {
if (chown_dst_name_uid_gid == 0) {

r = 1;
} else {

if (chown_failure_ok_x == 0) {
if (x_require_preserve == 1) {

r = 0 ∥ -1;
}

}
}

}

assert_sync(r);
}

238 APPENDIX C. EXAMPLES

C.1.10 remove example from Coreutils, and [154]

*/
/* Like fstatat, but cache the result.

If st_size is -1, the status has not been gotten yet.
If less than -1, fstatat failed with errno == -1 - st_size ∥ st_ino.
Otherwise, the status has already been gotten, so return 0.

static int
cache_fstatat (int fd, char const *file, struct stat *st, int flag)*/
{

int r;
int st_size; int st_ino;
int errno; bool fstatat_ok;// true iff fstatat() returns 0
int continue;

st_ino = input(-1000,1000);
st_size = -1;// before first call: the status has not been gotten yet.

continue=1;
while (continue==1) {// cache_fstatat is called n times

if (st_size == -1) {// call fstatat
fstatat_ok = input(0,1); // 1 + fstatat(.)
if (fstatat_ok == 1) { // fstatat behaviour

st_size = input(0,1000);
st_ino = input(-1000,1000);

}
else {

// fstatat behaviour on systems with positive errno values
errno = input(1,1000);
// goal: prove non regression on systems with positive errno values
st_size = -1 - errno ∥ -2;
{} ∥ st_ino = errno;

}
}
if (0 <= st_size) r = 0;
else {

errno = -1 - st_size ∥ st_ino;
r = -1;

}

continue=input(0,1);
}

assert_sync(r,errno);
}

C.1. PATCH ANALYSIS FOR NIMP−2 PROGRAMS 239

C.1.11 Loop rearrangements: seq example from Coreutils,
and [154, 155]

{
int first; int last;
int x; int i; int step;
int separator; int terminator;

int out_of_range; int break; int print_extra_number;
int out1; int out2;
first = input (0,100);
last = input (0,100);

step = 2;
separator = 128;
terminator = 1024;
print_extra_number = 0;

{/* skip */} ∥ if (last < first) out_of_range = 1;

if (1==1 ∥ out_of_range == 0) {
{/* skip */} ∥ x=first;
i = 0 ∥ 1;
while (break == 0) {
{

x = first + i * step;
if (last < x) break = 1;
if (break == 0) {

if (i!=0) out1 = separator;
out2 = x;

}
} ∥ {

out2 = x;
if (out_of_range == 1) break = 1;
else {

x = first + i * step;
if (last < x) out_of_range = 1;
if (out_of_range == 1) if (print_extra_number == 0) break = 1;
if (break == 0) out1 = separator;

}
}
i=i+1;
}

}
assert_sync(out1,out2);
if (i!=0) out1 = terminator; ∥ out1 = terminator;

assert_sync(out1);
}

240 APPENDIX C. EXAMPLES

C.1.12 test example from Coreutils

// coreutils adjacent commits
// between 88c32fa68ee7057744bfb6d41f6e8eb68801306f
// and 7fd7709a7a5f3537f2f373dcc57e17001830591e (test: simplify redundant code)
//static bool two_arguments (void)
{

int argc; int argv_2_0; int pos;
int cur; int next; int nextnext;
int value;
argc = 3;
argv_2_0 = input(0,255); //argv[pos - 1][0] in unary_op
pos = 1;
cur = input(0,255);
next = input(0,255);
nextnext = input(0,255);

if (cur == 97 && next == 0) //STREQ (argv[pos], "!")
{

pos = pos + 1;//advance (false);
if (argv_2_0 != 0) value = 1;
else value = 0;
pos = pos + 1;//! one_argument ();

}
else if (cur == 45 // argv[pos][0] == ’-’

&& next != 0 // argv[pos][1] != ’\0’
&& nextnext == 0)// argv[pos][2] == ’\0’

{
if (cur == 45 //test_unop (argv[pos])

&& (next==98||next==99||next==100||next==101||next==102||next==103||next
==104

||next == 107
||next==110||next==111||next==112
||next==114||next==115||next==116||next==117
||next==119||next==120
||next==122
||next==71||next==76||next==79||next==83||next==78

) ∥ 1==1) {
// value = unary_operator ();

if (next == 1001) {// e
pos = pos + 1;
if (pos >= argc) halt;
pos = pos + 1;

value = input (0,1);
}
else if (next == 114) {// r

pos = pos + 1;
if (pos >= argc) halt;
pos = pos + 1;

C.1. PATCH ANALYSIS FOR NIMP−2 PROGRAMS 241

value = input (0,1);
}
else if (next == 119) {// w

pos = pos + 1;
if (pos >= argc) halt;
pos = pos + 1;
value = input (0,1);

}
else if (next == 120) {// x

pos = pos + 1;
if (pos >= argc) halt;
pos = pos + 1;
value = input (0,1);

}
else if (next == 79) {// O

pos = pos + 1;
if (pos >= argc) halt;
pos = pos + 1;
value = input (0,1);

}
else if (next == 71) {//G

pos = pos + 1;
if (pos >= argc) halt;
pos = pos + 1;
value = input (0,1);

}

...
else if (next == 122) {// z

pos = pos + 1;
if (pos >= argc) halt;
pos = pos + 1;
if (argv_2_0 == 0) value = 1;
else value = 0;

}
else {

{/* skip */} ∥ halt;
value = 0; // default: return false;

}
} else {

halt; ∥ {/* skip */} //test_syntax_error (_("%s: unary operator expected"),
quote (argv[pos]));
}

}
else

halt; //beyond ();

assert_sync(value,pos);
}

242 APPENDIX C. EXAMPLES

swapping bytes swapped
Section Example technique LOC 2 4 8
C.2.1 42 pointer 54 58 77 111
C.2.1 43 union 54 61 85 132
C.2.2 44 bitwise 82 51 73 96

(a) Integer byte-swaps

Section Example LOC Time
7.4 39 16 30 ms

C.2.3 46 88 195 ms
C.2.3 47 19 35 ms
C.2.4 48 218 1060 ms
C.2.4 49 125 155 ms
C.2.4 50 110 150 ms

(b) Other benchmarks

Figure C.1: Small benchmarks

C.2 Endian portability analysis for C programs
In this section, we further develop the benchmarks introduced in Sec. 7.6 of Chapter 7.

Fig. C.1 shows analysis times for the benchmarks introduced in Sec. 7.6.1 and 7.6.2 of
Chapter 7. It also refers to the sections of the current appendix showing related source
codes, or source code excerpts. Fig. C.1(a) shows analysis times, in milliseconds, for
the 9 idiomatic examples of Sec. 7.6.1, illustrating network data processing. Fig. C.1(b)
shows analysis times for the other idiomatic examples of Sec. 7.6.1, as well as open source
benchmarks of Sec. 7.6.2.

In the following of this section, we show source codes for benchmarks introduced in
Sec. 7.6.1, and relevant excerpts from open source benchmarks introduced in Sec. 7.6.2.
Note that these source codes exhibit slight differences between the notations used in
Chapter 7, and the C syntax supported by the analyzer. Mainly, the static analy-
sis primitives we use are _mopsa_assert, together with predicate _sync, rather than
assert_sync. For instance, Examples 38 and 39 from Sec. 7.1 and 7.4 of the Chapter 7
are re-written as follows:

C.2. ENDIAN PORTABILITY ANALYSIS FOR C PROGRAMS 243

Example (38). (in Mopsa syntax)
1 read_from_network((uint8_t *)&x, sizeof(x));
2 # if __BYTE_ORDER == __LITTLE_ENDIAN
3 uint8_t *px = (uint8_t *)&x, *py = (uint8_t *)&y;
4 for (int i=0; i<sizeof(x); i++) py[i] = px[sizeof(x)-i-1];
5 # else
6 y = x;
7 # endif
8 _mopsa_assert(_sync(y));

Example (39). (in Mopsa syntax)
1 u16 x; u8 *p = (u8 *)&x;
2 u8 y = input_sync(0,255);
3 # if __BYTE_ORDER == __LITTLE_ENDIAN
4 x = y | 0xff00;
5 # else
6 x = (y << 8) | 0xff;
7 # endif
8 _mopsa_assert(_sync(p[0], p[1]));

Benchmarks related to network communication share a small set of stub functions,
shown in Example 41. Function read_from_network reads a stream of bytes from an
external source, and writes it into a buffer. The same stream is read by the left (little-
endian) and right (big-endian) versions of a double program. Function write_to_network
writes bytes to an external destination. The analysis should prove that the same bytes
are written, by the little- and big-endian callers.

Example 41. Network stubs.
void read_from_network(u8 buf[], u32 size) {

for (int i=0; i<size; i++) {
buf[i] = input_sync(0,255);

}
}

void write_to_network(u8 buf[], u32 size) {
for (int i=0; i<size; i++)

_mopsa_assert(_sync(buf[i]));
}

244 APPENDIX C. EXAMPLES

C.2.1 Type-punning

Examples 42 and 43, introduced in Sec. 7.6.1, use type-punning to byte-swap (big-endian)
network input data of type τ ∈ {u16,u32,u64 }.

Type-punning with pointers.

Example 42 shows an example using pointer casts to implement type-punning.

Example 42. Type-punning with pointers.
if __BYTE_ORDER == __LITTLE_ENDIAN
define NTOH(x,y) { \

uint8_t *px = (uint8_t *)&x, *py = (uint8_t *)&y; \
for (int i=0; i<sizeof(x); i++) py[i] = px[sizeof(x)-i-1]; \

}
else
define NTOH(x,y) { \

y=x; \
}

endif

T x, y, z; // u8, u16, u32, or u64 integers

void main(void)
{

read_from_network((uint8_t *)&x, sizeof(x));
NTOH(x, y);
y++;
NTOH(y, z);
write_to_network((uint8_t *)&z, sizeof(z));

}

Type-punning with unions.

Example 43 shows an example using union types to implement type-punning.

Example 43. Type-punning with unions
if __BYTE_ORDER == __LITTLE_ENDIAN
define NTOH(x,y) { \

for (int i=0; i<sizeof(x); i++) \
y.b[i] = x.b[sizeof(x)-i-1]; \

}
else
define NTOH(x,y) { \

y.i = x.i; \
}

endif

C.2. ENDIAN PORTABILITY ANALYSIS FOR C PROGRAMS 245

U x, y, z; // union of bytes and u8, u16, u32, or u64 integers

void main(void)
{

read_from_network(x.b, sizeof(x));
NTOH(x, y);
y.i++;
NTOH(y, z);
write_to_network(z.b, sizeof(z));

}

C.2.2 Bitwise arithmetics

Rather than type-punning, Example 44 uses bitwise arithmetics.

Example 44. Bitwise arithmetics
if __BYTE_ORDER == __LITTLE_ENDIAN
define NTOH(x,y) { \

y = BITWISE_SWAP(x); \
}

else
define NTOH(x,y) { \

y = x; \
}

endif

T x, y, z; // u8, u16, u32, or u64 integers

void main(void)
{

read_from_network((uint8_t *)&x, sizeof(x));
NTOH(x, y);
y++;
NTOH(y, z);
write_to_network((uint8_t *)&z, sizeof(z));

}

Example 44 relies on byte-swapping macros defined as example 45.

Example 45. Byte-swapping macros
/* Swap bytes in 16 bit value. */
#define __bswap_constant_16(x) \

((unsigned short int) ((((x) >> 8) & 0xff) | (((x) & 0xff) << 8)))

/* Swap bytes in 32 bit value. */
#define __bswap_constant_32(x) \

((((x) & 0xff000000) >> 24) | (((x) & 0x00ff0000) >> 8) | \

246 APPENDIX C. EXAMPLES

(((x) & 0x0000ff00) << 8) | (((x) & 0x000000ff) << 24))

/* Swap bytes in 64 bit value. */
define __bswap_constant_64(x) \

((((x) & 0xff00000000000000ull) >> 56) \
| (((x) & 0x00ff000000000000ull) >> 40) \
| (((x) & 0x0000ff0000000000ull) >> 24) \
| (((x) & 0x000000ff00000000ull) >> 8) \
| (((x) & 0x00000000ff000000ull) << 8) \
| (((x) & 0x0000000000ff0000ull) << 24) \
| (((x) & 0x000000000000ff00ull) << 40) \
| (((x) & 0x00000000000000ffull) << 56))

ifdef __U16__
define BITWISE_SWAP __bswap_constant_16
else
ifdef __U32__
define BITWISE_SWAP __bswap_constant_32
else
ifdef __U64__
define BITWISE_SWAP __bswap_constant_64
else
define BITWISE_SWAP(x) (x)
endif
endif
endif

C.2. ENDIAN PORTABILITY ANALYSIS FOR C PROGRAMS 247

C.2.3 Endianness of floats

Byte-swapping floats.

Example 46 extracts a double precision float from an array of bytes read from the
network. Floats are byte-swapped using a combination of type-punning and bitwise
arithmetics on 64-bits integers. The implementation relies on the assumption that the
order of bytes is the same for integers and floats, which is the case for most machines.

Example 46. Byte-swapping floats
u64 ntohll(u64 x) {

u64 y;
if __BYTE_ORDER == __LITTLE_ENDIAN

y = __bswap_constant_64(x);
else

y = x;
endif

return y;
}

u64 htonll(u64 x) { return ntohll(x); }

#define SIZE 20
u8 zone[SIZE];

void main(void)
{

read_from_network(zone,SIZE);

double y;
_memcpy(&y, zone+10, sizeof(y));
* (u64 *) &y = htonll(* (u64 *) &y);

y++;

* (u64 *) &y = htonll(* (u64 *) &y);
_memcpy(zone+10, &y, 8);

write_to_network(zone,SIZE);
}

248 APPENDIX C. EXAMPLES

Extracting fields from floats.

Example 47 features two ways of extracting the exponent from a double-precision float.
The first is portable, the second works only for big-endian machines.

Example 47. Extracting fields from floats

u16 portable_exp(double x)
{

return ((*(u64 *)&x) >> 52) & 0x7FF;
}

// works for big-endian only
u16 non_portable_exp(double x)
{

return ((*(u32 *)&x) >> 20) & 0x7FF;
}

void main(void)
{

double x = _mopsa_rand_double();
_mopsa_assume(_sync(x));

u16 e = portable_exp(x);
_mopsa_assert(_sync(e)); // success

u16 should_fail = non_portable_exp(x);
_mopsa_assert(_sync(should_fail)); // should fail

}

C.2.4 Open source benchmarks

The benchmarks below are introduced in Sec. 7.6.2 of Chapter 7.

GENEVE.

The first benchmark is an implementation of a tunneling driver [158] based on an en-
capsulation network protocol [84]. It uses big-endian integers as tunnel identifiers, and
the three LSBs thereof as virtual network identifiers (VNI). Therefore byte-per-byte
comparisons may be used, whatever the endianness.

The driver was introduced in 20141 in the Linux kernel, and patched several times2

for endianness-related issues detected by Sparse. Then, a performance optimization

1https://github.com/torvalds/linux/commit/0b5e8b8eeae40bae6ad7c7e91c97c3c0d0e57882
2https://github.com/torvalds/linux/commit/42350dcaaf1d8d95d58e8b43aee006d62c84bc2e

https://github.com/torvalds/linux/commit/0a5d1c55faa5414858857875496f6f6a9926fa51

https://github.com/torvalds/linux/commit/0b5e8b8eeae40bae6ad7c7e91c97c3c0d0e57882
https://github.com/torvalds/linux/commit/42350dcaaf1d8d95d58e8b43aee006d62c84bc2e
https://github.com/torvalds/linux/commit/0a5d1c55faa5414858857875496f6f6a9926fa51

C.2. ENDIAN PORTABILITY ANALYSIS FOR C PROGRAMS 249

introduced in 20163 a new endianness portability bug, which Sparse failed to detect. It
was fixed a year later4.

Example 48. Geneve: device lookup.
static __be64 vni_to_tunnel_id(const __u8 *vni)
{

if __IS_BIG_ENDIAN__
//#ifdef __BIG_ENDIAN

return (vni[0] << 16) | (vni[1] << 8) | vni[2];
else

//#else
return (__force __be64)(((__force u64)vni[0] << 40) |

((__force u64)vni[1] << 48) |
((__force u64)vni[2] << 56));

//#endif
}
static bool eq_tun_id_and_vni(u8 *tun_id, u8 *vni)
{
#if 0 // was a geneve bug.
//#ifdef __BIG_ENDIAN

return (vni[0] == tun_id[2]) &&
(vni[1] == tun_id[1]) &&
(vni[2] == tun_id[0]);

#else
return !memcmp(vni, &tun_id[5], 3);

#endif
}
static struct geneve_dev *geneve_lookup(struct geneve_sock *gs,

__be32 addr, u8 vni[])
{

struct hlist_head *vni_list_head;
struct geneve_dev *geneve;
__u32 hash;

/* Find the device for this VNI */
hash = geneve_net_vni_hash(vni);
vni_list_head = &gs->vni_list[hash];
hlist_for_each_entry_rcu(geneve, vni_list_head, hlist) {

if (eq_tun_id_and_vni((u8 *)&geneve->info.key.tun_id, vni) &&
addr == geneve->info.key.u.ipv4.dst)

return geneve;
}
return NULL;

}

3https://github.com/torvalds/linux/commit/2e0b26e1035253bda7587f705f346385352e942d
4https://github.com/torvalds/linux/commit/772e97b57a4aa00170ad505a40ffad31d987ce1d

https://github.com/torvalds/linux/commit/2e0b26e1035253bda7587f705f346385352e942d
https://github.com/torvalds/linux/commit/772e97b57a4aa00170ad505a40ffad31d987ce1d

250 APPENDIX C. EXAMPLES

MLX5.

The second benchmark is a core library of a Linux driver [126] for ethernet and RDMA
net devices [121].

An endianness issue was detected on code committed in 20175. A fix was committed
in 20206. A second patch of the same code was committed 6 months later7, as the first
fix was incomplete.

Example 49. mlx5 net device driver.

static u64 mask_to_le(u64 mask, int size)
{

__be32 mask_be32;
__be16 mask_be16;

if (size == 32) {
mask_be32 = (__force __be32)(mask);
mask = (__force unsigned long)cpu_to_le32(be32_to_cpu(mask_be32));

} else if (size == 16) {
mask_be32 = (__force __be32)(mask);
mask_be16 = *(__be16 *)&mask_be32;
mask = (__force unsigned long)cpu_to_le16(be16_to_cpu(mask_be16));

}

return mask;
}

5https://github.com/torvalds/linux/commit/2b64beba025109f64e688ae675985bbf72196b8c
6https://github.com/torvalds/linux/commit/404402abd5f90aa90a134eb9604b1750c1941529
7https://github.com/torvalds/linux/commit/82198d8bcdeff01d19215d712aa55031e21bccbc

https://github.com/torvalds/linux/commit/2b64beba025109f64e688ae675985bbf72196b8c
https://github.com/torvalds/linux/commit/404402abd5f90aa90a134eb9604b1750c1941529
https://github.com/torvalds/linux/commit/82198d8bcdeff01d19215d712aa55031e21bccbc

C.2. ENDIAN PORTABILITY ANALYSIS FOR C PROGRAMS 251

Squashfs.

The third benchmark is extracted from a version of a compressed read-only filesys-
tem [172] for Linux, used as part of the LineageOS [171] alternative operating system
for Android devices. A block-processing function extracts 2-byte fields encoded in little-
endian out of metadata of read request buffers. An endianness issue was introduced and
fixed in patches committed in 20208.

Example 50. Squashfs.
/* Extract the length of the metadata block */
if (req->offset != msblk->devblksize - 1) {

length = le16_to_cpup((__le16 *)
(bh[0]->b_data + req->offset));

} else {
length = (unsigned char)bh[0]->b_data[req->offset];
length |= (unsigned char)bh[1]->b_data[0] << 8;

}

8https://github.com/LineageOS/android_kernel_sony_msm8960t/commit/5f61dc71accfea6c946
7499d0e3eb5462dab8d63

https://github.com/LineageOS/android_kernel_sony_msm8960t/commit/5f61dc71accfea6c9467499d0e3eb5462dab8d63
https://github.com/LineageOS/android_kernel_sony_msm8960t/commit/5f61dc71accfea6c9467499d0e3eb5462dab8d63

List of Figures

1.1 Program verification techniques. 3
1.2 Airbus cockpit avionics software (MB) . 5
1.3 Legacy process safety-critical software . 6
1.4 νWoW process with unit proof . 8

2.1 Statements of Nimp programs . 18
2.2 Expressions of Nimp programs . 18
2.3 Conditions of Nimp programs . 18
2.4 Semantics of numerical expressions . 19
2.5 Semantics of conditional expressions . 20
2.6 Semantics of Nimp statements . 21
2.7 Input statement versus non-determistic choice 22
2.8 Filtering inputs . 24
2.9 Non-terminating Nimp program . 25
2.10 Hasse diagram for (P({ a, b, c, d }),⊆) . 28
2.11 Hasse diagram for (P(Z),⊆) . 28
2.12 Absence of Galois connection (no polyhedral abstraction) 34
2.13 Abstract (memory-only) semantics of Nimp atomic statements 37
2.14 Abstract (memory-only) semantics of Nimp compound statements 37
2.15 abstract (memory-only) semantics of Nimp compound statements with widen-

ing . 39
2.16 Abstract semantics of Nimp programs (parameterized by an abstract domain

D♯) . 41
2.17 Cartesian abstraction . 42
2.18 Interval abstraction . 43
2.19 The Interval Poset . 43
2.20 Interval lattice operators . 43
2.21 Interval abstraction of arithmetic operators 44
2.22 Hasse diagram of the Interval poset (I,⊑I) 44
2.23 Interval abstract operators . 45
2.24 Abstract semantics of expressions . 46
2.25 Abstract semantics of tests . 46
2.26 Simple loop . 47
2.27 Examples of numerical abstract domains [25] 50

253

254 LIST OF FIGURES

3.1 Patch on remove.c of Coreutils (between v6.10 and v6.11) 52
3.2 Execution environments for cache_fstatat . 52
3.3 Two versions of the Unchloop example . 53
3.4 Statements of double programs . 55
3.5 Double expressions and conditions of double programs 55
3.6 Version extractor for statements of double programs 55
3.7 Version extractor for expressions and conditions 56
3.8 Denotational concrete semantics of double programs 56
3.9 Reording input statements . 60
3.10 Lockstep composition of versions of a reactive program 60
3.11 Extension of dstat with assert_sync . 61
3.12 Abstraction of shared input sequences with unbounded FIFO queues 63
3.13 Abstract semantics of simple programs P1 and P2 with unbounded queues . . 64
3.14 Abstract semantics of double programs with unbounded queues 64
3.15 Abstraction of FIFO queues to fixed length p ≥ 1 65
3.16 Abstract semantics of simple program P1 and P2 with queues of length p ≥ 1. 66
3.17 Abstract semantics of double programs with queues of length p ≥ 1 67
3.18 Extension of dstat with assert_sync(V) . 67
3.19 Simple abstraction of output sequences for Nimp−2 69
3.20 Abstract semantics of double Nimp−2 programs with input queues of length

p ≥ 1. 70
3.21 Extension of dstat . 70
3.22 Simple abstraction of input sequences for Nimp⋆

2. 72
3.23 Abstract semantics of double Nimp⋆

2 programs. 73
3.24 Uncomputable abstractions of D. 73
3.25 Abstract semantics of double programs with a standard numerical domain . . 75
3.26 Abstraction of double environments with environment differences 76
3.27 Examples of �p semantics . 76
3.28 Abstract semantics of atomic double statements with the Delta numerical

domain . 77
3.29 Abstract semantics of compound double statements with the Delta numerical

domain . 78
3.30 Benchmarks . 82
3.31 Reordering reads from an input stream . 83
3.32 Relational and non relational information versus lengths of queues 84
3.33 Proving information flow properties . 86

4.1 Equivalent program versions . 91
4.2 Simplified Coreutils seq benchmark . 92
4.3 More involved double program construction 94
4.4 Simplified motivating example of [40] . 95
4.5 Summary of possible double programs and invariants 96

LIST OF FIGURES 255

4.6 Common reduction rules of double program rewriting systems −→r for r ∈
{ eq, ctrl }. 99

4.7 Hasse diagram for the priority ordering between rules from Fig. 4.6 and
Fig. 4.10. 100

4.8 Rewriting systems −→?
r for r ∈ { eq, ctrl }. 100

4.9 rewriting system −→ω
glue . 100

4.10 ctrl rewriting system . 101
4.11 Derivation tree of −→eq for Example 26 . 102
4.12 Derivation tree of −→ctrl for Example 26 . 103

5.1 Unified domain signature . 113
5.2 Type of a manager . 115
5.3 Configuration for the analysis of C programs 116
5.4 Relation between an integer variable and the offset of a pointer 117
5.5 Final value of s.x in Example 29 . 119
5.6 Syntax of simple C-like programs. 119
5.7 Concrete semantics of memory reads and writes. 121
5.8 Generic cell synthesizing function. 123
5.9 Unified cell environments . 124
5.10 Merging two versions of a C program . 128
5.11 Encoding double C programs by hand . 130
5.12 Denotational semantics of double C programs. 132
5.13 Unified cell environments for double C programs 133
5.14 Configuration for patch analysis of C programs 136
5.15 Transfer function of if statements . 138
5.16 Stable and unstable branches . 138
5.17 Sum of scalar fields (Example 30) . 140
5.18 Example 30 after pre-processing of scalar dereferences 140
5.19 Sum of scalar fields (Example 31) . 141
5.20 Polyhedral analyses of synthetic and simplified Coreutils benchmarks, with

manual or automatic double program constructions. 142
5.21 Analyses of real patches from Coreutils and Linux 144
5.22 Stubbing bitwise computations in the io_uring benchmark 146
5.23 Quadratic complexity of merge_stmt on large C functions 147

6.1 Sum of scalar fields (Example 30). 152
6.2 Byte extraction, with numerical invariants over cells (Example 32). 152
6.3 Memory cells of Example 32: ∈ [0, 1000], = ⌊ /28⌋ mod 28. 153
6.4 Environments on single cells . 154
6.5 Representing equalities symbolically with shared bi-cells 155
6.6 Byte extraction, with numerical invariants over bi-cells. 156
6.7 Bi-cells of Example 32: ∈ [0, 1000], = ⌊ /28⌋ mod 28. 156
6.8 Equality test between single cells. 157
6.9 Bi-cell addition. 158

256 LIST OF FIGURES

6.10 Bi-cell addition for simple program Pk. 160
6.11 Assignments to shared bi-cells (Examples 33, 34, 35 and 36) 164
6.12 Unified bi-cell environments . 164
6.13 Comparing D̂ and D♭ (Example 37) . 166
6.14 Analysis of double C programs with bi-cells 167
6.15 Analyses of real patches from Coreutils and Linux 168
6.16 Analyses of synthetic benchmarks from the related works. 169

7.1 Reading input in network byte-order (Example 38) 172
7.2 Concrete endian-aware semantics of memory reads and writes with endianness

α. 175
7.3 Endian-aware generic cell synthesizing function. 177
7.4 Denotational semantics of endian-diverse double C programs. 179
7.5 Memory cells of Example 38: = b0, = b1, = b0 × 28 + b1. 180
7.6 Stub for the read_from_network function. 180
7.7 Bi-cells of Example 38. 183
7.8 Shared bi-cell synthesizing function. 184
7.9 Equality test between single cells. 184
7.10 Bi-cell addition. 185
7.11 Bi-cell addition for simple program Pα. 187
7.12 Byte-wise equal memories in different endiannesses (Example 39) 189
7.13 Bits, a language of syntactic expressions . 190
7.14 Expression translation, transfer functions and lattice operators. 192
7.15 Extension of the equal predicate of the memory abstraction

to equalities modulo bitwise arithmetic byte-swapping. 194
7.16 Constructing a big-endian number (Example 40) 194
7.17 Analysis of double endian-diverse C programs

with bi-cells and bit-slice predicates . 197

A.1 Abstract semantics of simple programs P1 and P2 with unbounded queues . . 222
A.2 Abstract semantics of double programs with unbounded queues 223
A.3 Abstract semantics of simple programs P1 and P2 with queues of length p ≥ 1.224
A.4 Abstract semantics of double programs with queues of length p ≥ 1 225
A.5 Abstract semantics of simple Nimp programs P1 and P2 without outputs with

input queues of length p ≥ 1. 226
A.6 Abstract semantics of double Nimp−2 programs with input queues of length

p ≥ 1. 227
A.7 Abstract semantics of simple Nimp programs P1 and P2 without inputs and

outputs. 228
A.8 Abstract semantics of double Nimp⋆

2 programs. 228

B.1 Rewriting bit-slices to a normal form . 232
B.2 Disjoint normal form predicate . 232

LIST OF FIGURES 257

C.1 Small benchmarks . 242

	Introduction
	Approaches to reliable software
	Best effort process-based assurance
	Formal methods for product-based assurance
	The case of avionics software at Airbus
	Combining testing and formal verification

	Overview of the thesis
	Outline
	Contributions
	Context of the work

	Background
	Language
	Syntax
	Semantics
	Properties
	Proofs

	Elements of abstract interpretation
	Order theory
	Functions, operators and fixpoints
	Domain abstraction
	Operator and fixpoint approximation

	Static analysis
	Generic computable abstract semantics
	Numerical abstract domains

	Conclusion

	Patch Analysis
	Motivation
	Running example
	Syntax
	Concrete semantics
	From simple statements to double statements
	Semantics of double programs
	Properties of interest
	Non-terminating executions

	Abstract semantics
	Wrapping up infinite input sequences
	Bounding input queues
	Obliviating output sequences
	Special case: inputs and outputs in lockstep
	Numerical abstraction
	Introducing a dedicated numerical domain

	Evaluation
	Benchmarking
	Handling streams

	Related work
	Program equivalence
	Information flow

	Conclusion

	Double program construction
	Motivating examples
	Program merging algorithm
	Overview
	Formalization

	Related works
	Static product constructions
	Dynamic product constructions

	Conclusion

	Implementing patch analysis with Mopsa
	The Mopsa platform
	Extensible syntax
	Distributed iterator
	Domains
	Dynamic expression rewriting
	Domain combination

	Analysis of C programs
	Motivation
	Syntax
	Semantics of low-level C programs
	Cell-based memory model
	Analysis of C programs with Mopsa

	Analysis of double C programs
	Front-ends
	Semantics
	Memory model
	Abstraction
	Domains

	Evaluation
	From Nimp2 to C
	From simplified benchmarks to real code
	Practical complexity of double program construction

	Related works
	Conclusion

	Sharing cells in the memory abstraction
	Motivating examples
	Memory model optimization
	Labeling cells with sides
	Merging single cells
	Bi-cell synthesis
	Semantics of simple statements
	Semantics of double statements
	Unification
	Value abstraction

	Implementation
	Evaluation
	Real-world patches
	Synthetic benchmarks

	Conclusion

	Endian portability analysis
	Introduction
	Concrete semantics
	Semantics of simple endian-aware low-level C programs
	Endian-aware cell-based memory model
	Semantics of endian-diverse double C programs
	Endian portability property of interest

	Memory abstraction
	Domain
	Bi-cell synthesis for double programs
	Abstract join
	Semantics of simple and double statements

	Numerical abstraction
	The bit-slice symbolic predicate domain
	Integration with the numerical and memory abstractions
	Analysis of Example 39

	Implementation
	Evaluation
	Idiomatic examples
	Open source benchmarks
	Industrial case study

	Conclusion

	Conclusion
	Bibliography
	Double program semantics for Nimp2
	Abstract semantics with unbounded queues
	Abstract semantics with bounded queues
	Abstracting away output sequences
	Abstracting away input sequences

	Double program semantics for C
	Semantics of endian-diverse simple and double statements
	Semantics of simple statements
	Semantics of double statements

	Symbolic domain of bit-slice predicates

	Examples
	Patch analysis for Nimp2- programs
	|Comp| example from TrostanetskiGK17
	|Const| example from TrostanetskiGK17
	Modified |Fig.2| example (from TrostanetskiGK17)
	|LoopMult| example from TrostanetskiGK17
	Variables switch roles: |LoopSub| example from TrostanetskiGK17
	|UnchLoop| example from TrostanetskiGK17
	|sign| example from Partush:2013
	|sum| example from Partush:2013
	|copy| example from Coreutils, and Partush:2013
	|remove| example from Coreutils, and Partush:2013
	Loop rearrangements: |seq| example from Coreutils, and Partush:2013,Partush:2014
	|test| example from Coreutils

	Endian portability analysis for C programs
	Type-punning
	Bitwise arithmetics
	Endianness of floats
	Open source benchmarks

	List of Figures

