manuscript: www.di.ens.fr/~delmas

Static Analysis of Program Portability by Abstract Interpretation PhD defense

David Delmas

Airbus – Avionics Software

Sorbonne Université – LIP6

28 November 2022

- ✤ flight-by-wire
- 🖶 engine and breaks
- * power plants
- pacemakers

1

🜱 inertial systems

- ✤ flight-by-wire
- 🚓 engine and breaks
- power plants
- pacemakers
- 🜱 inertial systems

Software bugs

serious consequences

- ✤ flight-by-wire
- 🖶 engine and breaks
- power plants
- 🚺 pacemakers
- 🜱 inertial systems

Software bugs

serious consequences

Evolving software

Bugs can be introduced in

- initial development
- later version

regression

• new environment portability error

- ✤ flight-by-wire
- 🖶 engine and breaks
- power plants
- 🤨 pacemakers
- 🜱 inertial systems

Evolving software

Bugs can be introduced in

- initial development
- later version

regression

• new environment **portability error**

Software bugs

serious consequences

Ariane 5.01 maiden flight

- reuse of Ariane 4 software
- different environment

The role of software

the cost of bugs

and

Ariane 5.01 maiden flight

failure

- reuse of Ariane 4 software
- different environment
- direct cost: 500,000,000 \$

and

the cost of bugs

Safety-critical software

- ✤ flight-by-wire
- 🚓 engine and breaks
- power plants
- 🚺 pacemakers
- 🜱 inertial systems

Software bugs

serious consequences

Software verification is mandatory

Evolving software

Bugs can be introduced in

- initial development
- later version

regression

IRBUS

- new environment p
- portability error

Ariane 5.01 maiden flight failure

- reuse of Ariane 4 software
- different environment
- direct cost: 500,000,000 \$

Program verification techniques

© M. Journault

Aircraft functions transferred from hardware

de Havilland DH 106 Comet - 1949

Federal Aviation Administration

Aircraft functions transferred from hardware to software

A350 Flight Deck

Aviation Safety

Federal Aviation Administration

Software inside civil aircraft

Avionics software

- critical components of embedded systems
- e.g. flight-by-wire control systems
- major impact on safety
- widely used inside modern aircraft

Certification

- by third parties on behalf of Authorities (FAA, EASA)
- stringent rules on development and verification processes
- DO-178/ED-12 international standard

Traditional process-based assurance informal verification

Large verification effort

- intellectual reviews
- unit and integration tests

Traditional process-based assurance informal verification

- intellectual reviews
- unit and integration tests

© V. Soumier

Traditional process-based assurance informal verification

- intellectual reviews
- unit and integration **tests**

Automated process

leveraging

formal verification

Static analysis by AI

- absence of *run-time error*
- numerical accuracy
- stack usage
- WCET

Program proof

to replace unit testing

Source code verification

formally verified compiler

Industrial efficiency

~

cost savings in LLR processes

Principle of formal verification by abstract interpretation

Define the concrete semantics of your program

 $\begin{array}{l} \mbox{concrete semantics} \equiv \mbox{mathematical model of the set} \\ \mbox{of all its possible behaviours in all possible environments} \\ \mbox{can be constructed from semantics of commands} \\ \mbox{of the programming language} \end{array}$

Principle of formal verification by abstract interpretation

Define the concrete semantics of your program

 $\begin{array}{l} \mbox{concrete semantics} \equiv \mbox{mathematical model of the set} \\ \mbox{of all its possible behaviours in all possible environments} \\ \mbox{can be constructed from semantics of commands} \\ \mbox{of the programming language} \end{array}$

Define a specification

specification \equiv subset of possible behaviours

Principle of formal verification by abstract interpretation

Define the concrete semantics of your program

 $\begin{array}{l} \mbox{concrete semantics} \equiv \mbox{mathematical model of the set} \\ \mbox{of all its possible behaviours in all possible environments} \\ \mbox{can be constructed from semantics of commands} \\ \mbox{of the programming language} \end{array}$

Define a specification

specification \equiv subset of possible behaviours

Conduct a formal proof

that the concrete semantics meets the specification

use computers to automate the proof

Concrete semantics of program P

© Cousot and Cousot [2010]

Semantics [[P]]

8

-

Specification of P (e.g. safety property) © Cousot and Cousot [2010]

Specification [[P]]

9

 $Semantics \llbracket P \rrbracket \subseteq Specification \llbracket P \rrbracket$

10

Abstract semantics for P

~

Semantics $\llbracket P \rrbracket$ is uncomputable

© Cousot and Cousot [2010]

Abstraction(Semantics [[P]])

~

 $\textit{Abstraction}(\textit{Semantics}\llbracket P \rrbracket) \subseteq \textit{Specification}\llbracket P \rrbracket$

 $\textit{Semantics} \llbracket P \rrbracket \subseteq \textit{Abstraction}(\textit{Semantics} \llbracket P \rrbracket) \subseteq \textit{Specification} \llbracket P \rrbracket$

Static analyis by abstract interpretation $\hfill {\mbox{\scriptsize Cousot}}$ and Cousot [2010] $\hfill {\mbox{\scriptsize Alarms}}$

Static analyis by abstract interpretation $\hfill {\mbox{\sc Cousot}}$ and Cousot [2010] $\hfill {\sc True\error}$

Static analyis by abstract interpretation $\[Cousot and Cousot [2010] \]$ Incompleteness \Rightarrow false alarms

Static analyis by abstract interpretation

Numerical abstract domains

Bertrane et al. [2010]

Abstract domains

- sound approximations of the concrete semantics
- trade-off between cost and precision

LIP S AIRBUS

Goal of the thesis

Apply static analysis to two program equivalence problems

Regression verification

Objective program change does not add undesirable behaviors Patch analysis inferring that two syntactically close versions of a program compute equal outputs when run on equal inputs in the same environment.

Portability verification

Objective environment change does not add undesirable behaviors. Portability analysis inferring that two syntactically close versions of a program compute equal outputs when run on equal inputs in their respective environments.

Introduction

- 2 Patch analysis for numerical programs
- 3 Patch analysis for C and structure layout portability

~

4 Endian portability analysis for C programs

Introduction

2 Patch analysis for numerical programs

3 Patch analysis for C and structure layout portability

~

Indian portability analysis for C programs

5 Conclusion

Running example Original program P₁

```
a = input(0, 10);
b = input(0, 10);
c = 1;
i=0;
while (i<a) {</pre>
  c=c+b;
  i=i+1;
}
r = c;
output(r);
```

Unchloop from Trostanetski et al. [2017]

Original and patched program versions P_1 and P_2

```
a = input(0, 10);
b = input(0, 10);
c = 1;
i=0;
while (i<a) {</pre>
  c=c+b;
  i=i+1;
}
r = c;
output(r);
```

```
a = input(0,10);
b = input(0,10);
c = 0;
i=0;
```

```
r=0;
while (i<a) {
    c=c+b;
    i=i+1;
}
r = c+1;
output(r);
```

Unchloop from Trostanetski et al. [2017]

Original and patched program versions P_1 and P_2

assume:	$a_1 = a_2 \wedge b_1 = b_2$	(equal inputs)
<pre>a = input(0,10); b = input(0,10); c = 1;</pre>	<pre>a = input(0,10); b = input(0,10); c = 0;</pre>	
i=0; while (i <a) {<br="">c=c+b; i=i+1; }</a)>	<pre>i=0; while (i<a) {<br="">c=c+b; i=i+1; }</a)></pre>	
<pre>r = c; output(r);</pre>	<pre>r = c+1; output(r);</pre>	

Unchloop from Trostanetski et al. [2017]

Original and patched program versions P_1 and P_2

assume:	$a_1 = a_2 \land b_1 = b_2$	(equal inputs)
<pre>a = input(0,10); b = input(0,10); c = 1;</pre>	<pre>a = input(0,10); b = input(0,10); c = 0;</pre>	
<pre>i=0; while (i<a) {<br="">c=c+b; i=i+1; }</a)></pre>	<pre>i=0; while (i<a) {<br="">c=c+b; i=i+1; }</a)></pre>	
<pre>r = c; output(r);</pre>	<pre>r = c+1; output(r);</pre>	
₂₁ prove:	$r_1 \stackrel{?}{=} r_2$	(equal outputs)

Unchloop from Trostanetski et al. [2017]

Invariants of program versions P_1 and P_2

assume:	a ₁ = a ₂ /	$b_1 = b_2$	(equal inputs)
<pre>a = input(0,10); b = input(0,10); c = 1;</pre>	$egin{array}{l} a_1 \in [0,10] \ b_1 \in [0,10] \end{array}$	<pre>a = input(0,10); b = input(0,10); c = 0;</pre>	$egin{array}{l} a_2 \in [0,10] \ b_2 \in [0,10] \end{array}$
i=0; while (i <a) {<br="">c=c+b; i=i+1;</a)>	$c_1 = b_1 imes i_1 + 1$	<pre>i=0; while (i<a) {<br="">c=c+b; i=i+1;</a)></pre>	$c_2 = b_2 imes i_2$
<pre>} r = c; output(r);</pre>	$c_1 = a_1 \times b_1 + 1$ $r_1 = a_1 \times b_1 + 1$	<pre>} r = c+1; output(r);</pre>	$c_2 = a_2 \times b_2$ $r_2 = a_2 \times b_2 + 1$
₂₁ prove:	r ₁ =	?= r ₂	(equal outputs)

Unchloop from Trostanetski et al. [2017]

Invariants of program versions P_1 and P_2

assume:	a ₁ = a ₂ /	$b_1 = b_2$	(equal inputs)
<pre>a = input(0,10); b = input(0,10); c = 1;</pre>	$egin{aligned} & a_1 \in [0,10] \ & b_1 \in [0,10] \end{aligned}$	<pre>a = input(0,10); b = input(0,10); c = 0;</pre>	$egin{array}{l} a_2 \in [0,10] \ b_2 \in [0,10] \end{array}$
i=0; while (i <a) {<br="">c=c+b; i=i+1;</a)>	$c_1 = b_1 imes i_1 + 1$	<pre>i=0; while (i<a) {<br="">c=c+b; i=i+1;</a)></pre>	$c_2 = b_2 imes i_2$
<pre>} r = c; output(r);</pre>	$c_1 = a_1 \times b_1 + 1$ $r_1 = a_1 \times b_1 + 1$	<pre>} r = c+1; output(r);</pre>	$c_2 = a_2 \times b_2$ $r_2 = a_2 \times b_2 + 1$
prove:	<i>r</i> ₁ =	= <i>r</i> ₂	(equal outputs)

Unchloop from Trostanetski et al. [2017]

Proving the equivalence of program versions P_1 and P_2

assume:	$a_1 = a_2$ /	$b_1 = b_2$	(equal inputs)
<pre>output(r);</pre>	$r_1 = a_1 \times b_1 + 1$	<pre>output(r);</pre>	$r_2 = a_2 imes b_2 + 1$
prove:	<i>r</i> ₁ =	= <i>r</i> ₂	(equal outputs)

22

Joint analysis of program versions P_1 and P_2

```
First construct a double program P
from the AST of P_1 and P_2
using edit distance algorithms
with dynamic programming
```

```
a = input(0,10);
b = input(0,10);
c = 1;
i=0;
while (i<a) {
    c=c+b;
    i=i+1;
}
r = c;
output(r);
```

22

Joint analysis of program versions P_1 and P_2

First construct a double program P

from the AST of P_1 and P_2 using edit distance algorithms with dynamic programming

```
a = input(0,10);
b = input(0,10);
c = 1;
i=0;
while (i<a) {
    c=c+b;
    i=i+1;
}
r = c;
output(r);
```

```
a = input(0,10);
b = input(0,10);
c = 1 || 0;
i=0;
while (i<a) {
    c=c+b;
    i=i+1;
}
r = c || c+1;
output(r);
```

```
a = input(0,10);
b = input(0,10);
c = 0;
i=0;
while (i<a) {
    c=c+b;
    i=i+1;
}
r = c+1;
output(r);
```

AIRBUS

Fi

22

Joint analysis of program versions P_1 and P_2

rst constru	ct a double program P
from	the AST of P_1 and P_2
using	edit distance algorithms
with	dynamic programming

Left version: $P_1 = \pi_1(P)$ $\pi_1(s_1 \parallel s_2) \triangleq s_1$ $\pi_1(c = 1 \parallel 0) = c = 1$ $\pi_1(r = c \parallel c+1) = r = c$

```
a = input(0,10);
b = input(0,10);
c = 1;
i=0;
while (i<a) {
    c=c+b;
    i=i+1;
}
r = c;
output(r);
```

```
a = input(0,10);
b = input(0,10);
c = 1 || 0;
i=0;
while (i<a) {
    c=c+b;
    i=i+1;
}
r = c || c+1;
output(r);
```


F

Joint analysis of program versions P_1 and P_2

i rst constru	ct a double program P
from	the AST of P_1 and P_2
using	edit distance algorithms
with	dynamic programming

Right version: $P_2 = \pi_2(P)$ $\pi_2(s_1 \parallel s_2) \triangleq s_2$ $\pi_2(c = 1 \parallel 0) = c = 0$ $\pi_2(r = c \parallel c+1) = r = c+1$

```
a = input(0,10);
b = input(0,10);
c = 1 || 0;
i=0;
while (i<a) {
    c=c+b;
    i=i+1;
}
r = c || c+1;
output(r);
```

AIRBUS

Joint analysis of program versions P_1 and P_2

First construct a double program P

from the AST of P_1 and P_2 using edit distance algorithms with dynamic programming

Then analyze the double program *P*

using double program semantics relating variables of P_1 and P_2 with less expressive invariants (linear)

· · · · · · · · · · · · · · · · · · ·	
b = input(0,10);	$oldsymbol{b_1}=oldsymbol{b_2}\in [0,10]$
$c = 1 \parallel 0;$	$c_1 = 1 \wedge c_2 = 0$
i=0;	
while (i <a) td="" {<=""><td>a – a + 1</td></a)>	a – a + 1
c=c+b;	$c_1 = c_2 + 1$
i=i+1;	
}	
r = c c+1;	$r_1 = r_2$
<pre>output(r);</pre>	
<pre>c = 1 0; i=0; while (i<a) {<br="">c=c+b; i=i+1; } r = c c+1; output(r);</a)></pre>	$c_1 = 1 \land c_2 = 0$ $c_1 = c_2 + 1$ $r_1 = r_2$

~

Concrete domain of simple programs

Simple programs P_1 and P_2 Simple states in $\mathcal{E} \triangleq \mathcal{V} \to \mathbb{Z}$ Semantics $\mathbb{S}[[s]] \in \mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})$

Concrete domain of simple programs

and double programs

Simple programs P_1 and P_2

Simple states in $\mathcal{E} \triangleq \mathcal{V} \to \mathbb{Z}$ Semantics $\mathbb{S}[\![s]\!] \in \mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})$ Double program P

Double states in $\mathcal{D} \triangleq \mathcal{E} \times \mathcal{E}$ Semantics $\mathbb{D}[\![s]\!] \in \mathcal{P}(\mathcal{D}) \rightarrow \mathcal{P}(\mathcal{D})$

Patch, input, output, assignment and bloc statements

Simple programs P_1 and P_2 Simple states in $\mathcal{E} \triangleq \mathcal{V} \to \mathbb{Z}$ Semantics $\mathbb{S}[\![s]\!] \in \mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})$ Double program P

Double states in $\mathcal{D} \triangleq \mathcal{E} \times \mathcal{E}$ Semantics $\mathbb{D}[\![s]\!] \in \mathcal{P}(\mathcal{D}) \to \mathcal{P}(\mathcal{D})$

$$\mathbb{D}[\![s_1 || s_2]\!] X \qquad \triangleq \bigcup_{(\rho_1, \rho_2) \in X} \{ (\rho'_1, \rho'_2) | \rho'_1 \in \mathbb{S}[\![s_1]\!] \{ \rho_1 \} \land \rho'_2 \in \mathbb{S}[\![s_2]\!] \{ \rho_2 \} \}$$

Patch, input, output, assignment and bloc statements

Simple programs P_1 and P_2 Simple states in $\mathcal{E} \triangleq \mathcal{V} \to \mathbb{Z}$ Semantics $\mathbb{S}[\![s]\!] \in \mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})$ Double program P

Double states in $\mathcal{D} \triangleq \mathcal{E} \times \mathcal{E}$ Semantics $\mathbb{D}[\![s]\!] \in \mathcal{P}(\mathcal{D}) \to \mathcal{P}(\mathcal{D})$

 $\mathbb{D}\llbracket s_1 \parallel s_2 \rrbracket X$ $\mathbb{D}\llbracket V \leftarrow e_1 \parallel e_2 \rrbracket$ $\mathbb{D}\llbracket V \leftarrow e \rrbracket$

 $\triangleq \bigcup_{(\rho_1,\rho_2)\in X} \{ (\rho'_1,\rho'_2) \mid \rho'_1 \in \mathbb{S}[[s_1]] \{ \rho_1 \} \land \rho'_2 \in \mathbb{S}[[s_2]] \{ \rho_2 \} \}$ $\triangleq \mathbb{D}[[V \leftarrow e_1 \parallel V \leftarrow e_2]]$ $\triangleq \mathbb{D}[[V \leftarrow e \parallel V \leftarrow e]]$

Patch, input, output, assignment and bloc statements

Simple programs P_1 and P_2 Simple states in $\mathcal{E} \triangleq \mathcal{V} \to \mathbb{Z}$ Semantics $\mathbb{S}[\![s]\!] \in \mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})$ Double program P

Double states in $\mathcal{D} \triangleq \mathcal{E} \times \mathcal{E}$ Semantics $\mathbb{D}[\![s]\!] \in \mathcal{P}(\mathcal{D}) \to \mathcal{P}(\mathcal{D})$

 $\mathbb{D}\llbracket s_1 \parallel s_2 \rrbracket X \qquad \triangleq \bigcup_{(\rho_1,\rho_2)\in X} \{ (\rho'_1,\rho'_2) \mid \rho'_1 \in \mathbb{S}\llbracket s_1 \rrbracket \{ \rho_1 \} \land \rho'_2 \in \mathbb{S}\llbracket s_2 \rrbracket \{ \rho_2 \} \}$ $\mathbb{D}\llbracket V \leftarrow e_1 \parallel e_2 \rrbracket \qquad \triangleq \mathbb{D}\llbracket V \leftarrow e_1 \parallel V \leftarrow e_2 \rrbracket$ $\mathbb{D}\llbracket V \leftarrow e \rrbracket \qquad \triangleq \mathbb{D}\llbracket V \leftarrow e \parallel V \leftarrow e \rrbracket$ $\mathbb{D}\llbracket V \leftarrow input(a,b) \rrbracket X \triangleq \{ (\rho_1[V \mapsto v], \rho_2[V \mapsto v]) \mid v \in [a,b] \land (\rho_1,\rho_2) \in X \}$ $\mathbb{D}\llbracket output(V) \rrbracket X \qquad \triangleq \{ (\rho_1,\rho_2) \in X \mid \rho_1(V) = \rho_2(V) \}$

Patch, input, output, assignment and bloc statements

Simple programs P_1 and P_2 Simple states in $\mathcal{E} \triangleq \mathcal{V} \to \mathbb{Z}$ Semantics $\mathbb{S}[\![s]\!] \in \mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})$ Double program P

Double states in $\mathcal{D} \triangleq \mathcal{E} \times \mathcal{E}$ Semantics $\mathbb{D}[\![s]\!] \in \mathcal{P}(\mathcal{D}) \to \mathcal{P}(\mathcal{D})$

 $\mathbb{D}\llbracket s_1 \parallel s_2 \rrbracket X \qquad \triangleq \bigcup_{(\rho_1,\rho_2)\in X} \{ (\rho'_1,\rho'_2) \mid \rho'_1 \in \mathbb{S}\llbracket s_1 \rrbracket \{ \rho_1 \} \land \rho'_2 \in \mathbb{S}\llbracket s_2 \rrbracket \{ \rho_2 \} \}$ $\mathbb{D}\llbracket V \leftarrow e_1 \parallel e_2 \rrbracket \qquad \triangleq \mathbb{D}\llbracket V \leftarrow e_1 \parallel V \leftarrow e_2 \rrbracket$ $\mathbb{D}\llbracket V \leftarrow e \rrbracket \qquad \triangleq \mathbb{D}\llbracket V \leftarrow e \parallel V \leftarrow e \rrbracket$ $\mathbb{D}\llbracket V \leftarrow input(a,b) \rrbracket X \triangleq \{ (\rho_1[V \mapsto v], \rho_2[V \mapsto v]) \mid v \in [a,b] \land (\rho_1,\rho_2) \in X \}$ $\mathbb{D}\llbracket output(V) \rrbracket X \qquad \triangleq \{ (\rho_1,\rho_2) \in X \mid \rho_1(V) = \rho_2(V) \}$

 $\mathbb{D}\llbracket s_1; s_2 \rrbracket \qquad \triangleq \mathbb{D}\llbracket s_2 \rrbracket \circ \mathbb{D}\llbracket s_1 \rrbracket$

Simple programs P_1 and P_2 Simple states in $\mathcal{E} \triangleq \mathcal{V} \to \mathbb{Z}$ Semantics $\mathbb{S}[\![s]\!] \in \mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})$ Conditions $\mathbb{C}[\![c]\!] \in \mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})$

Double program P

 $\begin{array}{l} \text{Double states in } \mathcal{D} \triangleq \mathcal{E} \times \mathcal{E} \\ \text{Semantics } \mathbb{D}\llbracket s \rrbracket \in \mathcal{P}(\mathcal{D}) \to \mathcal{P}(\mathcal{D}) \\ \text{Conditions } \mathbb{F}\llbracket c_1 \parallel c_2 \rrbracket \in \mathcal{P}(\mathcal{D}) \to \mathcal{P}(\mathcal{D}) \end{array}$

Simple programs P_1 and P_2 Simple states in $\mathcal{E} \triangleq \mathcal{V} \to \mathbb{Z}$ Semantics $\mathbb{S}[\![s]\!] \in \mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})$ Conditions $\mathbb{C}[\![c]\!] \in \mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})$

Double program P

Double states in $\mathcal{D} \triangleq \mathcal{E} \times \mathcal{E}$ Semantics $\mathbb{D}[\![s]\!] \in \mathcal{P}(\mathcal{D}) \rightarrow \mathcal{P}(\mathcal{D})$ Conditions $\mathbb{F}[\![c_1 \parallel c_2]\!] \in \mathcal{P}(\mathcal{D}) \rightarrow \mathcal{P}(\mathcal{D})$

 $\mathbb{F}\llbracket c_1 \parallel c_2 \rrbracket X \triangleq \{ (\rho_1, \rho_2) \in X \mid \mathbb{C}\llbracket c_1 \rrbracket \{ \rho_1 \} \neq \emptyset \neq \mathbb{C}\llbracket c_2 \rrbracket \{ \rho_2 \} \}$

Simple programs P_1 and P_2 DSimple states in $\mathcal{E} \triangleq \mathcal{V} \to \mathbb{Z}$ DSemantics $S[[s]] \in \mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})$ DConditions $\mathbb{C}[[c]] \in \mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})$

Double program P

Double states in $\mathcal{D} \triangleq \mathcal{E} \times \mathcal{E}$ Semantics $\mathbb{D}[\![s]\!] \in \mathcal{P}(\mathcal{D}) \to \mathcal{P}(\mathcal{D})$ Conditions $\mathbb{F}[\![c_1 \parallel c_2]\!] \in \mathcal{P}(\mathcal{D}) \to \mathcal{P}(\mathcal{D})$

 $\mathbb{F}\llbracket c_1 \parallel c_2 \rrbracket X \triangleq \{ (\rho_1, \rho_2) \in X \mid \mathbb{C}\llbracket c_1 \rrbracket \{ \rho_1 \} \neq \emptyset \neq \mathbb{C}\llbracket c_2 \rrbracket \{ \rho_2 \} \}$

LIP S AIRBUS

Simple programs P_1 and P_2 DoSimple states in $\mathcal{E} \triangleq \mathcal{V} \to \mathbb{Z}$ DoSemantics $S[[s]] \in \mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})$ DoConditions $\mathbb{C}[[c]] \in \mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})$ Do

Double program P

 $\begin{array}{l} \text{Double states in } \mathcal{D} \triangleq \mathcal{E} \times \mathcal{E} \\ \text{Semantics } \mathbb{D}[\![s]\!] \in \mathcal{P}(\mathcal{D}) \to \mathcal{P}(\mathcal{D}) \\ \text{Conditions } \mathbb{F}[\![c_1 \parallel c_2]\!] \in \mathcal{P}(\mathcal{D}) \to \mathcal{P}(\mathcal{D}) \end{array}$

 $\mathbb{F}\llbracket c_1 \parallel c_2 \rrbracket X \triangleq \{ (\rho_1, \rho_2) \in X \mid \mathbb{C}\llbracket c_1 \rrbracket \{ \rho_1 \} \neq \emptyset \neq \mathbb{C}\llbracket c_2 \rrbracket \{ \rho_2 \} \}$

$$\mathbb{D}\llbracket \text{if } c_1 \parallel c_2 \text{ then } s \text{ else } t \rrbracket \triangleq \mathbb{D}\llbracket s \rrbracket \qquad \circ \ \mathbb{F}\llbracket c_1 \parallel c_2 \rrbracket \\ \downarrow \qquad \mathbb{D}\llbracket t \rrbracket \qquad \circ \ \mathbb{F}\llbracket \neg c_1 \parallel \neg c_2 \rrbracket \\ \downarrow \qquad \mathbb{D}\llbracket \qquad \cdots \qquad \mathbb{I} \circ \ \mathbb{F}\llbracket c_1 \parallel \neg c_2 \rrbracket \\ \downarrow \qquad \mathbb{D}\llbracket \qquad \cdots \qquad \mathbb{I} \circ \ \mathbb{F}\llbracket c_1 \parallel \neg c_2 \rrbracket \\ \downarrow \qquad \mathbb{D}\llbracket \qquad \cdots \qquad \mathbb{I} \circ \ \mathbb{F}\llbracket \neg c_1 \parallel c_2 \rrbracket$$

LIP S AIRBUS

Simple programs P_1 and P_2 Image: Constraint of the second system of the second syst

Double program P

 $\begin{array}{l} \text{Double states in } \mathcal{D} \triangleq \mathcal{E} \times \mathcal{E} \\ \text{Semantics } \mathbb{D}[\![s \,]\!] \in \mathcal{P}(\mathcal{D}) \to \mathcal{P}(\mathcal{D}) \\ \text{Conditions } \mathbb{F}[\![c_1 \parallel c_2 \,]\!] \in \mathcal{P}(\mathcal{D}) \to \mathcal{P}(\mathcal{D}) \end{array}$

AIRBUS

 $\mathbb{F}\llbracket c_1 \parallel c_2 \rrbracket X \triangleq \{ (\rho_1, \rho_2) \in X \mid \mathbb{C}\llbracket c_1 \rrbracket \{ \rho_1 \} \neq \emptyset \neq \mathbb{C}\llbracket c_2 \rrbracket \{ \rho_2 \} \}$

$$\mathbb{D}\llbracket\operatorname{if} c_1 \parallel c_2 \operatorname{then} s \operatorname{else} t \rrbracket \triangleq \mathbb{D}\llbracket s \rrbracket \circ \mathbb{F}\llbracket c_1 \parallel c_2 \rrbracket$$
$$\stackrel{\circ}{\cup} \mathbb{D}\llbracket t \rrbracket \circ \mathbb{F}\llbracket \neg c_1 \parallel \neg c_2 \rrbracket$$
$$\stackrel{\circ}{\cup} \mathbb{D}\llbracket \pi_1(s) \parallel \pi_2(t) \rrbracket \circ \mathbb{F}\llbracket c_1 \parallel \neg c_2 \rrbracket$$
$$\stackrel{\circ}{\cup} \mathbb{D}\llbracket \pi_1(t) \parallel \pi_2(s) \rrbracket \circ \mathbb{F}\llbracket \neg c_1 \parallel c_2 \rrbracket$$

Lifting simple program semantics to double programs while $\ensuremath{\mathsf{statement}}$

~

Double program PDouble states in $\mathcal{D} \triangleq \mathcal{E} \times \mathcal{E}$

Semantics $\mathbb{D}[\![s]\!] \in \mathcal{P}(\mathcal{D}) \to \mathcal{P}(\mathcal{D})$ Conditions $\mathbb{F}[\![c_1 \parallel c_2]\!] \in \mathcal{P}(\mathcal{D}) \to \mathcal{P}(\mathcal{D})$

Lifting simple program semantics to double programs while $\ensuremath{\mathsf{statement}}$

Double program *P* Double states in $\mathcal{D} \triangleq \mathcal{E} \times \mathcal{E}$

Semantics $\mathbb{D}[\![s]\!] \in \mathcal{P}(\mathcal{D}) \to \mathcal{P}(\mathcal{D})$ Conditions $\mathbb{F}[\![c_1 \parallel c_2]\!] \in \mathcal{P}(\mathcal{D}) \to \mathcal{P}(\mathcal{D})$

 $\mathbb{D}\llbracket \text{ while } c_1 \parallel c_2 \text{ do } s \rrbracket X \triangleq \mathbb{F}\llbracket \neg c_1 \parallel \neg c_2 \rrbracket (\text{lfp } H^X)$

Lifting simple program semantics to double programs while $\ensuremath{\mathsf{statement}}$

Double program PDouble states in $\mathcal{D} \triangleq \mathcal{E} \times \mathcal{E}$ Semantics $\mathbb{D}[\![s]\!] \in \mathcal{P}(\mathcal{D}) \rightarrow \mathcal{P}(\mathcal{D})$ Conditions $\mathbb{F}[\![c_1 \parallel c_2]\!] \in \mathcal{P}(\mathcal{D}) \rightarrow \mathcal{P}(\mathcal{D})$

$$\mathbb{D}\llbracket \text{ while } c_1 \parallel c_2 \text{ do } s \rrbracket X \triangleq \mathbb{F}\llbracket \neg c_1 \parallel \neg c_2 \rrbracket (\text{lfp } H^X)$$

$$H^{X}(Y) \triangleq X \cup \begin{pmatrix} \mathbb{D}\llbracket s \rrbracket \circ \mathbb{F}\llbracket c_{1} \parallel c_{2} \rrbracket Y \cup \\ \mathbb{D}\llbracket \pi_{1}(s) \parallel \mathsf{skip} \rrbracket \circ \mathbb{F}\llbracket c_{1} \parallel \neg c_{2} \rrbracket Y \cup \\ \mathbb{D}\llbracket \mathsf{skip} \parallel \pi_{2}(s) \rrbracket \circ \mathbb{F}\llbracket \neg c_{1} \parallel c_{2} \rrbracket Y \end{pmatrix}$$

Construct a double program from a pair of program versions First merge identical statements

first \leftarrow **input**(0, 100); *last* \leftarrow **input**(0, 100); *break* \leftarrow false: $i \leftarrow 0$: while $(\neg break)$ { $x \leftarrow first + i \times 2$: if (last < x)**then** *break* \leftarrow true else $r \leftarrow x$; $i \leftarrow i + 1$ output(r)

first \leftarrow **input**(0, 100): *last* \leftarrow **input**(0, 100); *break* \leftarrow false: out \leftarrow (last < first): if $(\neg out)$ { $x \leftarrow first$: $i \leftarrow 1$: while $(\neg break)$ { $r \leftarrow x$: if (out) **then** $break \leftarrow true$ else { $x \leftarrow first + i \times 2$; out $\leftarrow (last < x)$; if (*out* $\land \neg$ *more*) then *break* \leftarrow true }: $i \leftarrow i + 1$ **output**(*r*) ~

IRBUS

Then align similar control structures

```
first \leftarrow input(0, 100);
                           last \leftarrow input(0, 100);
                           break \leftarrow false:
                                                 out \leftarrow (last < first);
                                                 if (\neg out) {
                                                    x \leftarrow first:
i \leftarrow 0:
                                                    i \leftarrow 1:
while (\neg break) {
                                                    while (\neg break) {
 x \leftarrow first + i \times 2:
                                                      r \leftarrow x;
  if (last < x)
                                                      if (out)
  then break \leftarrow true
                                                      then break \leftarrow true
                                                      else { x \leftarrow first + i \times 2; out \leftarrow (last < x);
  else r \leftarrow x;
                                                                if (out \land \neg more) then break \leftarrow true }:
  i \leftarrow i + 1
                                                      i \leftarrow i + 1
                          output(r)
```

Then align similar control structures

```
first \leftarrow input(0, 100);
                           last \leftarrow input(0, 100);
                           break \leftarrow false:
                           i \leftarrow 0; \parallel out \leftarrow (last < first);
                                                 if (\neg out) {
                                                    x \leftarrow first:
                                                    i \leftarrow 1:
while (\neg break) {
                                                    while (\neg break) {
 x \leftarrow first + i \times 2:
                                                       r \leftarrow x:
 if (last < x)
                                                       if (out)
 then break \leftarrow true
                                                       then break \leftarrow true
                                                       else { x \leftarrow first + i \times 2; out \leftarrow (last < x);
 else r \leftarrow x;
                                                                 if (out \land \neg more) then break \leftarrow true };
 i \leftarrow i + 1
                                                       i \leftarrow i + 1
                           output(r)
```

Then align similar control structures

using simple program transformations

```
first \leftarrow input(0, 100);
                               last \leftarrow input(0, 100);
                               break \leftarrow false:
                              i \leftarrow 0; \parallel out \leftarrow (last < first);
if (true) {
                                                    if (\neg out) {
                                                        x \leftarrow first:
                                                        i \leftarrow 1:
   while (\neg break) {
                                                        while (\neg break) {
     x \leftarrow first + i \times 2:
                                                          r \leftarrow x:
     if (last < x)
                                                          if (out)
     then break \leftarrow true
                                                          then break \leftarrow true
                                                          else { x \leftarrow first + i \times 2; out \leftarrow (last < x);
     else r \leftarrow x;
                                                                    if (out \land \neg more) then break \leftarrow true };
                                                          i \leftarrow i + 1
     i \leftarrow i + 1
                              output(r)
```

The double program obtained allows for successful patch analysis with linear invariants

```
first \leftarrow input(0, 100);
last \leftarrow input(0, 100);
break \leftarrow false:
i \leftarrow 0 \quad \parallel out \leftarrow (last < first);
if (true \parallel \neg out) {
   skip \begin{vmatrix} x \leftarrow first; \\ i \leftarrow 1; \end{vmatrix}
    while (\neg break) {
        x \leftarrow first + i \times 2 \parallel r \leftarrow x:
        if (last < x \parallel out)
         then break \leftarrow true
        else r \leftarrow x \| x \leftarrow first + i \times 2; out \leftarrow (last < x);
if (out \land \neg more) then break \leftarrow true
         i \leftarrow i + 1
output(r)
```

30

Introduction

2 Patch analysis for numerical programs

3 Patch analysis for C and structure layout portability

~

4 Endian portability analysis for C programs

5 Conclusion

Low-level C programs

```
struct { u16 a; u16 b; } s;
s.b = input(0,1000);
u8 *p = (u8 *) &s + 1;
p += sizeof(u16);
output(*p);
```

-

Low-level C programs

```
struct { u16 a; u16 b; } s;
s.b = input(0,1000);
u8 *p = (u8 *) &s + 1;
p += sizeof(u16);
output(*p);
```


Low-level C programs Patching a C data structure

```
struct { u16 a; u16 b; } s;
s.b = input(0,1000);
u8 *p = (u8 *) &s + 1;
p += sizeof(u16);
```

```
Removing unused field a
```

```
struct { u16 a; u16 b; } s;
```

```
s.b = input(0,1000);
```

```
u8 *p = (u8 *) &s + 1;
```

```
p += sizeof(u16);
```

```
output(*p);
```

~

output(*p);
```
struct { u16 a; u16 b; } s;
s.b = input(0,1000); •
u8 *p = (u8 *) &s + 1;
p += sizeof(u16);
output(*p);
```

```
Removing unused field a
```

s.b = input(0,1000); •

```
u8 *p = (u8 *) &s + 1;
```

```
p += sizeof(u16);
```

```
output(*p);
```


32

```
struct { u16 a; u16 b; } s;
s.b = input(0,1000);
u8 *p = (u8 *) &s + 1;
p += sizeof(u16);
output(*p);
```


р

AIRBUS

 S_2

0

~

Removing unused field a


```
struct { u16 a; u16 b; } s;
```

```
s.b = input(0,1000);
```

```
u8 *p = (u8 *) &s + 1;
```

```
p += sizeof(u16); •
```

output(*p);

32

р

AIRBUS

```
struct { u16 a; u16 b; } s;
```

1

 S_2

```
s.b = input(0,1000);
```

```
u8 *p = (u8 *) &s + 1;
```

p += sizeof(u16); •

output(*p);

0


```
struct { u16 a; u16 b; } s;
```

```
s.b = input(0,1000);
```

u8 *p = (u8 *) &s + 1;

p += sizeof(u16); •

output(*p);

s.b = input(0,1000);

u8 *p = (u8 *) &s + 1;

p += sizeof(u16);

output(*p);

 s_1


```
struct { u16 a; u16 b; } s;
```

```
s.b = input(0,1000);
```

```
u8 *p = (u8 *) &s + 1;
```

```
p += sizeof(u16);
```

output(*p); •

 s_1

Removing unused field a

```
struct { u16 a; u16 b; } s;
```

```
s.b = input(0,1000);
```

```
u8 *p = (u8 *) &s + 1;
```

p += sizeof(u16);

output(*p); •

Low-level C programs The Cell memory model

```
struct { u16 a; u16 b; } s;
s.b = input(0,1000);
u8 *p = (u8 *) &s + 1;
p += sizeof(u16);
output(*p);
```


-

Low-level C programs

The Cell memory model

```
struct { u16 a; u16 b; } s;
s.b = input(0, 1000);
u8 *p = (u8 *) \&s + 1;
p += sizeof(u16);
output(*p);
                           р
```

Memory model		
 Concrete level 		
the program holds values f	or indiv	idual bytes
 Low-level C programs 		
multi-byte access to memory	$\} \Rightarrow$	need for scalar cells
humerical invariants)	
abuse unions and pointers	$\} \Rightarrow$	cells may overlap

-

p ↓ s.b

Low-level C programs

The Cell memory model

struct { u16 a; u16 b; } s;	M
s.b = input(0,1000);	
u8 *p = (u8 *) &s + 1;	
<pre>p += sizeof(u16);</pre>	
<pre>output(*p);</pre>	

Memory model		
Concrete level		
the program holds values f	or indiv	idual bytes
• Low-level C programs multi-byte access to memory numerical invariants byte-level access to encoding abuse unions and pointers	$\Big\} \Rightarrow \\ \Big\} \Rightarrow$	need for scalar cells cells may overlap

The Cells abstract domainMiné [2006a, 2013]• Memory as a dynamic collection of cells- synthetic scalar variables $\langle V, o, \tau \rangle \in Cell \subseteq \mathcal{V} \times \mathbb{N} \times scalar$ -type- holding values for memory dereferences discovered during analysis• Analysis with numerical domain(1 dimension / cell)

Low-level C programs The Cell memory model

The Cells abstract domain	Miné [2006a, 2013]	
 Memory as a dynamic collection of cells 		
- synthetic scalar variables $\langle V, o, \tau \rangle \in Cel$ - holding values for memory dereferences	$I \subseteq \mathcal{V} imes \mathbb{N} imes scalar-type$ discovered during analysis	
• Analysis with numerical domain	(1 dimension / cell)	

Low-level C programs

The Cell memory model

 $byte(n,k) = \lfloor n/2^{8k} \rfloor \mod 2^8$

 Memory as a dynamic collection of cells synthetic scalar variables ⟨V, o, τ⟩ ∈ Cell ⊆ V × ℕ × scalar-type holding values for memory dereferences discovered during analysis Analysis with numerical domain (1 dimension / cell) 	e Cells abstract domain	Miné [2006a, 2013]
 synthetic scalar variables ⟨V, o, τ⟩ ∈ Cell ⊆ V × N × scalar-type holding values for memory dereferences discovered during analysis Analysis with numerical domain (1 dimension / cell 	Memory as a dynamic collection	of cells
Analysis with numerical domain (1 dimension / cell	 synthetic scalar variables (V, o, holding values for memory deretation 	$\langle \tau \rangle \in \mathcal{C}ell \subseteq \mathcal{V} \times \mathbb{N} \times scalar-type$
	• Analysis with numerical domain	(1 dimension / cell)

Patch analysis for low-level C programs Lifting the Cell memory model

```
struct { u16 a; u16 b; } s; ||
struct { u16 b; } s;
s.b = input(0,1000);
u8 *p = (u8 *) &s + 1;
p+=sizeof(u16) || skip;
output(*p);
```


Patch analysis for low-level C programs Lifting the Cell memory model

```
struct { u16 a; u16 b; } s; ||
struct { u16 b; } s;
s.b = input(0,1000);
u8 *p = (u8 *) &s + 1;
p+=sizeof(u16) || skip;
output(*p);
```


AIRBUS

Patch analysis for low-level C programs Lifting the Cell memory model

```
struct { u16 a; u16 b; } s; ||
struct { u16 b; } s;
s.b = input(0,1000);
u8 *p = (u8 *) &s + 1;
p+=sizeof(u16) || skip;
output(*p);
```


s.b = input(0, 1000);u8 *p = (u8 *) &s + 1;p+=sizeof(u16) || skip; output(*p); C1 c'_1

 s_1

Patch analysis for low-level C programs

struct { u16 a; u16 b; } s; ||

u16 b; } s;

Lifting the Cell memory model

struct {

$$byte(n,k) = \lfloor n/2^{8k} \rfloor \mod 2^8$$

Program invariants and cell constraints

$$c_1 = c_2 \in [0, 1000]$$

 $c'_1 = byte(c_1, 1)$
 $c'_2 = byte(c_2, 1)$
 $c'_1 \stackrel{?}{=} c'_2$

 S_2

Optimizing the memory model for the common case

Optimizing the memory model for the common case

 \implies

Complex invariants

expressive numerical domain?

• Program invariants and cell constraints

$$\begin{array}{c} c_1' = \lfloor c_1/2^8 \rfloor \mod 2^8 \\ c_2' = \lfloor c_2/2^8 \rfloor \mod 2^8 \end{array} \right\} \land \quad c_1 = c_2 \implies \quad c_1' = c_2'$$

• <u>Common case</u>: most multi-byte cells hold **equal values** in the memories of P_1 and P_2

Sharing cells in the memory environment

- Single representation for two cells
 - from different program versions
 - holding equal values

• A bi-cell is

either a single cell

or a pair of cells holding equal values

$$\mathcal{B}icell \triangleq \widetilde{Cell} \cup (\widetilde{Cell} \times \widetilde{Cell})$$
$$\widetilde{Cell} \triangleq Cell_1 \uplus Cell$$

(shared bi-cell

35

Patch analysis for low-level C programs

```
struct { u16 a; u16 b; } s; ||
struct { u16 b; } s;
s.b = input(0,1000);
u8 *p = (u8 *) &s + 1;
p+=sizeof(u16) || skip;
output(*p);
```


 s_2

Patch analysis for low-level C programs $\ensuremath{\mathsf{From cells}}\xspace$ to bi-cells

```
struct { u16 a; u16 b; } s; ||
struct { u16 b; } s;
s.b = input(0,1000);
u8 *p = (u8 *) &s + 1;
p+=sizeof(u16) || skip;
```

output(*p);

Patch analysis for low-level C programs From cells to bi-cells

```
struct { u16 a; u16 b; } s; ||
struct { u16 b; } s;
s.b = input(0,1000); •
u8 *p = (u8 *) &s + 1;
p+=sizeof(u16) || skip;
output(*p);
```


Program invariants and bi-cell constraints $c_1 \stackrel{?}{=} c_2$

Patch analysis for low-level C programs ${\sf From\ cells\ to\ bi-cells\ }$

```
struct { u16 a; u16 b; } s; ||
struct { u16 b; } s;
s.b = input(0,1000); •
u8 *p = (u8 *) &s + 1;
p+=sizeof(u16) || skip;
output(*p);
```

Program invariants and bi-cell constraints $\langle c_1, c_2 angle \in [0, 1000]$

Patch analysis for low-level C programs $\ensuremath{\mathsf{From cells}}\xspace$ to bi-cells

```
struct { u16 a; u16 b; } s; ||
struct { u16 b; } s;
s.b = input(0,1000);
u8 *p = (u8 *) &s + 1;
p+=sizeof(u16) || skip;
output(*p); •
```


S1

Program invariants and bi-cell constraints $\langle c_1, c_2 \rangle \in [0, 1000]$ $c'_1 \stackrel{?}{=} c'_2$

Patch analysis for low-level C programs $\ensuremath{\mathsf{From cells}}\xspace$ to bi-cells

```
struct { u16 a; u16 b; } s; ||
struct { u16 b; } s;
s.b = input(0,1000);
u8 *p = (u8 *) &s + 1;
p+=sizeof(u16) || skip;
output(*p); •
```

	$ \begin{array}{ c } \hline \langle c_1, c_2 \rangle \\ \hline \\ \hline \\ c_1' \\ c_2' \end{array} $	s2
--	---	----

S1

Program invariants and bi-cell constraints $\langle c_1, c_2
angle \in [0, 1000]$ $c_1' \stackrel{?}{=} c_2'$

Patch analysis for low-level C programs From cells to bi-cells

```
struct { u16 a; u16 b; } s; ||
struct { u16 b; } s;
s.b = input(0,1000);
u8 *p = (u8 *) &s + 1;
p+=sizeof(u16) || skip;
output(*p); •
```


 s_1

Program ir	ivariants	and	bi-cell	constraints
$\langle \mathit{c}_1, \mathit{c}_2 angle \in$	[0, 1000)]		
$c_1'\stackrel{?}{=}c_2'$				

Shared bi-cell synthesis	
$\exists \langle c_1', c_2' angle$? X	

u8 *p = (u8 *) &s + 1;p+=sizeof(u16) || skip; output(*p); • $\langle c_1, c_2 \rangle$ S_2 c_1' c'_2 S1

Shared bi-cell synthesis $\exists \langle c_1', c_2' \rangle$? X $\forall \rho : \rho(c_1') = \rho(c_2')$? **\$** > polyhedra $c'_{1} = byte(c_{1}, 1)$ $c_2^{\prime} = byte(c_2, 1)$

~

Program invariants and bi-cell constraints

$$\langle c_1, c_2 \rangle \in [0, 1000]$$

 $c'_1 \stackrel{?}{=} c'_2$

struct { u16 a; u16 b; } s; || struct { u16 b: } s:

s.b = input(0, 1000);

Patch analysis for low-level C programs

From cells to bi-cells

$$byte(n,k) = \lfloor n/2^{8k} \rfloor \mod 2^8$$

Patch analysis for low-level C programs From cells to bi-cells

```
struct { u16 a; u16 b; } s; ||
struct { u16 b; } s;
s.b = input(0,1000);
u8 *p = (u8 *) &s + 1;
p+=sizeof(u16) || skip;
output(*p); •
```


~	
5	-1
~	-1
	-

Program invariants and bi-cell constraint	s
$\langle c_1,c_2 angle\in~[0,1000]$	
$c_1' \stackrel{?}{=} c_2'$	

Shared bi-cell synthesis			ı.
$\exists \langle c_1', c_2' angle$? 🗡		
$orall ho: ho(c_1')= ho(c_2')$? \$	> polyhedra	
$\exists (x_1, x_2, o) : x_1 = x_2 \land c'_i \text{ at offset } o \text{ inside } x_i$	}? ✓	$\begin{cases} x_i = c_i \\ o = 1 \end{cases}$	JS

X

Patch analysis for low-level C programs $\ensuremath{\mathsf{From cells}}\xspace$ to bi-cells

```
struct { u16 a; u16 b; } s; ||
struct { u16 b; } s;
s.b = input(0,1000);
u8 *p = (u8 *) &s + 1;
p+=sizeof(u16) || skip;
output(*p); •
```


S1

Program invariants and bi-cell constraints

 $\langle c_1, c_2
angle \in [0, 1000]$

Shared bi-cell synthesis

~

 $\langle c_1^\prime, c_2^\prime \rangle$ synthesized by pattern-matching

36

s.b = input(0, 1000);u8 *p = (u8 *) &s + 1;p+=sizeof(u16) || skip; output(*p); • $\langle c_1, c_2 \rangle$ S_2 $\langle c'_1, c'_2 \rangle$

S1

```
struct { u16 a; u16 b; } s; ||
struct { u16 b; } s;
s b = input(0, 1000);
```

~

 $\begin{array}{l} \mbox{Program invariants and bi-cell constraints}\\ \langle c_1,c_2\rangle\in & [0,1000]\\ \langle c_1',c_2'\rangle= & byte(\langle c_1,c_2\rangle,1) \end{array}$

 $byte(n, k) = \lfloor n/2^{8k} \rfloor \mod 2^8$

Shared bi-cell synthesis

From cells to bi-cells

Implementation

on top of MOPSA

$\operatorname{MOPSA}\nolimits$ platform

- Modular development
- Precise static analyses
- Multiple languages
- Multiple properties

Prototype abstract interpreter

≈ 6,700 lines of OCaml source code
 50% bi-cell based memory abstraction
 33% double program construction
 17% double program iterators and utilities

The MOPSA leverage effect

~

- $\simeq\,$ 50,000 lines of $\rm Mopsa$ leveraged
 - 38% parsers and utilities
 - 27% common framework
 - iterators and numeric domains
 - 24% specific for the C language
 - 11% generic for of all languages

US

Implementation Analysis of C programs with cells

A Reduced product

× Cartesian product

~

Composition

OUniversal

C specific

ODouble C

Implementation Analysis of C programs with cells

AIRBUS

(;

(;

3

9

Implementation

Analysis of C $\ensuremath{\text{patches}}$ with $\ensuremath{\text{cells}}$

Reduced product

× Cartesian product

• Composition

 \bigcirc Universal

C specific

ODuble C

Implementation

Analysis of C patches with bi-cells

Sequence

X

Reduced product

Composition

OUniversal

OC specific

ODouble C

) Cartesian product

Related works

Semantic patch analysis

Related work	Tool	Characteristics	Our approach
Symbolic execution	ModDiff	Full path enumeration	Approximate fixpoint computation
Deductive methods Godlin and Strichman [2009] Lahiri et al. [2012] and Klebanov et al. [2018]	RVT SymDiff Rêve	SMT solvers	Abstract domains
Abstract interpretation Partush and Yahav [2013] Partush and Yahav [2014]	Dizy Score	Program transformation \rightarrow correlating program speculative correlation	Concrete collecting semantics for double programs double program construction

1

Evaluation

Synthetic or simplified benchmarks from the related works

	Benchmark	LOC	#P	Related	Cell b	ased	abstraction	ı	Bi-cell based abstraction					
				time	polyhec	lra	octagoi	n	polyhed	lra	octago	n	interval	
DIFF	Comp	13	2	539 ms	48 ms	1		×	107 ms	1	209 ms	1		×
	Const	9	3	541 ms	28 ms	1		×	38 ms	1	49 ms	1	25 ms	×
	Fig. 2	14	1	-	31 ms	1	39 ms	1	40 ms	1	47 ms	1		1
OD	LoopMult	14	2	49 s	166 ms	1		×	367 ms	1		×		×
\geq	LoopSub	15	2	1.2 s	60 ms	1		×	74 ms	1		×		×
	UnchLoop	13	2	$2.8 s^1$	69 ms	1		×	71 ms	1		×		×
	loop	11	3	50 ms	43 ms	1		×	52 ms	1		×		×
	while-if	11	3	80 ms	66 ms	1	156 ms	1	66 ms	1	97 ms	1		×
VE	digits10	24	19	1.12 s	312 ms	1		×	207 ms	1	313 ms	1	47 ms	1
Rê	barthe	13	2	120 ms	93 ms	1		×	69 ms	1		×		×
	barthe2	11	2	150 ms	81 ms	1		×	79 ms	1		×		×
ZY	sign	12	2	_	29 ms	1		×	33 ms	1		×		×
DI	sum	14	4	4 s	71 ms	1		×	162 ms	1	349 ms	1		X
ORE/	copy ²	37	1	2 s	132 ms	1	373 ms	1	156 ms	1	189 ms	1	30 ms	1
	seq ²	41	13	11 s	293 ms	1		×	326 ms	1		×		×
$\widetilde{\mathbf{S}}$	pr ²	111	8	1149 s	2.686 s	1	11.672 s	1	4.410 s	1	3.487 s	1	87 ms	1

⁴⁰ ¹only 5 loop iterations

² Coreutils (simplified <u>code</u>)

Evaluation

Real patches from Coreutils and Linux

	Bench.	LOC	#P	Cell bas	Cell based abstraction					Bi-cell based abstraction					
				polyhedra		octagon		polyhedr	polyhedra		octagon		interval		
s	сору	95	1	157 ms	 Image: A second s	482 ms	 Image: A second s	113 ms	1	156 ms	 Image: A second s	41 ms	1		
uti	seq	46	16	570 ms	1		×	442 ms	1		×		×		
Ore	pr	114	8	1.421 s	1	6.469 s	1	4.642 s	1	3.723 s	✓	88 ms	1		
0	test	352	10	9.188 s	1		×	440 ms	1	1.163 s	1	96 ms	1		
	kvm	248	1/11	2.707 s	1	4.214 s	1	1.426 s	1	1.568 s	1	96 ms	1		
	sched	194	7/12	65 ms	1		×	63 ms	1	104 ms	1	38 ms	1		
Linux	dma	270	5/23	285 ms	1	1.235 s	1	216 ms	1	584 ms	1	76 ms	1		
	block	324	22/6	80 ms	1		×	67 ms	1	121 ms	1	31 ms	1		
	iucv	179	10/9	403 ms	1	1.757 s	1	7.721 s	1	14.423 s	1	426 ms	1		
	io_uring	1569	10/14	868.701 s	1		×	594.481 s	1	4170.295s	✓	288 ms	✓		

LIP S AIRBUS

~

⁴¹ ²simplified Coreutils benchmarks from SCORE/DIZY

Evaluation

Real patches from Coreutils and Linux

	Bench.	LOC	#P	Cell based abstraction				Bi-cell based abstraction					
				polyhedr	octago	n polyhedra			octagon	interval			
ils	сору	95	1	157 ms	1	482 ms	1	113 ms	1	156 ms	1	41 ms	~
	copy ²	37	1	132 ms	1	373 ms	1	156 ms	1	189 ms	1	30 ms	1
ut	seq	46	16	570 ms	1		×	442 ms	1		×		×
	seq ²	41	13	293 ms	1		×	326 ms	1		×		X
e	pr	114	8	1.421 s	1	6.469 s	1	4.642 s	1	3.723 s	1	88 ms	1
	pr ²	111	8	2.686 s	1	11.672 s	1	4.410 s	1	3.487 s	1	87 ms	1
ů	test	352	10	9.188 s	1		×	440 ms	1	1.163 s	1	96 ms	1
	kvm	248	1/11	2.707 s	1	4.214 s	1	1.426 s	1	1.568 s	1	96 ms	\checkmark
	sched	194	7/12	65 ms	✓		×	63 ms	1	104 ms	1	38 ms	1
Xnr	dma	270	5/23	285 ms	1	1.235 s	1	216 ms	1	584 ms	1	76 ms	1
Ľ.	block	324	22/6	80 ms	✓		×	67 ms	1	121 ms	1	31 ms	1
	iucv	179	10/9	403 ms	✓	1.757 s	1	7.721 s	1	14.423 s	1	426 ms	1
	io_uring	1569	10/14	868.701 s	1		X	594.481 s	1	4170.295s	1	288 ms	1

LIP S AIRBUS

~

 41 $^{2}\text{simplified}$ Coreutils benchmarks from $\mathrm{SCORE}/\mathrm{DIZY}$
Introduction

- 2 Patch analysis for numerical programs
- 3 Patch analysis for C and structure layout portability
- 4 Endian portability analysis for C programs

5 Conclusion

Endianness

No consensus

Representation of multi-byte scalar values in memory

- Little-endian systems
 - least-significant byte at lowest address
 - Intel processors
- Big-endian systems
 - least-significant byte at highest address
 - internet protocols, legacy or embedded processors

(e.g. SPARC, PowerPC)

Which bit should travel first? The bit from the big end or the bit from the little end? Can a war between Big Endians and Little Endians be avoided?

On Holy Wars and

Danny Cohen Information Sciences Institute

This article was written in an attempt to stop a war. I hone it is not too late for peace to prevail again. Many believe that the central question of this war is. What is the proper byte order in messages? More specifically, the question is. Which hit should travel first-the hit from the little end of the word or the bit from the big end of the

a Plea for Peace

Followers of the former approach are called Little Endians, or Lilliputians; followers of the latter are called Big Endians, or Blefuscuians, Lemploy these Swiftian terms because this modern conflict is so reminiscent of the boly war described in Gulliver's Travels.1

process performed on messages to allow them to be sent through communication media. If the unit of communication is a message, this question has no meaning. If the units are computer words, one must determine their size

determine the order of the elements of these words,

about bytes are meaningful but questions about the order of the elementary particles that constitute these bytes are not

(quarks?) of computation, the only meaningful question concerns the order in which the bits are sent. Most modern communication is based on a single stream of information the hit-stream Hence hits rather than bytes or words, are the units of information that are actually

Notes on Swift's Gulliver's Travels

Swift's hero. Gulliver, is shipwrecked and washed ashore on Lilliput, whose six-inch inhabitants are reuired by law to break their eggs only at the little ends eggs at the big ends are angered by the proclamation Big Endians, resulting in the Big Endians taking refuge on a nearby island, the kingdom of Blefuscu. The controversy is ethically and politically important for the Lilliputians. In fact, Swift has 11.000 Lilliputian rebels die over the eas question. The issue might seem silly but Swift is satirizing the actual causes of religious or

Swift's point is that the difference between breek incan eco at the little end and breaking it at the big end is trivial. He suggests that everyone do it in his pre-

Of course, we are making the opposite point. We agree that the difference between sending informasist that everyone must do it in the same way to avoid

IS

Endianness

No consensus

Representation of multi-byte scalar values in memory

- Little-endian systems
 - least-significant byte at lowest address
 - Intel processors
- Big-endian systems
 - least-significant byte at highest address
 - internet protocols, legacy or embedded processors

(e.g. SPARC, PowerPC)

RBUS

Endianness versus portability

Low-level C programs

- typically rely on assumptions on endianness.
- \Rightarrow **Porting** to platform with opposite endianness is **challenging**.

Big-endian version

u16 x, y; // or u32, or u64 read_from_network((u8 *)&x, sizeof(x));

y = x;

// read y

~

 $X_{\mathcal{B}}$

УB

Big-endian version

u16 x, y; // or u32, or u64
• read_from_network((u8 *)&x, sizeof(x));

y = x;

// read y

~

Хß

УB

Big-endian version

u16 x, y; // or u32, or u64 read_from_network((u8 *)&x, sizeof(x));

• y = x;

// read y

Big-endian version

u16 x, y; // or u32, or u64 read_from_network((u8 *)&x, sizeof(x));

y = x;

• // read y

Big-endian version

u16 x, y; // or u32, or u64 read_from_network((u8 *)&x, sizeof(x));

y = x;

// read y

~

AIRBUS

LIP S

Big-endian version on little-endian machine

u16 x, y; // or u32, or u64 read_from_network((u8 *)&x, sizeof(x));

y = x;

// read y

AIRBUS

LIP S

Big-endian version on little-endian machine

u16 x, y; // or u32, or u64 read_from_network((u8 *)&x, sizeof(x));

y = x;

// read y


```
u16 x, y; // or u32, or u64
read_from_network((u8 *)&x, sizeof(x));
```

```
u8 *px = (u8 *)&x, *py = (u8 *)&y;
for (int i=0; i<sizeof(x); i++) py[i] = px[sizeof(x)-i-1];
```

// read y

u16 x, y; // or u32, or u64
• read_from_network((u8 *)&x, sizeof(x));

```
u8 *px = (u8 *)&x, *py = (u8 *)&y;
for (int i=0; i<sizeof(x); i++) py[i] = px[sizeof(x)-i-1];
```

// read y

u16 x, y; // or u32, or u64 read_from_network((u8 *)&x, sizeof(x));

```
u8 *px = (u8 *)&x, *py = (u8 *)&y;
for (int i=0; i<sizeof(x); i++) py[i] = px[sizeof(x)-i-1];</pre>
```

```
// read y
```



```
u16 x, y; // or u32, or u64
read_from_network((u8 *)&x, sizeof(x));
```

```
u8 *px = (u8 *)&x, *py = (u8 *)&y;
of (int i=0; i<sizeof(x); i++) py[i] = px[sizeof(x)-i-1];</pre>
```

```
// read y
```



```
u16 x, y; // or u32, or u64
read_from_network((u8 *)&x, sizeof(x));
```

```
u8 *px = (u8 *)&x, *py = (u8 *)&y;
for (int i=0; i<sizeof(x); i++) py[i] = px[sizeof(x)-i-1];
```


u16 x, y; // or u32, or u64 read_from_network((u8 *)&x, sizeof(x));

```
u8 *px = (u8 *)&x, *py = (u8 *)&y;
for (int i=0; i<sizeof(x); i++) py[i] = px[sizeof(x)-i-1];
```

// read y

 $v_{C} = 1 + 0 \times 2^{8} = 1$

Both versions, with conditional inclusion

```
u16 x, y; // or u32, or u64
  read from network((u8 *)&x. sizeof(x)):
# if BYTE ORDER == LITTLE ENDIAN
  u8 *px = (u8 *)\&x, *py = (u8 *)\&y;
  for (int i=0; i<sizeof(x); i++) py[i] = px[sizeof(x)-i-1];
# else
  v = x;
# endif
// read y: v_{C} \stackrel{?}{=} v_{B}
               1
       0
                                  0
                                                    0
          XC.
                             VC.
                                                        XB
```

$$1 = 0 \times 2^8 + 1 = y_B$$

~

Ο

VB

LIP S AIRBUS

 $v_{\rm C} = 1 + 0 \times 2^8 = 1$

Both versions, with conditional inclusion

```
u16 x, y; // or u32, or u64
  read from network((u8 *)&x. sizeof(x)):
# if BYTE ORDER == LITTLE ENDIAN
  u8 *px = (u8 *)\&x, *py = (u8 *)\&y;
  for (int i=0; i<sizeof(x); i++) py[i] = px[sizeof(x)-i-1];
# else
  v = x;
# endif
// read y: v_{C} \stackrel{?}{=} v_{B}
               1
       0
                                  0
                                                    0
                                                                       Ο
          XC.
                             VC.
                                                        XB
```

$$1=0 imes 2^8+1=y_{\mathcal{B}}$$

~

VB

Both versions, with bitwise arithmetics

u16 x, y; // or u32, or u64
read_from_network((u8 *)&x, sizeof(x));
if __BYTE_ORDER == __LITTLE_ENDIAN
y = (((x >> 8) & Oxff) | ((x & Oxff) << 8)); // bitwise arithmetic</pre>

else

y = x; # endif

// read y: $y_{\mathcal{L}} \stackrel{?}{=} y_{\mathcal{B}}$

AIRBUS

Lip S

Endian portability analysis

Endian portability

A program is called **endian portable** if two **endian**-specific versions thereof

- compute equal outputs
- when run on equal inputs
- on their respective platforms.

Our approach

We present

a static analysis by abstract interpretation

AIRBUS

LP

- to infer the endian portability
- of large real-world low-level C programs.

Semantics of simple endian-aware low-level C programs

Parameterizing the semantics with endianness

Semantics of simple endian-aware low-level C programs

Parameterizing the semantics with endianness

46

Semantics

Lifting (endian-aware) simple program semantics to (endian-diverse) double programs

Simple programs P_{α} $\alpha \in \{ \mathcal{L}, \mathcal{B} \}$ Simple states in \mathcal{E}_{α} (environments over cells)Statements $\mathbb{S}_{\alpha} \llbracket s \rrbracket \in \mathcal{P}(\mathcal{E}_{\alpha}) \to \mathcal{P}(\mathcal{E}_{\alpha})$ Expressions $\mathbb{E}_{\alpha} \llbracket e \rrbracket \in \mathcal{E}_{\alpha} \to \mathcal{P}(\mathbb{V})$

Semantics

Lifting (endian-aware) simple program semantics to (endian-diverse) double programs

 $\alpha \in \{\mathcal{L}, \mathcal{B}\}$

Simple programs P_{α}

Simple states in \mathcal{E}_{α} (environments over cells) Statements $S_{\alpha}[\![s]\!] \in \mathcal{P}(\mathcal{E}_{\alpha}) \rightarrow \mathcal{P}(\mathcal{E}_{\alpha})$ Expressions $\mathbb{E}_{\alpha}[\![e]\!] \in \mathcal{E}_{\alpha} \rightarrow \mathcal{P}(\mathbb{V})$

Double program P

Double states in $\mathcal{D} \triangleq \mathcal{E}_{\mathcal{L}} \times \mathcal{E}_{\mathcal{B}}$ (w.l.o.g.) Statements $\mathbb{D}[\![s]\!] \in \mathcal{P}(\mathcal{D}) \rightarrow \mathcal{P}(\mathcal{D})$ Conditions $\mathbb{F}[\![c_{\mathcal{L}} \parallel c_{\mathcal{B}}]\!] \in \mathcal{P}(\mathcal{D}) \rightarrow \mathcal{P}(\mathcal{D})$

Semantics

Lifting (endian-aware) simple program semantics to (endian-diverse) double programs

Simple programs P_lpha $lpha \in \set{\mathcal{L}, \mathcal{B}}$	Double program P
Simple states in \mathcal{E}_{lpha} (environments over cells)	Double states in \mathcal{I}
${\sf Statements} \ {\mathbb S}_{\alpha}[\![{\pmb s}]\!] \in {\mathcal P}({\mathcal E}_{\alpha}) \to {\mathcal P}({\mathcal E}_{\alpha})$	Statements $\mathbb{D}[\![s]\!]$
$Expressions \ \mathbb{E}_{\alpha} \llbracket e \rrbracket \in \mathcal{E}_{\alpha} \to \mathcal{P}(\mathbb{V})$	Conditions $\mathbb{F}[\![c_{\mathcal{L}}$

Double states in $\mathcal{D} \triangleq \mathcal{E}_{\mathcal{L}} \times \mathcal{E}_{\mathcal{B}}$ (w.l.o.g.) Statements $\mathbb{D}[\![s]\!] \in \mathcal{P}(\mathcal{D}) \rightarrow \mathcal{P}(\mathcal{D})$ Conditions $\mathbb{F}[\![c_{\mathcal{L}} \parallel c_{\mathcal{B}}]\!] \in \mathcal{P}(\mathcal{D}) \rightarrow \mathcal{P}(\mathcal{D})$

AIRBUS

LP S

-

Transfer functions

 $\mathbb{D}[\![\mathbf{s}_{\mathcal{L}} || \mathbf{s}_{\mathcal{B}}]\!] X \qquad \triangleq \bigcup_{(\rho_{\mathcal{L}}, \rho_{\mathcal{B}}) \in X} (\mathbb{S}_{\mathcal{L}}[\![\mathbf{s}_{\mathcal{L}}]\!] \{\rho_{\mathcal{L}}\} \times \mathbb{S}_{\mathcal{B}}[\![\mathbf{s}_{\mathcal{B}}]\!] \{\rho_{\mathcal{B}}\})$

$$\mathbb{D}\llbracket \text{if } e_{\mathcal{L}} \bowtie 0 \parallel e_{\mathcal{B}} \bowtie 0 \text{ then } s \text{ else } t \rrbracket \triangleq \mathbb{D}\llbracket s \rrbracket \circ \mathbb{F}\llbracket e_{\mathcal{L}} \bowtie 0 \parallel e_{\mathcal{B}} \bowtie 0 \rrbracket \\ \dot{\cup} \mathbb{D}\llbracket t \rrbracket \circ \mathbb{F}\llbracket e_{\mathcal{L}} \bowtie 0 \parallel e_{\mathcal{B}} \bowtie 0 \rrbracket \\ \dot{\cup} \mathbb{D}\llbracket \pi_{\mathcal{L}}(s) \parallel \pi_{\mathcal{B}}(t) \rrbracket \circ \mathbb{F}\llbracket e_{\mathcal{L}} \bowtie 0 \parallel e_{\mathcal{B}} \bowtie 0 \rrbracket \\ \dot{\cup} \mathbb{D}\llbracket \pi_{\mathcal{L}}(t) \parallel \pi_{\mathcal{B}}(s) \rrbracket \circ \mathbb{F}\llbracket e_{\mathcal{L}} \bowtie 0 \parallel e_{\mathcal{B}} \bowtie 0 \rrbracket \\ \dot{\cup} \mathbb{D}\llbracket \pi_{\mathcal{L}}(t) \parallel \pi_{\mathcal{B}}(s) \rrbracket \circ \mathbb{F}\llbracket e_{\mathcal{L}} \bowtie 0 \parallel e_{\mathcal{B}} \bowtie 0 \rrbracket$$

```
u16 x, y;
  read from_network((u8 *)&x, sizeof(x));
# if BYTE ORDER == LITTLE ENDIAN
  ((u8 *)\&y)[0] = ((u8 *)\&x)[1];
  ((u8 *)\&y)[1] = ((u8 *)\&x)[0];
# else
  y = x;
# endif
  output(y); // y_{\mathcal{L}} \stackrel{?}{=} y_{\mathcal{B}}
          x
                               y
```

Invariants and cell constraints

х

Invariants and cell constraints

$$x^0_{\mathcal{L}} = x^0_{\mathcal{B}} \ \land \ x^1_{\mathcal{L}} = x^1_{\mathcal{B}}$$

AIRBUS

Invariants and cell constraints

$$x^0_{\mathcal{L}} = x^0_{\mathcal{B}} \ \land \ x^1_{\mathcal{L}} = x^1_{\mathcal{B}}$$

 $x_{\mathcal{L}}^{n} \triangleq \langle x, n, \mathbf{u8}, \mathcal{L} \rangle$

Invariants and cell constraints

$$x^0_{\mathcal{L}} = x^0_{\mathcal{B}} \ \land \ x^1_{\mathcal{L}} = x^1_{\mathcal{B}}$$

$$y_{\mathcal{L}}^{0} = x_{\mathcal{L}}^{1}$$
$$y_{\mathcal{L}}^{1} = x_{\mathcal{L}}^{0}$$

AIRBUS

Invariants and cell constraints

$$x_{\mathcal{L}}^0 = x_{\mathcal{B}}^0 \land x_{\mathcal{L}}^1 = x_{\mathcal{B}}^1$$

$$x_{\mathcal{B}}=2^8 imes x^0_{\mathcal{B}}+x^1_{\mathcal{B}}$$

 $y_{\mathcal{L}}^{0} = x_{\mathcal{L}}^{1}$ $y_{\mathcal{L}}^{1} = x_{\mathcal{L}}^{0}$

AIRBUS

Invariants and cell constraints

$$\begin{aligned} x_{\mathcal{L}}^{0} &= x_{\mathcal{B}}^{0} \wedge x_{\mathcal{L}}^{1} = x_{\mathcal{B}}^{1} \\ y_{\mathcal{L}}^{0} &= x_{\mathcal{L}}^{1} \\ y_{\mathcal{L}}^{0} &= x_{\mathcal{L}}^{0} \\ x_{\mathcal{B}} &= 2^{8} \times x_{\mathcal{B}}^{0} + x_{\mathcal{B}}^{1} \wedge y_{\mathcal{B}} = x_{\mathcal{B}} \end{aligned}$$

Invariants and cell constraints

$$\begin{aligned} x_{\mathcal{L}}^{0} &= x_{\mathcal{B}}^{0} \wedge x_{\mathcal{L}}^{1} = x_{\mathcal{B}}^{1} \\ y_{\mathcal{L}}^{0} &= x_{\mathcal{L}}^{1} \\ y_{\mathcal{L}}^{1} &= x_{\mathcal{L}}^{0} \\ x_{\mathcal{B}} &= 2^{8} \times x_{\mathcal{B}}^{0} + x_{\mathcal{B}}^{1} \wedge y_{\mathcal{B}} = x_{\mathcal{B}} \\ y_{\mathcal{L}} &= y_{\mathcal{L}}^{0} + 2^{8} \times y_{\mathcal{L}}^{1} \end{aligned}$$

Optimizing the memory model for the common case

Complex invariants

expressive numerical domain?

• Program invariants and cell constraints

$$\begin{array}{ll} \mathbf{x}_{\mathcal{L}}^{\mathbf{0}} = \mathbf{x}_{\mathcal{B}}^{\mathbf{0}} = y_{\mathcal{L}}^{1} & \mathbf{x}_{\mathcal{L}}^{\mathbf{1}} = \mathbf{x}_{\mathcal{B}}^{\mathbf{1}} = y_{\mathcal{L}}^{0} & y_{\mathcal{B}} = x_{\mathcal{B}} & \mathbf{y}_{\mathcal{L}} \stackrel{?}{=} \mathbf{y}_{\mathcal{B}} \\ x_{\mathcal{L}} = x_{\mathcal{L}}^{0} + 2^{8} x_{\mathcal{L}}^{1} & y_{\mathcal{L}} = y_{\mathcal{L}}^{0} + 2^{8} y_{\mathcal{L}}^{1} & x_{\mathcal{B}} = 2^{8} x_{\mathcal{B}}^{0} + x_{\mathcal{B}}^{1} & y_{\mathcal{B}} = 2^{8} y_{\mathcal{B}}^{0} + y_{\mathcal{B}}^{1} \end{array}$$

• Common case: most multi-byte cells hold equal values

in the little- and big-endian memories

Optimizing the memory model for the common case

Complex invariants

expressive numerical domain?

IRBUS

• Program invariants and cell constraints

$$\begin{array}{ll} \mathbf{x}_{\mathcal{L}}^{\mathbf{0}} = \mathbf{x}_{\mathcal{B}}^{\mathbf{0}} = y_{\mathcal{L}}^{1} & \mathbf{x}_{\mathcal{L}}^{\mathbf{1}} = \mathbf{x}_{\mathcal{B}}^{\mathbf{1}} = y_{\mathcal{L}}^{0} & y_{\mathcal{B}} = x_{\mathcal{B}} & \mathbf{y}_{\mathcal{L}} \stackrel{?}{=} \mathbf{y}_{\mathcal{B}} \\ x_{\mathcal{L}} = x_{\mathcal{L}}^{0} + 2^{8} x_{\mathcal{L}}^{1} & y_{\mathcal{L}} = y_{\mathcal{L}}^{0} + 2^{8} y_{\mathcal{L}}^{1} & x_{\mathcal{B}} = 2^{8} x_{\mathcal{B}}^{0} + x_{\mathcal{B}}^{1} & y_{\mathcal{B}} = 2^{8} y_{\mathcal{B}}^{0} + y_{\mathcal{B}}^{1} \end{array}$$

• <u>Common case</u>: most multi-byte cells hold **equal values** in the little- and big-endian memories

Analyzing the motivating example: from cells to bi-cells

```
u16 x, v;
   read from network((u8 *)&x, sizeof(x));
# if BYTE ORDER == LITTLE ENDIAN
    ((u8 *)&y)[0] = ((u8 *)&x)[1];
    ((u8 *)&v)[1] = ((u8 *)&x)[0];
# else
   v = x;
# endif
   output(v): \bullet // v_{C} \stackrel{?}{=} v_{B}
                                       y_{C}^{0}
                                                     y^1_L
       x_{\mathcal{L}}^0
                      x_{\mathcal{L}}^1
                                              УC
                x
                                               у
x_{\mathcal{L}}^{n} \triangleq \langle x, n, \mathbf{u8}, \mathcal{L} \rangle \qquad y_{\mathcal{L}} \triangleq \langle y, 0, \mathbf{u16}, \mathcal{L} \rangle
```

Invariants and cell constraints

$$x_{\mathcal{L}}^{0} = x_{\mathcal{B}}^{0} \land x_{\mathcal{L}}^{1} = x_{\mathcal{B}}^{1}$$
$$x_{\mathcal{L}}^{0} = x_{\mathcal{B}}^{1}$$

$$\begin{array}{l} y_{\mathcal{L}}^{0} = x_{\mathcal{L}}^{1} \\ y_{\mathcal{L}}^{1} = x_{\mathcal{L}}^{0} \end{array} \\ x_{\mathcal{B}} = 2^{8} \times x_{\mathcal{B}}^{0} + x_{\mathcal{B}}^{1} \wedge \ y_{\mathcal{B}} = x_{\mathcal{B}} \\ y_{\mathcal{L}} = y_{\mathcal{L}}^{0} + 2^{8} \times y_{\mathcal{L}}^{1} \end{array}$$

у

$$egin{aligned} y^0_{\mathcal{L}} &= \langle x^1_{\mathcal{L}}, x^1_{\mathcal{B}}
angle \ y^1_{\mathcal{L}} &= \langle x^0_{\mathcal{L}}, x^0_{\mathcal{B}}
angle \end{aligned}$$

$$y_{\mathcal{B}} = x_{\mathcal{B}} \wedge x_{\mathcal{B}} = \dots$$

$$\begin{array}{l} x_{\mathcal{L}}^{n} \triangleq \langle x, n, \mathbf{u8}, \mathcal{L}, \mathcal{L} \rangle \\ x_{\mathcal{B}}^{n} \triangleq \langle x, n, \mathbf{u8}, \mathcal{B}, \mathcal{B} \rangle \\ x_{\mathcal{B}} \triangleq \langle x, 0, \mathbf{u16}, \mathcal{B}, \mathcal{B} \rangle \\ y_{\mathcal{L}} \triangleq \langle y, 0, \mathbf{u16}, \mathcal{L}, \mathcal{L} \rangle \\ y_{\mathcal{B}} \triangleq \langle y, 0, \mathbf{u16}, \mathcal{B}, \mathcal{B} \rangle \end{array}$$

$$y_{\mathcal{B}} = x_{\mathcal{B}} \wedge x_{\mathcal{B}} = \dots$$

$$y_{\mathcal{L}}^{0} = \langle x_{\mathcal{L}}^{1}, x_{\mathcal{B}}^{1} \rangle$$
$$y_{\mathcal{L}}^{1} = \langle x_{\mathcal{L}}^{0}, x_{\mathcal{B}}^{0} \rangle$$

$$y_{\mathcal{B}} = x_{\mathcal{B}} \wedge x_{\mathcal{B}} = \dots$$

$$y_{\mathcal{L}}^{0} = \langle x_{\mathcal{L}}^{1}, x_{\mathcal{B}}^{1} \rangle$$
$$y_{\mathcal{L}}^{1} = \langle x_{\mathcal{L}}^{0}, x_{\mathcal{B}}^{0} \rangle$$

$$y_{\mathcal{B}} = x_{\mathcal{B}} \wedge x_{\mathcal{B}} = \dots$$

Shared bi-cell synthesis

$$\exists c : y_{\mathcal{L}} = c = y_{\mathcal{B}}? \quad x_{\mathcal{B}} \text{ candidate}$$

$$y_{\mathcal{L}} = x_{\mathcal{B}} ?$$

$$ip \quad \text{S AIRBUS}$$

$$y_{\mathcal{L}}^{0} = \langle x_{\mathcal{L}}^{1}, x_{\mathcal{B}}^{1} \rangle$$
$$y_{\mathcal{L}}^{1} = \langle x_{\mathcal{L}}^{0}, x_{\mathcal{B}}^{0} \rangle$$

$$y_{\mathcal{B}} = x_{\mathcal{B}} \wedge x_{\mathcal{B}} = \dots$$

Shared bi-cell synthes	sis
$\exists c: y_{\mathcal{L}} = c = y_{\mathcal{B}}?$	$x_{\mathcal{B}}$ candidate
$y_{\mathcal{L}} = x_{\mathcal{B}}$?	
$y_{\mathcal{L}}^0 = x_{\mathcal{B}}^1 ? \checkmark$	
$y_{\mathcal{L}}^{1} = x_{\mathcal{B}}^{0}?\checkmark$	
	LIP S AIRBUS

$$y_{\mathcal{L}}^{0} = \langle x_{\mathcal{L}}^{1}, x_{\mathcal{B}}^{1} \rangle$$
$$y_{\mathcal{L}}^{1} = \langle x_{\mathcal{L}}^{0}, x_{\mathcal{B}}^{0} \rangle$$

$$y_{\mathcal{B}} = x_{\mathcal{B}} \wedge x_{\mathcal{B}} = \dots$$

Shared bi-cell synthesis

$$\exists c : y_{\mathcal{L}} = c = y_{\mathcal{B}}? \quad x_{\mathcal{B}} \text{ candidate}$$

$$y_{\mathcal{L}} = x_{\mathcal{B}} ? \checkmark$$

$$egin{aligned} y^0_{\mathcal{L}} &= \langle x^1_{\mathcal{L}}, x^1_{\mathcal{B}}
angle \ y^1_{\mathcal{L}} &= \langle x^0_{\mathcal{L}}, x^0_{\mathcal{B}}
angle \end{aligned}$$

$$y_{\mathcal{B}} = x_{\mathcal{B}} \wedge x_{\mathcal{B}} = \dots$$

$$y_{\mathcal{B}} = x_{\mathcal{B}} \wedge x_{\mathcal{B}} = \dots$$

The bit-slice numerical domain

Motivating example

```
u16 x; u8 *p = (u8 *)\&x;
 u8 y = input(0,255);
# if BYTE ORDER == LITTLE ENDIAN
 x = y \mid 0xff00;
# else
  x = (y << 8) | 0xff;
# endif
  output(p[0]);
  output(p[1]);
```


Program invariants
$x_{\mathcal{L}} = \langle y_{\mathcal{L}}, y_{\mathcal{B}} angle + 65280$
$x_{\mathcal{B}} = 256 imes \langle y_{\mathcal{L}}, y_{\mathcal{B}} angle + 255$
$\begin{array}{c} x_{\mathcal{L}}^{0} \stackrel{?}{=} x_{\mathcal{B}}^{0} \\ x_{\mathcal{L}}^{1} \stackrel{?}{=} x_{\mathcal{B}}^{1} \end{array}$

Bi-cell constraints

$$\begin{array}{ll} \boldsymbol{x}_{\mathcal{L}}^{0} = byte(\boldsymbol{x}_{\mathcal{L}}, 0) & \boldsymbol{x}_{\mathcal{B}}^{0} = byte(\boldsymbol{x}_{\mathcal{B}}, 1) \\ \boldsymbol{x}_{\mathcal{L}}^{1} = byte(\boldsymbol{x}_{\mathcal{L}}, 1) & \boldsymbol{x}_{\mathcal{B}}^{1} = byte(\boldsymbol{x}_{\mathcal{L}}, 0) \end{array}$$

AIRBUS

The bit-slice numerical domain

Symbolic predicates (inspired by Miné [2006b], Miné [2012])

```
u16 x; u8 *p = (u8 *)&x;
u8 y = input(0,255);
# if __BYTE_ORDER == __LITTLE_ENDIAN
x = y | 0xff00;
# else
x = (y << 8) | 0xff;
# endif
output(p[0]);
output(p[1]);
```


Program invariants				
$byte(x_{\mathcal{L}}, 0) = \langle y_{\mathcal{L}}, y_{\mathcal{B}} \rangle$	$byte(x_{\mathcal{L}},1) = 255$			
$byte(x_{\mathcal{B}}, 0) = 255$	$byte(x_{\mathcal{B}},1) = \langle y_{\mathcal{L}}, y_{\mathcal{B}} \rangle$			
$egin{array}{lll} x_{\mathcal{L}}^{0} &= x_{\mathcal{B}}^{0} \ x_{\mathcal{L}}^{1} &= x_{\mathcal{B}}^{1} \end{array}$				

Bi-cell constraints

$$\begin{array}{ll} \mathbf{x}_{\mathcal{L}}^{\mathbf{0}} = byte(x_{\mathcal{L}}, \mathbf{0}) & \mathbf{x}_{\mathcal{B}}^{\mathbf{0}} = byte(x_{\mathcal{B}}, \mathbf{1}) \\ \mathbf{x}_{\mathcal{L}}^{\mathbf{1}} = byte(x_{\mathcal{L}}, \mathbf{1}) & \mathbf{x}_{\mathcal{B}}^{\mathbf{1}} = byte(x_{\mathcal{L}}, \mathbf{0}) \end{array}$$

Extensions of prototype abstract interpreter

Compared to the previous version (6,700 lines of OCaml)

300 lines updated in the bi-cell memory domain

1,000 lines added for the bit-slice predicate domain

(8%)

Implementation

Patch analysis (bi-cells)

Endian portability analysis (bi-cells and bit-slices)

ŝ

X

Benchmarks

Origin	Name	LOC	Time	Revision	Result
Open Source	GENEVE	218	1 s	2014-1	Å
				2014-2	 Image: A second s
				2016	R
				2017	 Image: A second s
	MLX5	125	155 ms	2017	R
				2020-1	R
				2020-2	 Image: A second s
	Squashfs	110	150 ms	2020-1	Ť
				2020-2	 Image: A second s
Industrial	Module S	300 K	9.7 h	2020	 Image: A start of the start of
	Module A 1 M	1 14	20.4 h	2020	Ť
		TIVI		2021	 Image: A set of the set of the

Disclaimer:

• Modules A and S are part of an early prototype, not in production yet.

ЦР '

AIRBUS

~

• All findings have been incorporated into the development cycle.

Introduction

- 2 Patch analysis for numerical programs
- 8 Patch analysis for C and structure layout portability
- 4 Endian portability analysis for C programs

Contributions

Double program semantics

- concrete semantics for two versions
- joint analysis by induction on syntax
- double program construction algorithm
- support for unbounded input streams

Bi-cell memory domain

- symbolic relations between memories
- scalable patch analyses
- scalable portability analyses

Numerical domains

- bit-slice domain
- Delta domain
- near-linear cost

Implementation and experimentation

- $\bullet\,$ prototype analyzer on $\rm Mopsa\,$
- small slices of open source software
- large real-world avionics software

Future work

Industrialization

- endian portability for simulation
- non regression for product-lines

Portability analysis

- 32-bit versus 64-bit
- different 64-bit data models
- porting from x86 or PowerPC to ARM
- changes in OS data types
- Year 2038 problem
- different ranges of inputs (Ariane 5.01)

Semantic differencing

- characterize semantic differences
- infer a semantic distance
- evaluate the cost of a patch
- infer an "improvement" property

Hyperproperties and information flow

- 2-safety properties
- prove secrecy and noninterference
- experiment on more complex programs

AIRBUS

Summary

Topics

- patch analysis
- structure layout portability analysis
- endian portability analysis

Contributions

- Double program semantics
- Bi-cell memory domain
- Numerical domains
- Implementation and experimentation

Future work

- Industrialization
- Portability analysis
- Semantic differencing
- Hyperproperties and information flow

IRBUS

Thank you for your attention

Questions?

Backup slides

- References P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival. Static analysis and verification of aerospace software by abstract interpretation. In *AIAA Infotech@Aerospace*, number 2010-3385, pages 1–38. AIAA, Apr. 2010.
 - P. Cousot and R. Cousot. A gentle introduction to formal verification of computer systems by abstract interpretation, pages 1–29. NATO Science Series III: Computer and Systems Sciences. IOS Press, 2010.
 - B. Godlin and O. Strichman. Regression verification. In *Proceedings of DAC '09*, pages 466–471, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-497-3.
 - V. Klebanov, P. Rümmer, and M. Ulbrich. Automating regression verification of pointer programs by predicate abstraction. *Formal Methods in System Design*, 52(3):229–259, June 2018. ISSN 1572-8102. doi: 10.1007/s10703-017-0293-8.
 - S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo. Symdiff: A language-agnostic semantic diff tool for imperative programs. In *CAV*, pages 712–717, 2012. ISBN 978-3-642-31424-7.
 - A. Miné. Field-sensitive value analysis of embedded C programs with union types and pointer arithmetics. In *Proc. of the ACM SIGPLAN/SIGBED Conf. on Languages, Compilers, and Tools for Embedded Systems (LCTES'06)*, pages 54–63. ACM, June 2006a.
 - A. Miné. Symbolic methods to enhance the precision of numerical abstract domains. In *Proc. of the 7th Int. Conf. on Verification, Model Checking, and Abstract Interpretation (VMCAI'06),* volume 3855 of *LNCS,* pages 348–363. Springer, Jan. 2006b.
 - A. Miné. Abstract domains for bit-level machine integer and floating-point operations. In *Proc. of the 4th Int. Workshop on Invariant Generation (WING'12)*, number HW-MACS-TR-0097, page 16. Computer Science, School of Mathematical and Computer Science, Heriot-Watt University, UK, Jun. 2012.
 - A. Miné. Static analysis by abstract interpretation of concurrent programs. Technical report, École normale supérieure, May 2013.
 - N. Partush and E. Yahav. Abstract semantic differencing for numerical programs. In SAS, pages 238–258, 2013. ISBN 978-3-642-38856-9.
 - 2 N. Partush and E. Yahav. Abstract semantic differencing via speculative correlation. In *Proceedings of*