
Formal Ver ification of Avionics Software Products

Jean Souyris1, Virginie Wiels2, David Delmas1, Hervé Delseny1

1 Airbus France S.A.S.
316, route de Bayonne

31060 TOULOUSE Cedex 9, France

2 Onera / DTIM*
2 avenue E. Belin, BP 74025

31055 Toulouse cedex, France

jean.souyris@airbus.com, Virginie.Wiels@onera.fr,

david.delmas@airbus.com, herve.delseny@airbus.com

Abstract. This paper relates an industrial experience in the field of formal veri-
fication of avionics software products. Ten years ago we presented our very
first technological research results in [18]. What was just an idea plus some ex-
perimental results at that time is now an industrial reality. Indeed, since 2001,
Airbus has been integrating several tool supported formal verification tech-
niques into the development process of avionics software products. Just like all
aspects of such processes, the use of formal verification techniques must com-
ply with DO-178B [9] objectives and Airbus has been a pioneer in this domain.

Keywords: avionics software, safety, development process, verification, formal
verification, Abstract Interpretation, static analysis.

1 Introduction
Industr ial context. Avionics software products in onboard computers are major

components of the systems of an aircraft. Such software products are developed ac-
cording to very stringent rules imposed by the DO-178B standard. Of course verifica-
tion, although being one activity among others, is the heaviest task of the develop-
ment of an avionics software product. Verification, as defined by DO-178B, is
performed by reviews, analyses or tests. The first two ones are purely intellectual
while the latter basically consists in executing the program to be verified and in
checking whether the results of this execution are those expected.

Airbus technological research in Formal Ver ification. The above mentioned
verification techniques constituted the state of the art at the time DO-178B were writ-

* Onera is the French aerospace lab and is working with Airbus on methods and certification

aspects of formal verification.

ten. During the last decade, new verification techniques coming from research in
Computer Science have become usable in the industry of critical embedded software.
These techniques are formal and are usually categorized as follows: Abstract Interpre-
tation based static analysis, theorem proving and model-checking.

Transfer to operational teams. Since 2001, Airbus has been transferring formal
verification tools – and associated method of use – to its teams who develop avionics
software. The first set of tools to be transferred have been: Caveat [18], aiT [12] and
Stackanalyzer . They are all used for achieving some DO-178B verification objective.
This means that they have been qualified in the sense of this standard.

The aim of this paper is to show how the development of avionics software could
benefit from formal verification techniques far beyond their first use mentioned just
above. This paper stands for the synthesis of ongoing technological research work at
Airbus, in close cooperation with academic and industrial labs. The various aspects of
this research are handled – or have been handled – in the frame of the following past
or ongoing research projects: DAEDALUS [5], ASTREE [1], THESEE [23], CAT
[2], U3CAT [24], ASBAPROD (French civilian aviation project), ES_PASS [11].

Structure of the paper . Section 2 is a quick overview of the development and

verification process of a DO-178B conforming avionics product. In section 3, the
formal verification technologies used by Airbus are presented, whether already used
industrially or close to be. Sections 4 and 5 show what development activities it is
possible to base on the use of the tools introduced in section 3, and what are possible
development processes including these activities. Considerations about the compli-
ance of these new processes to DO-178B and, beyond, to DO-178C (the standard be-
ing defined) are discussed in section 6. Section 7 concludes and introduces future
work.

2 DO-178B compliant development process of an

avionics software product

The development of avionics software products has to conform to the DO-178B [9]
standard. DO-178 does not prescribe a specific development process, it identifies im-
portant steps inside a development process and defines objectives for each of these
steps. DO-178 distinguishes development processes from “integral” processes that are
meant to ensure correctness control and confidence of the software life cycle proc-
esses and their outputs. The verification process is part of the integral processes. In
this section, we give an overview of the development and verification processes.

2.1 Development processes

 Four processes are identified:
- The software requirements process develops High Level Require-

ments (HLR) from the outputs of the system process;

- The software design process develops Low Level Requirements
(LLR) and Software Architecture from the HLR;

- The software coding process develops source code from the software
architecture and the LLR;

- The software integration process loads executable object code into
the target hardware for hardware/software integration.

Each of the above mentioned activities is a step towards the actual software prod-
uct, Figure 1 presents the different steps.

Fig. 1. DO-178B development processes

So far, for the software products it develops, Airbus has been defining the Low

Level Requirements as being applied to design entities that are later implemented in
the form of modules and functions of the programming language (C, most of the time)
in a one-to-one manner. The way those design entities collaborate in order to imple-
ment the High Level Requirements is first defined during the software architecture
phase.

2.2 Ver ification process

The results of all activities of the development must be verified. Detailed objec-
tives are defined for each step of the development, typically some objectives are de-
fined on the output of a development process itself and also on the compliance of this

Executable
Object code

Source code

LLR Soft Arch

HLR

System reqts

output to the input of the process that produced it. For example, Figure 2 presents the
objectives related to LLR.

Fig. 2. Verification objectives associated to LLR.

On one hand, LLR shall be accurate and consistent, compatible with the target

computer, verifiable, conform to requirements standards, and they shall ensure algo-
rithm accuracy. On the other hand, LLR shall be compliant and traceable to HLR.

Verification means identified by DO-178B are reviews, analyses and test. Reviews
provide a qualitative assessment of correctness. Analyses provide repeatable assess-
ment of correctness. Reviews and analyses are used for all the verification objectives
regarding HLR, LLR, software architecture and source code. Test is used to verify
that the executable object is compliant with LLR and HLR. Test is always based on
the requirements (functional test) and shall include normal range and robustness
cases. A structural coverage analysis is performed to ensure that the software has been
tested enough (different coverage criteria are used depending on the criticality level of
the software).

3 Formal ver ification technologies applicable to avionics

programs

In this section, we briefly present the two kinds of formal techniques used for the

verification of avionics programs (deductive methods and Abstract Interpretation
based static analysis) and we describe the associated tools.

3.1 Deductive methods

The first kind of formal technique we consider for the verification of programs is
deductive proof based on Hoare logic [15], and the computation of Dijkstra’s weakest

HLR

LLR Accuracy & Consistency
HW Compatibility
Verifiability
Conformance to standards
Algorithm Accuracy

Compliance
Traceability

precondition predicate transformer [8]. The objective is to prove user defined proper-
ties on a given program. Properties must be formally expressed in logic. This tech-
nique proceeds in two steps:

- computation of the verification conditions: post-conditions (proper-
ties that should hold after the execution of the program) are defined,
this first step analyses the program and computes the conditions that
must hold for these post-conditions to be verified;

- proof of the verification conditions: a theorem prover is used to
prove the conditions computed before.

The first step is completely automated, the second step usually requires interaction
with the user, but automation can be improved by the definition of specific heuristics.

Several tools exist for different programming languages (mostly C and java). The
tools considered in this paper are Caveat and Frama-C [14].

3.2 Abstract Interpretation based static analysis

 The second kind of techniques are techniques based on Abstract Interpretation [4].
The principle of Abstract interpretation is the construction of a sound approximation
of the semantics of programs. A specific approximation is generated for each particu-
lar property being analysed. Abstract interpretation is a completely automated tech-
nique. It may produce so called “false positives” (errors that can occur on the ap-
proximation of the program that has been computed, but cannot occur on the real
program). The challenge is thus to be able to build a precise enough approximation in
order to have as few false positives as possible. This usually implies a specialisation
of the technique with respect to the analysed programs.

The Abstract Interpretation based tools considered in this paper are Astrée [3], aiT
[12], Stackanalyzer and Fluctuat [6].

3.3 Tools

Caveat [18] is the first formal verification tool that Airbus has been using in de-
velopment (since 2002). Caveat analyses C programs (with some restrictions in terms
of language constructs) and has its own specification (or property) language based on
first order logic.

Caveat proposes two main functionalities:
• data and control flows analysis;
• proof of user-specified properties.

Data and control flows analyses are fully automatic on the set of C modules given
to Caveat.

Proof of user-specified properties is in general not automatic. For completing a
proof or understanding why it cannot be completed, the user can use Caveat Interac-
tive Predicate Transformer. This interactive part of the tool takes a first order logic
formula as input that the user can handle in order to prove it equivalent to true or to

understand that it is not possible. Each predicate transformation is performed under
the control of the tool.

Frama-C [14] is a toolbox that aims at analysing C programs. It is extensible by

means of plug-ins. A plug-in implements a specific analysis and can exchange data
with other plug-ins or with the core of Frama-C thanks to a common specification
language called ACSL.

Examples of existing plug-ins are:
• Abstract Interpretation based value analysis;
• Slicing;
• Weakest Precondition (WP) computation whose proof obligations are

given to the WHY platform of provers.
It must be noticed that the development of simple but useful plug-ins is accessible

to industrial Frama-C users.

Whereas Frama-C mixes several techniques coming from research in Computer

Science, the following tools are all based on Abstract Interpretation.

Astrée [3] analyses – a subset of - C programs on which it aims at proving the ab-

sence of Run-Time Errors (RTE). Since it has been designed in the frame of the Ab-
stract Interpretation theory [13], it might produce false alarms, also called false posi-
tives, due to the abstraction of the concrete semantics of the analysed program. In
order to make it industrially usable on safety-critical programs, Astrée had to be spe-
cialized for a family of programs. This has been made for control-command synchro-
nous programs produced from SCADE (or SAO, SCADE’s ancestor) models. The re-
sult is that Astrée precision is very high (almost zero false positives) when analysing
programs that belong to the family for which it has been specialized. Scalability is
also very good, i.e., 500,000 loc are analysed successfully within a timescale com-
patible with industrial development constraints.

aiT [12] analyses a program in its binary form for computing an upper bound of the

Worst Case Execution Time (WCET) of the program tasks. This static analyser con-
tributes to proving that the timing constraints assigned to a program are met. Indeed
all kind of schedulability analyses take the WCET of the tasks of the system as input.
Because the execution time of a piece of code also depends on the hardware on which
it is intended to be executed, aiT includes a model of the target processor and its asso-
ciated memory controller. Whereas the drawback of abstraction is the false positive in
the case of an Abstract Interpretation based static analyser dealing with RTE, the
counterpart for aiT is the overestimation of the WCET (upper bound).

Stackanalyzer analyses a program in its binary form for computing an upper bound
of the amount of memory actually used by the program task stack. This static analysis
contributes to proving that no execution of the program will cause a stack overflow.

Fluctuat [6]. Whereas in mathematics the set of real numbers is infinite, the set of
floating-point numbers is finite, be it float, double, etc. So, during the float operations
performed by a program, rounding errors affect the results. This might lead to a sig-

nificant difference between a floating-point value and the real one that should have
been computed. Furthermore, a calculus scheme might be stable in the real arithmetic
and become instable in the floating-point arithmetic. With respect to this problem,
Fluctuat analyses C programs – note that there is a Fluctuat for a specific assembly
language (TMS320C33 processor) – for computing safe ranges for:

• The floating-point values the variables still alive at the end of the program
may have;

• The error between the floating point value and the real one that should
have been computed if operations were in the real numbers, for each vari-
able still alive at the end of the program.

Fluctuat does not only compute these ranges, it also allows the user to find the ori-
gin of imprecisions in its code.
Problems like lacks of precision, instability, sensitivity are detected by this static
analyser.

Certified compilation. There are various approaches for proving that a program in

its binary (or assembly) form is semantically equivalent to the source program (in C,
for instance) from which it has been compiled. Two of them are being considered: the
Translation validation [19] and the Certified compiler [17]. The first one consists in
proving that after each production of a binary file, this executable program is seman-
tically equivalent to the input source program (e.g., in C files). This is a kind of vali-
dator separated from the compiler. The second selected approach, i.e., the Certified
compiler, consists in developing a compiler formally and proving once and for all that
it produces target programs semantically equivalent to source programs.

Certified compilation is of utmost importance in itself, especially for safety-critical
software products. It is also natural to consider it when formal verification is per-
formed on source programs. Indeed, a bug of a compiler might lead to produce a code
on which some proof of a property made on the source code does not longer hold.

4 Development process activities based on the use of
formal techniques

4.1 Techniques being used

Unit Proof [10, 21]. Within the development process of the most safety-critical
avionics programs, the unit verification technique is used for achieving DO-178B ob-
jectives related to the verification of the executable code with respect to the Low
Level Requirements, the classical technique being the Unit Tests. Since 2002, a for-
mal approach to Unit Verification is also used industrially: Unit Proof. The tool used
for this activity is Caveat (see section 3.3). Basically, it consists in:

• Writing formal Low Level Requirements in Caveat property language
during the detailed design activity of the development process;

• Once a C module has been written during the coding activity, the formal
requirements of this C module and the module itself are given to Caveat
for proving. This activity is performed for each C function of each C
module. When a C function is called by the one being proved it is stubbed
according to a sound technique.

Worst Case Execution Time analysis [22]. In real-time systems, computing cor-

rect values is not enough. Indeed, the program must also compute these values in due
time in order to remain synchronised with the physical environment. The scheduling
of the most critical avionics real-time programs is an off-line scheduling. This means
that the serialisation (single processor) of the various program tasks is performed at
design time, leading to a fixed interleaving of these tasks. In this context, schedulabil-
ity analysis boils down to the safe computation of an upper bound of the Worst Case
Execution Time of the program tasks, almost exclusively. This computation is per-
formed with aiT (see section 3.3).

Maximum stack usage computation. The amount of memory given to a task of

an avionics program is determined statically when the program is built. If any task
stack of a program actually requires more memory than what has been allocated stati-
cally, a stack overflow exception is raised during execution. In order to avoid this se-
rious problem, a safe upper bound of each stack of the program must be computed.
With these figures, the computation a safe upper bound of the total amount of mem-
ory used for stacks is performed, by means of an analysis that takes into account some
mechanisms such as interrupt tasks or Operating System calls.

4.2 Techniques being validated for use in future development
processes

 Integration Proof. The kind of defects that are covered by the Unit Proof tech-
nique does not include the ones that arise when a C function calls another one with a
wrong interpretation of the service provided by the latter. Let us call this sort of bugs
“design bugs” since they are introduced during the activity which aims at defining the
interfaces between the future C functions.

Integration Proof is being elaborated in the frame of the research project
ASBAPROD [] and can be defined as an extension of the Unit Proof technique. In-
deed, instead of considering C functions individually, Integration Proof deals with
sub-trees of the program call tree. Let us take an example. Suppose four C functions:
f(), g()_, h() and i(), f() being that entry point of a call-tree (sub-tree of the whole pro-
gram call-tree) containing the other C functions. Whereas the Unit Proof technique
aims at proving that f (), g(), h() and i() satisfy their individual formal requirements
without taking into account the semantics of their callees (the C functions they call),
the goal of Integration Proof technique is to prove that the formal requirements of
function f() are satisfied by taking account the semantics of all C functions contained
in “its” call-tree. The relevant design entities are bigger than the ones considered in

Unit Proof but smaller than the whole program. The reason why we did not move
from the proof of each C function individually to the proof of the whole – sequential –
program made of these C functions is the fact that we want to keep a great automatic
proof rate, for obvious industrial reasons. It is a design-time issue to define these in-
termediate-level entities in such a way that their further proof is as automatic as pos-
sible.

Proof of absence of Run-Time er ror [7, 20]. The underlying notion has been pre-

sented in several academic papers, such as [3, §2]: “The absence of runtime errors is
the implicit specification that there is no violation of the C norm (e.g., array index of
bounds), no implementation-specific undefined behaviours (e.g., floating-point divi-
sion by zero), no violation of the programming guidelines (e.g., arithmetic operators
on short variables should not overflow the range [-32768,32767] although, on
the specific platform, the result can be well-defined through modular arithmetic).”

This includes checking that no floating-point overflow can occur, as suggested by
DO-178B. So far, this need has been addressed through a combination of design and
coding guidelines, testing activities and source code reviews. Today, the ASTRÉE
static analyzer makes it possible to perform sound global proofs of absence of run-
time errors on complete applications. The analysis process is very automatic, espe-
cially when dealing with Airbus large control programs, generated from SCADE
models.

Quality of floating-point calculus [6]. Freedom from run-time errors is not
enough when dealing with complex control programs that make massive use of float-
ing-point arithmetic. The accuracy of computations has to be addressed also, as re-
quested by DO-178B. The usual way to deal with this issue is to conduct:

- a set of dedicated test cases on real hardware;
- intellectual analyses of the numerical precision of all floating-point

operations. The goal is to check that the program parts using float-
ing-point arithmetic can only generate negligible rounding errors,
and cannot propagate errors on inputs (sensitivity analysis). Such an
activity is both time-consuming and error-prone.

Today, the FLUCTUAT static analyser enables us to automate the latter activity in a
sound and precise way for libraries of widely-used basic operators of control pro-
grams. Besides, this tool can also be used to assess the numerical accuracy of some
critical system-level functions, through static analyses of the C code generated from
limited sets of SCADE nodes.

Certified compilation. As stated in section 2, the development of an avionics pro-

gram is made of four basic steps to which verification activities are applied. One step
being the production of the object code from the source code by compilation (and
production of the absolute binary code), it is natural to think about checking that this
step does not introduce bugs. In the “traditional” development process (see section 2),
an important verification activity consists in testing the program against its Low Level
requirements and, later on, against its High Level Requirements, by execution on the
real target (or on a very representative hardware). This verification covers the com-

piler outputs. With the use of formal verification techniques that apply to source code,
the compiler outputs are not included in what is verified; the risk being that proofs
made on the source code no longer hold on the binary code. This almost new activity
will be supported by the use of either a “Certified” compiler [17] or by a validator
[19] in order to prove that source and binary programs are semantically equivalent
(see section 3.3).

5 Towards the product-based assurance

5.1 Process and product based assurances

In the Process based Assurance, the confidence in the fact that any execution of the
software product conforms to the system specification for that product is obtained by
the strict observance of DO-178B development process rules. It is the whole devel-
opment process that allows to get reasonable confidence in the software product. In
other words, if a software product is developed by performing the activities prescribed
by DO-178B successfully it will be considered as “good for flight” by the regulation
authorities. The main reason why DO-178B emphasizes the quality of the develop-
ment process is that classical verification techniques do not make it possible to prove
the absence of software errors.

In the product based assurance, the confidence is obtained by making sure that the

software product has the required characteristics (or properties). The most ambitious
goal would be to have a set of formal requirements of the program to develop which
specify all aspects of the program execution, and to be able to prove that all possible
executions of the binary program satisfy these requirements. If it was possible, this
would prove that there is no software error.

5.2 Formal ver ification activities and Product based assurance

Executability. By this term we refer to the ability of the program to have well de-
fined behaviours with respect to:

• The The “ISO/IEC 9899:1999 (E)" standard (including IEEE 754 standard
[16]);

• Specific coding and code generation rules;
• Timing constraints;
• Numerical precision constraints;
• Synchronisation / communication mechanisms (so far, there is no indus-

trial solution for proving properties like: absence of deadlocks,
of “simultaneous” accesses to shared memory, etc).

It must be noticed that without proving the above properties, any proof of user de-
fined requirements (see below) by partial formal verification techniques might be in-

validated by some undefined behaviour. Therefore, whenever a formal verification
technique not covering the detection of undefined behaviours is used, additional ac-
tivities must be performed, either based on tools or on intellectual analyses.

Formally proving the executability of a program is the basic kind of Product based

assurance. Furthermore, most of the tools mentioned in section 3 are able to analyse
whole applications.

Proof of user-defined requirements. So far, there is no cost-effective industrial

technique able to verify that whole avionics C programs satisfy their user-defined re-
quirements formally. As stated in section 4, Unit Proof and Integration Proof tech-
niques aim at such formal verification but on program pieces taken individually. The
fact that the pieces considered in the Integration Proof technique are bigger than the
ones of the Unit Proof technique makes it more covering but cannot stand for a formal
verification of the whole application with respect to its High Level Requirements.

Nevertheless, we can look at the program pieces which are formally verified as in-
termediate software products, each of them being specified formally, and then con-
sider such verifications as an application of the Product based assurance paradigm
within the development process (Process based assurance).

Certified compilation. As stated in section 4.2, evidences that proofs performed at

source code level still hold on the executable program is mandatory. This is another
way of saying that in the Product based assurance, the actual software product is the
executable program.

5.3 Mix of formal ver ification and Tests

Checking real program executions on real hardware will always be required by
DO-178. The basic reason for that is the activity called software / hardware integra-
tion.

Beyond this reason, one must also take into account that the huge test campaigns
performed one the real hardware during the “traditional” avionics software develop-
ment process also allow to detect hardware defects. Indeed, most of the time, espe-
cially for flight control functions, both hardware and software are developed almost
from scratch when a new aircraft is developed. This means that software tests on the
real – new – hardware contribute to achieve hardware maturity earlier.

This second reason makes the reduction of the amount of tests an issue. It is clear
that the test amount will not be reduced down to the sole software / integration tests.

Therefore, a trade-off between tool-aided formal verification and testing will have
to be set, which combines the main advantages of both kinds of techniques, i.e., the
automation and good coverage on the one hand, maximal representativity of the tests
by execution on the hardware, on the other hand.

5.4 Development processes including some Product based
assurance

A “traditional” DO-178B conforming process could use static analysers to replace
or strengthen some intellectual analyses in order to prove executability (see above).
Since some static analysers deal with source code, one must trust the compilation in
order to get sure that proofs still hold on the binary code.

Another way of improvement is to introduce Unit Proof technique (see section 4)
for formal verification of the source code against its Low Level Requirements. Once
again trusted compilation is a way to secure the formal verification process.

One can also introduce Integration Proof technique (see section 4) for formal veri-
fication of the source code against its Low Level Requirements. Like for the cases,
trusted compilation is a way to secure the formal verification process.

Actually, there are many ways to introduce formal verification techniques in an
avionics development process. An important criterion of such an introduction is
whether a “certification credit” is based on the use of a technique or not. So far, Air-
bus has always been introducing formal verification techniques from which a certifi-
cation credit has been derived. Nevertheless, it might be the case that some formal
verification technique could be used for debugging rather than for achieving some
DO-178 objective.

6 Cer tification aspects

In this section, we will highlight the specificities of the certification process when
formal methods are used for part of the verification. We consider certification with re-
spect to DO-178B, the current software certification standard for avionics software.
DO-178 is currently being updated by a dedicated international working group, ver-
sion C of the standard should be available in 2010, we will end the section with a
brief presentation of the current proposal regarding formal methods.
 Several cases exist for what concerns certification:

• Formal techniques are used in places where reviews or analyses were used
previously to reach the same verification objective. In that case formal meth-
ods are simply an alternative means to reach the objective, the main differ-
ence being that formal techniques are implemented by a tool and so this tool
must be qualified with respect to DO-178B rules for the qualification of veri-
fication tools. More information on qualification of tools is given in subsec-
tion 6.1.

• Formal techniques replace verifications that were previously done by test.
o A first difference that occurs is that the verification is thus done on

the source code instead of the object code. To reach the same level
of confidence than with test, complementary analyses must be led to
ensure that the properties that are verified on source code are still
satisfied by the object code (this can be done using formal methods
also, see the work on certified compilation in section 3).

o The most complex case for certification is the unit or integration
proof case, where formal methods are used to verify properties of a
C program and replace unit test or integration test. The issue here is
the coverage of the verification with respect to the c code. This is-
sue is discussed in subsection 6.2.

6.1 Qualification of tools

DO-178B distinguishes two kinds of tools: development tools that have an
effect on the code being produced (for example code generators) and verification
tools that are used to verify some properties on the code (but cannot insert errors).
Formal methods tools have to be qualified as verification tools, it must be shown that
the tool complies with its operational requirements under normal operational condi-
tions. In practice, it means that a set of representative cases will be defined and it will
be checked that the tool provides the expected results for these cases. Stackanalyzer,
aiT and Caveat have been qualified as verification tools. No specific requirements are
defined for formal method tools in DO-178B, but it might change in version C of the
standard where the current proposal is to add a criterion targeted for this kind of tools.

6.2 Coverage

When test is used to verify a function against its requirements, a set of re-
quirement-based test cases are defined and executed. A functional coverage analysis
is performed to ensure that test cases have been defined for every requirement and a
structural coverage analysis is performed to ensure that all the code has been covered
and that there is no dead code (for level A software, the most critical one, 100%
MC/DC [13] is required). When formal proof is used to verify a C function against a
set of properties, it ensures an exhaustive coverage for a given property, but it must
also be demonstrated that the set of properties that has been defined covers all the be-
haviours of the code.
In the case of the unit proof, the argument provided to the certification authorities was
based on a demonstration that the set of properties was complete (demonstration using
formal proof and reviews). In the case of integration proof, the argument is still the
object of research. The general issue that will have to be solved is to be able to meas-
ure the coverage of the code obtained by formal verification, and in some cases to be
able to mix it with a coverage obtained by test in order to argument the complete cov-
erage of code for certification authorities.

6.3 DO-178C

The update of DO-178 will leave the core of the standard mostly unchanged but
will propose several technical supplements dealing with the use of specific techniques

such as object-oriented languages or formal methods, a technical supplement on tools
is also expected . The current draft of the formal method technical supplement defines
what formal methods are, gives criteria for such methods, explains how and under
which conditions formal methods can be used to reach DO-178 verification objectives
at each step. For verification objectives on the executable object code, it replaces the
testing objectives by more generic verification objectives, some testing is still re-
quired but some objectives can also be reached using formal methods.

7 Conclusion and future work

In this paper it has been shown how formal verification techniques can be used in

the development process of avionics software products.
The authors are convinced that the story is far from being finished and that more

and more formal verification techniques will be used in the future, as tools become
available for industrial use. These techniques are the only way to face the dramatic in-
crease of software complexity, especially when safety is at stake. Technological re-
search is therefore continued in the following three areas: Computer Science research,
by means of collaboration with labs, contribution to the development of tools and
definition of methods of use.

Regulation aspects are a crucial issue for the industrial use of formal methods, the
authors are working on means to conform to the standards but also on evolution of
standards in the hope to facilitate future use of formal techniques.

Acknowledgements. The authors warmly thank Famantanantsoa Randimbivololona

for his carefully reading of this paper.

References

1. The ASTREE project (Analyse Statique de logiciels Temps-REel Embarqués). RNTL, 2003-

2005. http://www.di.ens.fr/~cousot/projets/ASTREE/.

2. Projet 2005 CAT du RNTL (Réseau National des Technologies Logicielles) de l'ANR.

3. Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David

Monniaux & Xavier Rival.
The ASTRÉE analyser.
In ESOP 2005 — The European Symposium on Programming, M. Sagiv (editor), Lecture
Notes in Computer Science 3444, pp. 21—30, 2—10 April 2005, Edinburgh, © Springer.

 4. Patrick Cousot & Radhia Cousot. Basic Concepts of Abstract Interpretation. In Building the

Information Society, R. Jacquard (Ed.), Kluwer Academic Publishers, pp. 359--366, 2004.

5. DAEDALUS project. IST-1999-20527 of the european IST Programme of the Fifth Frame-

work Programme (FP5) on the « validation of software components embedded in future
generation critical concurrent systems by exhaustive semantic-based static analysis and ab-
stract testing methods based on abstract interpretation ». DAEDALUS lasted from October
1st, 2000 to September 30th, 2002.

6. David Delmas, Eric Goubault, Sylvie Putot, Jean Souyris, Karim Tekkal, Franck Védrine.

Towards an industrial use of FLUCTUAT on safety-critical avionics software. Submitted to
the 14th International Workshop on Formal Methods for Industrial Critical Systems (FMICS
2009).

7. David Delmas and Jean Souyris. ASTRÉE: From research to industry. In Static Analysis,

14th International Symposium, SAS 2007, Kongens Lyngby, Denmark, August 22-24, 2007,
Proceedings, volume 4634 of Lecture Notes in Computer Science, pages 437{451. Springer,
2007.

8. E.W. Dijkstra; A discipline of programming; automatic Computation, Prentice Hall Int.,

1976.

9. DO-178B/ED-12B. Software Considerations in Airborne Systems and Equipment Certifica-

tion. RTCA/EUROCAE, 1992.

10. Stéphane Duprat, Jean Souyris, Denis Favre-Félix. Formal verification workbench for avi-

onics software. In European Congress ERTS 2006 (European Real Time Software). SIA
(editor). R-2006-01-2A2.

11. ES_PASS project. ITEA 2 06042. October 2007
http://www.itea2.org/public/project_leaflets/ES_PASS_profile_oct-07.pdf.

12. Christian Ferdinand, Reinhold Heckmann, Marc Langenbach, Florian Martin, Michael
Schmidt, Henrik Theiling, Stephan Thesing, and Reinhard Wilhelm. Reliable and precise
WCET determination for a real life processor. In Proceedings of EMSOFT 2001, First Work-
shop on Embedded Software, volume 2211 of Lecture Notes in Computer Science, pages 469–
485. Springer-Verlag, 2001.

13. Kelly J. Hayhurst, Dan S. Veerhusen, John J. Chilenski, Leanna K. Rierson. A practical tu-
torial on Modified Condition/Decision Coverage. NASA/TM-2001-210876, 2001.

14. http://frama-c.cea.fr/

15. C.A.R. Hoare. An axiomatic basis for computer programming. In Communication of the

ACM, Vol. 12, Nb. 10, october 1969.

16. The Institute of Electrical and Inc Electronics Engineers. IEEE standard for binary floating-

point
arithmetic. Technical Report ANSI/IEEE Std 745{1985, IEEE Computer Society, 1985.

17. Xavier Leroy. The Compcert verified compiler, software and commented proof. Available

at http://compcert.inria.fr/, August 2008.

18. Famantanantsoa Randimbivololona, Jean Souyris, Patrick Baudin, Anne Pacalet, Jacques
Raguideau, Dominique Schoen: Applying Formal Proof Techniques to Avionics Software: A
Pragmatic Approach. World Congress on Formal Methods 1999: 1798-1815.

19. Xavier Rival. Symbolic Transfer Functions-based Approaches to Certified Compilation. In

31st Symposium on Principles of Programming Languages (POPL'2004), Venice, Jan. 2004
ACM.

20. Jean Souyris and David Delmas. Experimental Assessment of ASTRÉE on Safety-Critical

Avionics Software. Proc. Int. Conf. Computer Safety, Reliability, and Security,
SAFECOMP 2007, Francesca Saglietti and Norbert Oster (Eds.), Nuremberg, Germany,
September 18—21, 2007, Lecture Notes in Computer Science, Volume 4680, pp. 479—490,
© Springer, Berlin.

21. Jean Souyris, Denis Favre-Felix. Proof of properties in avionics. In Proceedings of IFIP

Congress Topical Sessions'2004. pp.527~536.

22. Jean Souyris, Erwan Le Pavec, Guillaume Himbert, Victor Jégu, Guillaume Borios, and

Reinhold Heckmann. Computing the worst case execution time of an avionics program by
abstract interpretation. In Proceedings of the 5th Intl Workshop on Worst-Case Execution
Time (WCET) Analysis, pages 21–24, 2005.

23. Projet 2005 THÉSÉE du RNTL (Réseau National des Technologies Logicielles) de l'ANR

24. Projet 2008 U3CAT de l’Agence nationale de la recherche (ANR).

