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Abstract. This paper relates an industrial experience in the field of formal veri-
fication of avionics software products. Ten years ago we presented our very 
first technological research results in [18]. What was just an idea plus some ex-
perimental results at that time is now an industrial reality. Indeed, since 2001, 
Airbus has been integrating several tool supported formal verification tech-
niques into the development process of avionics software products. Just like all 
aspects of such processes, the use of formal verification techniques must com-
ply with DO-178B [9] objectives and Airbus has been a pioneer in this domain.  
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1 Introduction 
Industr ial context. Avionics software products in onboard computers are major 

components of the systems of an aircraft. Such software products are developed ac-
cording to very stringent rules imposed by the DO-178B standard. Of course verifica-
tion, although being one activity among others, is the heaviest task of the develop-
ment of an avionics software product. Verification, as defined by DO-178B, is 
performed by reviews, analyses or tests. The first two ones are purely intellectual 
while the latter basically consists in executing the program to be verified and in 
checking whether the results of this execution are those expected.  

Airbus technological research in Formal Ver ification. The above mentioned 
verification techniques constituted the state of the art at the time DO-178B were writ-
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ten. During the last decade, new verification techniques coming from research in 
Computer Science have become usable in the industry of critical embedded software. 
These techniques are formal and are usually categorized as follows: Abstract Interpre-
tation based static analysis, theorem proving and model-checking. 

Transfer  to operational teams. Since 2001, Airbus has been transferring formal 
verification tools – and associated method of use – to its teams who develop avionics 
software. The first set of tools to be transferred have been: Caveat [18], aiT [12] and 
Stackanalyzer . They are all used for achieving some DO-178B verification objective. 
This means that they have been qualified in the sense of this standard. 

The aim of this paper is to show how the development of avionics software could 
benefit from formal verification techniques far beyond their first use mentioned just 
above. This paper stands for the synthesis of ongoing technological research work at 
Airbus, in close cooperation with academic and industrial labs. The various aspects of 
this research are handled – or have been handled – in the frame of the following past 
or ongoing research projects: DAEDALUS [5], ASTREE [1], THESEE [23], CAT 
[2], U3CAT [24], ASBAPROD (French civilian aviation project), ES_PASS [11]. 

 
Structure of the paper . Section 2 is a quick overview of the development and 

verification process of a DO-178B conforming avionics product. In section 3, the 
formal verification technologies used by Airbus are presented, whether already used 
industrially or close to be. Sections 4 and 5 show what development activities it is 
possible to base on the use of the tools introduced in section 3, and what are possible 
development processes including these activities. Considerations about the compli-
ance of these new processes to DO-178B and, beyond, to DO-178C (the standard be-
ing defined) are discussed in section 6. Section 7 concludes and introduces future 
work.  

 
2 DO-178B compliant development process of an 

avionics software product 
 

The development of avionics software products has to conform to the DO-178B [9] 
standard. DO-178 does not prescribe a specific development process, it identifies im-
portant steps inside a development process and defines objectives for each of these 
steps. DO-178 distinguishes development processes from “integral” processes that are 
meant to ensure correctness control and confidence of the software life cycle proc-
esses and their outputs. The verification process is part of the integral processes. In 
this section, we give an overview of the development and verification processes. 

2.1 Development processes 

 Four processes are identified: 
- The software requirements process develops High Level Require-

ments (HLR) from the outputs of the system process; 



- The software design process develops Low Level Requirements 
(LLR) and Software Architecture from the HLR; 

- The software coding process develops source code from the software 
architecture and the LLR; 

- The software integration process loads executable object code into 
the target hardware for hardware/software integration.  

Each of the above mentioned activities is a step towards the actual software prod-
uct, Figure 1 presents the different steps.  

 
Fig. 1. DO-178B development processes 

 
So far, for the software products it develops, Airbus has been defining the Low 

Level Requirements as being applied to design entities that are later implemented in 
the form of modules and functions of the programming language (C, most of the time) 
in a one-to-one manner. The way those design entities collaborate in order to imple-
ment the High Level Requirements is first defined during the software architecture 
phase. 
 

2.2 Ver ification process 

The results of all activities of the development must be verified. Detailed objec-
tives are defined for each step of the development, typically some objectives are de-
fined on the output of a development process itself and also on the compliance of this 
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output to the input of the process that produced it. For example, Figure 2 presents the 
objectives related to LLR. 

 
Fig. 2. Verification objectives associated to LLR. 

 
On one hand, LLR shall be accurate and consistent, compatible with the target 

computer, verifiable, conform to requirements standards, and they shall ensure algo-
rithm accuracy. On the other hand, LLR shall be compliant and traceable to HLR. 

 
Verification means identified by DO-178B are reviews, analyses and test. Reviews 
provide a qualitative assessment of correctness. Analyses provide repeatable assess-
ment of correctness. Reviews and analyses are used for all the verification objectives 
regarding HLR, LLR, software architecture and source code. Test is used to verify 
that the executable object is compliant with LLR and HLR. Test is always based on 
the requirements (functional test) and shall include normal range and robustness 
cases. A structural coverage analysis is performed to ensure that the software has been 
tested enough (different coverage criteria are used depending on the criticality level of 
the software).   

 
3 Formal ver ification technologies applicable to avionics 

programs 
 
In this section, we briefly present the two kinds of formal techniques used for the 

verification of avionics programs (deductive methods and Abstract Interpretation 
based static analysis) and we describe the associated tools.  

3.1 Deductive methods 

The first kind of formal technique we consider for the verification of programs is 
deductive proof based on Hoare logic [15], and the computation of Dijkstra’s weakest 
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precondition predicate transformer [8]. The objective is to prove user defined proper-
ties on a given program. Properties must be formally expressed in logic. This tech-
nique proceeds in two steps:  

- computation of the verification conditions: post-conditions (proper-
ties that should hold after the execution of the program) are defined, 
this first step analyses the program and computes the conditions that 
must hold for these post-conditions to be verified; 

- proof of the verification conditions: a theorem prover is used to 
prove the conditions computed before.  

The first step is completely automated, the second step usually requires interaction 
with the user, but automation can be improved by the definition of specific heuristics. 

Several tools exist for different programming languages (mostly C and java). The 
tools considered in this paper are Caveat and Frama-C [14].  

3.2 Abstract Interpretation based static analysis 

 The second kind of techniques are techniques based on Abstract Interpretation [4]. 
The principle of Abstract interpretation is the construction of a sound approximation 
of the semantics of programs. A specific approximation is generated for each particu-
lar property being analysed. Abstract interpretation is a completely automated tech-
nique. It may produce so called “false positives” (errors that can occur on the ap-
proximation of the program that has been computed, but cannot occur on the real 
program). The challenge is thus to be able to build a precise enough approximation in 
order to have as few false positives as possible. This usually implies a specialisation 
of the technique with respect to the analysed programs.  

The Abstract Interpretation based tools considered in this paper are Astrée [3], aiT 
[12], Stackanalyzer and Fluctuat [6].  

 

3.3 Tools 

Caveat [18] is the first formal verification tool that Airbus has been using in de-
velopment (since 2002). Caveat analyses C programs (with some restrictions in terms 
of language constructs) and has its own specification (or property) language based on  
first order logic.  

Caveat proposes two main functionalities:  
• data and control flows analysis; 
• proof of user-specified properties. 

Data and control flows analyses are fully automatic on the set of C modules given 
to Caveat. 

Proof of user-specified properties is in general not automatic. For completing a 
proof or understanding why it cannot be completed, the user can use Caveat Interac-
tive Predicate Transformer. This interactive part of the tool takes a first order logic 
formula as input that the user can handle in order to prove it equivalent to true or to 



understand that it is not possible. Each predicate transformation is performed under 
the control of the tool. 

 
Frama-C [14] is a toolbox that aims at analysing C programs. It is extensible by 

means of plug-ins. A plug-in implements a specific analysis and can exchange data 
with other plug-ins or with the core of Frama-C thanks to a common specification 
language called ACSL.  

Examples of existing plug-ins are: 
• Abstract Interpretation based value analysis; 
• Slicing; 
• Weakest Precondition (WP) computation whose proof obligations are 

given to the WHY platform of provers. 
It must be noticed that the development of simple but useful plug-ins is accessible 

to industrial Frama-C users. 
 
Whereas Frama-C mixes several techniques coming from research in Computer 

Science, the following tools are all based on Abstract Interpretation. 
 
Astrée  [3] analyses – a subset of - C programs on which it aims at proving the ab-

sence of Run-Time Errors (RTE). Since it has been designed in the frame of the Ab-
stract Interpretation theory [13], it might produce false alarms, also called false posi-
tives, due to the abstraction of the concrete semantics of the analysed program. In 
order to make it industrially usable on safety-critical programs, Astrée had to be spe-
cialized for a family of programs. This has been made for control-command synchro-
nous programs produced from SCADE (or SAO, SCADE’s ancestor) models. The re-
sult is that Astrée precision is very high (almost zero false positives) when analysing 
programs that belong to the family for which it has been specialized. Scalability is 
also very good, i.e., 500,000 loc are analysed successfully within a timescale com-
patible with industrial development constraints. 

 
aiT [12] analyses a program in its binary form for computing an upper bound of the 

Worst Case Execution Time (WCET) of the program tasks. This static analyser con-
tributes to proving that the timing constraints assigned to a program are met. Indeed 
all kind of schedulability analyses take the WCET of the tasks of the system as input. 
Because the execution time of a piece of code also depends on the hardware on which 
it is intended to be executed, aiT includes a model of the target processor and its asso-
ciated memory controller. Whereas the drawback of abstraction is the false positive in 
the case of an Abstract Interpretation based static analyser dealing with RTE, the 
counterpart for aiT is the overestimation of the WCET (upper bound). 
 
Stackanalyzer  analyses a program in its binary form for computing an upper bound 
of the amount of memory actually used by the program task stack. This static analysis 
contributes to proving that no execution of the program will cause a stack overflow. 
 

Fluctuat [6]. Whereas in mathematics the set of real numbers is infinite, the set of 
floating-point numbers is finite, be it float, double, etc. So, during the float operations 
performed by a program, rounding errors affect the results. This might lead to a sig-



nificant difference between a floating-point value and the real one that should have 
been computed. Furthermore, a calculus scheme might be stable in the real arithmetic 
and become instable in the floating-point arithmetic. With respect to this problem, 
Fluctuat analyses C programs – note that there is a Fluctuat for a specific assembly 
language (TMS320C33 processor) – for computing safe ranges for: 

• The floating-point values the variables still alive at the end of the program 
may have; 

• The error between the floating point value and the real one that should 
have been computed if operations were in the real numbers, for each vari-
able still alive at the end of the program. 

Fluctuat does not only compute these ranges, it also allows the user to find the ori-
gin of imprecisions in its code. 
Problems like lacks of precision, instability, sensitivity are detected by this static  
analyser. 
 
Certified compilation. There are various approaches for proving that a program in 

its binary (or assembly) form is semantically equivalent to the source program (in C, 
for instance) from which it has been compiled. Two of them are being considered: the 
Translation validation [19] and the Certified compiler [17]. The first one consists in 
proving that after each production of a binary file, this executable program is seman-
tically equivalent to the input source program (e.g., in C files). This is a kind of vali-
dator separated from the compiler. The second selected approach, i.e., the Certified 
compiler, consists in developing a compiler formally and proving once and for all that 
it produces target programs semantically equivalent to source programs. 

Certified compilation is of utmost importance in itself, especially for safety-critical 
software products. It is also natural to consider it when formal verification is per-
formed on source programs. Indeed, a bug of a compiler might lead to produce a code 
on which some proof of a property made on the source code does not longer hold. 

 
 

4 Development process activities based on the use of 
formal techniques 

4.1 Techniques being used 

Unit Proof [10, 21]. Within the development process of the most safety-critical 
avionics programs, the unit verification technique is used for achieving DO-178B ob-
jectives related to the verification of the executable code with respect to the Low 
Level Requirements, the classical technique being the Unit Tests. Since 2002, a for-
mal approach to Unit Verification is also used industrially: Unit Proof. The tool used 
for this activity is Caveat (see section 3.3). Basically, it consists in: 

• Writing formal Low Level Requirements in Caveat property language 
during the detailed design activity of the development process; 



• Once a C module has been written during the coding activity, the formal 
requirements of this C module and the module itself are given to Caveat 
for proving. This activity is performed for each C function of each C 
module. When a C function is called by the one being proved it is stubbed 
according to a sound technique. 

 
Worst Case Execution Time analysis [22]. In real-time systems, computing cor-

rect values is not enough. Indeed, the program must also compute these values in due 
time in order to remain synchronised with the physical environment. The scheduling 
of the most critical avionics real-time programs is an off-line scheduling. This means 
that the serialisation (single processor) of the various program tasks is performed at 
design time, leading to a fixed interleaving of these tasks. In this context, schedulabil-
ity analysis boils down to the safe computation of an upper bound of the Worst Case 
Execution Time of the program tasks, almost exclusively. This computation is per-
formed with aiT (see section 3.3). 

 
Maximum stack usage computation. The amount of memory given to a task of 

an avionics program is determined statically when the program is built. If any task 
stack of a program actually requires more memory than what has been allocated stati-
cally, a stack overflow exception is raised during execution. In order to avoid this se-
rious problem, a safe upper bound of each stack of the program must be computed. 
With these figures, the computation a safe upper bound of the total amount of mem-
ory used for stacks is performed, by means of an analysis that takes into account some 
mechanisms such as interrupt tasks or Operating System calls.  

 

4.2 Techniques being validated for  use in future development 
processes 

 Integration Proof. The kind of defects that are covered by the Unit Proof tech-
nique does not include the ones that arise when a C function calls another one with a 
wrong interpretation of the service provided by the latter. Let us call this sort of bugs 
“design bugs” since they are introduced during the activity which aims at defining the 
interfaces between the future C functions.  

Integration Proof is being elaborated in the frame of the research project 
ASBAPROD [] and can be defined as an extension of the Unit Proof technique. In-
deed, instead of considering C functions individually, Integration Proof deals with 
sub-trees of the program call tree. Let us take an example. Suppose four C functions: 
f(), g()_, h() and i(), f() being that entry point of a call-tree (sub-tree of the whole pro-
gram call-tree) containing the other C functions. Whereas the Unit Proof technique 
aims at proving that f (), g(), h() and i() satisfy their individual formal requirements 
without taking into account the semantics of their callees (the C functions they call), 
the goal of Integration Proof technique is to prove that the formal requirements of 
function f() are satisfied by taking account the semantics of all C functions contained 
in “its” call-tree.  The relevant design entities are bigger than the ones considered in 



Unit Proof but smaller than the whole program. The reason why we did not move 
from the proof of each C function individually to the proof of the whole – sequential – 
program made of these C functions is the fact that we want to keep a great automatic 
proof rate, for obvious industrial reasons. It is a design-time issue to define these in-
termediate-level entities in such a way that their further proof is as automatic as pos-
sible. 

 
Proof of absence of Run-Time er ror  [7, 20]. The underlying notion has been pre-

sented in several academic papers, such as [3, §2]: “The absence of runtime errors is 
the implicit specification that there is no violation of the C norm (e.g., array index of 
bounds), no implementation-specific undefined behaviours (e.g., floating-point divi-
sion by zero), no violation of the programming guidelines (e.g., arithmetic operators 
on short variables should not overflow the range [-32768,32767] although, on 
the specific platform, the result can be well-defined through modular arithmetic).”  

This includes checking that no floating-point overflow can occur, as suggested by 
DO-178B. So far, this need has been addressed through a combination of design and 
coding guidelines, testing activities and source code reviews. Today, the ASTRÉE 
static analyzer makes it possible to perform sound global proofs of absence of run-
time errors on complete applications. The analysis process is very automatic, espe-
cially when dealing with Airbus large control programs, generated from SCADE 
models. 
 

Quality of floating-point calculus [6]. Freedom from run-time errors is not 
enough when dealing with complex control programs that make massive use of float-
ing-point arithmetic. The accuracy of computations has to be addressed also, as re-
quested by DO-178B. The usual way to deal with this issue is to conduct: 

- a set of dedicated test cases on real hardware; 
- intellectual analyses of the numerical precision of all floating-point 

operations. The goal is to check that the program parts using float-
ing-point arithmetic can only generate negligible rounding errors, 
and cannot propagate errors on inputs (sensitivity analysis).  Such an 
activity is both time-consuming and error-prone. 

Today, the FLUCTUAT static analyser enables us to automate the latter activity in a 
sound and precise way for libraries of widely-used basic operators of control pro-
grams. Besides, this tool can also be used to assess the numerical accuracy of some 
critical system-level functions, through static analyses of the C code generated from 
limited sets of SCADE nodes. 

 
 
Certified compilation. As stated in section 2, the development of an avionics pro-

gram is made of four basic steps to which verification activities are applied. One step 
being the production of the object code from the source code by compilation (and 
production of the absolute binary code), it is natural to think about checking that this 
step does not introduce bugs. In the “traditional” development process (see section 2), 
an important verification activity consists in testing the program against its Low Level 
requirements and, later on, against its High Level Requirements, by execution on the 
real target (or on a very representative hardware). This verification covers the com-



piler outputs. With the use of formal verification techniques that apply to source code, 
the compiler outputs are not included in what is verified; the risk being that proofs 
made on the source code no longer hold on the binary code. This almost new activity 
will be supported by the use of either a “Certified” compiler [17] or by a validator 
[19] in order to prove that source and binary programs are semantically equivalent 
(see  section 3.3). 

 
 

5 Towards the product-based assurance 

5.1 Process and product based assurances 

In the Process based Assurance, the confidence in the fact that any execution of the 
software product conforms to the system specification for that product is obtained by 
the strict observance of DO-178B development process rules. It is the whole devel-
opment process that allows to get reasonable confidence in the software product. In 
other words, if a software product is developed by performing the activities prescribed 
by DO-178B successfully it will be considered as “good for flight” by the regulation 
authorities. The main reason why DO-178B emphasizes the quality of the develop-
ment process is that classical verification techniques do not make it possible to prove 
the absence of software errors. 

 
In the product based assurance, the confidence is obtained by making sure that the 

software product has the required characteristics (or properties). The most ambitious 
goal would be to have a set of formal requirements of the program to develop which 
specify all aspects of the program execution, and to be able to prove that all possible 
executions of the binary program satisfy these requirements. If it was possible, this 
would prove that there is no software error.  

5.2 Formal ver ification activities and Product based assurance  

Executability. By this term we refer to the ability of the program to have well de-
fined behaviours with respect to: 

• The The “ISO/IEC 9899:1999 (E)"  standard (including IEEE 754 standard 
[16]); 

• Specific coding and code generation rules; 
• Timing constraints; 
• Numerical precision constraints; 
• Synchronisation / communication mechanisms (so far, there is no indus-

trial solution for proving properties like: absence of deadlocks, 
of “simultaneous” accesses to shared memory, etc). 

It must be noticed that without proving the above properties, any proof of user de-
fined requirements (see below) by partial formal verification techniques might be in-



validated by some undefined behaviour. Therefore, whenever a formal verification 
technique not covering the detection of undefined behaviours is used, additional ac-
tivities must be performed, either based on tools or on intellectual analyses. 

 
Formally proving the executability of a program is the basic kind of Product based 

assurance. Furthermore, most of the tools mentioned in section 3 are able to analyse 
whole applications. 

 
Proof of user-defined requirements. So far, there is no cost-effective industrial 

technique able to verify that whole avionics C programs satisfy their user-defined re-
quirements formally. As stated in section 4, Unit Proof and Integration Proof tech-
niques aim at such formal verification but on program pieces taken individually. The 
fact that the pieces considered in the Integration Proof technique are bigger than the 
ones of the Unit Proof technique makes it more covering but cannot stand for a formal 
verification of the whole application with respect to its High Level Requirements. 

Nevertheless, we can look at the program pieces which are formally verified as in-
termediate software products, each of them being specified formally, and then con-
sider such verifications as an application of the Product based assurance paradigm 
within the development process (Process based assurance). 

 
Certified compilation. As stated in section 4.2, evidences that proofs performed at 

source code level still hold on the executable program is mandatory. This is another 
way of saying that in the Product based assurance, the actual software product is the 
executable program. 
 

5.3 Mix of formal ver ification and Tests  

Checking real program executions on real hardware will always be required by 
DO-178. The basic reason for that is the activity called software / hardware integra-
tion. 

Beyond this reason, one must also take into account that the huge test campaigns 
performed one the real hardware during the “traditional” avionics software develop-
ment process also allow to detect hardware defects. Indeed, most of the time, espe-
cially for flight control functions, both hardware and software are developed almost 
from scratch when a new aircraft is developed. This means that software tests on the 
real – new – hardware contribute to achieve hardware maturity earlier. 

This second reason makes the reduction of the amount of tests an issue. It is clear 
that the test amount will not be reduced down to the sole software / integration tests.  

Therefore, a trade-off between tool-aided formal verification and testing will have 
to be set, which combines the main advantages of both kinds of techniques, i.e.,  the 
automation and good coverage on the one hand, maximal representativity of the tests 
by execution on the hardware, on the other hand.  

 
 



5.4 Development processes including some Product based 
assurance  

A “traditional” DO-178B conforming process could use static analysers to replace 
or strengthen some intellectual analyses in order to prove executability (see above). 
Since some static analysers deal with source code, one must trust the compilation in 
order to get sure that proofs still hold on the binary code. 

Another way of improvement is to introduce Unit Proof technique (see section 4) 
for formal verification of the source code against its Low Level Requirements. Once 
again trusted compilation is a way to secure the formal verification process. 

One can also introduce Integration Proof technique (see section 4) for formal veri-
fication of the source code against its Low Level Requirements. Like for the cases, 
trusted compilation is a way to secure the formal verification process. 

Actually, there are many ways to introduce formal verification techniques in an 
avionics development process. An important criterion of such an introduction is 
whether a “certification credit” is based on the use of a technique or not. So far, Air-
bus has always been introducing formal verification techniques from which a certifi-
cation credit has been derived. Nevertheless, it might be the case that some formal 
verification technique could be used for debugging rather than for achieving some 
DO-178 objective. 
 

 
6 Cer tification aspects 

In this section, we will highlight the specificities of the certification process when 
formal methods are used for part of the verification. We consider certification with re-
spect to DO-178B, the current software certification standard for avionics software. 
DO-178 is currently being updated by a dedicated international working group, ver-
sion C of the standard should be available in 2010, we will end the section with a 
brief presentation of the current proposal regarding formal methods. 
  Several cases exist for what concerns certification: 

• Formal techniques are used in places where reviews or analyses were used 
previously to reach the same verification objective. In that case formal meth-
ods are simply an alternative means to reach the objective, the main differ-
ence being that formal techniques are implemented by a tool and so this tool 
must be qualified with respect to DO-178B rules for the qualification of veri-
fication tools. More information on qualification of tools is given in subsec-
tion 6.1. 

• Formal techniques replace verifications that were previously done by test.  
o A first difference that occurs is that the verification is thus done on 

the source code instead of the object code. To reach the same level 
of confidence than with test, complementary analyses must be led to 
ensure that the properties that are verified on source code are still 
satisfied by the object code (this can be done using formal methods 
also, see the work on certified compilation in section 3).  



o The most complex case for certification is the unit or integration 
proof case, where formal methods are used to verify properties of a 
C program and replace unit test or integration test. The issue here is 
the coverage of the verification with respect to the c code. This is-
sue is discussed in subsection 6.2. 

6.1 Qualification of tools 

DO-178B distinguishes two kinds of tools: development tools that have an 
effect on the code being produced (for example code generators) and verification 
tools that are used to verify some properties on the code (but cannot insert errors). 
Formal methods tools have to be qualified as verification tools, it must be shown that 
the tool complies with its operational requirements under normal operational condi-
tions. In practice, it means that a set of representative cases will be defined and it will 
be checked that the tool provides the expected results for these cases. Stackanalyzer, 
aiT and Caveat have been qualified as verification tools. No specific requirements are 
defined for formal method tools in DO-178B, but it might change in version C of the 
standard where the current proposal is to add a criterion targeted for this kind of tools.  

6.2 Coverage 

When test is used to verify a function against its requirements, a set of re-
quirement-based test cases are defined and executed. A functional coverage analysis 
is performed to ensure that test cases have been defined for every requirement and a 
structural coverage analysis is performed to ensure that all the code has been covered 
and that there is no dead code (for level A software, the most critical one, 100% 
MC/DC [13] is required).  When formal proof is used to verify a C function against a 
set of properties, it ensures an exhaustive coverage for a given property, but it must 
also be demonstrated that the set of properties that has been defined covers all the be-
haviours of the code.  
In the case of the unit proof, the argument provided to the certification authorities was 
based on a demonstration that the set of properties was complete (demonstration using 
formal proof and reviews). In the case of integration proof, the argument is still the 
object of research. The general issue that will have to be solved is to be able to meas-
ure the coverage of the code obtained by formal verification, and in some cases to be 
able to mix it with a coverage obtained by test in order to argument the complete cov-
erage of code for certification authorities.  

6.3 DO-178C 

The update of DO-178 will leave the core of the standard mostly unchanged but 
will propose several technical supplements dealing with the use of specific techniques 



such as object-oriented languages or formal methods, a technical supplement on tools 
is also expected . The current draft of the formal method technical supplement defines 
what formal methods are, gives criteria for such methods, explains how and under 
which conditions formal methods can be used to reach DO-178 verification objectives 
at each step. For verification objectives on the executable object code, it replaces the 
testing objectives by more generic verification objectives, some testing is still re-
quired but some objectives can also be reached using formal methods. 

 
7 Conclusion and future work 

 
In this paper it has been shown how formal verification techniques can be used in 

the development process of avionics software products.  
The authors are convinced that the story is far from being finished and that more 

and more formal verification techniques will be used in the future, as tools become 
available for industrial use. These techniques are the only way to face the dramatic in-
crease of software complexity, especially when safety is at stake. Technological re-
search is therefore continued in the following three areas: Computer Science research, 
by means of collaboration with labs, contribution to the development of tools and 
definition of methods of use. 

Regulation aspects are a crucial issue for the industrial use of formal methods, the 
authors are working on means to conform to the standards but also on evolution of 
standards in the hope to facilitate future use of formal techniques.  
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