
SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

A Binary Decision Tree
Abstract Domain

Functor
Junjie Chen and Patrick Cousot

New York University

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

A Motivating Example

x = 0 ; y = 0 ;

1while (y >= 0) {

i f (x <= 50) y++;

else y��;

x++;

}

A Binary Decision Tree
Abstract Domain Functor

Junjie Chen and Patrick Cousot

New York University

Abstract. We present an abstract domain functor whose elements are
binary decision trees. It is parameterized by decision nodes which are a
set of boolean tests appearing in the programs and by a numerical or
symbolic abstract domain whose elements are the leaves. We first define
the branch condition path abstraction which forms the decision nodes of
the binary decision trees. It also provides a new prospective on partition-
ing the trace semantics of programs as well as separating properties in the
leaves. We then discuss our binary decision tree abstract domain functor
by giving algorithms for inclusion test, meet and join, transfer functions
and extrapolation operators. We think the binary decision tree abstract
domain may provide a flexible way of adjusting the cost/precision ratio
in path-dependent static analysis.

1 Introduction

In past decades, abstract interpretation [4] has been widely and successfully ap-

plied to the static analysis and verification of programs. Abstract domains, one of

the key concepts in abstract interpretation, aim at collecting information about

the set of all possible values of the program variables. The biggest advantage of

using abstract domains instead of logic predicates is that they are fully automatic

and can be easily scale up. Intervals [3], octagons [13] and polyhedra [5] are the

most commonly used numerical abstract domains. These abstract domains are

inferring a conjunction of linear constraints to maintain the information of all

possible values of program variables and/or the possible relationships between

them. The absence of disjunctions may cause rough approximations and produce

much less precise results, gradually leading to false alarms or even worse to the

complete failure to prove the desired program property.

Let us consider the following example which is modified from the one in [8]:

Example 1. A motivating example.

�1 103 102

x = 0 ; y = 0 ;

1while (y >= 0) {
i f (x <= 50) y++;

else y��;

x++;

}

A Binary Decision Tree
Abstract Domain Functor

Junjie Chen and Patrick Cousot

New York University

Abstract. We present an abstract domain functor whose elements are
binary decision trees. It is parameterized by decision nodes which are a
set of boolean tests appearing in the programs and by a numerical or
symbolic abstract domain whose elements are the leaves. We first define
the branch condition path abstraction which forms the decision nodes of
the binary decision trees. It also provides a new prospective on partition-
ing the trace semantics of programs as well as separating properties in the
leaves. We then discuss our binary decision tree abstract domain functor
by giving algorithms for inclusion test, meet and join, transfer functions
and extrapolation operators. We think the binary decision tree abstract
domain may provide a flexible way of adjusting the cost/precision ratio
in path-dependent static analysis.

1 Introduction

In past decades, abstract interpretation [4] has been widely and successfully ap-

plied to the static analysis and verification of programs. Abstract domains, one of

the key concepts in abstract interpretation, aim at collecting information about

the set of all possible values of the program variables. The biggest advantage of

using abstract domains instead of logic predicates is that they are fully automatic

and can be easily scale up. Intervals [3], octagons [13] and polyhedra [5] are the

most commonly used numerical abstract domains. These abstract domains are

inferring a conjunction of linear constraints to maintain the information of all

possible values of program variables and/or the possible relationships between

them. The absence of disjunctions may cause rough approximations and produce

much less precise results, gradually leading to false alarms or even worse to the

complete failure to prove the desired program property.

Let us consider the following example which is modified from the one in [8]:

Example 1. A motivating example.

�1 103 102 51

x = 0 ; y = 0 ;

1while (y >= 0) {
i f (x <= 50) y++;

else y��;

x++;

}

A Binary Decision Tree
Abstract Domain Functor

Junjie Chen and Patrick Cousot

New York University

Abstract. We present an abstract domain functor whose elements are
binary decision trees. It is parameterized by decision nodes which are a
set of boolean tests appearing in the programs and by a numerical or
symbolic abstract domain whose elements are the leaves. We first define
the branch condition path abstraction which forms the decision nodes of
the binary decision trees. It also provides a new prospective on partition-
ing the trace semantics of programs as well as separating properties in the
leaves. We then discuss our binary decision tree abstract domain functor
by giving algorithms for inclusion test, meet and join, transfer functions
and extrapolation operators. We think the binary decision tree abstract
domain may provide a flexible way of adjusting the cost/precision ratio
in path-dependent static analysis.

1 Introduction

In past decades, abstract interpretation [4] has been widely and successfully ap-

plied to the static analysis and verification of programs. Abstract domains, one of

the key concepts in abstract interpretation, aim at collecting information about

the set of all possible values of the program variables. The biggest advantage of

using abstract domains instead of logic predicates is that they are fully automatic

and can be easily scale up. Intervals [3], octagons [13] and polyhedra [5] are the

most commonly used numerical abstract domains. These abstract domains are

inferring a conjunction of linear constraints to maintain the information of all

possible values of program variables and/or the possible relationships between

them. The absence of disjunctions may cause rough approximations and produce

much less precise results, gradually leading to false alarms or even worse to the

complete failure to prove the desired program property.

Let us consider the following example which is modified from the one in [8]:

Example 1. A motivating example.

�1 103 102

x = 0 ; y = 0 ;

1while (y >= 0) {
i f (x <= 50) y++;

else y��;

x++;

}

A Binary Decision Tree
Abstract Domain Functor

Junjie Chen and Patrick Cousot

New York University

Abstract. We present an abstract domain functor whose elements are
binary decision trees. It is parameterized by decision nodes which are a
set of boolean tests appearing in the programs and by a numerical or
symbolic abstract domain whose elements are the leaves. We first define
the branch condition path abstraction which forms the decision nodes of
the binary decision trees. It also provides a new prospective on partition-
ing the trace semantics of programs as well as separating properties in the
leaves. We then discuss our binary decision tree abstract domain functor
by giving algorithms for inclusion test, meet and join, transfer functions
and extrapolation operators. We think the binary decision tree abstract
domain may provide a flexible way of adjusting the cost/precision ratio
in path-dependent static analysis.

1 Introduction

In past decades, abstract interpretation [4] has been widely and successfully ap-

plied to the static analysis and verification of programs. Abstract domains, one of

the key concepts in abstract interpretation, aim at collecting information about

the set of all possible values of the program variables. The biggest advantage of

using abstract domains instead of logic predicates is that they are fully automatic

and can be easily scale up. Intervals [3], octagons [13] and polyhedra [5] are the

most commonly used numerical abstract domains. These abstract domains are

inferring a conjunction of linear constraints to maintain the information of all

possible values of program variables and/or the possible relationships between

them. The absence of disjunctions may cause rough approximations and produce

much less precise results, gradually leading to false alarms or even worse to the

complete failure to prove the desired program property.

Let us consider the following example which is modified from the one in [8]:

Example 1. A motivating example.

x = 0 ; y = 0 ;

1while (y >= 0) {
i f (x <= 50) y++;

else y��;

x++;

}

A Binary Decision Tree
Abstract Domain Functor

Junjie Chen and Patrick Cousot

New York University

Abstract. We present an abstract domain functor whose elements are
binary decision trees. It is parameterized by decision nodes which are a
set of boolean tests appearing in the programs and by a numerical or
symbolic abstract domain whose elements are the leaves. We first define
the branch condition path abstraction which forms the decision nodes of
the binary decision trees. It also provides a new prospective on partition-
ing the trace semantics of programs as well as separating properties in the
leaves. We then discuss our binary decision tree abstract domain functor
by giving algorithms for inclusion test, meet and join, transfer functions
and extrapolation operators. We think the binary decision tree abstract
domain may provide a flexible way of adjusting the cost/precision ratio
in path-dependent static analysis.

1 Introduction

In past decades, abstract interpretation [4] has been widely and successfully ap-

plied to the static analysis and verification of programs. Abstract domains, one of

the key concepts in abstract interpretation, aim at collecting information about

the set of all possible values of the program variables. The biggest advantage of

using abstract domains instead of logic predicates is that they are fully automatic

and can be easily scale up. Intervals [3], octagons [13] and polyhedra [5] are the

most commonly used numerical abstract domains. These abstract domains are

inferring a conjunction of linear constraints to maintain the information of all

possible values of program variables and/or the possible relationships between

them. The absence of disjunctions may cause rough approximations and produce

much less precise results, gradually leading to false alarms or even worse to the

complete failure to prove the desired program property.

Let us consider the following example which is modified from the one in [8]:

Example 1. A motivating example.

�1 103 102

x = 0 ; y = 0 ;

1while (y >= 0) {
i f (x <= 50) y++;

else y��;

x++;

}

A Binary Decision Tree
Abstract Domain Functor

Junjie Chen and Patrick Cousot

New York University

Abstract. We present an abstract domain functor whose elements are
binary decision trees. It is parameterized by decision nodes which are a
set of boolean tests appearing in the programs and by a numerical or
symbolic abstract domain whose elements are the leaves. We first define
the branch condition path abstraction which forms the decision nodes of
the binary decision trees. It also provides a new prospective on partition-
ing the trace semantics of programs as well as separating properties in the
leaves. We then discuss our binary decision tree abstract domain functor
by giving algorithms for inclusion test, meet and join, transfer functions
and extrapolation operators. We think the binary decision tree abstract
domain may provide a flexible way of adjusting the cost/precision ratio
in path-dependent static analysis.

1 Introduction

In past decades, abstract interpretation [4] has been widely and successfully ap-

plied to the static analysis and verification of programs. Abstract domains, one of

the key concepts in abstract interpretation, aim at collecting information about

the set of all possible values of the program variables. The biggest advantage of

using abstract domains instead of logic predicates is that they are fully automatic

and can be easily scale up. Intervals [3], octagons [13] and polyhedra [5] are the

most commonly used numerical abstract domains. These abstract domains are

inferring a conjunction of linear constraints to maintain the information of all

possible values of program variables and/or the possible relationships between

them. The absence of disjunctions may cause rough approximations and produce

much less precise results, gradually leading to false alarms or even worse to the

complete failure to prove the desired program property.

Let us consider the following example which is modified from the one in [8]:

Example 1. A motivating example.

�1 103 102

x = 0 ; y = 0 ;

1while (y >= 0) {
i f (x <= 50) y++;

else y��;

x++;

}

A Binary Decision Tree
Abstract Domain Functor

Junjie Chen and Patrick Cousot

New York University

Abstract. We present an abstract domain functor whose elements are
binary decision trees. It is parameterized by decision nodes which are a
set of boolean tests appearing in the programs and by a numerical or
symbolic abstract domain whose elements are the leaves. We first define
the branch condition path abstraction which forms the decision nodes of
the binary decision trees. It also provides a new prospective on partition-
ing the trace semantics of programs as well as separating properties in the
leaves. We then discuss our binary decision tree abstract domain functor
by giving algorithms for inclusion test, meet and join, transfer functions
and extrapolation operators. We think the binary decision tree abstract
domain may provide a flexible way of adjusting the cost/precision ratio
in path-dependent static analysis.

1 Introduction

In past decades, abstract interpretation [4] has been widely and successfully ap-

plied to the static analysis and verification of programs. Abstract domains, one of

the key concepts in abstract interpretation, aim at collecting information about

the set of all possible values of the program variables. The biggest advantage of

using abstract domains instead of logic predicates is that they are fully automatic

and can be easily scale up. Intervals [3], octagons [13] and polyhedra [5] are the

most commonly used numerical abstract domains. These abstract domains are

inferring a conjunction of linear constraints to maintain the information of all

possible values of program variables and/or the possible relationships between

them. The absence of disjunctions may cause rough approximations and produce

much less precise results, gradually leading to false alarms or even worse to the

complete failure to prove the desired program property.

Let us consider the following example which is modified from the one in [8]:

Example 1. A motivating example.

�1 103 102

x = 0 ; y = 0 ;

1while (y >= 0) {
i f (x <= 50) y++;

else y��;

x++;

}

A Binary Decision Tree
Abstract Domain Functor

Junjie Chen and Patrick Cousot

New York University

Abstract. We present an abstract domain functor whose elements are
binary decision trees. It is parameterized by decision nodes which are a
set of boolean tests appearing in the programs and by a numerical or
symbolic abstract domain whose elements are the leaves. We first define
the branch condition path abstraction which forms the decision nodes of
the binary decision trees. It also provides a new prospective on partition-
ing the trace semantics of programs as well as separating properties in the
leaves. We then discuss our binary decision tree abstract domain functor
by giving algorithms for inclusion test, meet and join, transfer functions
and extrapolation operators. We think the binary decision tree abstract
domain may provide a flexible way of adjusting the cost/precision ratio
in path-dependent static analysis.

1 Introduction

In past decades, abstract interpretation [4] has been widely and successfully ap-

plied to the static analysis and verification of programs. Abstract domains, one of

the key concepts in abstract interpretation, aim at collecting information about

the set of all possible values of the program variables. The biggest advantage of

using abstract domains instead of logic predicates is that they are fully automatic

and can be easily scale up. Intervals [3], octagons [13] and polyhedra [5] are the

most commonly used numerical abstract domains. These abstract domains are

inferring a conjunction of linear constraints to maintain the information of all

possible values of program variables and/or the possible relationships between

them. The absence of disjunctions may cause rough approximations and produce

much less precise results, gradually leading to false alarms or even worse to the

complete failure to prove the desired program property.

Let us consider the following example which is modified from the one in [8]:

Example 1. A motivating example.

�1 103 102 51

x = 0 ; y = 0 ;

1while (y >= 0) {
i f (x <= 50) y++;

else y��;

x++;

}

2

W

e

k

n

o

w

t

h

a

t

t

h

e

s

t

r

o

n

g

e

s

t

i

n

v

a

r

i

a

n

t

a

t

p

r

o

g

r

a

m

p

o

i

n

t

1 i

s

(

0

<
=

x

<
=

5

0

^

x

=

y

)

_
(

5

1

<
=

x

<
=

1

0

3

^
x
+

y
�

1

0

2

=

0

)

.

W

h

e

n

w

e

u

s

e

t

h

e

A

P

R

O

N

n

u

m

e

r

i

c

a

l

a

b

s

t

r

a

c

t

d

o

m

a

i

n

l

i

b

r

a

r

y

[

1

1

]

t

o

g

e

n

e

r

a

t

e

t

h

e

i

n

v

a

r

i

a

n

t

a

t

p

r

o

g

r

a

m

p

o

i

n

t

1 ,

w

e

w

i

l

l

g

e

t

x

>
=

0

^ y

>
=

�1

f

r

o

m

t

h

e

b

o

x

(

i

n

t

e

r

v

a

l

)

a

b

s

t

r

a

c

t

d

o

m

a

i

n

a

n

d

y

>
=

�1

^ x

�
y

>
=

0

^ x

+

5

2

y

>
=

0

f

r

o

m

t

h

e

p

o

l

k

a

(

c

o

n

v

e

x

p

o

l

y

h

e

d

r

a

)

a

b

s

t

r

a

c

t

d

o

m

a

i

n

.

B

o

t

h

a

n

a

l

y

s

i

s

a

r

e

v

e

r

y

i

m

p

r

e

c

i

s

e

c

o

m

p

a

r

e

t

o

t

h

e

s

t

r

o

n

g

e

s

t

o

n

e

.

T

h

i

s

i

s

b

e

c

a

u

s

e

t

h

e

t

r

u

e

a

n

d

f

a

l

s

e

b

r

a

n

c

h

e

s

o

f

”

i

f

(

x

<
=

5

0

)

”

h

a

v

e

d

i

�

e

r

e

n

t

b

e

h

a

v

i

o

r

s

a

n

d

t

h

o

s

e

a

b

s

t

r

a

c

t

d

o

m

a

i

n

s

d

o

n

o

t

c

o

n

s

i

d

e

r

t

h

e

m

s

e

p

a

r

a

t

e

l

y

.

H

e

n

c

e

,

w

e

p

r

o

p

o

s

e

t

h

e

b

i

n

a

r

y

d

e

c

i

s

i

o

n

t

r

e

e

a

b

s

t

r

a

c

t

d

o

m

a

i

n

t

h

a

t

t

a

k

e

s

t

h

o

s

e

b

r

a

n

c

h

e

s

i

n

t

o

c

o

n

s

i

d

e

r

a

t

i

o

n

.

2
A
ct
io
n
P
at
h
Se

m
an

ti
cs

W

e

c

o

n

s

i

d

e

r

t

h

e

f

o

l

l

o

w

i

n

g

ab
st
ra
ct

sy
nt
ax

o

f

c

o

m

m

a

n

d

s

w

h

i

c

h

d

e

s

c

r

i

b

e

s

t

h

e

a

b

s

t

r

a

c

t

s

y

n

t

a

x

t

r

e

e

s

(

A

S

T

)

r

e

p

r

e

s

e

n

t

i

n

g

t

h

e

s

y

n

t

a

c

t

i

c

s

t

r

u

c

t

u

r

e

o

f

s

o

u

r

c

e

c

o

d

e

:

C

2 C
:

:

=

s

k

i

p

| x
=

E

| C
1
;

C

2
| if

(

B

)

{C
1
} e

l

s

e

{C
2
} | w

h

i

l

e

(

B

)

{C
}

T

h

e

tra
ce

se
m
an

tic
s
S

t JCK o

f

a

c

o

m

m

a

n

d

C

d

e

s

c

r

i

b

e

s

a

l

l

p

o

s

s

i

b

l

e

o

b

s

e

r

v

a

-

t

i

o

n

s

o

f

e

x

e

c

u

t

i

o

n

s

o

f

t

h

e

c

o

m

m

a

n

d

C

.

A

tra
ce

�
o

f

l

e

n

g

t

h

|�|
,

n
�

1

i

s

a

p

a

i

r

�
=

h�
,�

i o

f

a

fi

n

i

t

e

s

e

q

u

e

n

c

e

�
=

� 0
� 1

...
� n�

1
o

f

s

t

a

t

e

s

s

e

p

a

r

a

t

e

d

b

y

a

fi

n

i

t

e

s

e

q

u

e

n

c

e

�
=

A

0
A

1
...
A

n�
2

o

f

a

c

t

i

o

n

s

.

St
at
es

r

e

c

o

r

d

t

h

e

c

u

r

r

e

n

t

v

a

l

u

e

s

o

f

v

a

r

i

a

b

l

e

s

i

n

t

h

e

e

n

v

i

r

o

n

m

e

n

t

/

m

e

m

o

r

y

a

s

w

e

l

l

a

s

a

l

a

b

e

l

/

c

o

n

t

r

o

l

p

o

i

n

t

s

p

e

c

i

f

y

i

n

g

w

h

a

t

r

e

m

a

i

n

s

t

o

b

e

e

x

e

c

u

t

e

d

w

h

i

l

e

ac
tio

ns
r

e

c

o

r

d

w

h

i

c

h

e

l

e

m

e

n

t

a

r

y

i

n

d

i

v

i

s

i

b

l

e

e

l

e

m

e

n

t

a

r

y

p

r

o

g

r

a

m

s

t

e

p

s

a

r

e

c

o

m

p

u

t

e

d

d

u

r

i

n

g

t

h

e

e

x

e

c

u

t

i

o

n

o

f

c

o

m

m

a

n

d

s

.

A

n

a

c

t

i

o

n

A

2
A

i

n

c

l

u

d

e

n

o

o

p

e

r

a

t

i

o

n

”

s

k

i

p

”

,

a

s

s

i

g

n

m

e

n

t

”

x

=

E

”

o

r

t

e

s

t

s

w

h

i

c

h

o

u

t

p

u

t

i

s

e

i

t

h

e

r

t

r

u

e

(

t

t

)

o

r

f

a

l

s

e

(

�

)

.

W

e

u

s

e

a

c

t

i

o

n

”

B

”

t

o

r

e

c

o

r

d

t

h

e

B

o

o

l

e

a

n

e

x

p

r

e

s

s

i

o

n

B

e

v

a

l

u

a

t

e

d

t

o

t

t

,

w

h

i

l

e

a

c

t

i

o

n

”

¬B
”

t

o

r

e

c

o

r

d

t

h

e

B

o

o

l

e

a

n

e

x

p

r

e

s

s

i

o

n

B

e

v

a

l

u

a

t

e

d

t

o

�

.

T

h

e

ac
tio

n
pa
th

ab
st
ra
ct
io
n

�
a (

S)
c

o

l

l

e

c

t

s

t

h

e

s

e

t

o

f

a

c

t

i

o

n

p

a

t

h

s

,

w

h

i

c

h

i

s

s

e

q

u

e

n

c

e

s

o

f

a

c

t

i

o

n

s

p

e

r

f

o

r

m

e

d

a

l

o

n

g

t

h

e

t

r

a

c

e

s

o

f

a

t

r

a

c

e

s

e

m

a

n

t

i

c

s

S.
G

i

v

e

n

a

t

r

a

c

e

�
=

h�
,�

i,
�

a (

�)
,

�
c

o

l

l

e

c

t

s

t

h

e

s

e

q

u

e

n

c

e

o

f

a

c

t

i

o

n

s

�
e

x

e

c

u

t

e

d

a

l

o

n

g

t

h

a

t

t

r

a

c

e

,

w

h

i

c

h

m

a

y

b

e

e

m

p

t

y

�
f

o

r

t

r

a

c

e

s

r

e

d

u

c

e

d

t

o

a

s

i

n

g

l

e

s

t

a

t

e

.

D
efi

ni
ti
on

1
(A

ct
io
n
pa

th
ab

st
ra
ct
io
n)

. G
iv
en

a
se
t o

f t
ra
ce
s
S,

�
a (

S)
,

{�
a (

�)
| �

2 S}

co
lle
ct
s
th
e
se
qu

en
ce
s
of

ac
tio

ns
ex
ec
ut
ed

al
on

g
th
e
tra

ce
s
of

S.

ut

N

o

t

e

t

h

a

t

�
a p

r

e

s

e

r

v

e

s

b

o

t

h

u

n

i

o

n

s

a

n

d

i

n

t

e

r

s

e

c

t

i

o

n

s

.

H

e

n

c

e

,

b

y

d

e

fi

n

i

n

g

�
a (

A)

,

{�
| �

a (

�)
2 A},

�
a a

n

d

�
a f

o

r

m

t

h

e

G

a

l

o

i

s

c

o

n

n

e

c

t

i

o

n

.

A

co
nt
ro
l
flo

w
gr
ap

h
(

C

F

G

)

i

s

u

s

u

a

l

l

y

a

d

i

r

e

c

t

e

d

g

r

a

p

h

,

i

n

w

h

i

c

h

n

o

d

e

s

c

o

r

r

e

s

p

o

n

d

t

o

t

h

e

a

c

t

i

o

n

s

i

n

t

h

e

p

r

o

g

r

a

m

a

n

d

t

h

e

e

d

g

e

s

r

e

p

r

e

s

e

n

t

t

h

e

p

o

s

s

i

b

l

e

fl

o

w

o

f

c

o

n

t

r

o

l

.

T

h

e

C

F

G

GJCK
o

f

c

o

m

m

a

n

d

C

c

a

n

b

e

b

u

i

l

t

b

y

t

h

e

s

t

r

u

c

t

u

r

a

l

2

W

e

k

n

o

w

t

h

a

t

t

h

e

s

t

r

o

n

g

e

s

t

i

n

v

a

r

i

a

n

t

a

t

p

r

o

g

r

a

m

p

o

i

n

t 1
i

s

(

0

<
=

x

<
=

5

0 ^

x

=

y

) _
(

5

1

<
=

x

<
=

1

0

3 ^
x
+

y �
1

0

2

=

0

)

.

W

h

e

n

w

e

u

s

e

t

h

e

A

P

R

O

N

n

u

m

e

r

i

c

a

l

a

b

s

t

r

a

c

t

d

o

m

a

i

n

l

i

b

r

a

r

y

[

1

1

]

t

o

g

e

n

e

r

a

t

e

t

h

e

i

n

v

a

r

i

a

n

t

a

t

p

r

o

g

r

a

m

p

o

i

n

t 1
,

w

e

w

i

l

l

g

e

t

x

>
=

0 ^
y

>
=

�
1

f

r

o

m

t

h

e

b

o

x

(

i

n

t

e

r

v

a

l

)

a

b

s

t

r

a

c

t

d

o

m

a

i

n

a

n

d

y

>
=

�
1 ^

x �
y

>
=

0 ^
x

+

5

2

y

>
=

0

f

r

o

m

t

h

e

p

o

l

k

a

(

c

o

n

v

e

x

p

o

l

y

h

e

d

r

a

)

a

b

s

t

r

a

c

t

d

o

m

a

i

n

.

B

o

t

h

a

n

a

l

y

s

i

s

a

r

e

v

e

r

y

i

m

p

r

e

c

i

s

e

c

o

m

p

a

r

e

t

o

t

h

e

s

t

r

o

n

g

e

s

t

o

n

e

.

T

h

i

s

i

s

b

e

c

a

u

s

e

t

h

e

t

r

u

e

a

n

d

f

a

l

s

e

b

r

a

n

c

h

e

s

o

f

”

i

f

(

x

<
=

5

0

)

”

h

a

v

e

d

i

�

e

r

e

n

t

b

e

h

a

v

i

o

r

s

a

n

d

t

h

o

s

e

a

b

s

t

r

a

c

t

d

o

m

a

i

n

s

d

o

n

o

t

c

o

n

s

i

d

e

r

t

h

e

m

s

e

p

a

r

a

t

e

l

y

.

H

e

n

c

e

,

w

e

p

r

o

p

o

s

e

t

h

e

b

i

n

a

r

y

d

e

c

i

s

i

o

n

t

r

e

e

a

b

s

t

r

a

c

t

d

o

m

a

i

n

t

h

a

t

t

a

k

e

s

t

h

o

s

e

b

r

a

n

c

h

e

s

i

n

t

o

c

o

n

s

i

d

e

r

a

t

i

o

n

.

2
A
ction

P
ath

Sem
antics

W

e

c

o

n

s

i

d

e

r

t

h

e

f

o

l

l

o

w

i

n

g

abstract
syntax

o

f

c

o

m

m

a

n

d

s

w

h

i

c

h

d

e

s

c

r

i

b

e

s

t

h

e

a

b

s

t

r

a

c

t

s

y

n

t

a

x

t

r

e

e

s

(

A

S

T

)

r

e

p

r

e

s

e

n

t

i

n

g

t

h

e

s

y

n

t

a

c

t

i

c

s

t

r

u

c

t

u

r

e

o

f

s

o

u

r

c

e

c

o

d

e

:

C

2
C

:

:

=

s

k

i

p |
x

=

E

|
C

1
;

C

2 |
i

f

(

B

) {
C

1 }
e

l

s

e {
C

2 } |
w

h

i

l

e

(

B

) {
C}

T

h

e

trace
sem

antics S tJ
CK

o

f

a

c

o

m

m

a

n

d

C

d

e

s

c

r

i

b

e

s

a

l

l

p

o

s

s

i

b

l

e

o

b

s

e

r

v

a

-

t

i

o

n

s

o

f

e

x

e

c

u

t

i

o

n

s

o

f

t

h

e

c

o

m

m

a

n

d

C

.

A

trace
�

o

f

l

e

n

g

t

h

|�| ,
n

�
1

i

s

a

p

a

i

r

�
=

h�,�i
o

f

a

fi

n

i

t

e

s

e

q

u

e

n

c

e

�
=

�
0 �

1 ...�
n�

1
o

f

s

t

a

t

e

s

s

e

p

a

r

a

t

e

d

b

y

a

fi

n

i

t

e

s

e

q

u

e

n

c

e

�
=

A

0
A

1 ...
A

n�
2
o

f

a

c

t

i

o

n

s

. States
r

e

c

o

r

d

t

h

e

c

u

r

r

e

n

t

v

a

l

u

e

s

o

f

v

a

r

i

a

b

l

e

s

i

n

t

h

e

e

n

v

i

r

o

n

m

e

n

t

/

m

e

m

o

r

y

a

s

w

e

l

l

a

s

a

l

a

b

e

l

/

c

o

n

t

r

o

l

p

o

i

n

t

s

p

e

c

i

f

y

i

n

g

w

h

a

t

r

e

m

a

i

n

s

t

o

b

e

e

x

e

c

u

t

e

d

w

h

i

l

e

actions
r

e

c

o

r

d

w

h

i

c

h

e

l

e

m

e

n

t

a

r

y

i

n

d

i

v

i

s

i

b

l

e

e

l

e

m

e

n

t

a

r

y

p

r

o

g

r

a

m

s

t

e

p

s

a

r

e

c

o

m

p

u

t

e

d

d

u

r

i

n

g

t

h

e

e

x

e

c

u

t

i

o

n

o

f

c

o

m

m

a

n

d

s

.

A

n

a

c

t

i

o

n

A

2
A

i

n

c

l

u

d

e

n

o

o

p

e

r

a

t

i

o

n

”

s

k

i

p

”

,

a

s

s

i

g

n

m

e

n

t

”

x

=

E

”

o

r

t

e

s

t

s

w

h

i

c

h

o

u

t

p

u

t

i

s

e

i

t

h

e

r

t

r

u

e

(

t

t

)

o

r

f

a

l

s

e

(

�

)

.

W

e

u

s

e

a

c

t

i

o

n

”

B

”

t

o

r

e

c

o

r

d

t

h

e

B

o

o

l

e

a

n

e

x

p

r

e

s

s

i

o

n

B

e

v

a

l

u

a

t

e

d

t

o

t

t

,

w

h

i

l

e

a

c

t

i

o

n

”¬
B

”

t

o

r

e

c

o

r

d

t

h

e

B

o

o

l

e

a

n

e

x

p

r

e

s

s

i

o

n

B

e

v

a

l

u

a

t

e

d

t

o

�

.

T

h

e

action
path

abstraction
� a

(S
)

c

o

l

l

e

c

t

s

t

h

e

s

e

t

o

f

a

c

t

i

o

n

p

a

t

h

s

,

w

h

i

c

h

i

s

s

e

q

u

e

n

c

e

s

o

f

a

c

t

i

o

n

s

p

e

r

f

o

r

m

e

d

a

l

o

n

g

t

h

e

t

r

a

c

e

s

o

f

a

t

r

a

c

e

s

e

m

a

n

t

i

c

s S
.

G

i

v

e

n

a

t

r

a

c

e

�
=

h�,�i
, � a

(�
) ,

�
c

o

l

l

e

c

t

s

t

h

e

s

e

q

u

e

n

c

e

o

f

a

c

t

i

o

n

s

�
e

x

e

c

u

t

e

d

a

l

o

n

g

t

h

a

t

t

r

a

c

e

,

w

h

i

c

h

m

a

y

b

e

e

m

p

t

y

�
f

o

r

t

r

a

c

e

s

r

e

d

u

c

e

d

t

o

a

s

i

n

g

l

e

s

t

a

t

e

.

D
efinition

1
(A

ction
path

abstraction). G
iven

a
set of traces S,

� a
(S

) ,
{� a

(�
) | � 2 S}

collects
the

sequences
of actions

executed
along

the
traces

of S.

ut

N

o

t

e

t

h

a

t � a
p

r

e

s

e

r

v

e

s

b

o

t

h

u

n

i

o

n

s

a

n

d

i

n

t

e

r

s

e

c

t

i

o

n

s

.

H

e

n

c

e

,

b

y

d

e

fi

n

i

n

g � a
(A

) ,

{� | � a
(�

) 2 A}
, � a

a

n

d

� a
f

o

r

m

t

h

e

G

a

l

o

i

s

c

o

n

n

e

c

t

i

o

n

.

A

control
flow

graph
(

C

F

G

)

i

s

u

s

u

a

l

l

y

a

d

i

r

e

c

t

e

d

g

r

a

p

h

,

i

n

w

h

i

c

h

n

o

d

e

s

c

o

r

r

e

s

p

o

n

d

t

o

t

h

e

a

c

t

i

o

n

s

i

n

t

h

e

p

r

o

g

r

a

m

a

n

d

t

h

e

e

d

g

e

s

r

e

p

r

e

s

e

n

t

t

h

e

p

o

s

s

i

b

l

e

fl

o

w

o

f

c

o

n

t

r

o

l

.

T

h

e

C

F

G

GJ
CK

o

f

c

o

m

m

a

n

d

C

c

a

n

b

e

b

u

i

l

t

b

y

t

h

e

s

t

r

u

c

t

u

r

a

l

We know that the strongest invariant at program point 1 is (0 <= x <= 50 ^ x = y) _

(51 <= x <= 103^x+y�102 = 0). When we use the APRON numerical abstract domain

library [JM09] to generate the invariant at program point 1, we get x >= 0 ^ y >= �1

with the box (interval) abstract domain and y >= �1^x�y >= 0^x+52y >= 0 with the

polka (convex polyhedra) abstract domain. Both analyses are very imprecise compared

to the strongest one. This is because the true and false branches of “if (x <= 50)” have

di↵erent behaviors and those abstract domains do not consider them separately.

Hence, we propose the binary decision tree abstract domain functor that takes those

branches into consideration.

Given the trace semantics StJPK of a program P, ↵

b � ↵

a(StJPK) abstracts StJPK into

a finite set B of branch condition paths where |B| = N . Then for each ⇡

b

2 B, we have

�

a � �

b(⇡
b

) \ StJPK ✓ StJPK and
S

iN

(�a � �

b(⇡
b

i

) \ StJPK) = StJPK. Moreover, for all

pairs (⇡
b

1

, ⇡

b

2

) 2 B ⇥ B, we have (�a � �

b(⇡
b

1

) \ StJPK) \ (�a � �

b(⇡
b

2

) \ StJPK) = ;. Each

branch condition path ⇡

b

defines a subset of the trace semantics StJPK of a program P.

If we can generate the invariants for each program point only using the information of

one subset of the trace semantics, then for each program point, we will get a finite set

of invariants. It follows that the disjunction of such set of invariants forms the invariant

of that program point. Hence, we encapsulate the set of branch condition paths into the

96

Inteval: x � 0 ^ y � �1
Convex Polyhedra: y � �1 ^ x� y � 0 ^ x + 52y � 0

Let ↵

a(⇡) , ⇡ collects the sequence of actions A0A1...An�2, then

Definition 1 (Action path abstraction). Given a set of traces S,

↵

a 2 }(⇧)! }(A⇤)
↵

a(S) , {↵a(⇡) | ⇡ 2 S}

collects the sequences of actions executed along the traces of S.

↵

c 2 }(A⇤) 7! }((AC)⇤)

↵

c(A) , {↵c(⇡) | ⇡ 2 A}

AB: the set of branch conditions
AL: the set of loop conditions
For all Ab 2 AB and Al 2 AL, we have

↵

d(Ab) , Ab
, ↵

d(Al) , "

↵

d(⇡c1
· ⇡c2

) , ↵

d(⇡c1
) · ↵d(⇡c2

)

↵

d 2 }((AC)⇤) 7! }((AB)⇤)

↵

d(C) , {↵d(⇡c) | ⇡c 2 C}

↵

` 2 }((AB)⇤) 7! }((AB)⇤ \ D)

↵

`(D) , {↵`(⇡d) | ⇡d 2 D}

Theorem 1 (Homomorphic Abstraction). Given a function h : C 7!
A, let ↵h(X) = {h(x) | x 2 X} and �h(Y) = {x | h(x) 2 Y }, then ↵h

and �h form a Galois connection:

(}(C),✓) ���! ���
↵h

�h
(}(A),✓)

Proof. For all X 2 }(C) and Y 2 }(A),

↵h(X) ✓ Y

() {h(x) | x 2 X} ✓ Y Hdefinition of ↵hI
() 8x 2 X : h(x) 2 Y Hdefinition of ✓I
() X ✓ {x | h(x) 2 Y } Hdefinition of ✓I
() X ✓ �h(Y) Hdefinition of �hI

1

Inteval: x � 0 ^ y � �1
Convex Polyhedra: y � �1 ^ x� y � 0 ^ x + 52y � 0

Let ↵

a(⇡) , ⇡ collects the sequence of actions A0A1...An�2, then

Definition 1 (Action path abstraction). Given a set of traces S,

↵

a 2 }(⇧)! }(A⇤)
↵

a(S) , {↵a(⇡) | ⇡ 2 S}

collects the sequences of actions executed along the traces of S.

↵

c 2 }(A⇤) 7! }((AC)⇤)

↵

c(A) , {↵c(⇡) | ⇡ 2 A}

AB: the set of branch conditions
AL: the set of loop conditions
For all Ab 2 AB and Al 2 AL, we have

↵

d(Ab) , Ab
, ↵

d(Al) , "

↵

d(⇡c1
· ⇡c2

) , ↵

d(⇡c1
) · ↵d(⇡c2

)

↵

d 2 }((AC)⇤) 7! }((AB)⇤)

↵

d(C) , {↵d(⇡c) | ⇡c 2 C}

↵

` 2 }((AB)⇤) 7! }((AB)⇤ \ D)

↵

`(D) , {↵`(⇡d) | ⇡d 2 D}

Theorem 1 (Homomorphic Abstraction). Given a function h : C 7!
A, let ↵h(X) = {h(x) | x 2 X} and �h(Y) = {x | h(x) 2 Y }, then ↵h

and �h form a Galois connection:

(}(C),✓) ���! ���
↵h

�h
(}(A),✓)

Proof. For all X 2 }(C) and Y 2 }(A),

↵h(X) ✓ Y

() {h(x) | x 2 X} ✓ Y Hdefinition of ↵hI
() 8x 2 X : h(x) 2 Y Hdefinition of ✓I
() X ✓ {x | h(x) 2 Y } Hdefinition of ✓I
() X ✓ �h(Y) Hdefinition of �hI

1

2

Intervals:

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Precision Problem
• A common believe (in data flow analysis) is that the

problem is from the imprecise joins ⊔ ?

• No, e.g. in the Galois connection case, the abstraction
of ⋃ is exact (α preserves joins)

• The problem is from the imprecise abstraction:

• convex abstractions do not take the control flow
into account precisely enough

3 SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Idea:

4

• The reduced cardinal power A2A1 = A1 → A2 [CC79]

• with exponent A1 which is an abstraction of the
control flow graph

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Operational trace
Semantics

5 SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Syntax

6

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

States

7 SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Traces

A trace ⇡ of length |⇡| , n > 1 is a pair ⇡ = h⇡, ⇡i of a finite
sequence ⇡ = �

0

�

1

...�n�1

2 ⌃n of states separated by a finite
sequence ⇡ = A

0

A
1

...An�2

2 An�1 of actions, which we can write

as �
0

A0�! �

1

A1�! ...

An�2���! �n�1

and interpret as an observation of
an execution that starts from state �

0

such that in state �i, the
execution of action Ai leads to next state �i+1

, i = 0, 1, ..., n�2.

Let ⇧+ denote the set of all finite traces while ⇧⇤ , {"} [⇧+

also include the empty trace " corresponding to no observation.

StJstopK , {hstop, ⇢i | ⇢ 2 E}

StJskipK , {hskip, ⇢i skip��! hstop, ⇢i | ⇢ 2 E}

StJx = EK , {hskip, ⇢i x=E��! hstop, ⇢[x := v]i | ⇢ 2 E ^ v 2 EJEK⇢}
StJC

1

; C
2

K , {(⇡ ; C
2

)
A�! hC

2

, ⇢i A

0
�! ⇡

0 | ⇢ 2 E^
⇡

A�! hstop, ⇢i 2 StJC
1

K ^ hC
2

, ⇢i A

0
�! ⇡

0 2 StJC
2

K}
StJif (B) {C

1

} else {C
2

}K ,
{hif (B) {C

1

} else {C
2

}, ⇢i B�! hC
1

, ⇢i A�! ⇡ |
⇢ 2 E ^ true 2 EJBK⇢ ^ hC

1

, ⇢i A�! ⇡ 2 StJC
1

K}
[{hif (B) {C

1

} else {C
2

}, ⇢i ¬B�! hC
2

, ⇢i A�! ⇡ |
⇢ 2 E ^ false 2 EJBK⇢ ^ hC

2

, ⇢i A�! ⇡ 2 StJC
2

K}
F tiJwhile (B) {C}KX , {hwhile (B) {C}, ⇢i | ⇢ 2 E} [
{⇡ A�! hwhile (B) {C}, ⇢i B�! (hC, ⇢i A

0
�! ⇡

0 A

00
�! hstop, ⇢0i) ; while (B) {C} |

⇡, ⇡

0 2 ⇧⇤ ^ ⇡

A�! hwhile (B) {C}, ⇢i 2 X ^ true 2 EJBK⇢ ^
(hC, ⇢i A

0
�! ⇡

0 A

00
�! hstop, ⇢0i) 2 StJCK}

StiJwhile (B) {C}K , lfp✓F tiJwhile (B) {C}K
StJwhile (B) {C}K , {⇡ A�! hwhile (B) {C}, ⇢i ¬B�! hstop, ⇢i |
⇡ 2 ⇧⇤ ^ ⇡

A�! hwhile (B) {C}, ⇢i 2 StiJwhile (B) {C}K ^ false 2 EJBK⇢}
Definition 3 (Reachable state abstraction). Given a set of
traces S,

↵

r 2 }(⇧) ! }(⌃)

↵

r(S) , {� | 9�
0

A0�! ...�n 2 S : 9i  n : � = �i}

2

8

• Trace 
 π =

•

A trace ⇡ of length |⇡| , n > 1 is a pair ⇡ = h⇡, ⇡i of a finite
sequence ⇡ = �

0

�

1

...�n�1

2 ⌃n of states separated by a finite
sequence ⇡ = A

0

A
1

...An�2

2 An�1 of actions, which we can write

as �
0

A0�! �

1

A1�! ...

An�2���! �n�1

and interpret as an observation of
an execution that starts from state �

0

such that in state �i, the
execution of action Ai leads to next state �i+1

, i = 0, 1, ..., n�2.

Let ⇧+ denote the set of all finite traces while ⇧⇤ , {"} [⇧+

also include the empty trace " corresponding to no observation.

StJstopK , {hstop, ⇢i | ⇢ 2 E}

StJskipK , {hskip, ⇢i skip��! hstop, ⇢i | ⇢ 2 E}

StJx = EK , {hskip, ⇢i x=E��! hstop, ⇢[x := v]i | ⇢ 2 E ^ v 2 EJEK⇢}
StJC

1

; C
2

K , {(⇡ ; C
2

)
A�! hC

2

, ⇢i A

0
�! ⇡

0 | ⇢ 2 E^
⇡

A�! hstop, ⇢i 2 StJC
1

K ^ hC
2

, ⇢i A

0
�! ⇡

0 2 StJC
2

K}
StJif (B) {C

1

} else {C
2

}K ,
{hif (B) {C

1

} else {C
2

}, ⇢i B�! hC
1

, ⇢i A�! ⇡ |
⇢ 2 E ^ true 2 EJBK⇢ ^ hC

1

, ⇢i A�! ⇡ 2 StJC
1

K}
[{hif (B) {C

1

} else {C
2

}, ⇢i ¬B�! hC
2

, ⇢i A�! ⇡ |
⇢ 2 E ^ false 2 EJBK⇢ ^ hC

2

, ⇢i A�! ⇡ 2 StJC
2

K}
F tiJwhile (B) {C}KX , {hwhile (B) {C}, ⇢i | ⇢ 2 E} [
{⇡ A�! hwhile (B) {C}, ⇢i B�! (hC, ⇢i A

0
�! ⇡

0 A

00
�! hstop, ⇢0i) ; while (B) {C} |

⇡, ⇡

0 2 ⇧⇤ ^ ⇡

A�! hwhile (B) {C}, ⇢i 2 X ^ true 2 EJBK⇢ ^
(hC, ⇢i A

0
�! ⇡

0 A

00
�! hstop, ⇢0i) 2 StJCK}

StiJwhile (B) {C}K , lfp✓F tiJwhile (B) {C}K
StJwhile (B) {C}K , {⇡ A�! hwhile (B) {C}, ⇢i ¬B�! hstop, ⇢i |
⇡ 2 ⇧⇤ ^ ⇡

A�! hwhile (B) {C}, ⇢i 2 StiJwhile (B) {C}K ^ false 2 EJBK⇢}
Definition 3 (Reachable state abstraction). Given a set of
traces S,

↵

r 2 }(⇧) ! }(⌃)

↵

r(S) , {� | 9�
0

A0�! ...�n 2 S : 9i  n : � = �i}

2

A trace ⇡ of length |⇡| , n > 1 is a pair ⇡ = h⇡, ⇡i of a finite
sequence ⇡ = �

0

�

1

...�n�1

2 ⌃n of states separated by a finite
sequence ⇡ = A

0

A
1

...An�2

2 An�1 of actions, which we can write

as �
0

A0�! �

1

A1�! ...

An�2���! �n�1

and interpret as an observation of
an execution that starts from state �

0

such that in state �i, the
execution of action Ai leads to next state �i+1

, i = 0, 1, ..., n�2.

Let ⇧+ denote the set of all finite traces while ⇧⇤ , {"} [⇧+

also include the empty trace " corresponding to no observation.

StJstopK , {hstop, ⇢i | ⇢ 2 E}

StJskipK , {hskip, ⇢i skip��! hstop, ⇢i | ⇢ 2 E}

StJx = EK , {hskip, ⇢i x=E��! hstop, ⇢[x := v]i | ⇢ 2 E ^ v 2 EJEK⇢}
StJC

1

; C
2

K , {(⇡ ; C
2

)
A�! hC

2

, ⇢i A

0
�! ⇡

0 | ⇢ 2 E^
⇡

A�! hstop, ⇢i 2 StJC
1

K ^ hC
2

, ⇢i A

0
�! ⇡

0 2 StJC
2

K}
StJif (B) {C

1

} else {C
2

}K ,
{hif (B) {C

1

} else {C
2

}, ⇢i B�! hC
1

, ⇢i A�! ⇡ |
⇢ 2 E ^ true 2 EJBK⇢ ^ hC

1

, ⇢i A�! ⇡ 2 StJC
1

K}
[{hif (B) {C

1

} else {C
2

}, ⇢i ¬B�! hC
2

, ⇢i A�! ⇡ |
⇢ 2 E ^ false 2 EJBK⇢ ^ hC

2

, ⇢i A�! ⇡ 2 StJC
2

K}
F tiJwhile (B) {C}KX , {hwhile (B) {C}, ⇢i | ⇢ 2 E} [
{⇡ A�! hwhile (B) {C}, ⇢i B�! (hC, ⇢i A

0
�! ⇡

0 A

00
�! hstop, ⇢0i) ; while (B) {C} |

⇡, ⇡

0 2 ⇧⇤ ^ ⇡

A�! hwhile (B) {C}, ⇢i 2 X ^ true 2 EJBK⇢ ^
(hC, ⇢i A

0
�! ⇡

0 A

00
�! hstop, ⇢0i) 2 StJCK}

StiJwhile (B) {C}K , lfp✓F tiJwhile (B) {C}K
StJwhile (B) {C}K , {⇡ A�! hwhile (B) {C}, ⇢i ¬B�! hstop, ⇢i |
⇡ 2 ⇧⇤ ^ ⇡

A�! hwhile (B) {C}, ⇢i 2 StiJwhile (B) {C}K ^ false 2 EJBK⇢}
Definition 3 (Reachable state abstraction). Given a set of
traces S,

↵

r 2 }(⇧) ! }(⌃)

↵

r(S) , {� | 9�
0

A0�! ...�n 2 S : 9i  n : � = �i}

2

A trace ⇡ of length |⇡| , n > 1 is a pair ⇡ = h⇡, ⇡i of a finite
sequence ⇡ = �

0

�

1

...�n�1

2 ⌃n of states separated by a finite
sequence ⇡ = A

0

A
1

...An�2

2 An�1 of actions, which we can write

as �
0

A0�! �

1

A1�! ...

An�2���! �n�1

and interpret as an observation of
an execution that starts from state �

0

such that in state �i, the
execution of action Ai leads to next state �i+1

, i = 0, 1, ..., n�2.

Let ⇧+ denote the set of all finite traces while ⇧⇤ , {"} [⇧+

also include the empty trace " corresponding to no observation.

StJstopK , {hstop, ⇢i | ⇢ 2 E}

StJskipK , {hskip, ⇢i skip��! hstop, ⇢i | ⇢ 2 E}

StJx = EK , {hskip, ⇢i x=E��! hstop, ⇢[x := v]i | ⇢ 2 E ^ v 2 EJEK⇢}
StJC

1

; C
2

K , {(⇡ ; C
2

)
A�! hC

2

, ⇢i A

0
�! ⇡

0 | ⇢ 2 E^
⇡

A�! hstop, ⇢i 2 StJC
1

K ^ hC
2

, ⇢i A

0
�! ⇡

0 2 StJC
2

K}
StJif (B) {C

1

} else {C
2

}K ,
{hif (B) {C

1

} else {C
2

}, ⇢i B�! hC
1

, ⇢i A�! ⇡ |
⇢ 2 E ^ true 2 EJBK⇢ ^ hC

1

, ⇢i A�! ⇡ 2 StJC
1

K}
[{hif (B) {C

1

} else {C
2

}, ⇢i ¬B�! hC
2

, ⇢i A�! ⇡ |
⇢ 2 E ^ false 2 EJBK⇢ ^ hC

2

, ⇢i A�! ⇡ 2 StJC
2

K}
F tiJwhile (B) {C}KX , {hwhile (B) {C}, ⇢i | ⇢ 2 E} [
{⇡ A�! hwhile (B) {C}, ⇢i B�! (hC, ⇢i A

0
�! ⇡

0 A

00
�! hstop, ⇢0i) ; while (B) {C} |

⇡, ⇡

0 2 ⇧⇤ ^ ⇡

A�! hwhile (B) {C}, ⇢i 2 X ^ true 2 EJBK⇢ ^
(hC, ⇢i A

0
�! ⇡

0 A

00
�! hstop, ⇢0i) 2 StJCK}

StiJwhile (B) {C}K , lfp✓F tiJwhile (B) {C}K
StJwhile (B) {C}K , {⇡ A�! hwhile (B) {C}, ⇢i ¬B�! hstop, ⇢i |
⇡ 2 ⇧⇤ ^ ⇡

A�! hwhile (B) {C}, ⇢i 2 StiJwhile (B) {C}K ^ false 2 EJBK⇢}
Definition 3 (Reachable state abstraction). Given a set of
traces S,

↵

r 2 }(⇧) ! }(⌃)

↵

r(S) , {� | 9�
0

A0�! ...�n 2 S : 9i  n : � = �i}

2

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Trace Semantics
The trace semantics describes all possible observations
of executions of the command C.

...

9 SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

The Control Flow
Graph Abstraction

10

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Action Path Abstraction
Let ↵

a(⇡) , ⇡ collects the sequence of actions A0A1...An�2, then

Definition 1 (Action path abstraction). Given a set of traces S,

↵

a 2 }(⇧)! }(A⇤)
↵

a(S) , {↵a(⇡) | ⇡ 2 S}

collects the sequences of actions executed along the traces of S.

↵

c 2 }(A⇤) 7! }((AC)⇤)

↵

c(A) , {↵c(⇡) | ⇡ 2 A}

AB: the set of branch conditions
AL: the set of loop conditions
For all Ab 2 AB and Al 2 AL, we have

↵

d(Ab) , Ab
, ↵

d(Al) , "

↵

d(⇡c1
· ⇡c2

) , ↵

d(⇡c1
) · ↵d(⇡c2

)

↵

d 2 }((AC)⇤) 7! }((AB)⇤)

↵

d(C) , {↵d(⇡c) | ⇡c 2 C}

↵

` 2 }((AB)⇤) 7! }((AB)⇤ \ D)

↵

`(D) , {↵`(⇡d) | ⇡d 2 D}

Theorem 1 (Homomorphic Abstraction). Given a function h : C 7!
A, let ↵h(X) = {h(x) | x 2 X} and �h(Y) = {x | h(x) 2 Y }, then ↵h

and �h form a Galois connection:

(}(C),✓) ���! ���
↵h

�h
(}(A),✓)

Proof. For all X 2 }(C) and Y 2 }(A),

↵h(X) ✓ Y

() {h(x) | x 2 X} ✓ Y Hdefinition of ↵hI
() 8x 2 X : h(x) 2 Y Hdefinition of ✓I
() X ✓ {x | h(x) 2 Y } Hdefinition of ✓I
() X ✓ �h(Y) Hdefinition of �hI

1

11 SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Control Flow Graph
• A control flow graph (V, E) of a program is, as usual, a directed

graph:

• nodes are actions in the program

• edges represent the possible flow of control.

• The CFG can be build by the structural (fixpoint) induction on
the syntax of the command C:

12

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Action Path Semantics of CFG

13 SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

The CFG is an abstraction of the trace semantics

14

• Soundness:  
 

• The basis for most static analyses

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

The Branch Condition
Graph (abstracting the
control flow graph)

15 SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Condition Path Abstraction

16

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Loop Condition Elimination

17 SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Duplication Elimination

18

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Branch Condition Path Abstraction

19 SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Concretizations

20

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Branch Condition Graph

21 SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Example

22

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Trace Semantics Partitioning

23

Patrick Cousot. Semantic foundations of program analysis. In S.S. Muchnick & N.D. Jones, editors, Program Flow Analysis: Theory and Applications, Ch.
10, pages 303—342, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A., 1981.

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

The Binary Decision
Tree Abstraction

24

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Binary Decision Tree
Definition 2. A binary decision tree t 2 T(B,D`) over the set B of
branch condition paths (with concretization �

a � �c � �d � �`) and the
leaf abstract domain D` (with concretization �`) is either L p M with p

is an element of D` and B is empty or J B : tt, tf K where B is the first
element of all branch condition paths ⇡b 2 B and (tt, tf) are the left
and right subtree of t represent its true and false branch such that
tt, tf 2 T(B\�,D`) (� , B or ¬B and B\� denotes the removal of �
and all branch conditions appearing before in each branch condition
path in B).

Definition 3. Let ⇢ be the concrete environment assigning concrete
values ⇢(x) to variables x and JeK⇢ for the concrete value of the expres-
sion e in the concrete environment ⇢, the concretization of a binary
decesion tree �t is either

�t(L p M) , �`(p)

when the binary decision tree can be reduced to a leaf or

�t(J B : tt, tf K) , {⇢ | JBK⇢ = true =) ⇢ 2 �t(tt) ^JBK⇢ = false =) ⇢ 2 �t(tf)}

when the binary decision tree is rooted at a decision node.

Definition 4. A binary decision tree abstract domain functor is a
tuple

hT(B,D`)\⌘t ,vt,?t,>t,tt,ut,Ot,Mti
on two parameters, a set B of branch condition paths and a leaf ab-
stract domain D` where

P,Q, ... 2 T(B,D`)\⌘t abstract properties

vt 2 T⇥ T ! {false, true} abstract partial order

?t,>t 2 T(B,D`) infimum, supremum

(8P 2 T : ?t vt P vt >t)

tt,ut 2 T⇥ T ! T abstract join, meet

Ot,Mt 2 T⇥ T ! T abstract widening, narrowing

• The set B of branch condition paths is built by the syntactic
analysis from the control flow of the program. Hence the struc-
ture of the binary decision tree is finite and does not change in
the data flow analysis.

• The leaf abstract domain D` for the leaves could be any numer-
ical or symbolic algebraic abstract domains such as polyhedra,
or the logical abstract domains which are defined before, or even
the reduced product of two or more of those abstract domains.

3

4. Otherwise, there are decision nodes existing only in tt or tf . For
each of those decision nodes, (recursively) eliminate it by merging its
subtrees. When no such decision node exists, we get t

0
t and t

0
f , and

they must have identical decision nodes, so JB : tt, tfK can be replaced
by t

0
t tt t

0
f .

Given a concrete domain (D[
,v[) and two abstract domains (D]

1

,v]
1

) and
(D]

2

,v]
2

) with their concretizations �

1

: D]
1

! D[and �

2

: D]
2

! D[, the
reduced product of D]

1

and D]
2

is:

(D]
,v]) , ((D]

1

⇥ D]
2

)\⌘,v]
1

⇥ v]
2

)

where
(x]

1

, x

]
2

) v] (y]
1

, y

]
2

) , x

]
1

v]
1

y

]
1

^ x

]
2

v]
2

y

]
2

�(x]
1

, x

]
2

) , �

1

(x]
1

) u[
�

2

(x]
2

)

(x]
1

, x

]
2

) ⌘ (y]
1

, y

]
2

) , �(x]
1

, x

]
2

) = �(y]
1

, y

]
2

)

• a finite set of constraints C = {
Pn

i=1

a

1ixi  b

1

, ...,

Pn
i=1

amixi  bm}
which we usually denote as a pair hA, ~Bi where A 2 Zm⇥n is a matrix
and ~

B 2 Zm is a vector;

• a finite set of generators, that is, a set of points P = {~P
1

, ...,

~

Pp} and a
set of rays R = {~R

1

, ...,

~

Rr} which we usually denote as a pair hP,Ri.

J B
1

: J B
2

: L p
1

M, L p
2

M K, J B
3

: L p
3

M, L p
4

M K K

18

25 SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Concretization

Definition 2. A binary decision tree t 2 T(B,D`) over the set B of
branch condition paths (with concretization �

a � �c � �d � �`) and the
leaf abstract domain D` (with concretization �`) is either L p M with p

is an element of D` and B is empty or J B : tt, tf K where B is the first
element of all branch condition paths ⇡b 2 B and (tt, tf) are the left
and right subtree of t represent its true and false branch such that
tt, tf 2 T(B\�,D`) (� , B or ¬B and B\� denotes the removal of �
and all branch conditions appearing before in each branch condition
path in B).

Definition 3. Let ⇢ be the concrete environment assigning concrete
values ⇢(x) to variables x and JeK⇢ for the concrete value of the expres-
sion e in the concrete environment ⇢, the concretization of a binary
decesion tree �t is either

�t(L p M) , �`(p)

when the binary decision tree can be reduced to a leaf or

�t(J B : tt, tf K) , {⇢ | JBK⇢ = true =) ⇢ 2 �t(tt) ^JBK⇢ = false =) ⇢ 2 �t(tf)}

when the binary decision tree is rooted at a decision node.

Definition 4. A binary decision tree abstract domain functor is a
tuple

hT(B,D`)\⌘t ,vt,?t,>t,tt,ut,Ot,Mti
on two parameters, a set B of branch condition paths and a leaf ab-
stract domain D` where

P,Q, ... 2 T(B,D`)\⌘t abstract properties

vt 2 T⇥ T ! {false, true} abstract partial order

?t,>t 2 T(B,D`) infimum, supremum

(8P 2 T : ?t vt P vt >t)

tt,ut 2 T⇥ T ! T abstract join, meet

Ot,Mt 2 T⇥ T ! T abstract widening, narrowing

• The set B of branch condition paths is built by the syntactic
analysis from the control flow of the program. Hence the struc-
ture of the binary decision tree is finite and does not change in
the data flow analysis.

• The leaf abstract domain D` for the leaves could be any numer-
ical or symbolic algebraic abstract domains such as polyhedra,
or the logical abstract domains which are defined before, or even
the reduced product of two or more of those abstract domains.

3

26

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Binary Decision Tree
Abstract Domain Functor

Definition 2. A binary decision tree t 2 T(B,D`) over the set B of
branch condition paths (with concretization �

a � �c � �d � �`) and the
leaf abstract domain D` (with concretization �`) is either L p M with p

is an element of D` and B is empty or J B : tt, tf K where B is the first
element of all branch condition paths ⇡b 2 B and (tt, tf) are the left
and right subtree of t represent its true and false branch such that
tt, tf 2 T(B\�,D`) (� , B or ¬B and B\� denotes the removal of �
and all branch conditions appearing before in each branch condition
path in B).

Definition 3. Let ⇢ be the concrete environment assigning concrete
values ⇢(x) to variables x and JeK⇢ for the concrete value of the expres-
sion e in the concrete environment ⇢, the concretization of a binary
decesion tree �t is either

�t(L p M) , �`(p)

when the binary decision tree can be reduced to a leaf or

�t(J B : tt, tf K) , {⇢ | JBK⇢ = true =) ⇢ 2 �t(tt) ^JBK⇢ = false =) ⇢ 2 �t(tf)}

when the binary decision tree is rooted at a decision node.

Definition 4. A binary decision tree abstract domain functor is a
tuple

hT(B,D`)\⌘t ,vt,?t,>t,tt,ut,Ot,Mti
on two parameters, a set B of branch condition paths and a leaf ab-
stract domain D` where

P,Q, ... 2 T(B,D`)\⌘t abstract properties

vt 2 T⇥ T ! {false, true} abstract partial order

?t,>t 2 T(B,D`) infimum, supremum

(8P 2 T : ?t vt P vt >t)

tt,ut 2 T⇥ T ! T abstract join, meet

Ot,Mt 2 T⇥ T ! T abstract widening, narrowing

• The set B of branch condition paths is built by the syntactic
analysis from the control flow of the program. Hence the struc-
ture of the binary decision tree is finite and does not change in
the data flow analysis.

• The leaf abstract domain D` for the leaves could be any numer-
ical or symbolic algebraic abstract domains such as polyhedra,
or the logical abstract domains which are defined before, or even
the reduced product of two or more of those abstract domains.

3

27 SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

B defines a partitioning on the trace semantics StJPK
Definition 9. A binary decision tree t 2 T(B,D`) over the set B of branch
condition paths (with concretization �

a � �c � �d � �`) and the leaf abstract
domain D` (with concretization �`) is either L p M with p is an element of D`

and B is empty or J B : tt, tf K where B is the first element of all branch
condition paths ⇡b 2 B and (tt, tf) are the left and right subtree of t

represent its true and false branch such that tt, tf 2 T(B\�,D`) (� , B or
¬B and B\� denotes the removal of � and all branch conditions appearing
before in each branch condition path in B).

Definition 10. Let ⇢ be the concrete environment assigning concrete values
⇢(x) to variables x and JeK⇢ for the concrete value of the expression e in
the concrete environment ⇢, the concretization of a binary decesion tree �t

is either
�t(L p M) , �`(p)

when the binary decision tree can be reduced to a leaf or

�t(J B : tt, tf K) , {⇢ | JBK⇢ = true =) ⇢ 2 �t(tt) ^JBK⇢ = false =) ⇢ 2 �t(tf)}

when the binary decision tree is rooted at a decision node.

Definition 11. A binary decision tree abstract domain functor is a tuple

hT(B,D`)\⌘t ,vt,?t,>t,tt,ut,Ot,Mti

on two parameters, a set B of branch condition paths and a leaf abstract
domain D` where

P,Q, ... 2 T(B,D`)\⌘t abstract properties

vt 2 T⇥ T ! {false, true} abstract partial order

?t,>t 2 T(B,D`) infimum, supremum

(8P 2 T : ?t vt P vt >t)

tt,ut 2 T⇥ T ! T abstract join, meet

Ot,Mt 2 T⇥ T ! T abstract widening, narrowing

• The set B of branch condition paths is built by the syntactic analysis
from the control flow of the program. Hence the structure of the
binary decision tree is finite and does not change in the data flow
analysis.

• The leaf abstract domain D` for the leaves could be any numerical or
symbolic algebraic abstract domains such as polyhedra, or the logi-
cal abstract domains which are defined before, or even the reduced
product of two or more of those abstract domains.

15

Binary Decision Tree
Abstract Domain Functor

28

…

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

B defines a partitioning on the trace semantics StJPK
Definition 9. A binary decision tree t 2 T(B,D`) over the set B of branch
condition paths (with concretization �

a � �c � �d � �`) and the leaf abstract
domain D` (with concretization �`) is either L p M with p is an element of D`

and B is empty or J B : tt, tf K where B is the first element of all branch
condition paths ⇡b 2 B and (tt, tf) are the left and right subtree of t

represent its true and false branch such that tt, tf 2 T(B\�,D`) (� , B or
¬B and B\� denotes the removal of � and all branch conditions appearing
before in each branch condition path in B).

Definition 10. Let ⇢ be the concrete environment assigning concrete values
⇢(x) to variables x and JeK⇢ for the concrete value of the expression e in
the concrete environment ⇢, the concretization of a binary decesion tree �t

is either
�t(L p M) , �`(p)

when the binary decision tree can be reduced to a leaf or

�t(J B : tt, tf K) , {⇢ | JBK⇢ = true =) ⇢ 2 �t(tt) ^JBK⇢ = false =) ⇢ 2 �t(tf)}

when the binary decision tree is rooted at a decision node.

Definition 11. A binary decision tree abstract domain functor is a tuple

hT(B,D`)\⌘t ,vt,?t,>t,tt,ut,Ot,Mti

on two parameters, a set B of branch condition paths and a leaf abstract
domain D` where

P,Q, ... 2 T(B,D`)\⌘t abstract properties

vt 2 T⇥ T ! {false, true} abstract partial order

?t,>t 2 T(B,D`) infimum, supremum

(8P 2 T : ?t vt P vt >t)

tt,ut 2 T⇥ T ! T abstract join, meet

Ot,Mt 2 T⇥ T ! T abstract widening, narrowing

• The set B of branch condition paths is built by the syntactic analysis
from the control flow of the program. Hence the structure of the
binary decision tree is finite and does not change in the data flow
analysis.

• The leaf abstract domain D` for the leaves could be any numerical or
symbolic algebraic abstract domains such as polyhedra, or the logi-
cal abstract domains which are defined before, or even the reduced
product of two or more of those abstract domains.

15

Binary Decision Tree
Abstract Domain Functor

29

…

⇢ very different from other proposals where the shape of the decision tree evolves during
the analysis e.g. (among many others)

Patrick Cousot, Radhia Cousot, Laurent Mauborgne:
A Scalable Segmented Decision Tree Abstract Domain. Essays in Memory of Amir Pnueli, LNCS
6200, 2010: 72-95.

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Inclusion and Equality Test
• The leaf abstract domain D` for the leaves could be any numerical or

symbolic abstract domains such as intervals, octagons, polyhedra, ar-
ray domains, etc., or even the reduced product of two or more abstract
domains.

Given two binary decision tree t

1

, t

2

2 T(B,D`) \ {?t,>t},

• Inclusion test: comparing each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where
`

1

and `

2

are defined by the same branch condition path ⇡b 2 B.

– t

1

vt t2 if `
1

v` `2 for all pairs of (`
1

, `

2

),

– t

1

6vt t2 otherwise.

• Equality test: t
1

=t t2 , t

1

vt t2 ^ t

2

vt t1.

– If the leaf abstract domain D` has =`, we may use it directly.

16

30

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Meet and Join

• The leaf abstract domain D` for the leaves could be any numerical or
symbolic abstract domains such as intervals, octagons, polyhedra, ar-
ray domains, etc., or even the reduced product of two or more abstract
domains.

Given two binary decision tree t

1

, t

2

2 T(B,D`) \ {?t,>t},

• Inclusion test: comparing each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where
`

1

and `

2

are defined by the same branch condition path ⇡b 2 B.

– t

1

vt t2 if `
1

v` `2 for all pairs of (`
1

, `

2

),

– t

1

6vt t2 otherwise.

• Equality test: t
1

=t t2 , t

1

vt t2 ^ t

2

vt t1.

– If the leaf abstract domain D` has =`, we may use it directly.

Given two binary decision tree t

1

, t

2

2 T(B,D`) \ {?t,>t},

• Meet: for each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where `

1

and `

2

are
defined by the same branch condition path ⇡b 2 B.

– ` = `

1

u` `2 using the meet u` in the leaf abstract domain D`.

• Join: for each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where `

1

and `

2

are
defined by the same branch condition path ⇡b 2 B.

– ` = (`
1

t` `2) u` D`(�1

) u` D`(�2

) u` ... u` D`(�n) where ⇡b =
�

1

·�
2

· ... ·�n and D`(�) is the representation of � in D` (when ↵`

exists in the leaf abstract domain D`, we can use ↵`(�) instead).

16

31

↑ pairwise join and distribute over leaves

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot 32

Distribution over leaves
0 50 100

>50

>25

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot 33

Distribution over leaves

0 50

51 100

>50

>25

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot 34

Distribution over leaves

51 1000 25 26 50

>50

>25

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Widening and Narrowing

35

• The leaf abstract domain D` for the leaves could be any numerical or
symbolic abstract domains such as intervals, octagons, polyhedra, ar-
ray domains, etc., or even the reduced product of two or more abstract
domains.

Given two binary decision tree t

1

, t

2

2 T(B,D`) \ {?t,>t},

• Inclusion test: comparing each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where
`

1

and `

2

are defined by the same branch condition path ⇡b 2 B.

– t

1

vt t2 if `
1

v` `2 for all pairs of (`
1

, `

2

),

– t

1

6vt t2 otherwise.

• Equality test: t
1

=t t2 , t

1

vt t2 ^ t

2

vt t1.

– If the leaf abstract domain D` has =`, we may use it directly.

Given two binary decision tree t

1

, t

2

2 T(B,D`) \ {?t,>t},

• Meet: for each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where `

1

and `

2

are
defined by the same branch condition path ⇡b 2 B.

– ` = `

1

u` `2 using the meet u` in the leaf abstract domain D`.

• Join: for each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where `

1

and `

2

are
defined by the same branch condition path ⇡b 2 B.

– ` = (`
1

t` `2) u` D`(�1

) u` D`(�2

) u` ... u` D`(�n) where ⇡b =
�

1

·�
2

· ... ·�n and D`(�) is the representation of � in D` (when ↵`

exists in the leaf abstract domain D`, we can use ↵`(�) instead).

Given two binary decision tree t

1

, t

2

2 T(B,D`) \ {?t,>t} and t

1

vt t2,

• Widening t

1

O` t2: for each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where `

1

and `

2

are defined by the same branch condition path ⇡b 2 B.

– ` = (`
1

O` `2)u` D`(�1

)u` D`(�2

)u` ...u` D`(�n) where O` is the
widening in the leaf abstract domain D`, ⇡b = �

1

· �
2

· ... · �n and
D`(�) is the representation of � in D`.

• Narrowing t

2

Mt t1: for each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where `

1

and `

2

are defined by the same branch condition path ⇡b 2 B.

– ` = `

2

M` `1 using the narrowing M` in the leaf abstract domain
D`.

16

↑ pairwise widen and distribute over leaves

• The leaf abstract domain D` for the leaves could be any numerical or
symbolic abstract domains such as intervals, octagons, polyhedra, ar-
ray domains, etc., or even the reduced product of two or more abstract
domains.

Given two binary decision tree t

1

, t

2

2 T(B,D`) \ {?t,>t},

• Inclusion test: comparing each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where
`

1

and `

2

are defined by the same branch condition path ⇡b 2 B.

– t

1

vt t2 if `
1

v` `2 for all pairs of (`
1

, `

2

),

– t

1

6vt t2 otherwise.

• Equality test: t
1

=t t2 , t

1

vt t2 ^ t

2

vt t1.

– If the leaf abstract domain D` has =`, we may use it directly.

Given two binary decision tree t

1

, t

2

2 T(B,D`) \ {?t,>t},

• Meet: for each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where `

1

and `

2

are
defined by the same branch condition path ⇡b 2 B.

– ` = `

1

u` `2 using the meet u` in the leaf abstract domain D`.

• Join: for each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where `

1

and `

2

are
defined by the same branch condition path ⇡b 2 B.

– ` = (`
1

t` `2) u` D`(�1

) u` D`(�2

) u` ... u` D`(�n) where ⇡b =
�

1

·�
2

· ... ·�n and D`(�) is the representation of � in D` (when ↵`

exists in the leaf abstract domain D`, we can use ↵`(�) instead).

Given two binary decision tree t

1

, t

2

2 T(B,D`) \ {?t,>t} and t

1

vt t2,

• Widening t

1

O` t2: for each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where `

1

and `

2

are defined by the same branch condition path ⇡b 2 B.

– ` = (`
1

O` `2)u` D`(�1

)u` D`(�2

)u` ...u` D`(�n) where O` is the
widening in the leaf abstract domain D`, ⇡b = �

1

· �
2

· ... · �n and
D`(�) is the representation of � in D`.

• Narrowing t

2

Mt t1: for each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where `

1

and `

2

are defined by the same branch condition path ⇡b 2 B.

– ` = `

2

M` `1 using the narrowing M` in the leaf abstract domain
D`.

16

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Reduction of Binary Decision Tree
by an Abstract Property

• The leaf abstract domain D` for the leaves could be any numerical or
symbolic abstract domains such as intervals, octagons, polyhedra, ar-
ray domains, etc., or even the reduced product of two or more abstract
domains.

Given two binary decision tree t

1

, t

2

2 T(B,D`) \ {?t,>t},

• Inclusion test: comparing each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where
`

1

and `

2

are defined by the same branch condition path ⇡b 2 B.

– t

1

vt t2 if `
1

v` `2 for all pairs of (`
1

, `

2

),

– t

1

6vt t2 otherwise.

• Equality test: t
1

=t t2 , t

1

vt t2 ^ t

2

vt t1.

– If the leaf abstract domain D` has =`, we may use it directly.

Given two binary decision tree t

1

, t

2

2 T(B,D`) \ {?t,>t},

• Meet: for each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where `

1

and `

2

are
defined by the same branch condition path ⇡b 2 B.

– ` = `

1

u` `2 using the meet u` in the leaf abstract domain D`.

• Join: for each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where `

1

and `

2

are
defined by the same branch condition path ⇡b 2 B.

– ` = (`
1

t` `2) u` D`(�1

) u` D`(�2

) u` ... u` D`(�n) where ⇡b =
�

1

·�
2

· ... ·�n and D`(�) is the representation of � in D` (when ↵`

exists in the leaf abstract domain D`, we can use ↵`(�) instead).

Given a binary decision tree t 2 T(B,D`) and an abstract property p, we
define t ut p as:

?t ut p , ?t

>t ut p , L p M
t ut false , ?t

t ut true , tL p0 M ut p , L p0 u` D`(p) MJ B : tl, tr K ut p , J B : tl ut D`(B) ut D`(p), tr ut D`(¬B) ut D`(p) K

16

36

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Test Transfer Function

37 SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Assignment Transfer Function

38

Assignment
on leaves

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Reconstruction on Leaves

J B
1

: J B
2

: L p
1

M, L p
2

M K, J B
3

: L p
3

M, L p
4

M K K
↵(x [y) = ↵(x) t ↵(y)

↵

1. Collecting all leave properties in t, let it be {p
1

, p

2

, ..., pn};

2. For each leaf in t, let ⇡b = �

1

· �
2

· ... · �n be the branch
condition path leading to it. We then calculate p

0
i = pi u`

(D`(�1

^ �

2

^ ... ^ �n)).

3. For each leaf in t, update it with p

0
1

t` p
0
2

t` ... t` p
0
n.

21

39

↑ assign and redistribute over leaves

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Binary Decision Tree Construction
• In the pre-analysis

• On the fly during the analysis

• Unification

40

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Tree Merging
– B0 = {⇡b · B | ⇡b 2 B} [{⇡b · ¬B | ⇡b 2 B}.

1. Pick up a branch condition B.

2. Eliminate B (B or ¬B) from each branch condition path in B.

3. For each subtree of the form JB : tt, tfK, if tt and tf have identical
decision nodes, replace it by tt tt tf .

4. Otherwise, there are decision nodes existing only in tt or tf . For
each of those decision nodes, (recursively) eliminate it by merging its
subtrees. When no such decision node exists, we get t

0
t and t

0
f , and

they must have identical decision nodes, so JB : tt, tfK can be replaced
by t

0
t tt t

0
f .

18

41 SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

A small example

42

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Example

43 SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot 44

after one iteration

join of initialization and first iteration

widening initialization and first iteration

increment y and x, reconstruct on leaves

join with initialization

third iteration

widening

fourth iteration, convergence

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Conclusion

45 SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Conclusion
• We need more precise abstractions than the Control

Flow Graph (the usual starting point)

• Binary Decision Tree Abstraction:

• Disjunctive refinement

• Cost / precision ratio adjustable

46

SAS 2015, 9—11 September 2015, Saint Malo, France © J. Chen & P Cousot

Thanks & Questions?

47

