A Binary Decision Tree
Abstract Domain
Functor

Junjie Chen and Patrick Cousot
New York University

5, 9—11 September 2015, Saint Malo, France

A Motivating Example

X y y
While(y >= 0) { 50 444444444444444444444444444 ®X
P 2
if (x <= 50) y++ 2 .,
5 %
else y——; AN
X++; 0 50: i51 103 o
S

}

Intervals: * > 0Ay > —1

Convex Polyhedra: y > —1Az—y>0Az+52y >0

5,9—11 September 2015, Saint Malo, France

Precision Problem

® A common believe (in data flow analysis) is that the
problem is from the imprecise joins LI ?

® No,e.g. in the Galois connection case, the abstraction
of U is exact (X preserves joins)

® The problem is from the imprecise abstraction:

® convex abstractions do not take the control flow
into account precisely enough

5, 9—11 September 2015, Saint Malo, France

|dea:
® The reduced cardinal power AyA' = A| = A; [CC79]

THECREM 10.2.0.1

Example 10.2.042 IS
The reduced cardinal power with base (Az,t2,Y2)

T
and exponent (A1,ti1,Y:1) is (A, t,Y) where : ‘b
A=0(180(A1 *A2)), Oc(i80(A1 >A2) >T80(A1+A2)) i8 A - t<>f e XX
Ag HF e Zg0(A1 +A2) 1 YIFI=Y(g)}, Ye(Z80(A1 >A2) +A) c+
15 Ag. LAXu ALY (V) (X)) = Y2 (g (VI (XD : veArd]d, =
t = AS. (@eT(S)oY) and Oe(A>780(A1+A2])) is
AP Lo laz (PAYL(v)ITDD,

Ap<a,y>A and ¥Sel, t(S) cAg.[Av. 2 {t2(8) (g(2)):
zeAy A £1(3)(2) Ev}] (with L? =12).

12
ge (A1 >Az) then Y(g)=(Y1(E)AY2 (g(£)IV Y1 (FIAY2 (g(F)

® with exponent A| which is an abstraction of the
control flow graph

5,9—11 September 2015, Saint Malo, France

Operational trace
Semantics

Syntax
e Consider the following abstract syntax of command:
C € C == skip|x=E|C;;Cy|
if (B) {C1} else {Ca} |
while (B) {C}

e Actions describe elementary indivisible program
computation steps:

A € A == skip|x=E|B|-B

States

e States record the current values of variables in the
environment/memory as well as a label/control point
specifying what remains to be executed.

L € L == C|stop labels
v €V values
p € € 2 X—YV environments
c € X & Lx¢ states

Traces

® Trace

— Ao Ay Ao
T=o0y—0 — .. —> 0p_1
® sequence ™ = 0g01...0,_1 € X" of states

sequence T = AgA;...A,,_o € A" ! of actions

Trace Semantics

The trace semantics describes all possible observations
of executions of the command C.
Six=E] £ {(x=E,p) 5 (stop,p[x:=1]) | p€EAve E[E]p}

SC1; Ca] 2 {(m5Ca) B (Cop) 7' | p e EA
7 2 (stop, p) € S[C1] A (Ca, p) 25 7' € S[Ca]}

Fti[while (B) {C}]X 2 {(while (B) {C},p) | p€ £} U
{r & (while (B) {C}, p) 2 ((C, p) 25 7' 2% (stop, ¢/)) ; while (B) {C} |
mr ell* Am S (while (B) {C}, p) € X A true € E[B]p A
(C, o) 5 7 25 (stop,) € S'[C]}

S%[while (B) {C}] £ lfpSF*[while (B) {C}]

S*[while (B) {C}] 2 {m 2 (while (B) {C}, p) = (stop, p) |
meI* Ar 2 (while(B) {C}, p) € S[while (B) {C}] A false € £[B]p}

The Control Flow
Graph Abstraction

Action Path Abstraction

Let a®(m) £ T collects the sequence of actions AgA;...A, o, then

Definition 1 (Action path abstraction). Given a set of traces S,

at e p(Il) = p(A7)
a’(S) = {a(m)| 7€ S}

collects the sequences of actions executed along the traces of S.

Control Flow Graph

® A control flow graph (V, E) of a program is, as usual, a directed
graph:

® nodes are actions in the program
® edges represent the possible flow of control.

® The CFG can be build by the structural (fixpoint) induction on
the syntax of the command C:

G[skip] 2 G[C;;C) 2 let G[C,] =0—C;|-0and
G[Cy] =0~ Cy }-oin
G[x:=E] 2 o~{x=E}-o
o{Ci}{Ga}o
GIif (B) {Ci} else {C;}] £ let G[C] =0—{Cy|-0and G[while(B){C}] 2 let G[C]=0—{ C -oin
G[C;] = o C, |0 in
: .

A C
5
G

Action Path Semantics of CFG

g*[o skip |-o] £ {skip} G*[o—~{x:=E |-0] £ {x =E}

t
gaun £ (B) . g*Io-{G1-olU (-8} 6°[o{ Gy 1
G Lo Cr -G} o] & 0*[o—{ G o] - 6°Io—{Go <1

= ({B}-g**[o—{ C |-o])* - {-B}

The CFG is an abstraction of the trace semantics

® Soundness:

a*(8'[C]) € G°[G[C]]

® The basis for most static analyses

The Branch Condition
Graph

Condition Path Abstraction

® Let
a‘(skip) £ ¢ a‘(B) £ B
a‘(x=E) £ ¢ a‘(-B) £ -B
af(my - my) = af(my) - af(my)

e The condition path abstraction collects the sequences
of conditions in the action paths A:

at € p(A) = p((A°))
a’(A) £ {a(7)| 7 € A}

Loop Condition Elimination

® Jet

APB: the set of branch conditions
AL: the set of loop conditions

® and
oMAY 2 A" YA Ee

a(me, - me,) £ ¥(me,) - 0 (me,)

® where A’ € AB and Al € AL,

® The loop condition elimination collects the sequences
of branch conditions from the condition paths :

p((A)") = p((AP)")
{a¥(T) | T € C}

ozd

adC) =

m

Duplication Elimination

erase(didyds...d,,d) £ if dy==d then erase(dyds...d,,d)

else dj - erase(dads...d,, d)

fOld(dldzdn) = if dldz...dn ==¢thene

else fold(erase(didy...dy—1,dy)) - dn

Branch Condition Path Abstraction

® [ct
of(Tq) = fold(Ty)

eliminate duplications of each branch condition while
keeping its last occurrence in 7a,

® The branch condition path abstraction collects branch
condition paths (sequences of branch conditions
without duplications):
£ e p((AP)) o p((AP)*\ D)

o €
(D) & {of(my) |74 € D}

Concretizations

® Action path abstraction

74(A) £ {7 | a’(r) € A}
e Condition path abstraction

7°(C) £ {7 | a*(7) € C}
® Loop condition elimination

v (D) £ {7. | o(T.) € D}
e Branch condition path abstraction

v(B) £ {74 | o(7g) € B}

2(

Branch Condition Graph

® A branch condition graph (BCG) of a program is a directed
acyclic graph, in which each node corresponds to a branch
condition occurring in the program and has two outgoing edges
representing its true and false branches.
C’[skip] £ 0—0 G’[x:= E] £ 0—0
Gb[Cy; Co] 2 let G[Cy] = and G[C,] = in
o o
G*[if (B) {Cy} else {C3}] £ let G°[C4] = and G[C,] =

t
in 0 m-
G®[while (B) {C}] £ let G°[C] = in
Abstraction of Control Flow Graph!

Example

while(i <=m) {
if(x < y) x++;
else y++;
if(p > 0)

if(g >0) r=p+q;

else r = p — q;

else

if(q>0) r=gq-p;

else r = —(p + q);

i++;

(x<y)-(p>0):(a>0),
(x<y)-(p>0)-~(q>0),
(x<y)-=(p>0)-(a>0),

mber 2015, ’)1(mx\\<rly)? ’ _\(p > U) ’ _‘(q > 0)’

)

N

“(p>0)(a>0),

~(p>0)--(qa>0),
+=(p>0)-(q>0),
=(p>0)-=(q>0).

Trace Semantics Partitioning

|Given the trace semantics S¢[P] of a program P|

v

| of 0?0 a’0a?(S'[P]) = B where |B| = N |

v

or each m € B and all pairs (m,,m,) € B X B, we have

o 7% 0% 0?0y (m) NSP] C S*[P]
o Uicn (7 07 (m,) N S'[P]) = S'[P]
o (v* 0’(m,) NS'P]) N (v* 0 7*(m,) N S'[P]) = 0

v

|B defines a partitioning on the trace semantics S*[P]|

Patrick Cousot. Semantic foundations of program analysis. In S.S. Muchnick & N.D. Jones, editors, Program Flow Analysis: Theory and Applications, Ch.
10, pages 303 —342, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A., 1981.
SAS 2015, 9—11 September 2015, Saint Malo, France

2

The Binary Decision
Tree Abstraction

Binary Decision Tree

Definition 2. A binary decision tree t € T(B,D;) over the set B of
branch condition paths (with concretization v* o ¢
leaf abstract domain D, (with concretization ;) is either (p) with p
is an element of I, and B is empty or [B : #;, t;] where B is the first
element of all branch condition paths m, € B and (#;, ;) are the left
and right subtree of ¢ represent its true and false branch such that
ti,ty € T(B\g,Dy) (B £ B or =B and B\ denotes the removal of
and all branch conditions appearing before in each branch condition
path in B).

ov%04%) and the

[Bi: [Ba: (pi), (p2)], [Bs: (p3), (pa)]]

SAS 2015, 9—11 September 2015, Saint Malo, France ©J. Chen & P Cousot 2!

Concretization

Definition 3. Let p be the concrete environment assigning concrete
values p(x) to variables x and [e]p for the concrete value of the expres-
sion e in the concrete environment p, the concretization of a binary
decesion tree ~; is either
A
1((p)) = ve(p)
when the binary decision tree can be reduced to a leaf or
A
(B : b, tr]) ={p | [Blp=true= p € yn(t:) A
[Blp = false = p € n(ts)}

when the binary decision tree is rooted at a decision node.

©J. Chen & P Cousot

Binary Decision Tree
Abstract Domain Functor

Definition 4. A binary decision tree abstract domain functor is a
tuple
(T(B,D¢)\=,, T, L, Te, Ly, My, Vi, Ag)

on two parameters, a set I3 of branch condition paths and a leaf ab-
stract domain D, where

PQ,.. € T(B,D,)\z abstract properties
C, € TxT— {false, true} abstract partial order
1, Ty € T(B,Dy) infimum, supremum
(VPeT: 1, C, PC, Ty)
Uy € TxT—T abstract join, meet
Vi, € TXT—T abstract widening, narrowing

SAS 2015, 9—11 September 2015, Saint Malo, France ©J. Chen & P Cousot 2

Binary Decision Tree
Abstract Domain Functor

e The set B of branch condition paths is built by the syntactic analysis
from the control flow of the program. Hence the structure of the
binary decision tree is finite and does not change in the data flow
analysis.

e The leaf abstract domain D, for the leaves could be any numerical or
symbolic algebraic abstract domains such as polyhedra,

SAS 2015, 9—11 September 2015, Saint Malo, France ©J. Chen & P Cousot

Binary Decision Tree
Abstract Domain Functor

e The set B of branch condition paths is built by the syntactic analysis
from the control flow of the program. Hence the structure of the
binary decision tree is finite and does not change in the data flow
analysis.

e The leaf abstract domain D, for the leaves could be any numerical or
symbolic algebraic abstract domains such as polyhedra,

-+ very different from other proposals where the shape of the decision tree evolves during
the analysis e.g. (among many others)
Patrick Cousot, Radhia Cousot, Laurent Mauborgne:

A Scalable Segmented Decision Tree Abstract Domain. Essays in Memory of Amir Pnueli, LNCS
6200,2010:72-95.

2015, 9—11 September 2015, Saint Malo, France 5 J. Chen & P Cousot

Inclusion and Equality Test

Given two binary decision tree t1,to € T(B,D,) \ {Ls, T+},

e Inclusion test: comparing each pair ({1, () of leaves in (¢1,%s) where
¢ and /; are defined by the same branch condition path m, € B.

— 1 Et to if 61 E[62 for all pairs of (61,62),

— 11 £y to otherwise.
o Equality test: ¢, =, to = t; Ty to Aty Ty .

If the leaf abstract domain D, has =, we may use it directly.

2015, 9—11 September 2015, Saint Malo, France 5 J. Chen & P Cousot 30

Meet and Join

Given two binary decision tree t1,t2 € T(B,Dy) \ {L¢, T+},

e Meet: for each pair ({q,fs) of leaves in (t1,t5) where ¢; and /5 are
defined by the same branch condition path m, € B.

— £ = {1 My ly using the meet M, in the leaf abstract domain D,.

e Join: for each pair (¢1,(s) of leaves in (t1,t3) where ¢; and ¢y are
defined by the same branch condition path m, € B.

— 0 = (El Ly Eg) [y Dg(,@l) MMy Dg(ﬁg) Mg ... Ty Dg(ﬂn) where Ty =
B1-Pa- ... By and Dy(p) is the representation of 5 in Dy (when ay
exists in the leaf abstract domain D, we can use ay(3) instead).

T pairwise join and distribute over leaves

2015, 9—11 September 2015, Saint Malo, France 5 J. Chen & P Cousot

Distribution over leaves

0 50 100
>50

>25

S 2015, 9—11 September 2015, Saint Malo, France > J. Chen & P Cousot 3

Distribution over leaves

>50

>25

51 100

SAS 2015, 9—11 September 2015, Saint Malo, France ©J. Chen & P Cousot

Distribution over leaves

>50
>25
0 25 26 50 5 | 100

Widening and Narrowing
Given two binary decision tree tq,ty € T(B,D,) \ {L, T;} and t; T, to,

e Widening t; V,ty: for each pair (¢, ¢s) of leaves in (t1,t5) where ¢;
and £ are defined by the same branch condition path m, € B.

— /= (El Vo 62) MMy Dg(,ﬁl) [y Dg(ﬁg) My ...y Dg(,@n) where V, is the
widening in the leaf abstract domain Dy, m, = 81 - B2 - ... - B, and
Dy () is the representation of 3 in D).

T pairwise widen and distribute over leaves

e Narrowing to A, t1: for each pair ({1, 0s) of leaves in (t1,ts) where ¢
and / are defined by the same branch condition path m € B.

— (= {5y A, f7 using the narrowing A, in the leaf abstract domain

Dy.

SAS 2015, 9—11 September 2015, Saint Malo, France ©J. Chen & P Cousot

Reduction of Binary Decision Tree
by an Abstract Property

Given a binary decision tree t € T(B,D,) and an abstract property p, we
define ¢ M, p as:

LiMep £ 1,

TeMep £ (p)

t M, false £ 1,

t I, true e

(') Mep £ (P NeDe(p))
N

[B:t,t.]Mep [B : 1, Dy(B) My De(p), t, M Dp(=B) My Dy(p) |

SAS 2015, 9—11 September 2015, Saint Malo, France ©J. Chen & P Cousot 3

Test Transfer Function

fr[BJt =tr, B

Assignment Transfer Function

Given a binary decision tree ¢t € T(B,D;), the assignment x = E can be
performed at each leaf in ¢ by using the assignment transfer function of ID,.

t=[2<50:(0<z<50),(Le)] Assignment
Assignment: z =2+ 1 —= on leaves

v

t’:ﬂm§50:(IISIS51Daq—L£D]]|

v

¢ =[2<50: (1<z<50), (z=51)]]

reconstruction
on leaves

Reconstruction on Leaves

1. Collecting all leave properties in ¢, let it be {p1, pa, ..., pn };

2. For each leaf in ¢, let m, = 3, - B3 - ... - B, be the branch
condition path leading to it. We then calculate p; = p; M,

(De(By A o .. A B)).
3. For each leaf in t, update it with p} U, p) Up ... Lg pl.

T assign and redistribute over leaves

Binary Decision Tree Construction

® |n the pre-analysis

® On the fly during the analysis

e Unification

4

Tree Merging

1. Pick up a branch condition B.
2. Eliminate B (B or =B) from each branch condition path in B.

3. For each subtree of the form [B : t;,t;], if t; and ¢y have identical
decision nodes, replace it by ¢, L t;.

4. Otherwise, there are decision nodes existing only in ¢, or ty. For
each of those decision nodes, (recursively) eliminate it by merging its
subtrees. When no such decision node exists, we get ¢, and t}7 and
they must have identical decision nodes, so [B : t;,t;] can be replaced
by &, U t'y.

15, 9—11 September 2015, Saint Malo, France J. Chen & P Couso

A small example

15, 9—11 September 2015, Saint Malo, France J. Chen & P Cousol

Example

= 0; = 0;
X y y
1while(y S 0) { [{1] RS TIRR g ,elx
< i &
. _) 4 i N
if (x <= 50) y++; 7 P \/0
B/ i <>
else y——; . N
P <
o N
}

e y>=—-1Ax—y>=0Ax+52y >=0 by Apron

e We choose the polyhedra abstract domain as the leaf abstract domain
e We have B = {x <= 50, ~(x <= 50)}

e Initially, to =[x < 50: (x =0Ay =0), (Le)]

5,9—11 September 2015, Saint Malo, France J. Chen & P Cousol

th=[x<50:(x=1Ay=1),(L)]

after one iteration |

,U, Jjoin of initialization and first iteration
[bi=to Uity =[x<50: (x=yA0<x<1),(L)] |
U, widening initialization and first iteration
[t =tovti=[x<50: (0<x<50Ax=y),(Le)] |
U. increment y and x, reconstruct on leaves
=[x <50:(1<x<50Ax=y),(z=5lAy=51)] |
,U, Jjoin with initialization
o=t t] =[x<50: (0<x<50Ax=y),(x=51Ay=51)] |
U, third iteration

ts =[x <50: (0<x<50Ax=y),(x+y—102=0A51 <x < 52)]|
U, widening
ts =t Vg =[x <50: (0 <x <50Ax =y), (x+y—102 = 0Ax > 51]]|

U, fourth iteration, convergence

|ta=[x<50: (0 <x<B50Ax=y),(x+y—102=0A51 <x < 103)]|

Conclusion

® We need more precise abstractions than the Control
Flow Graph (the usual starting point)

® Binary Decision Tree Abstraction:
® Disjunctive refinement

Conclusion

® Cost / precision ratio adjustable

Thanks & Questions?

