
54 communications of the acm | September 2008 | vol. 51 | no. 9

practice

T he software engineering community has devised
many techniques, tools, and approaches aimed at
improving software reliability and dependability.
These have had varying degrees of success, some
with better results in particular domains than others,
or in particular classes of applications. A popular,
although not uncontroversial, approach is known as
formal methods, whereby a specification notation with
formal semantics, along with a deductive apparatus
for reasoning, is used to specify, design, analyze, and
ultimately implement a hardware or software (or
hybrid) system.

Such an approach is often thought to be difficult
to apply and to require significant mathematical
experience.1, 11 Experience has demonstrated that
developers without significant mathematical ability
can at least understand and use formal specifications,

even if greater mathematical ability and
specialization in various areas of math-
ematics and engineering are needed for
more challenging formal methods-
related activities such as verification
and refinement, and even the task of
writing formal specifications them-
selves. As automated formal methods
slowly become a natural part of the de-
sign process, we also experience higher
dependability levels as a standard trait
of software products.

A key issue, however, is the need for
those applying formal methods to be
able to abstract and to model systems at
an appropriate level of representation—
that is, to develop solid design princi-
ples and apply them to software devel-
opment. This is particularly true when
proving properties of more complex sys-
tems involving significant concurrency
and interaction among components.
When we wish to prove properties, it is
often easier—and necessary—to prove
them at a more abstract level, exploiting
the idea of abstract interpretation.

This article contains contributions
from three world-renowned experts in
the fields of software engineering, ab-
stract interpretation, and verification
of concurrent systems: Michael A. Jack-
son, Patrick Cousot, and Byron Cook.
Their contributions are based on their
keynote speeches at the IEEE’s Fifth In-
ternational Conference on Software En-
gineering and Formal Methods, held in
London, Sept. 10–14, 2007. The aim of
the conference series is to bring togeth-
er practitioners and researchers in the
fields of formal methods and software
engineering with the goal of exploiting
synergies and furthering our under-
standing of specialization, abstraction,
and verification techniques, among
other areas.

Declining Dependability Levels
Computer-based systems are pervasive
and now influence almost every facet
of our lives. They wake us in the morn-
ing, control the cooking of our food,
entertain us in the guise of media play-
ers, help in avoiding traffic congestion,
control or identify (via GPS navigation

Software
Engineering
and Formal
Methods

doi:10.1145/1378727.1378742

The answer to software reliability
concerns may lie in formal methods.

by Mike Hinchey, Michael Jackson, Patrick Cousot,
Byron Cook, Jonathan P. Bowen, and Tiziana Margaria

1_CACM_V51.9.indb 54 8/14/08 1:38:51 PM

september 2008 | vol. 51 | no. 9 | communications of the acm 55

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 J
O

E
 M

A
G

E
E

systems) the location of the vehicles in
which we travel, wash our clothes, and
even give us cash from our bank ac-
counts (sometimes!).

Computers are being used increas-
ingly in applications where they can
have great influence over our very exis-
tence.2 They control the flow of trains in
the subway, signaling on railway lines,
even traffic lights on the street. The fail-
ure of any of these systems could cause
great inconvenience and conceivably
result in accidents in which lives are
lost. As they control the actual flight of
an aircraft, cooling systems in chemi-
cal plants, feedback loops in nuclear
power stations, and so on, we can see
that they all account for the possibility
of great disasters if they fail to operate
as expected.

More and more, these systems are
software intensive, meaning that soft-
ware is the major component and that
much of the functionality is achieved
via software rather than hardware im-
plementations. This raises questions
over the reliability (the measure of the
ability of system to continue operating

over time12) and the dependability (the
property that reliance can justifiably
be placed on the service it delivers12) of
software.

A Software Crisis
This has become a major issue for
the software engineering community.
While hardware dependability has in-
creased continually over the years, and
with mean time to failure (a measure
of dependability) for the most reliable
systems now exceeding 100 years,13 soft-
ware has not kept up with this pattern
and indeed has been exhibiting declin-
ing levels of dependability.10

This can be attributed to many fac-
tors, including:

A naïve belief that anyone who can ˲˲

write software can write good software.
A mistaken belief that running a few ˲˲

representative test cases indicates that
the software is “correct” or adequate.

Failure to understand that realizing ˲˲

a good design is more important than
producing vast quantities of code and
that the goal of software engineering is
not only to produce code but also to pro-

duce trustworthy solutions to problems
that can eventually be implemented in a
programming language.

Failure to realize that making ˲˲

changes to software—and in particular
unnecessary, uncontrolled, and care-
less changes—can have an effect on its
appropriateness and validity, its correct
operation, and can make it less efficient,
or in extreme cases obsolete.

Of course, software is intended to
change, and must be able to change.
If we were to write software that we
would never change after deployment
(to meet changing requirements, an
evolving environment, or to correct er-
rors or unimplemented or incorrectly
implemented requirements), then we
would be better off implementing ev-
erything in hardware; but this is neither
technically possible nor financially or
spatially feasible.

Michael Jackson: Specializing
in Software Engineering
Software-intensive systems are intended
to interact dependably with the human
and physical problem world. Execution

1_CACM_V51.9.indb 55 8/14/08 1:38:54 PM

56 communications of the acm | September 2008 | vol. 51 | no. 9

practice

of the software produces and uses real-
time information about the world, and
monitors and partly controls its behav-
ior to provide required functionality
and to satisfy required constraints.

Such systems pose a particular chal-
lenge, arising from the interaction be-
tween the quasi-formal nature of the
software and the nonformal nature of
its human and physical problem world
outside the computer. The software in
execution can be regarded as a formal
system: for all but the most extremely
critical systems the computer behav-
ior can be assumed to conform to the
program semantics. The nonformal
problem world, in contrast, has many
parts—human, natural, and engi-
neered—whose properties and behav-
ior are far less reliable. For a depend-
able system, there must be an adequate
formal model of the problem world, and
the software must be designed to reflect
the assumption that the world conforms
to this model. In executing its program,
the computer always behaves as if the
world model is valid; if the world devi-
ates from the model, the system will fail
in some way. The problem world, being
nonformal, has unbounded possible
behaviors and properties that can inval-
idate any formal model. Fault-tolerant
techniques in which the model is weak-
ened in suitably chosen respects can
mitigate the difficulty, but they cannot
eliminate it: the world can still invali-
date the weakened model. How, then,
can a dependable system be designed?

Development of the formal model
is, above all, an engineering task. In the
established engineering branches, the
challenge is met by experience accumu-
lated in each particular product class
and captured in a normal design disci-
pline. The aeronautical engineer W. G.
Vincenti explains normal design: “The
engineer knows at the outset how the
device in question works, what are its
customary features, and that, if properly
designed along such lines, it has a good
likelihood of accomplishing the desired
task.” Family cars, for example, are the
product of an industry-wide normal de-
sign discipline. Different manufactur-
ers’ products are strikingly similar both
in their external appearance and in their
internal workings because their design-
ers adhere closely to the current normal
design. This normal design embod-
ies the accumulated knowledge of the

models—both of the product itself and
of its environment or problem world—
that is adequate for a desired level of
dependability: which deviations from a
model are sufficiently improbable to be
ignored; which are implicitly handled
by the normal design configuration; and
which must be explicitly considered in
the calculations and checks mandated
by the discipline of the normal design
practice.

The engineer lacking an applicable
normal design discipline must inevi-
tably engage in radical design. In Vin-
centi’s words: “In radical design, how
the device should be arranged or even
how it works is largely unknown. The
designer has never seen such a device
before and has no presumption of suc-
cess. The problem is to design some-
thing that will function well enough to
warrant further development.” In short,
radical design has a low expectation of
dependability: it can be a good choice
only in purely experimental work or
where novelty and excitement are of the
highest importance and dependability
is little valued.

A normal design discipline does not
arise easily or by chance. It rests on a
culture of specialization, in which a com-
munity of organizations and individu-
als is devoted to gradual, long-term evo-
lution of normal design in a particular
product class and of the scientific and
engineering knowledge it embodies.
The prerequisites for this culture of spe-
cialization are two: the continuing exis-
tence of specialized communities, with
their research and production facilities
and their journals and conferences; and
the desire of individual highly talented
engineers in each generation to dedi-
cate their professional careers to work-
ing within just one specialization. This
infrastructure of a specialized commu-
nity and the advances needed to evolve a
successful normal design discipline are
not achievable or sustainable by float-
ing populations of itinerant generalists.

Software engineering and computer
science already have many special-
izations: some in complexity theory,
concurrency, real-time systems, pro-
gramming languages, model check-
ing, program proving, and distributed
computing; and some in system soft-
ware components such as compilers,
database systems, virus checkers, and
SAT (Boolean satisfiability problem)

solvers. These specializations, however,
are not enough. To build dependable
software-intensive systems, we must
emulate the established engineering
branches, developing many more spe-
cializations that are sharply focused
on narrow classes of end products and
their component subsystems. Only the
product-oriented specialist can achieve
dependability by bringing together the
contributions of specialists in all the dif-
ferent aspects, parts, and dimensions of
the design task.

What particular specializations,
then, are needed? We cannot answer
this question in advance, or in any sys-
tematic or authoritative way. In a society
that insists on dependable systems, with
a software-engineering culture that val-
ues and motivates specialization, par-
ticular specializations will emerge and
evolve in response to opportunities and
challenges as they are recognized.

In sum, dependability in an engineer-
ing product must be based on a normal
design discipline. Only in a product-
oriented normal design discipline can
all the necessary knowledge—tacit and
explicit—be brought together to build
a dependable system. This normal dis-
cipline in turn must be the product of
a long-term community of engineers
specializing in systems of the particular
product class. For a critical software-
intensive system, specialization is not
optional.

Patrick Cousot: The Role of Abstract
Interpretation in Formal Methods
Formal Verification Methods. In com-
puter science and software engineer-
ing, formal methods are mathematically
based techniques for the specification,
development, and verification of soft-
ware and hardware systems. They es-
tablish the satisfaction of a required
property (called the specification) by a
formal model (called the semantics) of
the behavior of a system (for example, a
program and its physical environment).
The semantic domain is a set of all such
formal models of system behaviors.

A property of the system is a set of se-
mantic models that satisfy this proper-
ty. The satisfaction of a specification by
a system (more precisely by its seman-
tics), which can equivalently be defined
as the proof that its strongest property
is a property of the system, is called its
collecting semantics.

1_CACM_V51.9.indb 56 8/14/08 1:38:54 PM

practice

september 2008 | vol. 51 | no. 9 | communications of the acm 57

Michael Jackson

Development
of the formal
model is, above
all, an engineering
task. In the
established
engineering
branches, the
challenge is met
by experience
accumulated in
each particular
product class
and captured
in a normal
design discipline.

An example is the trace semantics of a
programming language. The semantics
of programs in the language describes
all possible program executions as a set
of traces over states chosen in a given set
of possible states. Two successive states
in a trace correspond to an elementary
program computation step. An example
of a property is the termination property
stating that all execution traces should
be finite.

Formal verification methods are very
hard to put in practice because both the
semantics and the specification of a
complex system are extremely difficult
to define. Even when this is possible,
the proof cannot be automated (using
a theorem prover, a model checker, or
a static analyzer) without great compu-
tational costs. Considering all possible
systems is even harder. Hence it is nec-
essary either to work in the small (for ex-
ample, model checking) or to consider
approximations of large systems (for ex-
ample, abstract model checking).

Abstract Interpretation. Abstract in-
terpretation5 is a theory of sound ap-
proximation of mathematical struc-
tures, in particular those involved in
the description of the behavior of com-
puter systems. To prove a property, the
abstraction idea is to consider a sound
overapproximation of the collecting
semantics, a sound underapproxima-
tion of the property to be proven, and
to make the correctness proof in the
abstract.

For automated proofs, these abstrac-
tions must be computer-representable,
so they are not chosen in the mathemat-
ical concrete domain but in an abstract
domain. The correspondence is given
by a concretization function mapping
abstract properties to corresponding
concrete properties. Formal verification
being undecidable, the abstraction may
be incomplete—that is, it produces false
alarms, a case when a concrete property
holds but this cannot be proved in the
abstract for the given abstraction, which
must therefore be refined. The abstrac-
tion function is the inverse of the con-
cretization function. It maps concrete
properties to their approximation in the
abstract domain. Applied to the collect-
ing semantics of a computer system, it
formally provides an abstraction of the
properties of the system. Abstract veri-
fication methods consist of designing
an abstraction function that is coarse

enough so that the abstract collecting
semantics is computer-representable
and effectively computable and is pre-
cise enough so that the abstract-col-
lecting semantics implies the specifica-
tion.

Abstract interpretation formalizes
the intuition about abstraction. It al-
lows the systematic derivation of sound
reasoning methods and effective algo-
rithms for approximating undecidable
or highly complex problems in various
areas of computer science (semantics,
verification and proof, model checking,
static analysis, program transformation
and optimization, typing, or software
steganography). Its main current ap-
plication is on the safety and security of
complex hardware and software com-
puter systems.

Verification by Static Analysis. Static
code analysis is the fully automatic
analysis of a computer system by direct
inspection of the source or object code
describing the system with respect to
the semantics of the code (without ex-
ecuting programs, as in dynamic analy-
sis). The proof is done in the abstract
by effectively computing an abstrac-
tion of the collecting semantics of the
system. Examples of successful static
analyzers used in an industrial context
are aiT (www.absint.com/ait used to
compute an overapproximation of the
worst-case execution time8) and Astrée
(www.astree.ens.fr used to compute an
overapproximation of the collecting
semantics to prove the absence of run-
time errors6).

Their growing success is a result of
their being useful (such as, they tackle
practical problems), sound (their results
can be trusted), nonintrusive (end users
do not have to alter their programming
methods (for example, by producing
the specification and abstract seman-
tics that can be directly derived from
the program text), realistic (applicable
in any weird industrial environment),
scalable (to millions of lines of code as
found in actual industrial code), and
conclusive (producing few or no false
alarms).

The design of language-based se-
mantics and abstractions is extremely
difficult but possible on a well-defined
family of programs (for example, syn-
chronous, time-triggered, real-time,
safety-critical, embedded software writ-
ten or automatically generated in C for

1_CACM_V51.9.indb 57 8/14/08 1:38:54 PM

58 communications of the acm | September 2008 | vol. 51 | no. 9

practice

byron cook

Concurrency
can create
surprisingly
complex
interactions
among the
concurrent
components,
making the
verification
problem
inherently
more complex.

Astrée). The abstraction of Astrée is de-
signed by conjunction of many elemen-
tary abstractions that are individually
simple to understand and implement.
In the case of a false alarm, each ab-
straction can be adjusted in cost and
precision by parameters and abstrac-
tion directives (whose inclusion in the
code can be automated). If the false
alarm cannot be solved by the existing
abstractions, new abstractions can be
easily incorporated to extend and re-
fine the conjunction of abstractions.
The abstract invariants can therefore be
strengthened in a few refinement steps
until no false alarm is left.7

Byron Cook:
Verification of Concurrent Systems
Many critical applications involve high
degrees of concurrency, whereby a
number of activities progress in parallel
with each other. Concurrency can cre-
ate surprisingly complex interactions
among the concurrent components,
making the verification problem inher-
ently more complex.

The traditional methods of specify-
ing and automatically reasoning about
computer systems are not sufficient
for use with concurrent systems. They
do not allow for the side effects caused
by other concurrent components, the
occurrence of multiple simultaneous
events, or the synchronization required
between processes to ensure data integ-
rity, and so forth. Specialized tools will
normally be required for effective verifi-
cation.

As an example, consider thread ter-
mination. Concurrent programs are
often designed such that certain func-
tions executing within critical threads
must terminate. Such functions can be
found in operating systems, Web serv-
ers, and email clients. Until now, no
known automatic program termination
prover supported a practical method of
proving the termination of threads.

As another example, concurrent pro-
grams are usually written in languages
that assume but do not guarantee mem-
ory safety (such as, pointer dereferences
never fail, and memory is never leaked).
Again, until now, no known automatic
program verifier supported the proving
of memory safety for concurrent pro-
grams.

Recent advances now allow us to ad-
dress these problems (such as, proving

properties such as memory safety and
termination of concurrent code. These
advances have led to the recently added
support for concurrency in the Termina-
tor termination prover15 and the SLAyer
shape analysis engine.14

The common theme of these ad-
vances is thread modularity: existing
sequential-program provers can be
used to prove the correctness of concur-
rent programs if appropriate abstrac-
tions can be found to represent the
other threads in a concurrent system.
In the case of termination proving, the
abstractions describe the direction of
change (called the variance) of values
caused by the other threads in the sys-
tem. We might know, for example, that
the value of the variable x cannot go up
in the other threads, thus allowing us to
prove the termination of a loop in the
thread of interest that decrements x
during each loop iteration. In the case
of memory-safety proving, the abstrac-
tions describe the association between
locks and data structures: we can prove
the memory safety of the thread of inter-
est by assuming that certain data struc-
tures are safe to modify only when the
associated locks are acquired.

The difficulty with thread-modular
techniques is that the space of abstrac-
tions is so large that finding the right
one for a given program verification
problem is difficult. Heuristics must be
developed. Furthermore, through the
use of experimental evaluations, these
heuristics must be shown to work in the
common case. We have developed and
evaluated such heuristics. In the case of
termination proving, we have found that
by temporarily ignoring concurrency we
can guess a set of ranking functions (see
Patterson13 for details), which leads to
a useful candidate abstraction. Using
static program analysis techniques we
can prove, for example, that every in-
struction in the other threads does not
increment x. The fact that x needs not to
be incremented, as opposed to y, comes
from the proof of termination via the
sequential-program termination prover
(see Cook4 for the details).

In the case of proving memory safety,
we use initial guesses that match locks
to variables, and then use counterex-
ample-guided techniques to refine the
shape of the data structures protected
by the locks (see Gotman9 for further
details).

1_CACM_V51.9.indb 58 8/14/08 1:38:54 PM

practice

september 2008 | vol. 51 | no. 9 | communications of the acm 59

Conclusion
Dependability in software-intensive
systems can be achieved only through
the application of solid design princi-
ples. That, in turn, is achieved through
an understanding of the product and
specialization of engineers in particu-
lar domains, product types, and tech-
niques. Abstract interpretation can aid
in reducing the complexity inherent in
proving properties and correctness of
complex software systems, which other-
wise would not be feasible. Such an ap-
proach facilitates automated reasoning
and fully automated reasoning. In par-
ticular, recent advances in verification
techniques have made it possible to
verify concurrent systems and prove ter-
mination by considering termination of
a thread without considering concur-
rency per se.

In the realm of formal methods, too,
we encounter radical and normal engi-
neering, as well as the whole spectrum
of intermediate phases in between. In a
sense, the ratio of radical design to nor-
mal design can be taken as a measure of
the maturity of a field of engineering.

In retrospect, radical engineer-
ing of, and with, formal methods has
characterized the first 20 years of this
field, making it an art: it was limited
to a restricted scope of few users and a
few high-budget, high-risk projects for
which high assurance was compelling.
This is no longer the case today:

A first transition from weak to ˲˲

strong formal methods17 moved the
field from specification-only toward
tool-based semantics analysis, making
formal methods not only descriptive
but also operational.

A second transition shifted tool sup-˲˲

port from heavyweight to lightweight
formal methods: from proof assistants,
which still require specialist skills, edu-
cation, and a good deal of intuition, to
fully automatic analyses embedded in a
software engineer’s usual development
environment.

This shift is central to enabling ev-
ery software developer to use the tech-
niques seamlessly, advancing from a
radical design endeavor to everyday
practice. Then it is not an art anymore,
just another craft, in the same way that
photography enabled everybody to por-
tray a subject with perfect faithfulness
to the subject’s traits, at a very reason-
able cost and without being, or resort-

2006 ACM SIGPLAN Conference on Programming
Language Design and Implementation, 415–426.

4.	 Cook, B., Podelski, A., Rybalchenko, A. Proving
thread termination. In Proceedings of the 2007 ACM
SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2007, 320–330.

5.	 Cousot. P. and Cousot, R. Systematic design of
program analysis frameworks. In Conf. Rec. 6th
Annual ACM SIGPLAN-SIGACT Symp. on Principles
of Prog. Lang., ACM Press (1979), pp 269–282.

6.	 Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné,
A., Monniaux, D., and Rival, X. Varieties of static
analyzers: A comparison with Astrée. In Proceedings
of the 1st IEEE & IFIP Int. Symp. on Theoretical
Aspects of Software Engineering, TASE ’07. IEEE
Computer Society Press (2007), 3–17.

7.	 Delmas, D. and Souyris, J. Astrée: From research to
industry. Lecture Notes in Computer Science 4634,
Springer (2007), 437–451.

8.	 Ferdinand, C., Heckmann, R., and Wilhelm, R.
Analyzing the worst-case execution time by abstract
interpretation of executable code. Lecture Notes in
Computer Science 4147, Springer (2006), 1–14.

9.	 Gotsman, A., Berdine, J., Cook, B., Sagiv, M. Thread-
modular shape analysis. In Proceedings of the
2007 ACM SIGPLAN Conference on Programming
Language Design and Implementation, 266–277.

10.	 Gray, J. Dependability in the Internet era. In
Proceedings of the High Dependability Computing
Consortium Conference, Santa Cruz, CA, May 7, 2001.

11.	 Hall, J.A. Seven myths of formal methods. IEEE
Software 7, 5 (Sept. 1990), 11–19.

12.	 Laprie, J.-C., ed. Dependability: Basic concepts and
terminology in English, French, German, Italian and
Japanese. Dependable Computing and Fault-Tolerant
Systems, Vol. 5, Springer-Verlag, NY, 1992.

13.	 Patterson, D. et al. Recovery Oriented Computing
(ROC): Motivation, Definition, Techniques, and Case
Studies. Computer Science Technical Report UCB//
CSD-02-1175. University of California, Berkeley, CA,
March 15, 2002.

14.	 http://research.microsoft.com/SLAyer
15.	 http://research.microsoft.com/terminator
16.	 Steffen, B., Margaria, T. Method engineering for real-

life concurrent systems. ACM Computing Surveys,
Special issue: Position Statements on Strategic
Directions in Computing Research 28, 4es (Dec. 1996)
56. ACM, NY.

17.	 Wolper, P. The meaning of “formal”: From weak to
strong formal methods. STTT 1, 1–2 (1997), 6–8.
Springer Verlag.

Mike Hinchey (mike.hinchey@lero.ie) is codirector of
Lero, the Irish Software Engineering Research Center,
and professor of software engineering at the University of
Limerick, Ireland.

Michael Jackson (jacksonma@acm.org) is Visiting
Research Professor, Centre for Research in Computing,
The Open University, Milton Keynes, England.

Patrick Cousot (Patrick.Cousot@ens.fr) is a professor of
computer science at the École Normale Supérieure. He is
a specialist in semantics, verification, and static analysis
of programs and complex systems and is the inventor of
abstract interpretation.

Byron Cook (bycook@microsoft.com) is a researcher at
Microsoft’s Laboratory at Cambridge University, where
he has been working on the program termination prover
Terminator, the shape analysis engine SLAyer, and the
software model checker SLAM.

Jonathan P. Bowen (jpbowen@gmail.com) is chairman
of Museophile Limited. He is contracted to work for Praxis
High Integrity Systems, applying formal methods for
software testing. He is also a visiting professor at King’s
College London and an emeritus professor at London
South Bank University.

Tiziana Margaria (margarita@cs.uni-potsdam.de) is chair
of service and software engineering at the Institute of
Informatics, Universität Potsdam, Germany. She is also
president of the European Association of Software Science
and Technology (EASST).

© 2008 ACM 0001-0782/08/0900 $5.00

ing to, a portrait painter.
We observe that today different tech-

niques occupy different positions on
this transition axis. While termination
proof of concurrent systems is still an art
(a case for radical design), techniques
such as type checking are enforced by
the vast majority of programming en-
vironments (natural design), and many
other techniques are walking the natu-
ralization path. It is a steep and narrow
path that takes decades to follow. For
example, abstract interpretation was
discovered in the 1970s, but it is only in
recent years that we have had tools such
as Astrée to enable normal developers
to apply collections of sophisticated ab-
stract interpretations as part of their dai-
ly routine within an enhanced normal
engineering process. Model checking,
rewarded this year with the ACM A.M.
Turing Award to Edmund M. Clarke,
Joseph Sifakis, and E. Allen Emerson,
is another successful example of formal
methods that became increasingly nat-
ural in the course of their 25+ years of
history. Once naturalized, the magic of
a technique (and of its gurus) vanishes,
but we all profit from the achievements
of the revolutionaries that enter main-
stream production.

As noted 12 years ago, specialization
in high-assurance systems concerns
devising appropriate heterogeneous
methods that adequately exploit the
various application-specific character-
istics of the problem.16 Computer-aid-
ed method engineering is the new craft.
It targets understanding and solving
problems heterogeneously at a meta
level, where whole methods and para-
digms are combined. Even though this
holds already for many sequential sys-
tems, it is particularly true for distribut-
ed systems, which by their nature are of
a much higher conceptual complexity.
Multicore architectures in our laptops
and massively multicore systems as part
of Web computing and cloud comput-
ing environments demand increased
attention here.

This quest continues…	

References
1.	 Bowen, J.P. and Hinchey, M.G. Seven more myths of

formal methods. IEEE Software 12, 4 (July 1995),
34–41.

2.	 Bowen, J.P. and Hinchey, M.G. High-integrity system
specification and design. Formal Approaches to
Computing and Information Technology. Springer-
Verlag, London, 1999.

3.	 Cook, B., Podelski, A., Rybalchenko, A. Termination
proofs for systems code. In Proceedings of the

1_CACM_V51.9.indb 59 8/14/08 1:38:54 PM

