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T he software engineering  community has devised 
many techniques, tools, and approaches aimed at 
improving software reliability and dependability. 
These have had varying degrees of success, some 
with better results in particular domains than others, 
or in particular classes of applications. A popular, 
although not uncontroversial, approach is known as 
formal methods, whereby a specification notation with 
formal semantics, along with a deductive apparatus 
for reasoning, is used to specify, design, analyze, and 
ultimately implement a hardware or software (or 
hybrid) system.  

Such an approach is often thought to be difficult 
to apply and to require significant mathematical 
experience.1, 11 Experience has demonstrated that 
developers without significant mathematical ability 
can at least understand and use formal specifications,

even if greater mathematical ability and 
specialization in various areas of math-
ematics and engineering are needed for 
more challenging formal methods-
related activities such as verification 
and refinement, and even the task of 
writing formal specifications them-
selves. As automated formal methods 
slowly become a natural part of the de-
sign process, we also experience higher 
dependability levels as a standard trait 
of software products.

A key issue, however, is the need for 
those applying formal methods to be 
able to abstract and to model systems at 
an appropriate level of representation—
that is, to develop solid design princi-
ples and apply them to software devel-
opment. This is particularly true when 
proving properties of more complex sys-
tems involving significant concurrency 
and interaction among components. 
When we wish to prove properties, it is 
often easier—and necessary—to prove 
them at a more abstract level, exploiting 
the idea of abstract interpretation.  

This article contains contributions 
from three world-renowned experts in 
the fields of software engineering, ab-
stract interpretation, and verification 
of concurrent systems: Michael A. Jack-
son, Patrick Cousot, and Byron Cook. 
Their contributions are based on their 
keynote speeches at the IEEE’s Fifth In-
ternational Conference on Software En-
gineering and Formal Methods, held in 
London,  Sept. 10–14, 2007. The aim of 
the conference series is to bring togeth-
er practitioners and researchers in the 
fields of formal methods and software 
engineering with the goal of exploiting 
synergies and furthering our under-
standing of specialization, abstraction, 
and verification techniques, among 
other areas.

Declining Dependability Levels 
Computer-based systems are pervasive 
and now influence almost every facet 
of our lives.   They wake us in the morn-
ing, control the cooking of our food, 
entertain us in the guise of media play-
ers, help in avoiding traffic congestion, 
control or identify (via GPS navigation 
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systems) the location of the vehicles in 
which we travel, wash our clothes, and 
even give us cash from our bank ac-
counts (sometimes!).  

Computers are being used increas-
ingly in applications where they can 
have great influence over our very exis-
tence.2 They control the flow of trains in 
the subway, signaling on railway lines, 
even traffic lights on the street. The fail-
ure of any of these systems could cause 
great inconvenience and conceivably 
result in accidents in which lives are 
lost. As they control the actual flight of 
an aircraft, cooling systems in chemi-
cal plants, feedback loops in nuclear 
power stations, and so on, we can see 
that they all account for the possibility 
of great disasters if they fail to operate 
as expected.

More and more, these systems are 
software intensive, meaning that soft-
ware is the major component and that 
much of the functionality is achieved 
via software rather than hardware im-
plementations. This raises questions 
over the reliability (the measure of the 
ability of system to continue operating 

over time12) and the dependability (the 
property that reliance can justifiably 
be placed on the service it delivers12) of 
software.   

A Software Crisis
This has become a major issue for  
the software engineering community. 
While hardware dependability has in-
creased continually over the years, and 
with mean time to failure (a measure 
of dependability) for the most reliable 
systems now exceeding 100 years,13 soft-
ware has not kept up with this pattern 
and indeed has been exhibiting declin-
ing levels of dependability.10

This can be attributed to many fac-
tors, including: 

A naïve belief that anyone who can ˲˲

write software can write good software. 
A mistaken belief that running a few ˲˲

representative test cases indicates that 
the software is “correct” or adequate.

Failure to understand that realizing ˲˲

a good design is more important than 
producing vast quantities of code and 
that the goal of software engineering is 
not only to produce code but also to pro-

duce trustworthy solutions to problems 
that can eventually be implemented in a 
programming language.

Failure to realize that making ˲˲

changes to software—and in particular 
unnecessary, uncontrolled, and care-
less changes—can have an effect on its 
appropriateness and validity, its correct 
operation, and can make it less efficient, 
or in extreme cases obsolete. 

Of course, software is intended to 
change, and must be able to change. 
If we were to write software that we 
would never change after deployment 
(to meet changing requirements, an 
evolving environment, or to correct er-
rors or unimplemented or incorrectly 
implemented requirements), then we 
would be better off implementing ev-
erything in hardware; but this is neither 
technically possible nor financially or 
spatially feasible.

Michael Jackson: Specializing 
in Software Engineering
Software-intensive systems are intended 
to interact dependably with the human 
and physical problem world. Execution 
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of the software produces and uses real-
time information about the world, and 
monitors and partly controls its behav-
ior to provide required functionality 
and to satisfy required constraints. 

Such systems pose a particular chal-
lenge, arising from the interaction be-
tween the quasi-formal nature of the 
software and the nonformal nature of 
its human and physical problem world 
outside the computer. The software in 
execution can be regarded as a formal 
system: for all but the most extremely 
critical systems the computer behav-
ior can be assumed to conform to the 
program semantics. The nonformal 
problem world, in contrast, has many 
parts—human, natural, and engi-
neered—whose properties and behav-
ior are far less reliable. For a depend-
able system, there must be an adequate 
formal model of the problem world, and 
the software must be designed to reflect 
the assumption that the world conforms 
to this model. In executing its program, 
the computer always behaves as if the 
world model is valid; if the world devi-
ates from the model, the system will fail 
in some way. The problem world, being 
nonformal, has unbounded possible 
behaviors and properties that can inval-
idate any formal model. Fault-tolerant 
techniques in which the model is weak-
ened in suitably chosen respects can 
mitigate the difficulty, but they cannot 
eliminate it: the world can still invali-
date the weakened model. How, then, 
can a dependable system be designed? 

Development of the formal model 
is, above all, an engineering task. In the 
established engineering branches, the 
challenge is met by experience accumu-
lated in each particular product class 
and captured in a normal design disci-
pline. The aeronautical engineer W. G. 
Vincenti explains normal design: “The 
engineer knows at the outset how the 
device in question works, what are its 
customary features, and that, if properly 
designed along such lines, it has a good 
likelihood of accomplishing the desired 
task.” Family cars, for example, are the 
product of an industry-wide normal de-
sign discipline. Different manufactur-
ers’ products are strikingly similar both 
in their external appearance and in their 
internal workings because their design-
ers adhere closely to the current normal 
design. This normal design embod-
ies the accumulated knowledge of the 

models—both of the product itself and 
of its environment or problem world—
that is adequate for a desired level of 
dependability: which deviations from a 
model are sufficiently improbable to be 
ignored; which are implicitly handled 
by the normal design configuration; and 
which must be explicitly considered in 
the calculations and checks mandated 
by the discipline of the normal design 
practice.

The engineer lacking an applicable 
normal design discipline must inevi-
tably engage in radical design. In Vin-
centi’s words: “In radical design, how 
the device should be arranged or even 
how it works is largely unknown. The 
designer has never seen such a device 
before and has no presumption of suc-
cess. The problem is to design some-
thing that will function well enough to 
warrant further development.” In short, 
radical design has a low expectation of 
dependability: it can be a good choice 
only in purely experimental work or 
where novelty and excitement are of the 
highest importance and dependability 
is little valued.

A normal design discipline does not 
arise easily or by chance. It rests on a 
culture of specialization, in which a com-
munity of organizations and individu-
als is devoted to gradual, long-term evo-
lution of normal design in a particular 
product class and of the scientific and 
engineering knowledge it embodies. 
The prerequisites for this culture of spe-
cialization are two: the continuing exis-
tence of specialized communities, with 
their research and production facilities 
and their journals and conferences; and 
the desire of individual highly talented 
engineers in each generation to dedi-
cate their professional careers to work-
ing within just one specialization. This 
infrastructure of a specialized commu-
nity and the advances needed to evolve a 
successful normal design discipline are 
not achievable or sustainable by float-
ing populations of itinerant generalists. 

Software engineering and computer 
science already have many special-
izations: some in complexity theory, 
concurrency, real-time systems, pro-
gramming languages, model check-
ing, program proving, and distributed 
computing; and some in system soft-
ware components such as compilers, 
database systems, virus checkers, and 
SAT (Boolean satisfiability problem) 

solvers. These specializations, however, 
are not enough. To build dependable 
software-intensive systems, we must 
emulate the established engineering 
branches, developing many more spe-
cializations that are sharply focused 
on narrow classes of end products and 
their component subsystems. Only the 
product-oriented specialist can achieve 
dependability by bringing together the 
contributions of specialists in all the dif-
ferent aspects, parts, and dimensions of 
the design task.

What particular specializations, 
then, are needed? We cannot answer 
this question in advance, or in any sys-
tematic or authoritative way. In a society 
that insists on dependable systems, with 
a software-engineering culture that val-
ues and motivates specialization, par-
ticular specializations will emerge and 
evolve in response to opportunities and 
challenges as they are recognized. 

In sum, dependability in an engineer-
ing product must be based on a normal 
design discipline. Only in a product-
oriented normal design discipline can 
all the necessary knowledge—tacit and 
explicit—be brought together to build 
a dependable system. This normal dis-
cipline in turn must be the product of 
a long-term community of engineers 
specializing in systems of the particular 
product class. For a critical software-
intensive system, specialization is not 
optional. 

Patrick Cousot: The Role of Abstract 
Interpretation in Formal Methods
Formal Verification Methods. In com-
puter science and software engineer-
ing, formal methods are mathematically 
based techniques for the specification, 
development, and verification of soft-
ware and hardware systems. They es-
tablish the satisfaction of a required 
property (called the specification) by a 
formal model (called the semantics) of 
the behavior of a system (for example, a 
program and its physical environment). 
The semantic domain is a set of all such 
formal models of system behaviors.

A property of the system is a set of se-
mantic models that satisfy this proper-
ty. The satisfaction of a specification by 
a system (more precisely by its seman-
tics), which can equivalently be defined 
as the proof that its strongest property 
is a property of the system, is called its 
collecting semantics.
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An example is the trace semantics of a 
programming language. The semantics 
of programs in the language describes 
all possible program executions as a set 
of traces over states chosen in a given set 
of possible states. Two successive states 
in a trace correspond to an elementary 
program computation step. An example 
of a property is the termination property 
stating that all execution traces should 
be finite. 

Formal verification methods are very 
hard to put in practice because both the 
semantics and the specification of a 
complex system are extremely difficult 
to define. Even when this is possible, 
the proof cannot be automated (using 
a theorem prover, a model checker, or 
a static analyzer) without great compu-
tational costs. Considering all possible 
systems is even harder. Hence it is nec-
essary either to work in the small (for ex-
ample, model checking) or to consider 
approximations of large systems (for ex-
ample, abstract model checking).

Abstract Interpretation. Abstract in-
terpretation5 is a theory of sound ap-
proximation of mathematical struc-
tures, in particular those involved in 
the description of the behavior of com-
puter systems. To prove a property, the 
abstraction idea is to consider a sound 
overapproximation of the collecting 
semantics, a sound underapproxima-
tion of the property to be proven, and 
to make the correctness proof in the 
abstract.

For automated proofs, these abstrac-
tions must be computer-representable, 
so they are not chosen in the mathemat-
ical concrete domain but in an abstract 
domain. The correspondence is given 
by a concretization function mapping 
abstract properties to corresponding 
concrete properties. Formal verification 
being undecidable, the abstraction may 
be incomplete—that is, it produces false 
alarms, a case when a concrete property 
holds but this cannot be proved in the 
abstract for the given abstraction, which 
must therefore be refined. The abstrac-
tion function is the inverse of the con-
cretization function. It maps concrete 
properties to their approximation in the 
abstract domain. Applied to the collect-
ing semantics of a computer system, it 
formally provides an abstraction of the 
properties of the system. Abstract veri-
fication methods consist of designing 
an abstraction function that is coarse 

enough so that the abstract collecting 
semantics is computer-representable 
and effectively computable and is pre-
cise enough so that the abstract-col-
lecting semantics implies the specifica-
tion. 

Abstract interpretation formalizes 
the intuition about abstraction. It al-
lows the systematic derivation of sound 
reasoning methods and effective algo-
rithms for approximating undecidable 
or highly complex problems in various 
areas of computer science (semantics, 
verification and proof, model checking, 
static analysis, program transformation 
and optimization, typing, or software 
steganography). Its main current ap-
plication is on the safety and security of 
complex hardware and software com-
puter systems.

Verification by Static Analysis. Static 
code analysis is the fully automatic 
analysis of a computer system by direct 
inspection of the source or object code 
describing the system with respect to 
the semantics of the code (without ex-
ecuting programs, as in dynamic analy-
sis). The proof is done in the abstract 
by effectively computing an abstrac-
tion of the collecting semantics of the 
system. Examples of successful static 
analyzers used in an industrial context 
are aiT (www.absint.com/ait used to 
compute an overapproximation of the 
worst-case execution time8) and Astrée 
(www.astree.ens.fr used to compute an 
overapproximation of the collecting 
semantics to prove the absence of run-
time errors6).

Their growing success is a result of 
their being useful (such as, they tackle 
practical problems), sound (their results 
can be trusted), nonintrusive (end users 
do not have to alter their programming 
methods (for example, by producing 
the specification and abstract seman-
tics that can be directly derived from 
the program text), realistic (applicable 
in any weird industrial environment), 
scalable (to millions of lines of code as 
found in actual industrial code), and 
conclusive (producing few or no false 
alarms).

The design of language-based se-
mantics and abstractions is extremely 
difficult but possible on a well-defined 
family of programs (for example, syn-
chronous, time-triggered, real-time, 
safety-critical, embedded software writ-
ten or automatically generated in C for 
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Astrée). The abstraction of Astrée is de-
signed by conjunction of many elemen-
tary abstractions that are individually 
simple to understand and implement. 
In the case of a false alarm, each ab-
straction can be adjusted in cost and 
precision by parameters and abstrac-
tion directives (whose inclusion in the 
code can be automated). If the false 
alarm cannot be solved by the existing 
abstractions, new abstractions can be 
easily incorporated to extend and re-
fine the conjunction of abstractions. 
The abstract invariants can therefore be 
strengthened in a few refinement steps 
until no false alarm is left.7

Byron Cook:  
Verification of Concurrent Systems
Many critical applications involve high 
degrees of concurrency, whereby a 
number of activities progress in parallel 
with each other. Concurrency can cre-
ate surprisingly complex interactions 
among the concurrent components, 
making the verification problem inher-
ently more complex.

The traditional methods of specify-
ing and automatically reasoning about 
computer systems are not sufficient 
for use with concurrent systems. They 
do not allow for the side effects caused 
by other concurrent components, the 
occurrence of multiple simultaneous 
events, or the synchronization required 
between processes to ensure data integ-
rity, and so forth. Specialized tools will 
normally be required for effective verifi-
cation.

As an example, consider thread ter-
mination. Concurrent programs are 
often designed such that certain func-
tions executing within critical threads 
must terminate. Such functions can be 
found in operating systems, Web serv-
ers, and email clients. Until now, no 
known automatic program termination 
prover supported a practical method of 
proving the termination of threads.

As another example, concurrent pro-
grams are usually written in languages 
that assume but do not guarantee mem-
ory safety (such as, pointer dereferences 
never fail, and memory is never leaked). 
Again, until now, no known automatic 
program verifier supported the proving 
of memory safety for concurrent pro-
grams.

Recent advances now allow us to ad-
dress these problems (such as, proving 

properties such as memory safety and 
termination of concurrent code. These 
advances have led to the recently added 
support for concurrency in the Termina-
tor termination prover15 and the SLAyer 
shape analysis engine.14

The common theme of these ad-
vances is thread modularity: existing 
sequential-program provers can be 
used to prove the correctness of concur-
rent programs if appropriate abstrac-
tions can be found to represent the 
other threads in a concurrent system. 
In the case of termination proving, the 
abstractions describe the direction of 
change (called the variance) of values 
caused by the other threads in the sys-
tem. We might know, for example, that 
the value of the variable x cannot go up 
in the other threads, thus allowing us to 
prove the termination of a loop in the 
thread of interest that decrements x 
during each loop iteration. In the case 
of memory-safety proving, the abstrac-
tions describe the association between 
locks and data structures: we can prove 
the memory safety of the thread of inter-
est by assuming that certain data struc-
tures are safe to modify only when the 
associated locks are acquired.

The difficulty with thread-modular 
techniques is that the space of abstrac-
tions is so large that finding the right 
one for a given program verification 
problem is difficult. Heuristics must be 
developed. Furthermore, through the 
use of experimental evaluations, these 
heuristics must be shown to work in the 
common case. We have developed and 
evaluated such heuristics. In the case of 
termination proving, we have found that 
by temporarily ignoring concurrency we 
can guess a set of ranking functions (see 
Patterson13 for details), which leads to 
a useful candidate abstraction. Using 
static program analysis techniques we 
can prove, for example, that every in-
struction in the other threads does not 
increment x. The fact that x needs not to 
be incremented, as opposed to y, comes 
from the proof of termination via the 
sequential-program termination prover 
(see Cook4 for the details).

In the case of proving memory safety, 
we use initial guesses that match locks 
to variables, and then use counterex-
ample-guided techniques to refine the 
shape of the data structures protected 
by the locks (see Gotman9 for further 
details).
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Conclusion
Dependability in software-intensive 
systems can be achieved only through 
the application of solid design princi-
ples. That, in turn, is achieved through 
an understanding of the product and 
specialization of engineers in particu-
lar domains, product types, and tech-
niques. Abstract interpretation can aid 
in reducing the complexity inherent in 
proving properties and correctness of 
complex software systems, which other-
wise would not be feasible. Such an ap-
proach facilitates automated reasoning 
and fully automated reasoning. In par-
ticular, recent advances in verification 
techniques have made it possible to 
verify concurrent systems and prove ter-
mination by considering termination of 
a thread without considering concur-
rency per se. 

In the realm of formal methods, too, 
we encounter radical and normal engi-
neering, as well as the whole spectrum 
of intermediate phases in between. In a 
sense, the ratio of radical design to nor-
mal design can be taken as a measure of 
the maturity of a field of engineering.  

In retrospect, radical engineer-
ing of, and with, formal methods has 
characterized the first 20 years of this 
field, making it an art: it was limited 
to a restricted scope of few users and a 
few high-budget, high-risk projects for 
which high assurance was compelling. 
This is no longer the case today:

A first transition from weak to ˲˲

strong formal methods17 moved the 
field from specification-only toward 
tool-based semantics analysis, making 
formal methods not only descriptive 
but also operational. 

A second transition shifted tool sup-˲˲

port from heavyweight to lightweight 
formal methods: from proof assistants, 
which still require specialist skills, edu-
cation, and a good deal of intuition, to 
fully automatic analyses embedded in a 
software engineer’s usual development 
environment.  

This shift is central to enabling ev-
ery software developer to use the tech-
niques seamlessly, advancing from a 
radical design endeavor to everyday 
practice. Then it is not an art anymore, 
just another craft, in the same way that 
photography enabled everybody to por-
tray a subject with perfect faithfulness 
to the subject’s traits, at a very reason-
able cost and without being, or resort-
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ing to, a portrait painter. 
We observe that today different tech-

niques occupy different positions on 
this transition axis. While termination 
proof of concurrent systems is still an art 
(a case for radical design), techniques 
such as type checking are enforced by 
the vast majority of programming en-
vironments (natural design), and many 
other techniques are walking the natu-
ralization path. It is a steep and narrow 
path that takes decades to follow. For 
example, abstract interpretation was 
discovered in the 1970s, but it is only in 
recent years that we have had tools such 
as Astrée to enable normal developers 
to apply collections of sophisticated ab-
stract interpretations as part of their dai-
ly routine within an enhanced normal 
engineering process. Model checking, 
rewarded this year with the ACM A.M. 
Turing Award to Edmund M. Clarke, 
Joseph Sifakis, and E. Allen Emerson, 
is another successful example of formal 
methods that became increasingly nat-
ural in the course of their 25+ years of 
history. Once naturalized, the magic of 
a technique (and of its gurus) vanishes, 
but we all profit from the achievements 
of the revolutionaries that enter main-
stream production. 

As noted 12 years ago, specialization 
in high-assurance systems concerns 
devising appropriate heterogeneous 
methods that adequately exploit the 
various application-specific character-
istics of the problem.16 Computer-aid-
ed method engineering is the new craft. 
It targets understanding and solving 
problems heterogeneously at a meta 
level, where whole methods and para-
digms are combined. Even though this 
holds already for many sequential sys-
tems, it is particularly true for distribut-
ed systems, which by their nature are of 
a much higher conceptual complexity. 
Multicore architectures in our laptops 
and massively multicore systems as part 
of Web computing and cloud comput-
ing environments demand increased 
attention here.

This quest continues…	
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