Lecture Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

85

Automata,
Languages and Programming

Seventh Colloquium
Noordwijkerhout, the Netherlands
July 14-18, 1980

Edited by
J. W. de Bakker and J. van Leeuwen

Springer-Verlag
Berlin Heidelberg New York 1980

SEMANTIC ANALYSIS OF COMMUNICATING SEQUENTTAL PROCESSES

(Shortened Version)

l * * &
Patrick Cousot and Radhia Cousot

1. INTRODUCTION

We present semantic analysis techniques for concurremt programs which are de-
signed as networks of nondeterministic sequential processes, communicating with each
other explicitly. by the sole means of synchronous, unbuffered message passing. The
technigues are introduced using a version of Hoare[781's programming language CSP
(Communicating Sequential Processes).

One goal is to propose an fnvariance proof method to be used in the development
and verification of correct programs. The method is suitable to partial correctness,
absence of deadlock and non-termination proofs. The design of this proof method is
formalized so as to prepare the way to possible alternatives. -~

A complementary goal is to propose an automatic technique ifor gathering informa-
tion about CSP programs that can be useful to both optimizing compilers and program
partial verification systems.

2. SYNTAX AND OPERATIONAL SEMANTICS
2.1 Syntax
The set sCSP of syntactically valid programs is informally defined so as to cep-

ture the essential features of CSP.

- Programs Pr : [P(1) Il P(2) || ... || P(m)] where m22
(A program consists of a single parallel command specifying concurrent execution
of its constituent disjoint processes).

- Processes P(i), fei1,m] : PR(1) & D(1)5A04,1):S04) (1)s-..sA(4,0(1)):S(1) (g(di)
where g(i)z21
(Each process P(i) has a unique name PL(i) and consists of a sequence of simple
commands prefixed with declarations jS] of local variables]).
- Process labels PR(i). ie(1,m].
- Declarations D(i), iel1,m] ¢ x(i)(1):£(i)01)5.00sx(4)(8(1D (1) (8(i) where §(i)21.
- Variables x(i)(j), iel1.m1, je[1,8(1)].
- Types t(i)(3), iel1,m], jel[1.8(1)1].

- Program locations A(i.j), iel1,m1, jel1.0(i)].

(Each command has been labeled to ease future references]).
- Simple commands S(i)(j), icE1.jJ, Jel1,0(1)]

- Null commands S(1i)(j), ie[1.T]. JeN(i) : skip

- Assignment commands S(i)(j), iel1.m], jeAld) : x(i)(o(i,jN:=eld,])(x(1]
where a(i,j)e[1,6(1)]

* Université de Metz, Faculté des Sciences, Ile du Saulcy, 57000 Metz, France.
** CRIN Nancy - Laboratoire Associé au CNRS n°262.
This work was supported by INRIA (SESORI-78208) and by CNRS (ATP Inielligence Artif.).

120

(The pattern-matching feature introduced in Hoare[78] is treated using
dynamic type checking. Multiple assignments or assignments to parts of
structured variables are realized using global assignments to variables).

- Test commands S(1)(j), iel1.m], jeT(4)

if bli.3)(x(i) go to Ali.n(i,3) where ni.jlel1.0011].
« Stop commands S(i)(j). ief1,7], JeH(i) : stop

(Specify termination of process E[in.

» Communication commands S(i)(j), 1e[1,m], jeC(1)
EBE1, 5,12 + Kid.nli. 3,90 B .. 0G601.3,Y(4,3D) + A(i.n(4,3,y(1,50)
where (y(1,j)21) A (Ykel1,y(i,3)], ni.j.klel1,0(11)
(The execution of the command S(1)(3) is delayed until one arbitrary but
successfully executable input-output guard G(i,j,k) (kel1,y(i,3)]) is
selected and executed. Next the command labeled Al(i,n(i,5.k)) is executed.
If all input-output guards fail the process P(i) Fails in deadlock].

{N(1),A(i).T(1),H(i),C(1)} is a partition of [1,2[1]’.}7'

- Input-Output guards G(i,j.k), ie(1,m], JeCli), kef1, (1,917 «

« Input guards G(i,j,k), iel1.7], jeC(i), kelli,])
b1, 3, K) (x(TD3PL(6(1, 5, kD 7x(1) (@ii,], k)
where (8(1,3.K)e(l1,m]-{1}))A (ali.j,k)e[1,8(1) D).

« Output guards G(i,j.k), 1e[1,m], jeC(i), keO(i,3)
b1, 3, kI (x(1))5PRIB(4, 5, kD 1E(1,3,K) (x(1)) ~ where 80i,j.K)e(l1,m]1-{i}).

{I(i,3),0(i,3)} is a partition of L0025 3) 0,
(Pure signals are transmitted ueing typed variables).

- Expressions e(i,j)(x(i), iel1,7], jeA(i)
eli,j.k)(x(i), ie[1.m], JeC(i), keO(i,])
(e(i,3) maps dom(e(1,jlct(i) into t(i)(ali, i) and eli,j,k) maps dom(e(i,j,k)c
(1) into ult(804, 5. kD ()R el1,608(1,5.k01)).

- Boolean expressions b(i,j)(x(i)), ie[1,m], jeT(i)
b1, .k (x(1)), 1e[T,m], FeCldi), kel1,y(i,3))
(b(i,j) (resp. b(i,j.k)) maps dom(b(i,j)) (resp. dom(b(i,j,k)) into truth values).

- The following abbreviations will be used :
E&[g[i,j]]?i(i](g[i,j}] = Etrue:ﬁ&(_&[i,jﬂ]]?gi][g{i,_j.‘l]) %X G410
P_E(Q(i.j]]lg[i,jlfi[i]) = [true;ﬂ&[_ﬁ_[i.j."l]]!g[i.j;ﬂ[ﬁ[i]l =+ Xl J+9)]

This syntax is not intended to be of practical use. The syntax of some examples
freely deviates from the above definition when the correspondence is obvious.

2.2 Operational Semantics

Roughly an operational semantics defines for each syntactically valid program a
set St of states and a transition relation tre[[StxSt]+B] which is true between each
state and its possible successors. B={tme,false} is the uniquely complemented
complete lattice of truth values with ordering false=> true, infimum false, supremum
true, join Vv, meet A, complement -.

2.2.1 Operational Semantics of Individual Processes

The semantics of each process P(i), 1ie[1,7] can be defined independently of the
other processes as long as no communication command is Anvolved.

- Program locations : L = M{{A(i,j):jel1,0(1)1}:1e(1,m1} _
(If {E(i):ieI} is a family of sets, the cartesian product M{E(i):ieI} is defined
as the subset of I+u{E(i):ieI} of all functions f for which f(i)eE(i) for all ielk

121

= States ¢ 5(L) = BELIBGLIEN, 1el1,m].

= Transition relation :
s £ CESI ST =00, tel1.0]
T(i) = Al(xa,ca), (xb,cb)).[33,Kkel1,0(4)1: ca=Ali,i) A cb=A(i,k) A
[(Null(i,j) (xa,xb) Ak=j+1)V(4saign(i,j) (xa,xb) Ak=3+1)v(Test(i,],kl(xa,xbl1]

Null(i,j) e [L£(i)xt(4)1+B1, iel1,m], jel1.0(i)]
Null(i,j) = A(xa,xb).[jeN(i) A xa=xb]

Assign(i,j) e [Lt(i)xt(1)1+B1, iel1,ml, jel1,0(i)]
Assignl(i,j) = Alxa,xb). L[Jeﬂ[l]]A(qu[[i 80i)1-{ali,j)}), xblg)=xalg) A
(xa edom(e(i, i) A xblali,jl=e(i,j)(xa)]

Test(i,j.k) e [[t(ilxt(1)1+Bl, iei1,m], j.kel1,0(1)]
Test(i,j,k) = A(xa,xb).[(jeT(ida(xa=xbla(xaedom(b(i,jN) A
[(b(i,3)(xa) Ak=n(i,3Nv(~b(i,3) (xa) A k=3+1)]1]

2.2.7 Characterization of the States that a Process can Reach after a Communication

When process P(i) is at location c with values x of its local variables, the
output guard G(i,j,k) is successfully executable only if Ogse(i.j.k)(x,c) is true :

Ogse(i,j.k) e [S{i) »B]1, iel1.m], jJelli). keO(di,])
Ogse(i,j,k) = Alx,c).[ec=A(d, j] A xedom(b(i,j,k)) A b(i,3.k)(x) A xedom(eli,j.kD].

If tr is a relation then tr denotes its reflexive transitive closure.

The states (xb,cb) that process P(i) can reach after execution of output guard
G(i,3,k) in state (xa,ca) and before meeting a communication or stop command are such
that Rsao(i,j,k)((xa.,cal),(xb,ch)) is true :

Rsao(i,j,k) e [[S(i)xS(i)]1~+B], iel1,m], jeC(i), keO(i,3),
Rsao(i j.k) = Al(xa,ca),(xb,cb)).[Ogseli,j.,k) (xa,ca) Atlil [(xa,Ali,n(i,].k)), (xb,cbl]]

When process P(i) is at location c with values x of its local variables the input
guard G(i,j.k) is successfully executable only if Igse(i,i.k)(x,c) is true :

Igse(i,j.k) e [S(1) +B], iel1.m], jeC(i), kel(d,j)
Igse(i,j.k) = Alx,c).[c=A(i.3) A x edom(b(i,3.k)) A b(i,3,K)(x)]

If {E(i):1eI} is a family of sets and xell{E(i):ieI}, jeI, veE(]j) then subst(x)(j/v)
equals y such that y(j)=v whereas y(k)=x(k) for all kel such that kzj. If n>1,
jl.....jn eI and ulsE[jl]....,vneE[jn) then subst[x][jlfvl,....jn/an =

subst[subst[x][jl/vlll[jzfuz,...,jn/un]

The states (xb,cb) that process P(i) can reach after execution in state (xa,ca) of
input guard G(i,j,k) which assigns the transmitted value v e t(i)(a(i,j,k)) to variable
x(i)(ali,], k)] and before meeting a communication or stop command are such that
Rsai(i,j.k)((xa,ca),(xb,cbl) is true :

Rsaili,j,k) e [[S(i)xt(i)(a (i,3,kNxS(1)1+B], iel1,m], JeC(i), keI(di,j)
Rsaili,j,k) = Al(xa,cal,v, (xb,ch). [Igse[l j,k)(xa,cal A
t[i]” [(subst(xa) (ali,j,k)/v),Ali,n(i,3,k1), (xb,cb)]]

2.2.3 Operational Semantics of Communicaiing Processes

We introduce the transition relations 1 and p which describe the cooperation of
concurrently operating processes. Concurrency in the execution of a program is modeled
by global nondeterminism in the selection of successor states. The resoclution of the
global nondeterminism is left unspecified since CSP definition specifies no scheduling
policy whether fair or unfair.

122

2.2.3.1 Sitates

Si=Eoel

(When a process is willing to accept a rendez-wvous, the states of all other pro-
cesses may have to be checked in order to determine which processes are ready to
communicate or have terminated and next which data are exchanged].

2.2.3.2 Transition Relations

- CR(i) = C(1) uH(i), iel1,m]
(The only program locations relevant to cooperation between processes are those
corresponding to communication or stop commands).

-1 e [[sx3]1+B]

1 = All(xa,ca),(xb,cb)). [Vle[‘l m], (cali)=cb(i)=A(i,1) Axa(i)=xb(il) v (ca(i)=A(i.1])A
T[i1*[(xali),cali)), (xb{i).cb(iD] Acb(ileAli,CRIIIMN]

(If E, E1, E2 are sets, fe[E1+E2] and EcE1 then f(E) is defined as (f(x):
xeldom(f)nE)}. The transition relation 1 defines the "ready to communicate” or
"stop" states which are possible successors of the "entry" states. As far as
cooperation between processes is concerned, a process,; which is never willing to
communicate and never terminates does not progress).

S ERe= (=i, 3,k +%.m,n> = 1,801, T1AJeCli) AkeO(i,j) AmeC(L) Anell(f,m) Ai=B(L,m.,n] A

2=0(1,3.k) A{ali,j.k)(x): xedom[l(l._] kKD }nt (L) (a(f,m,n)=8}.

(The set Ch of communication channels is isomorphic with the set of statically
matching pairs of input-output guards).

e [[Sx5]1~+B]
= Allxa,cal, (xb,cb)) .[3<i,j,k+L,m,n>eCh :

[¥ge([1,m1-{i,2}), (calg)=cblg)) A (xalg)=xb(g)]
AlRsao(i,3,k)((xali),cali)), (xb(i),cb(1i)]) Acb(i)eA(i,Ce(i))]
Aleldi,j.k)(xalidet (L) (al(f,m,n))]
A[Rsm;(z,m.m[(xam,cam],e(i,j,mtxam},rxbm,cbmnn:n[myn&iflﬂﬂ

(The transition relation u defines the "ready to communicate" or "stop" states
which are the possible successors of "ready to communicate” states. The dynamic
discrimination of input messages is modeled by dynamic type checking. When several
rendez-vous are possible the selection is free. Hence u specifies all possible
orderings of the communications between processes).

M
H

3. FIXPOINT CHARACTERIZATION OF CORRECTNESS PROPERTIES

3.1 Fundamental Theorem

Let Pr be any syntactically correct sCSP program. Its operational semantics
defines a set S of states and transition relations 1 and . Let P=[S+B] be the set
of predicates describing properties of initial, communication or termination states.
It is a uniguely complemented complete lattice P[w,falsg,f;rug,v,h,—-} for the point-
wise ordering => (thus the meaning of symbols =>, false. true, v, A and — is context-
dependent). Let E be the set of possible entry specifications for the program Pr. The
meaning of these specifications is described by Inite[E +P] such that Init(¢) charac-
terizes the set of possible initial states corresponding to the entry specification
¢eE :

- P = [S+8]
E = M{{t(1) »B] : iel1.m1}

= Init e [E=+P]
Init = AB.[Post(1)(A(x,c).[¥iel1,m], x(iledom(B(i)) A B(1)(x(i)) Ac(i)=A(1i,1)])]

where the predicate transformer Post is defined as :
- Post [[[Sx3]+B1+[P+P1]
Post = AB.[AB.[Asb.[dsaeS: B(sa) AB(sa,sb)]]]

[

I m

123

By definition the set of states which may be reached during any execution of
programPr starting with an initial value of the variables satisfying the entry specifi-
cation ¢eE is characterized by Post(p) (Init(¢)). Notice that when programs are non-
deterministic Post characterizes possible but not necessarily certain descendants of
the entry states. The following fixpoint characterization of Post(u)(Init(¢)) is the
basis of our approach (Cousot[79])

LE +EP=+PT]
Ab.[AB.[Init(§) v Post(u) (B)1]

- Lfp e [[P+P]+P] is the least fixpoint operator for isotone operators on the
complete lattice P (Cousot & Cousot[79b]).

o
i

nom

Theerem 3.1.1
VoeE, Post(u™) (Init(¢)) = Lfp(f(4)

The above fixpoint theorem leads to sound and complete invgriance proof methods
(Cousot[79]) and to automatic program analysis techniques (Coufot & Cousot[789al).
However in order to put these methods into practice one or several applications of the
following step are required.

3.2 (Pne)homomorphic Image of the Predicate Algebra

Let A(=>,false,true,v,s,”) be a uniguely complemented complete lattice of "asser-
tions". The meaning of A is defined by a false-strict v-complete morphism from
P(=>,false,true,v,A,~)into A(=>, false,true,v,A,”). p(B) is the representation of a
"Predicate” ReP by an "assertion” belonging to A. Corresponding to f, let us introduce
Fe[E+[A=+A]] defined as Ap.[Aa.[INIT(¢$) v POST(a)]] where INITe[E+A] and POSTe[A+A].
F is said to be equivalent to (resp. an upper approximation of) f up to p if and only
if VYpeE, F($) is isotone and pof(d) equals (resp. implies) F(¢lep. Let LFPe[[A+A]~>A]
be the least fixpoint operator. The following theorem shows that whenever F is
equivalent to (resp. an upper approximation of) f, p(Lfp(f(¢)) equals (resp. implies)
LFP(F(¢)) :

Theorem 3.2.1

Let f and F be respectively isotone operators on the complete lattices
P(=>,false,true,v,A) and A(=>,false,true,v,A), p be a false-strict v-complete morphism
from P into A such that pef=Fep (resp. pef=>Fep) then p(Lfp(f))=LFP(F) (resp.
p(Lfp(fN=>LFP(F)) .

The importance of this theorem is that it shows that whenever F is eguivalent
to (resp. an upper approximation of) f up to the v-morphism @, results about the
considered program Pr obtained using P and f are equivalent to (resp. correctly approx-
imated by) the results obtained using A and F. For example a set of assertions
interleaved at appropriate places in the program can be used instead of a single
global invariant.

3.3 Associating Assertions with Communication Channels

Let us introduce a Proj homomorphic image Aglfalse.v,INITg,P0STg) of Pl(false,v
Init,Post(u))

- Ag = [Ch+[5~+B]]

- Proj ¢ [P+Ag]
Proj = AB.[A<i,j.k+2,m,n>.[A(x,c).[Ogse(i,j,k)(x(i),c(il) A
AIgse(f,m,n)(x(L),c(L)A Blx,clil]

The following auxiliary definition is used for describing the behavior of process
P(i) between locations A(i,j) and A(i,k] as long as no communication or stop command
is encountered :

124

- TrR(i)(§,k) e CLE(1)xt(1)1+B], iel1.7], jel1,0(4)]
Tre(i)(3.k) = A(xa,xb).LT0i1*[(xa,A(173)), (xb, A(i,k) 1]

- INITg ¢ [E+Ag]
INITg = Ap.[A<i,j.k+L,m,n>.[A(x,c).[
(Iyet(id: ¢(1)(y) ATPLIi)(1,3) (y,x(i]) AOgsel(i,j,k)(x(i),c(i)
Aldzet(2): ¢(2)(2) ATPL(L)(1,m) (2. x(L)) ATgeelf,m,n)(x(L),c(l))
AlYpe (1, m1-{4,2}), (¢(p) (x(p)) A c(pl=A(p,1)) v (Juet(pl.3IgeChip):
¢(p) (u) ATr(p) (1,9) (u,x(p)) A clp)=Al(p,qN]]]

- POSTg e [Ag +Ag]
POSTg = Aa.[l<i,j,k-+£,m,n>.[l[x,c}.[Ogse{i,j,k}[x[i].c[in A Igse(L.m,n) (x(L),
Al3<p,g.r+s,t,u>eCh, yet(p), zet(s):
u(<p.q,r-+s,t,u>][substtx][p/y,sfz),subst(c)(p/&[p.q],sfi[s,tn
Aelp,qg.r)(y) etls)(als.t,ul)
A [JveClip): clpl=Alp,v) ATrL(p)(n(p,g.r),v)(y,x(p)
A (JweCl(s): cls)=Als,w) A =
Tri(s)(nls,t,u),w) (subst(z) (als,t,u)/elp.q.r) (y)),x(s

- Fg ¢ [E~>[Ag+Ag]]
Fg = A¢p.[Aa.[INITg(¢) v POSTg(a) 1]

Lemma 3.3.1
YoeE, Projef(¢) =Fgl¢)eProg

Theorem 3.3.2
YoeE, Prog (Lfp(f(¢)) =LFP(Fg(4))

3.4 Analysis of the Behavior of Individual Processes

A global assertion about the states of process P(i) can be replaced by a set
assertions about the values of the process variables preceding each command :

- AL = T{I{[t(1) »B]1: je[1.,0(1)1}: iel1.m]}

- Proj&(i) e [[S(i) +B1+AR(1)], iel1,7]
ProjR(i) = Xa.[Aj.[Ax.Lalx,A(4,3§011]

3.4.1 Analysis of the Behavion of Individual Processes Independently of Communicai

By definition Tr(i)(j.k)(xa,xb) is true if and only if execution of process F
starting from location Ali, j) with the initial state xa of the variables x(i) can 1
location A(i,k) with x(i)=xb and without encountering communication commands. The
following characterization of Tr&(i)(j,k) as a fixpoint together with Cousot &
Cousot[77b] shows that the computation of Tre(i)(j.k) looks like symbolic execution
with this difference that all paths are followed simultaneously and infinite paths
handled by induction.

- Postf(1i) e [LLL(1)xt(i))+BI+[[t(1i) >BI+[t(i) +B]1], ief1,m]

Postf(i) = X8.[AB.[Axb.[Ixaet(i)s Blxa) A B(xa,xb)1]1]

- FA01) e [AR(1) ~[AR(i) »AL(1)]], iel1.m]
FR(1) = AB.[Aa.[A3.[B(J) v PostR(1)(MulT(d,j-1D(ali-1)) v Postl(i)(Aesign(i,j-1Dlal]
V(3keT(i): Post(i)(Test(i,k,3NlalkI]1]

Theorem 3.4.1.1

‘viel1,m], j.kel1,004)],
Tro(i)(J,k) = A(xa,xb).[LFPLFL(1i) (Am.[Ax.[(m=4) A x=xal1) ILk1Lxb1]

125

3.4.2 Analysis of the Behavion of Individual Processes tfaking Communications
into Account

We define Descf(¢)(i)(j) characterizing the possible values that local variables
x(i) can possess at run-time when location Ali,j) of process P(i) is reached during an
‘execution of the program starting from an initial state of the local variables x(k),
kel1,m] satisfying the entry specification ¢eE :

- Desgel ¢ [E+AL] "
Degel = Adp.LAL.[Aj.[Ax.[{Postf(i)(T(1)) (Aly,c) |_¢{1](y) Ac=Al1, 1) 1) (x,A(1,300}
v{3<L,m,n+p.q. r>eCh,yet,cel: Projl[Post (™) (Init(¢)) I[<L,m,n+p,q,r>1ly,c]
AL{(2=1) ARsao(i,m,n) ((y(il,c(i), (x, AlL,30} v
{(p=i) A (e(2,m,n) (y(RNet(i) (ali,g,r))
ARsai(i,q,r)(y(i),c(i)), e(f,m,n) (y(L), (x,A(1,301}1}111]

Since the local descendants of the entry states are either direct descendants of
the entry states or the descendants of the states following either an output or an
input, the meaning of each separate process can be completely determined only
when an initial state for the local variables is provided and the input-output reguests
from other processes (as determined at paragraph 3.3) are known.

If a state of the program is known before a communication then the corresponding
state of the communicating processes after this communication is given by :

- Postoc € [Ag+aLl
Postoe = Aa.[Ai.[Aj.[Ax.[3<R,m,n+>p,q,r>eCh,yet,ceL: (£=1) A (m+1=3) A
a(<i,m,n*p,q,r>) (subst(y) (i/x], subst[c][ifl\[i mll) A
Ogse(i,m,n) (x,A(1,m)]11]1]

- Postic € [Ag+AL]
Postie = Aa.[Ai.0Aj.[Ax.[3<@,m,n+p,q,r>eCh,yet,cel: (p=i) A (g+1=j) A
a(<®,m,n+>1i,q,r>)(y. subst{c]{:./)\(i,q]]] he[i‘. m,n) (y(£De t(1)(ali,q.r)) A
Igse(i,q.r)(x,A(i,g)) A x= subst[ytl)][:1[1 g,r)/e(L,m,n) (y(29] 1311

The following theorem gives a fixpoint characterization of the local descendants
of the entry states :

Theorem 3.4.2.1

WoeE, vielq,m],
Degel ($)(1) = LFPLFALi ILAm. (Ax. ((m=1) A (1i)(x)) vPostoe (LFP(Fg($(i)
VPostie (LFP(Fg(¢p)D)(i) 1]

3.5 Example

[F1 ¢ x:integer; 11: x:=10;
12: loop 13: exit when x<0; 14: P2!x; 15: P2?x; 16: end loog;
17: P21x; 18: stop

lIP2 = y:integer;
21: loop 22: P1?y; 23: exit when y=0; 24: P1ly-1; 25: end loop;

26: stop

3.5.1 Analysis of the Behavion of Individual Processes

The systems of equations X =FR(i)(B)(X), 1i=1,2 are the following :

126

[x(11)=B(1) X(21)=8(1)

X(12)=Ax.[B(2) (x)vix’einteger:X(11)(x"1ax=10] X(22)=B(2)vX(21]1vX(25)
X(13)=R(3IvX(12]vX(16) X(23)=R(3)
X(14)=Ax.[B(4) (x)v(X(13) (x)Ax>0]] X(24)=hy.[B(4) (y)VI(X(23) (y
X(15)=B(5) X(25)=B(5)
X(16)=R(6) X(26)=Ay.[B(B) (ylvI(X(23)(y
X(17)=Ax.[B(7) (x)Iv(X(13) (x)Ax=0]]
| X(18)=B(8)

Using theorem 3.4.1.1 we compute :

[TrR(1)(1,4)(xa,xb) =(xb=10) TrR(2)(1,2)ya,yb)=(yb=ya)
TrL(1)(5,5) xa, xb)=(xb=xa) Trf(2)(3,4)ya,yb)=(yaz0 A yb:
Tr2(1)(6,4)(xa,xb)=(xa>0 A xb=xa) Tr(2)(3,6)ya,yb)=(ya=0 A yb:
TrL(1)(6,7)(xa,xb)=(xa<0 A xb=xa) Trf(2)(5,2)ya,yb)=(yb=ya)

| TrL(1)(8,8)(xa,xb)=(xb=xa)

3.5.2 Analysis of the Communications o

The channels of communications are <14 +22>, <24 +15>, <17 +22>. Assume
¢ = (Ax.Ltruel,Ay.[truel) then the system of equations X =Fg(¢)(X) is constructed
the results of 3.5.1 ¢

X(<14+22>) = Alx,y),(c1,c2)).[e1=14 Ac2=22 A [(x=10) V (Ix'einteger:
X(<24+15>) (x",y.15,24) Ax=y-1 A x>0)1]
X(<24+15>) = A((x,y).(e1,c20.[c1=15 Ac2=24 A (y’einteger:
X(<14 +22>) (x,y',14,22) Ay=x Ayz0)]
X(<17 +22>) = Allx,y),(c1,c2D).0c1=17 Ac2=22 A (Ix’einteger:
X(<24+15>)(x",y,24,15) A x=y-1 A xs0]]

The least solution P is computed by successive approximations (Cousot[771)
[P(<14 > 22>)

P(<24 > 15>)
LP(<17 »22>)

Allx,y).(e1,c2).[c1=14 Ac2=22 A [(x=10)v(1=x<8 A y=x+1) 1]
Allx.y). te1.e2)) .[c1=15 A c2=24 A 1sx=ys10]
Allx,y),(c1,c20.[c1=17 Ac2=22 A x=0 A y=1]

wow n

3.5.3 Locak descendants of the entry States

The systems of equations X=FRL[i1[Am.(Az.(m=1))v Postoe(P)(i)Vv Postic(P)(i)]I[X]
i=1,2 are now :

[X(11)=Ax.[truel X(21)=Ay.[truel
X012)=Ax.[Ix*:X(11)(x") A x=10] *(22)=X(21) v X(25)
X(13)=X(12) v X(18) X(23)=Ay.[0sy=10]
X(14)=Ax.[X(13) (x) A x>0] X(24)=hy.[X(23) [y) Ay=0]
X(15)=Ax.[1sx<10] X(25)=Ay.[1=y<10]
X(16)=Ax.[0<x<8] X(26)=Ay.[X(23) (y) Ay=01]

X(17)=Ax.[X(13) (x) A x=0]
| X(18)=Ax.[x=0]

Desel(¢) (i), i=1,2 equals the least solutions to the above equations (Th.3.4.Z.

P(11)=Ax.[true] P(21)=P(22)=Ay.[true]
P(12)=Ax.[x=10] P(23)=Ay.[0<y=10]
P(13)=Ax.[0<x<10] P(24)=P(25)=Ay.[1=sy=<10]
P(14)=P(15)=Ax.[1=x=10] P(26)=Ay.[y=0]

P(16)=Ax.[D<x<9]
| P(17)=P(18)=Ax.[x=0]

In general the least solutions to the systems of equations associated with

127

non-trivial programs are not mechanically computable. Even by hand such calculations
cannot be worked out since they are amazingly complex. The solution to this intricacy
is the idea of approximation which is central to proof methods and automatic program
analysis technigues.

4. INVARTANCE PROOF METHODS

4.1 Outline of Our Approach

YeP is said to be invariant during execution of program Pr starting with any

state satisfying the entry specification ¢€E if and only if Post(u*)(Inft(d))=> 1y .

4.1.1 Fundamental Invariance Proof Method o

The fixpoint characterization of Post(u*)(Init(¢)) given by theorem 3.1.1 leads
to a sound and complete invariance proof method

Theorem 4.1.1.1
YOeE,YPeP, [dIeP: (f(¢)(I)=>I)A(I=>y)] <=> [Post[u*J[Init[rp]] =]
This invariance proof method fits for use in partial correctness, abscence of

deadlock and non-termination proofe (the only difference is with respect to the choice
of).

4.1.2 (Pre) homomorphic Variants of the Fundamental Proof Method

(Pre)homomorphic images of the predicate algebra (as described at paragraph 3.2)
have to be introduced in order to put the fundamental invariance proof method into
practice. The soundness or soundness and completeness of these variants of the fun-
damental proof method follow from the following

Theorem 4.1.2.1

Let f and F be respectively isotone operators on the complete lattices
P(=>,false,true,v,A) and A(=>,false,true,v,A), p be_a false-strict V-complete morphism
from P into A such that pef=>Fep (resp. pef=Fep), F be an isotone operator on A such
that F=>F (resp. F=F) then WYiyeA, [JIeA: F(I)=>I A I=>y] implies (resp. implies and
reciprocally) that p(Lfp(fl=>y.

4.2 A Sound and Compfete Invariance Proof Method

For example using the homomorphic image of the predicate algebra described at
paragraph 3.3 we get the following particular invariance proof method

Corollary 4.2.1

YoeE, YeAg, [IIeAg: (INITg(¢)=>I)A(POSTg(I)=>I)A(I=>y)] =
<=>[Proj (Post(u") (Initt($=>y]

Theorem 4.1.2.1 also shows that we can replace Tr&(i)(j.k). iel1.m], j.ke(1.0(di]]
by upper bounds in the definitions of INITg and POSTg. By theorems 3.4.1.1 and
4.1.2.1 the correctness of these upper bounds can be shown using an invariance proof
method. Hence, proof method 4.2.1 follows the lines drawn by example 3.5 (except
that no fixpoint computation is involved and equations are replaced by inegquations
understood as verification rules).

128

4.3 A Sound Variant Without Program Location Counters

For the sake of completeness in the invariance proof method 4.2.1 the assertions
IeAg may have to take the values of the program location counters intoc accaunt. Yet,
on grounds of methodology, reasonings about program location counters are usually
ruled out. 1In order to get rid of program location counters let us introduce

- Ags = [Ch>[t~+B1], Epcg ¢ [Ag—+Ags]l, 4peg ¢ [Ags+Ag]

- Projs e [P+Ags]
Projs = EpecgeProj

- Fs ¢ [E+[Ags +Ags]]
Fs = X¢.[EpcgeFg(¢)eApeg]

For example one can choose :

- Epeg = Aa.lAch.[Ax.[dceL: alch)(x,c)]]]
Apeg = Aa.[Ach.[A(x,c).Taleh) (x)11]

The soundness of the corresponding invariance ;roof method is shown in a general
setting by the following

Theorem 4.3.1

If Epcg is a false-strict v-complete morphism, Apeg is upper semi-continuous,
EscE, It=Lfp(AX.[{falselu{Init(¢) vPost(u)(a): ¢eEs AceX}]) and (Yaelt, Projla) =>
Apeg (Projs(al))) then A

YoeEs, Projs[Post(u)(Init(¢))]1=> LFP(Fs(¢))

Corollary 4.3.2

If moreover Y¢eEs, F§[¢]e[ﬁgs->ﬁgs] is isotone and such that Fs(¢)=>Fs(¢), then :
YoeEs, ViseAgs,[dleAgs: (Fs(dNI)=>I)A(I=>Ys)] = [Projs[Post(p*NInit(¢))] => Psl

Completeness can only be esiablished for programs involving only one or two
processes (i.e. wien m=2).

4.4 Introducing Auxiliany Variables for ComplLetenecss

In general the reciprocal of theorem 4.3.2 is not true for programs involving
more than two processes. A completeness result can nevertheless be obtained using
history variables. The use of history variables (Apt, Francez & de Roever[79b],
Clarke[78], Clint[73], Owicki & Gries[76]) has several drawbacks. For example, it is
difficult to guess which auxiliary variables must be introduced. Only partial solu-
tions are known (i.e. either incomplete or for restricted classes of programs
(Clarke[75])) and this may be a major disadvantage for program verification systems.
Another drawback is that for some proofs the number of auxiliary variables is greater
than the number of variables in the original program (e.g. Gries[79]). Our invariance
proof method for sCSP avoids these difficulties. A completeness result is obtained
by adding a single local auxiliary variable to each process which is assigned a
different value at initialization and prior to reach each communication or stop
command.

4.4,1 Soundness

Let Prx be a program augmented with auxiliary variables which can only appear
in assignments to auxiliary variables. "x" will be postfixed to the definitions of
paragraph 2 and 3 when concerning Prx. The set tx of values of the program variables
will be understood as the product oFf the sets tv of values of the main variables and
ta of values of the auxiliary variables. Assignments to auxiliary variables only

129

involve total functions. Therefore whenever o=1x or a=uUx we have :
(¥x1,x2etv, c1.,c2elx,
[da1,a2eta:all(x1,a1),c1), ([x2,a2),c2)]=>[VYaleta.Ja2eta:alllx1,a1).c1), ((x2,a2),c2) 1)]

Assume the program Prx is transformed into a program Pr by replacing all assign-
ments to auxiliary wvariables by null statements and by delEEing all declarations of
auxiliary variables. The operational semantics of Pr defines a set of program locations
L=Lx, a set of states S=(tvxL) and transition relations 1,ue[5+B] such that :

1 = Allx1,c1),(x2,c2).[3a1,82¢eta: 1x(Ux1.a1),c1),((x2,a2),c2])]
= B o= Allx1,e1),(x2,c2).[3a1,a2¢eta: ux(llx1,81),c1),((x2,a82),c2)]

A correspondance can be established between the entry specifications ¢x e Ex for
Prx and ¢eE for Pr by elimination of the auxiliary variables :

- Eaqve € [Ex—+E] Eave = Apx.[Ai.[Ax.[Jaeta(i) :¢x(1)(x,a)]]]
- Agve e [E—+Ex] Aave = Ap.[Ai.[A(x,8).[¢(1i)(x)]1]] P

The same way assertions Yx e Agx interleaved in Prx can be connected to assertions
YeAg interleaved in Pr by eliminating auxiliary variables :

Aa.[heh.[A(x,c).[3aeta:alch) ((x,a),cl]]]
Aa.[ieh.[Al(x,a),.c).Lalch) (x,c)]1]]

- Eavg ¢ [Agx+Agl Eavg
- Aavg e [Ag +Agx] Aavg

Proofs about Prx using Fsx (hence refering to auxiliary variables but not to
program counters) can safely be used for proving invariance properties of Pr :

Theorem 4.4.1.1

If Epcgx is a false-strict v-complete morphism, Apegx is upper semi-continuous,
EscE, Itx=Lfp(Ax.[{false}u{Initx(dave(d)) v Postx(ux)(a): ¢eEs A aex}l), (Vaeltx,
Projx(a)=>Apegx (Projsx(al)), (Y¢eEs,Fsx (Aave(¢))e[Agsx +Agsx] 1is isotone and such that
Fsx(Aave (¢))=>Fsx(Aave(¢])) then

YpeEs, UxeAgsx, ;

[3TeAgsx: (Fsx(Aave ($I)=>T)A(I=>Yx)]=>[Progj (Post (u*) Init (¢))=>Eavg(Apegx (¥x))]

4.4.7 Completeness
The reciprocal of theorem 4.4.1.1 is not true in general. Nevertheless the com-

pleteness of the invariance proof method employing auxiliary variables transformations
can be understood in the following sense :

Theorem 4.4.2.1

Given an arbitrary program, let Pr be the egquivalent transformed program such
that every command is preceded by a null command. Assume ¢eE, YeAg and Pr is
such that [Proj(Post(u™)(Init(¢)) = Yl.

Then it is possible to transform Pr into Egﬁ by adding auxiliary simple variables
and assignments to Pr such that there exist Epegx and Apegx verifying [d¢x € Ex,
PsxeAgsx: EEave[¢x]=¢}ﬂ{Eavg[Apegx{wsx}]=w]n[ileﬁgax:[st[¢xll]*¢I]n[I=bwax]]]-

We do not have to worry about assertion languages and interpretations which fail
to be expressive since "assertions" are regarded as functions into {true.false}. The
proof of theorem 4.4.2.1 clearly indicates that auxiliary variables in Prx exactly
correspond to program location counters in Pr : the declaration E‘%l‘EE[iJ of a single
auxiliary variable is added to each process P(i) of Pr. tali) is such that there
exists a one to one map al(i) from ta(i) onto the set {A(i,1)}uA(1,CR(1)) of locations
preceding an entry, communication or stop command. Each null command "Al1,3-1):8Kkip"
preceding a communication or stop command "A(i,3):S(i)(j)" is replaced by an assignment
fﬁ(i.j-13:a[il:=a£[i]-1[A(i,j]]“. No other command is changed (although the functions
with domain tv(i) in P(i] are extended to domain tw(ilxta(i) in Px(i)l. The fact that
auxiliary variables simulate program counters is clear from the definitions of :

130
- Epegx = J\u.[)\ch.[,\[x,a].{a[ch)[{x,a],_a_&[a]]]]]
- Apegx = Aa.[Ach.[Al(x,a),c).[alch)ix,a) A c=al(a)]]]

- ¢x = M.[A(x,a).[d(1)(x) Aazaﬂ.(l]‘lEl[l 111
- Ysx Aeh.[A(x,a).[Ylch) (x, at[a]]]]

n

4.5 Examples of Proogs

Given two disjoint sets of integers Sg and Ty, SouT, has to be partitionned into

two subsets S and T such that [S|=]Sgl, [TI=|Tg| and every element of S is smaller
than any element of T :

- Entry specifications : ¢,(x,mx,5)=[5=Sg AS¢nTo=% ASez8], ¢p(y,mn,T)=[T=T, ASnTo=7]
(To cut it short the conventions that min(#)=+= and +=¢(S,uT,) have not been incor-
porated in the entry specifications).

- Exit specifications : Ylx,mx,S,y.mn,TI=[|S|=]Sg]| A |T|=|Tg| ASuT=SouTy Amax(S)<min(T

The following version of a program given by Apt, Francez&de Roever[79b] uses two
parallel processes P1 and P2 which exchange the current maximum of S with the current
minimum of T until max(S)<min(T).

P1 & mx, x:portion; S:set of portion;

11:1@@12: mx:=max(S); 13: S:=S-{mx}; 14: P2!mx; 15: P2?x; 16: S:=Su{x};

17: until mx=x;

18: stop

=== We first obtain the following descriptions Trf(1)(i,j) of the transformation of the
values of the variables of P1 when P1 is executed starting at entry point or after com-
munication point i and ending at stop point or before communication point j without
intermediate communications. Since no loop is involved no inductive assertion is
necessary and the equations of theorem 3.4.1.1 can be solved exactly.

TrR(1)01,4)mx1,x1,51,mx2,x2,52) =[mx2=max(51) A x2=x1 A S2=51-{mx2}]
Tre(1)(5,5)mx1,x1,51,mx2,x2,52) =[mx2=mx1 A x2=x1 A 52=51]
Tre(1)(6,4)mx1,x1,51,mx2,x2,52) =[mx2=maz (S1u{x1}) A x2=x1 A x12mx1 A S2=((S1u{x1})-{mx2}]
Tr&(1)0(6,8)mx1,x1,51,mx2,x2,52) =[mx2=mx1=x2=x1 A 32=(31u{x1})]

The independent analysis of P2 is similar :

AR mn, y:portion; T:set of portion;
1= Ja8R 22: mn:=min(T); 23: P1?y; 24: exit when y<mn; 25: T:=(T-{mn}lu{y};

26: P11lmn;

27: end loop;
28: P1ly; 28: stop

Tr(2)(1,3)mn1,y1,T1,mn2,y2,T2)=[mn2=min(T1) A y2=y1 A T2=T1]
TrL(2)(4,6)mn1,y1,T1,mn2,y2,T2)=[mn2=mn1 A y2=y1 A y12mn1 A T2=((T1-{mn1 N u{y1})]
Tra(2)(4,8)mn1,y1,T1,mn2,y2,T2)=[mn2=mn1 A y2=y1 A y1<mn1 A T2=T1]
Tre(2)(7,3)Xmn1,y1,T1,mn2,y2,T2)=[mn2=min(T1) Ay2=y1 A T2=T1]
Tr2(2)(8,9)mn1,y1,T1,mn2,y2,T2)=[mn2=mn1 A y2=y1 A T2=T1]

=== The assertions I(ch1), I(eh2), I(ch3) respectively associated with the communica-
tion channels ch1=<1,4,1~+2,3,1>, ch2=<2,6,1+1,5,1> and ch3=<2,8,1~+1,5,1> of program
[P1 || P2] are the following :

Tlch1)tmx,x,S.mn,y, T) =L1S|+1=|Sg| A [T|=|Tg| A mx>maz(S) A Su{mx}uT=S4uT,
A (Su{mx})nT=% A mn=min(T)]
I(ch2)(mx,x,S,mn,y,T) =CIS|+1=1Sg| A [T|=Tg| AmnéT A SuTu{mn}=S,uT,
A (Sn(Tu{mn})) =% A y=mx]
I(ch3)(mx,x,S,mn,y,T) =L |S[+1=]Sg| A [T|=|To| Amax(S)<mx=y<min(T) A Su{y}luT=S,uT,]

131

The verification conditions given by theorem 4.2.1 are the following (universal
guantification is implicit)

I(ch1)mx,x,S.mn,y,T) <=[[(Imx’,x*,S":dy(mx’,x"'.S*"IATPL(1)(1,4)(mx",x",S"',mx,x,S)A
(Amn’,y ' T ida (mn’,y' ., T IATPL(2)(1,.3)mn’ ,y'. T ,mn,y, TNV
Eamx x2S amn syt T Tieh2) ime ot 250 Jmit oy s TR 1A
TrL(1)(6,4)mx* . mn’,S’.mx,x,S)ATrL(2)(7,3) mn’,y",T",mn,y,T11]
LleRZ)mx, %8, mn.¥:T) <={dmx’ ,x",S° ;mn’ .y . T "+ I(ch1)imx" . x* . 3" ,ma* v, T* A
Trf(1)(5,5)mx’.x",.S" ,mx,x,SIATPL(2)(4,6)mn" ,mx".T".mn,y,T)]
I(ch3)(mx.x,S,mn.y.T) <=L Imx’',x",S',mn’,y*. T " :Ilch1)mx’.x",5",mn"',¥*,.T"' 1A
L Tr (135,55 mx? . x" .5 mx, %, SIATPL[2) 4, B)mn? ,mx" . T'.mn,y.T)]

=-= Finally the verification of the exit specification consists in proving that

Pimxexe Somnes T) =L Imx?® ,x? . S* .mp? sy . TP Ilchadmx®, x5 snn’uy " TN 1A
Trf(11(6,8)mx",y",S",mx,x,S) ATrL(2)(9,9)mn’,y"',T',mn,y,T)]

Biy AUTOMATIC PROGRAM ANALYSIS TECHNIQUES

Automatic program analysis techniques can be used to gather information about
programs in order to enhance program efficiency and reliability.

5.1 Outline of Our Approach

The design of a variety of automatic program analysis techniques (Cousot &
Cousot[79a]) is tantamount to defining for each program PresCSP a prehomomorphic image
AlL,U.F) of P(false,v,f) using an approximation operator pe[P+A] which is a strict
join-complete morphism. In addition to the hypotheses of paragraph 3.2, the elements
of A are chosen to be computer-representable and F must be such that Y¢eE, LFP(F(¢))
is either iteratively computable (using any chaotic iteration strategy, Cousot[77]) or
approximable from above (using a widening operator which speeds up the convergence'OF
the iterates, Cousot & Cousot[77a]).

Once understood in this way the numerous global flow analysis algorithms which
have been developped in the literature for sequential programs can be generalized to
sCSP. The main difficulty of these generalizations has been solved at paragraphs 3.3
and 3.4 which show how to use a system of equations obtained in a natural manner from
the program text. Program locations counters can be dispensed with, but for programs
involving more than two communicating processes more accurate results are obtained by
introducing auxiliary variables as indicated at paragraph 4.4.2. When the approximate
assertions of A can describe relationships among the values of the program variables
the analysis schema can follow the three steps of paragraph 3.5 sipce information can
be propagated through individual processes at-step 1 once for all (it is sound and
sometimes more accurate to intersect the results of step one with the ones obtained by
a preliminary analysis of individual processes viewed as classical sequential programs
by treating inputs as assignments of unknown values and outputs as null commands).
When the approximate assertions cannot describe relationships among the values of
variables, the first step based on theorem 3.4.1.1 is ineffective. Then during the
evaluation of LFP(F(¢)), information must be propagated through individual processes
by fixpoint computations as many times as F is evaluated.

5.2 Example

The analysis of Hoare[78]'s bounded buffer example (modified using output guards
and explicit termination signals) considering only linear equality or inequality rela-
tionships among integer variables (as in Cousot & Halbwachs(78]) is the following
(booleans are mapped onto {0,1},n isa global symbolic constant greater than 0)

132

{nz1}
[Producer :: output:(0..n-1)portion; i:integer; 1:i:=0;
while izn do {0si<n} 3:X!output(i);i:=i+1 od; B:X!true; 7:stop

1% ¢ buffer:(0..9)portion; in,out:integer; Pe:boolean; 1:in:=0;out:=0;Pe:=false;
{n=1 A in=out=Pe=0} i
'g:*[ﬂFe A in<out+10 A Producer?buffer(in mad 10) -+
{in<n A O<out<in<out+10 A Pe=0} in:=in+1;
Qout<in; Consumer!buffer(out mod 10) -+
{insn A D=out<infout+10 A 0<Pes1} out:=out+1
0-Pe: Producer?Pe +
{12insn A Dsouts<insout+10 A Pe=1} skip
0Pe A(in=out); Consumer!true =+
{1sin=outsn A Pe=1} 7:stop]

||consumer :: input:(0..n-1)portion; j:integer; Xe:booldan; 1:j:=0; Xe:=false;
{n21 A j=>(e=l]} i
2:x[-Xe; X?input(j) + {0<j<n A Xe=0} ji=j+1
D-Xe: X?Xe + {1sj<n A Xe=1} S:stop]]

The assertions I(ch1),...,I(ch4) respectively associated with the communication
channels ch1=<1,3,1+2,2,1>, ch2=<1,6,1+2,2,3>, ch3=<2,2,2+3,2,1> and
ch4=<2,2,4+3,2,2> are the following

I(ch1)=A(n,i,in,out,Pe, j.Xe,c1,c2,c3).[i<n A Osout=j<i=in<out+10 APe=0AXe=0Ac1=3 A
£2=2 A c3=2]

I(eh2)=A(n,i,in,out,Pe, j.,Xe,c1,c2,c3).[1<isn A Osout=jsi=insout+10 A Pe=0 A Xe=0 A
c1=6 A c2=2 A c3=2]

I(ch3)=A(n.i,in.,out,Pe,j.Xe,c1,c2,c3).[0<out=j<i=in<out+10 A Pe20 A Xe=0 A
3n-3i+c1-6-Pe20 A c1-4Pe23 A c1-Pe<B A 35c1<7 A c2=2 Ac3=2]

I(ch4)=A(n,1i,in,out.Pe,j,Xe,c1.c2.c3).[1<i=in=out=j<n APe=1 A Xe=0 A c1=7 Ac2=2 Ac3=2]

6. CONCLUSTONS

Our proof method differs from the ones introduced by Apt, Francez & de Roever[79a]

(who use trees to record communications and account for nondeterminism as in Francez,
Hoare, Lehmann & de Roever[78]), Apt, Francez & de Roever[739b] (who use a global
invariant) and by Chandy & Misral[79] (who use assertions over message seguences).
More interestingly the design of our proof method has been formalized so as to open
the way to alternatives. For example one variant we have considered consists in
choosing @

--Ag = M{{t(i)xt(R) »B] : <i,j,k~+L,m,n>eCh}

- Proj = AB.[A<i,j.k=+2,m,n>.[A(xi,xR).[0gse(i,j,k)(xi,Al1i,3)) A Igse(R,m,n)(xL,A(L,m]A

(Ixet,ceL: B(subst(x)(i/xi,R/xL),subst(c)i/A(1,]),2/A(L,m)]1]1].

so that the assertion associated with any channel between two processes involve only
the values of the local -variables of these two processes. This is sound and leads to
simpler verification conditions than the ones of paragraphs 3.3 and 3.4 but unfortuna-
tely this is not complete (e.g. for blocking states involving more than two processesl.

We have said little about program analysis techniques since paragraph 3 together
with Cousot & Cousot[79a] allow for an easy generalization of the now classical methods
for sequential programs. By the way, the particular problem of data flow analysis
for concurrent processes has also been considered by Reif[78] in the different context
of asynchronous communications via buffers. His algorithm cannot be adapted to g5l
since the size and number of elements in the buffers are not taken into account. In
particular, CSP rendez-vous concept cannot be modeled. Another annoying thing is that
communication histories are completely ignored. For example, his algorithm cannot
discover that x and y are constants in the following trivial program :

[P1 = P214; P212 || P2 = x,y:integer; x:=1; y:=2; P1?x; P1?y]
This is easily determined using constant propagation generalized along the lines of
paragraph 3.

133

Several generalizations are in progress. On one hand, we are considering other
homomorphic images of the predicate algebra leading to different (although formally
equivalent) verification conditions and richer language constructs such as distributed
termination of repetitive commands, families of processes and nested parallel commands.
It might also be interesting to investigate other language features (such as automatic
buffering, unbounded process activation, process valued variables, shared variables)
which have not been incorporated to CSP. We are curious to know if these constructions
have properties which are sufficiently simple to prove for Jjustifying their inclusion
in a programming language. On the other hand, we are considering other correctness
properties of CSP that can be characterized using fixpoints and which are more
difficult to prove than the invariance properties considered here.

7. REFERENCES =

Apt K.,Francez N. & de Roever W.P.[1978al, Semantiecs for concurrently communicating
finite sequential processes, based on predicate transformers, Progress Report,
Vakgroep inf., Rijksuniversiteit Utrecht, The Netherlands, (June 1979).

Apt K., Francez N. § de Roever W.P.[1879b], 4 proof system for communicating sequential
processes, Tech. Rep. RUU-CS-79-8, Vakgroep Inf., Rijkuniv. Utrecht, NL., (Aug. 79).

Chandy K.M. & Misra J.[1979], 4n axiomatic proof technique for networks of communicating
processes, TR 98, Univ. of Texas at Austin, (May 79).

Clarke E.M.Jr(1978], Proving correctness of coroutines without history variables, TR-
CS-1878-4, Dept. of Comp. Sci., Duke Univ., USA, (1978).

Clarke E.M.Jr[1979], Synthesis of resource invariants for concurrent programs, 6th ACM-
POPL, (Jan. 1979), 211-221.

Clint M.[1973], Program proving : coroutines, Acta Informatica 2[1973), ‘SO-685

Cousot P.[1977], Asynchronous iterative methods for solving a fized point system of
monotone equations in a complete lattice, Rap. de Recherche n°B8, Laboratoire IMAG,
Univ. Grenoble, (Sept. 1977).

Cousot P.[1979], Analysis of the behavior of dynamic discrete systems, Rapport de
Recherche n°161, Laboratoire IMAG, Univ. Grenoble, (Jan. 1979).

Cousot P. & Cousot R.[1977al, Abstract interpretation: a unified lattice model for statie
analysis of programs by construction or approximation of fixpoints, 4th ACM-POPL,
(Jan. 1977), 238-252.

Cousot P. & Cousot R.[1977b], Automatic synthesis of optimal imvariant assertions :
mathematical foundations, ACM-Symp. on Artificial Int. & Prog. Languages, SIGPLAN
Notices 12, 8(Aug. 1977), 1-12.

Cousot P. & Cousot R.[1979a], Systematic design of program analysis frameworks, 6th
ACM-POPL, (Jan. 1979), 259-282.

Cousaot P. & Cousot R.[1978b], Constructive versions of Tarski's fixed point theorems,
Pacific J. Math. 82(1979), 43-57.

Cousot P. & Halbwachs N.[1378], Automatie discovery of linear restraints among variables
of a program, S5th ACM-POPL, (Jan. 1978), 84-97.

Francez N.,Hoare C.A.R., Lehmann D.J. & de Roever W.P.[1978], Semantics of nondeter—
minism, concurrency and communication, Lect. Notes Comp. Sci. 64, Springer Verlag,
Extended abstract, (Sept.1978), 191-200.

Gries D.[1879], Yet another exercise: using two shared variables in two processes to
provide starvation—free mutual exclusion, TR 79-372, Dept. Comp. Sci., Cornell Univ.,
N.Y., (1979).

Hoare C.A.R.[1978], Communicating sequential processes, Comm. ACM 21, 8(1978), B66-677.

Owicki S. &Gries D.[1976], 4n axiomatie proof technique for parallel programs I, Acta
Informatica 6(1976), 319-340.

Reif J.H.[19791, Data flow analysis of commnicating processes, G6th ACM-POPL, (Jan.
1978), 257-268.

