PROGRAM FLOW ANALYSIS:
THEORY AND APPLICATIONS

Steven S. Muchnick

University of California
Berkeley, California

University of Kansas
Lawrence, Kansas

Neil D. Jones

Aarhus University
Aarhus, Denmark

University of Kansas
Lawrence, Kansas

© 1981 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

Chapter 10

Semantic Foundations
of Program Analysis

Patrick Cousot

10-1. INTRODUCTION

In the first part we establish general mathematical techniques useful
in the task of analyzing semantic properties of programs. In the second part,
we describe an algorithmic and hence approximate solution to the problem of
analyzing semantic properties of programs.

The term “program analysis” will be given a precise meaning, but is
better introduced by the following:

Example 10-1. Consider the program:

{1}
while x > 1000 do
2
x:=x+y;
{3}
od;
{4

303

304 SEMANTIC FOUNDATIONS OF PROGRAM ANALYSIS [/ CHAP. 10

where x and y are integer variables taking their values in the set 7 of integers
included between —b — 1 and b where b is the greatest machine-representable
integer.

By “analysis of the semantic properties” of that program we understand
the determination that:

1. The execution of that program starting from the initial value
x, € I'and y, € I'of x and y terminates without run-time error if
and only if (x, < 1000) V (y,< 0).

2. The execution of the program never terminates if and only if
(1000 < xp < B) A (¥ = 0).

3. Theexecution of the program leads to a run-time error (by overflow)
if and only if (x, = 1000) A (¥, > 0).

4. During any execution of the program the following assertions P,
characterize the only possible values that the variables x and y
can possess at program point i:

Pi=Kx, (b —-1<x<HA(-b—1<y<bh)

Py = Kx,).[(1000 < x <) A (—b — 1 <y < B)]

Py = I x, y>.[(1000 + y < x < min(b, b + y))
A(=b—1<y<b)]

P, =26, 0. 0(—b — 1 < x < 1000) A (—b — 1 < y < b)]

10-2. SUMMARY

In Section 10-3 we define what we mean by flowchart programs; that is,
we define their abstract syntax and operational semantics. A program defines
a dynamic discrete system [Kell76, Pnue77] that is a transition relation on
states. In Section 10-4 we set up general mathematical methods useful in the
task of analyzing the behavior of dynamic discrete systems. In order to make
this mathematically demanding section self-contained, lattice-theoretical theo-
rems on fixed points of isotone or continuous maps are first introduced in a

separate subsection. The main result of Section 10-4 shows that the predicates
characterizing the descendants of the entry states, the ascendants of the exit
states, the states which lead to an error, and the states which cause the system
to diverge are the least or greatest solution to forward or backward fixed point
equations. This result is completed by the proof that whenever a forward
equation (corresponding to postconditions) is needed, a backward equation
(corresponding to preconditions) can be used instead, and vice versa. Finally
we show that when the set of states of the dynamic discrete system is parti-
tioned, the forward or backward equation can be decomposed into a system

SEC. 10-3 /| ABSTRACT SYNTAX AND OPERATIONAL SEMANTICS 305

of equations. Numerous examples of applications are given which provide for
a very concise presentation and justification of classical [Floy67, Naur66,
King69, Hoar69, Dijk76] or innovative program proving methods. Section
10-5 tailors the general mathematical techniques previously set up for analyz-
ing the behavior of a deterministic discrete dynamic system to suit the par--
ticular case when the system is a program. Two main theorems make explicit
the syntactic construction rules for obtaining the systems of semantic backward
or forward equations from the text of a program. The facts that the extreme
fixed points of these systems of semantic equations can lead to complete
information about program behavior and that the backward and forward
approaches are equivalent are illustrated on the simple introductory example.

In the second part we briefly survey our joint work with Radhia Cousot
on the automatic synthesis of approximate invariant assertions for programs.
Because of well-known unsolvability problems, the semantic equations which
have been used in Section 10-5 for program analysis cannot be algorithmically
solved. Hence we must limit ourselves to constructive methods which auto-
matically compute aprroximate solutions. Such approximate information
about the program behavior is often useful, e.g., in program verification sys-
tems, program debugging systems, optimizing compilers, etc. Approximate
solutions to the semantic equations can be obtained by first simplifying these
equations (Section 6.1 of [Cous79]) and next solving the simplified equations
associated with the program text, using any chaotic iteration technique
[Cous77b, Cous77c]. In Section 10-6.2 we show that when the exact solution
to the simplified equations is obtained only after an infinite number of iteration
steps, the convergence of the iterates can be sped up using an extrapolation
technique based on a widening or narrowing operator [Cous77a). A hierarchy
of examples taken from [Cous77a} and [Cous78] illustrates the approximate
program analysis method.

10-3. ABSTRACT SYNTAX AND OPERATIONAL
SEMANTICS OF PROGRAMS

10-3.1. Abstract Syntax

Informally, programs will be abstractly represented as single-entry,
single-exit directed graphs with edges labeled with instructions.

Example 10-2. The program of Example 10-2 will be represented by
Fig. 10-1.

A program graph is a quadruple {V, €, @, E)> where V is a finite set of
vertices, E = V X Vis a finite set of edges, and € € V, @ € V are distinct
entry and exit vertices such that € is of in-degree 0, w is of out-degree 0, and
every vertex lies on a path from € to w.

A{x, y).(x <1000}

Adx, y), (x> 1000)

Mx, y) [{x+y, ¥y
X{x,y), {x = 1000)

Ax, y).(x <1000)

3

Figure 10-1

Let » be a vector of variables taking their values in a universe U. The set
I(U) of instructions is partitioned into a subset I(U) of assignments and a
subset I(U) of tests. An assignment v := f (5) is represented as a partial map
from Uinto U. A test is represented as a partial map from U into B = {true,
Jalse}.

A program is a triple {G, U, L> where the program graph G, the
universe U, and the labeling L € (E — I(U)) are such that for every nonexit
vertex n in @ either » is of out-degree 1 and the edge leaving # is labeled with
an assignment or n is of out-degree 2 and the edges leaving » are labeled with
tests p and —p.

10-3.2. Operational Semantics

The operational semantics of a syntactically valid program = specifies
the sequence of successive states of the computation defined by z.

10-3.2.1. States

The set S of states is the set of pairs {c, m)> where ¢ € V U {£} is the
control state and m € U is the memory state. £ ¢ V is the error control state.

The entry, exit, and erroneous states are respectively characterized by
v, = XKe, my.(c = €), v, = ¢, m).(c = w) and v; = A{c, m).(c = §).

10-3.2.2. State transition function
A program z = (G, U, V) defines a state transition function ¥ € (S
— §) as follows:

1. K& my)=<& my (no run-time error recovery is available)
. f(<(0, m>) = <0), m>
3. If ¢, € V is of out-degree 1, ¢y, ¢,> € E, L(ey,) =1, f €
I(U) then if m € dom(f) then 7({c,, m)) = <c,, f(m)) else T({c,,
mp) = <&, m).

SEC. 10-4 | ANALYSIS OF THE BEHAVIOR OF A DISCRETE DYNAMIC SYSTEM 307

4. If ¢, € V is of out-degree 2, {c,, c,» € E;<c;, ¢3> € E, Ly,
¢)) = p, Ley, ¢3) = —p, p € I(U) then if m ¢ dom(p) then
ey, m)) = &, my else if p(m) then ¥({c,, mD>) = {c,, m> else
T(Cer, mD) = {e5, m).

The state transition relation T € ((S X S)-— B) defined by = is (s,

$3)-(s; = ¥(s,))-

10-3.2.3. Transitive closure of a binary relation

If a, B € (S X S — B) are two binary relations on S, their product
o o Bisdefined as A{s,, 5,>.[3 55 € S: sy, 55) A P(s3, 5,)]. For any natural
number 7, the n-extension a® of a is defined recursively as a° = eax = A{s,,
s 08, = 8,], @' = @ o a”. The (reflexive) transitive closure of o is o*
= A8y, 820.[An = 0: 075, 52)]-

10-3.2.4. Execution and output of a program

The execution of the syntactically valid program z starting from an
initial state s, € S'issaid to lead to an error iff[3 s, € S:7%(s, 52) A ve(s2)],
and to terminate iff [15, € S:7%(s,, 5,) A va(s,)]. Otherwise it is said to
diverge. The output of the execution of a syntactically valid program z starting
from an initial state (e, m,> € S is defined if and only if this execution ter-
minates with m, € U such that t*(e, m,>, {w, m,)), and m, is the output.

10-4. ANALYSIS OF THE BEHAVIOR
OF A DISCRETE DYNAMIC SYSTEM

In order to establish general mathematical techniques usefulin analyzing
semantic properties of programs, we use the model of discrete dynamic
systems. The advantage is that the reasoning on a set S of states and a state
transition relation 7 leads to very concise notations, terse results, and brief
proofs. Another benefit is that the applications of the mathematical techniques
for analyzing the behavior of a dynamic discrete system are not necessarily
confined within computer science.

10-4.1. Discrete Dynamic Systems

A discrete dynamic system is a 5-tuple {S, 7, v., V,,, V> such that Sis a
nonvoid set of states, T € (S X S) — B) where B = {true, false} is the
transition relation holding between a state and its possible successors,
v, € (S — B) characterizes the entry states, v,, € (S — B) characterizes the
exit states, and v, € (S — B) characterizes the erroneous states. It is assumed
that the entry, exit, and erroneous states are disjoint (Vi,j € {¢, ®, ¢},
(=) — (V5 € S,—ls) A v(s)).

308 SEMANTIC FOUNDATIONS OF PROGRAM ANALYSIS | CHAP. 10

The followingstudyis devotedto total(Vs, € S, 3 5, € S: (s, 5,))and
deterministic (Vsy, 83, 55 € 8, (2(sy, 52) A (s, 53)) = (5, = 55)) dynamic
discrete systems.

A program as defined in Section 10-3 defines a total and deterministic
discrete dynamic system. Moreover the entry states are exogenous (Vs,,
83 € S, 7(s1, 52) = —(v(5,))), the exit states are stable (V 5,, s, € S, .(s;)
A (81, 55)) = (s, = 5,)), and the system is without error recovery (Vsy,
52 € S, (ve(s1) A 7(5y5 55)) = vi(s2).

The inverse oft € ((S X §) — B)ist™! = A{sy, 5,).[1(s,, 5,)]. A system
is injective if 771 is deterministic; it is invertible if it is injective and 7-! is
total. In general a program does not define an injective dynamic discrete
system.

10-4.2. Fixed Point Theorems for Isotone
and Continunous Operators on a Complete Lattice

This section recalls the lattice-theoretic definitions [Birk67] and
theorems which are needed below.

A partially ordered set (poset) L(=) consists of a nonempty set L and
a binary relation = on L which is reflexive (V@ € L, a = a), antisymmetric
(Va,be L, (a=bAb=a)= (a=>b) and transitive (Va,b,c e L,
@=bAbEc)=(a=c)). Given H< L, a € L is an upper bound of H
ifb = aforallb € H. ais called the least upper bound of H, in symbols LIH,
if @ is an upper bound of H and if for any upper bound b of H, @ = b. The
dualized notions (that is all = are replaced by the inverse 1) are the ones of
lower bound and greatest lower bound. L(=) is a complete lattice if the least
upper bound | |H of H and the greatest lower bound []H of H exist for all
H, H < L. A complete lattice L has an infimum | —[|L and a supremum
T =|]|L.

An operator f on L is strict if f(1) = |, and isotone iff (Va,b < L,
(@=b)= (f(@® = f(®)). a € L is a fixed point of fiff f(d) = a. Tarski’s
Fixed Point Theorem states that the set of fixed points of an isotone operator
S on a complete lattice I(=, |, T, LI, M) is a (nonempty) complete lattice
with partial ordering =. The least fixed point of f, in symbols Ifp(f), is
[Mx € L: f(x) = x}. Dually the greatest fixed point of f, in symbols g/2(f)
is | lfx € L: x = f(x)}. An element @ of L such that a = f(d) (respectively
f(@) € a) is called a pre-fixed point (post-fixed point) of f.

Let f be an isotone operator on the complete lattice L. The Recursion
AInduction Principle follows from Tarski’s Fixed Point Theorem and states
that (Vx € L, (f(x) = x) = (fp(f) = x)). The Dual Recursion Induction
Principle is (Vx € L, (x = f(x)) = (x = gfp(f))).

IfI(=, 1, T, LI, M) is a complete lattice, then the set (M — L) of
total maps from the set M into L is a complete lattice (M —L)c&', 1,
T', LI, M) for the pointwise ordering f =’ giff (V x € L, f(x) = g(x)). In the

SEC. 10-4 | ANALYSIS OF THE BEHAVIOR OF A DISCRETE DYNAMIC SYSTEM 309

following the distinction between =, |, T, LI, Mand =, 1 ', T', L0, 1T’
will be determined by the context. The set L” of n-tuples of elements of L
is a complete lattice for the componentwise ordering<a,,...,a,) =<by,...,
byiffa, = b,fori=1,...,n. The set 2 of subsets of Lis a complete lattice
24(<,¢,L, U, N). A map f € (M — L) will be extended to (M" — L")
as A{xy, .., x I, ..., f(x,))] and to 2% —25) as AS.{f(x):
x e S}

A sequence xg, X, . . - , X, - . . of elements of L(=) is an increasing chain
iff x,&x,=...Ex,=.... An operator f on L(=, |, T, L, M) is
semi-|_{-continuous iff for any chain C={x:ie A}, C=L,f({|C)
= |_]f(C). Kleene’s Fixed Point Theorem [Klee52] states that the least fixed
point of a semi-LI-continuous operator f on L(%, 1, T, L, M) is equal to
LI{f(1):i>> 0} where f* is defined by recurrence as f° = Ax.[x], f**!
= Ax[f(f' (X))

A poset L(=) is said to satisfy the ascending chain condition if any
increasing chain terminates, that is if x, € L,i=0,1,2,..., and x, = x,
C...Cx, =...,thenfor some m we havé x,, = X+, =An operator
fon (=, 1, T, Li, M) which is semi-LI-continuous is necessarily isotone,
but the converse is not true in general. However if f is an isotone operator
on a complete lattice satisfying the ascending chain condition, then f'is semi-
LI-continuous. Also an operator fon a complete lattice L which is a complete-
Li-morphism (i.e., YVH<L,f(|HY=||f(H)) is obviously semi-LI-
continuous.

Dual results hold for decreasing chains, semi-I1-continuous operators,
descending chain conditions, and complete--morphisms.

Suppose I(=, L, T, L, M), L'(=’, L', T, U’ M’) are complete
lattices and we have the commuting diagram of isotone functions shown in
Fig. 10-2, where h is strict (#(1)= 1) and semi-LI-continuous. Then

h(Yfo(f)) = Yp(g)-

[4
Y

g

Figure 10-2

In a complete lattice L(=, t, T, LI, M), a is a complement of b if
arb= 1 and alib= T. A uniquely complemented complete lattice
L(z, 1, T, LU, n,—)is a complete lattice in which every element @ has a
unique complement —a. Park’s Theorem [Park69] states that if fis an isotone

310 SEMANTIC FOUNDATIONS OF PROGRAM ANALYSIS / CHAP. 10

operator on a uniquely complemented complete lattice L(=, L, T, LI, M)
then Ax.[—f (—x)] is an isotone operator on L, gfp(f) = —lfp(Ax.[—f (—x)]).

Let L(=, 1, T, LI,) be a complete lattice, n > 1, and F a semi-1_|-
continuous operator on L*. The system of equations

X = F(X)
which can be detailed as
X,=F(X,,...,X,) Jj=1...,n
has a least solution which is the least upper bound of the sequence {X*:
i >0} where X°=<(,..., > and X*** = F(X*), which can be detailed
as:
XM =FX,,....XY) j=1,...,n

One can also use a chaotic iteration strategy and arbitrarily determine
at each step which are the components of the system of equations which will
evolve and in what order (as long as no component is forgotten indefinitely).

More precisely [Cous77b, Cous77c] Ifp(F) is the least upper bound of
any chaotic iteration sequence {X": i > 0} where X° =<1 ,..., 1 > and

X =F(Xi,...,X) ifjel,

Xt =X ifj & J,
provided that (Vi>0,J, < [1,n] and (Vj € [I,n], 3k >0:j € J,,).
A dual result holds for gfp(F).

10-4.3. Characterization of the Set of Descendants
of the Entry States of a Discrete Dynamic System
as a Least Fixed Point

Given a discrete dynamic syStem (S, 7, ., V., V), the set of descendants
of the states satisfying a condition B € (S — B) is by definition the set
characterized by

Asy[3 s € St Bls)) A T¥(sy, 52) = post(t*)(B)
using the notation
post € (S x S)— B) — ((S— B) — (S — BY)))
post = lO.[lﬂ.[lsz.[Elb s, € 8:B(sy) A 0(sy, s

Example 10-3. Let & be a program defining a total and deterministic
system (S, 7, V., V,, ¥;). Assume that ¢, ¥ € (S — B)specify what it is that
= is intended to do: the execution of the program = starting with an entry
state satisfying ¢ terminates and the exit state satisfies ¥ on termination of z.
A partial correctness proof consists in showing that:

Vo A post(t®)(v. A §) =¥

SEC. 10-4 |/ ANALYSIS OF THE BEHAVIOR OF A DISCRETE DYNAMIC SYSTEM 311

In words, every exit state which is a descendant of an entry state satisfying
¢ must satisfy P. The question of termination is not involved.

We now show that post(*)(B) is a solution to the equation & = f
V post(t)(®); more precisely it is the least one for the implication = consid-
ered as a partial ordering on (S — B).

Theorem 10-4,

1. ((S X S)— B)(=>, A(sy, s,). false, Asy, s,).true, \/, A, —)
and (S — B)(=>, As.false, As.true, \/, A, —) are uniquely
complemented complete lattices.

2. VO € ((Sx S)— B), post(f) is a strict complete V-
morphism. ¥ € (S— B), 10.[post(8)(B)]is a strict complete
V -morphism.

3. Vre((SxS8)—B), Ve (S— B),
post(s*)(B) = \/ post(@)(B) = Up(AoIf \/ post(zXe))
Proof. The diagram of isotone functions shown in Fig. 10-3 is com-

Aa.leg va o7l

((Sx S)~>B) ® ((Sx 5)~B)
X6. [post(6) (6)] 0. [post (6 {8}]
(S—+B) o (S B)

Aa. [post{eq) (B) v post (1} (&}]

Figure 10-3

muting and A8.[post(6)(B)] is a strict complete V -morphism. Therefore
post(lfp(Aa.leq /o o TDH)(B) = post(t*)(B)
= Ifp(A.[post(eq)(B) V post(z)(@)])
= Ifp(Aa.[B V post(z)@)]).
Also post(t*)(f) = posz‘(’l\>/0) p) = n\>/0 post(t)(f). M

Example 10-5. Floyd [Floy67] and Naur’s [Naur66] method of induc-
tive assertions for proving the partial correctness of 7 with respect to ¢, P,
consists in guessing an assertion iz and showing that (v, A ¢)=1) A
(post@® = 1) A (v A 1) = P)).

Using the recursion induction principle, from ((v. A @)= 1) A

312 SEMANTIC FOUNDATIONS OF PROGRAM ANALYSIS / CHAP. 10

(post(z)(1) = 1)) we infer (Ifp(Aa.[(v. A @) V post(z)(@)]) = 1). It follows from
Theorem 10-4, Part 3 that (v, A post(t*)(v. A\ ¢)) = (v, A 1) = . The
method is sound [CIaE77].

Reciprocally, if 7 is partially correct with respect to ¢, P, then this can
be proved using the Floyd-Naur method. This completeness result follows
from the fact that one can choose 1 as [fp(da.[v. A ¢) V post(z)(®)]).

10-4.4. Characterization of the Set of Ascendants
of the Exit States of a Deterministic Discrete Dynamic System
as a Least Fixed Point

In the case of a deterministic discrete dynamic system, the set of
ascendants of the states satisfying a condition B € (S — B)is characterized by

As,.[3 5, € S:7%(s1,5.) A Bls2)] = pre(z*)(B)
using the notation
pre € (S X §) — B) — ((S— B) — (S — B)))
pre=2A0.[AB.[As, [3 5, € S:0(sy, 5) A B(su)ll]

Example 10-6. Let z be a program defining a total and deterministic
system (S, 7, V., Vo, ¥} and ¢, ¥ € (S — B) be respectively entry and exit
specifications. A fotal correctness proof consists in showing

ve A ¢ = pre(z*)v, A ¥)

In words, every entry state satisfying ¢ is the ascendant of an exit state sat-
isfying W. This is a proof of termination when ¥ = As.[true].

Once the mathematical properties of post have been studied, similar
ones can be easily derived for pre since pre(6)(8) = post(8~1)(B) and post(0)(B)
= pre(6~')(B). This point is illustrated by the proof of the following:

Theorem 10-7.

1. V@ e ((SxS)—B), pre(@) is a strict complete V-
morphism; V8 € (S — B), A8.pre(8)(B) is a strict complete
V -morphism.

2. Vte (SxS)—B), Ve (S—B),
pre(t*)(B) = ,}Z/OPre(f")(ﬁ) = lfp(Aa.[B V pre(z)(@)])

Proof. /7,7, ... € (SX S)— B),(r,0t,) = (r3' 0 771); Vi €
N, @) ' = (=" (\‘/)= \{ ()%, (t*)* = (v~ V)*. Therefore it

follows from Theorem 10-4 that V@ € ((S X S)— B), pre(f) =

SEC. 10-4 /| ANALYSIS OF THE BEHAVIOR OF A DISCRETE DYNAMIC SYSTEM 313

post(0~')isastrict complete \V -morphism. \ € (S — S), 6. pre(0)(B)
= A0.post(0~)(B) is a strict complete \/ -morphism. Also

pre(v*)(B) = post((z*)~)(B) = post((z~)*)p) = . post((z'y)(B)
=\ post((@)) (p) = Y, pre(t")(B) '
= lfp(Aa.[B V post(z= Y @)])) = Ufp(Aa.[B V pre(m)(@)]). m

10-4.5. Characterization of the States of a Total Deterministic
System Which Do Not Lead to an Error as a Greatest Fixed Point

The entry states which are the origins of correctly terminating or
diverging execution paths of a deterministic program z(S, 7, v., V., v;) are
those which do not lead to a run-time error. They are characterized by
Ve A —pre(z*)(vy).

Theorem 10-8. Let 7 € ((S X S) — B) be total and deterministic.
VB € (S-— B), —pre(t*)p) = gfp(Aa.[=8 A pre(z))]

Proof. —pre(v*)(B) = —lfp(Aa.[B V pre(x)(@)]) = —fp(—da.[—=8 A
pre(t)(—(—a))]). According to Park’s Fixed Point Theorem, this is equal
to gfp(Aa.[—8 A —pre(t)(—a)]). Let T € (S — S) be such that (s,
5, € 8, (2(sy, 5,) — (T(s;) = 5,))). We have —pre(t)(—a)

= Asy [—e(T(s))] = Asy.[a(F(s,))] = pre(z)(@). =

10-4.6. Analysis of the Behavior of a Tetal Deterministic
Discrete Dynamic System

Given a total deterministic system z(S, t, v,, v,, v,) we have established
that the analysis of the behavior of this system can be carried out by solving
fixed point equations as follows:

Theorem 10-9.
1. The set of descendants of the entry states satisfying an entry
condition ¢ € (S — B) is characterized by:

post(*)v. A 8) = lfp(Aa[(ve A @) V post(x)(@)])

2. The set of ascendants of the exit states satisfying an exit
condition ¥ € (S — B) is characterized by:

pre(@)v, A YY) = lIfp(Aa.[(v, A F) V pre(z)(@)])
3. The set of states leading to an error is characterized by:
pre(t)(vy) = lfp(Aa[v, V pre(t)(@)])

314

SEMANTIC FOUNDATIONS OF PROGRAM ANALYSIS | CHAP. 10

4. The set of states which do not lead to an error (i.e., cause

the system either to properly terminate or to diverge) is
characterized by:

—pre(z*)(v;) = gfp(Ax.[—w; A pre(z)(@)])
The set of states which cause the system to diverge is charac-
terized by:

—pre(r*)(v,, V ve) = gfp(Aaf—w, A —w, A pre(t)(@)])

Example 10-10. The proof that a program =(S, 7, v., v, v;) does not
terminate for the entry states satisfying a condition é € (S — B) consists
in proving that v, A & = —pre(t*)(v, V v,). It follows from Theorem
10-9(5) and the Dual Recursion Induction Principle that this can be done by
guessing an assertion 7 € (S— B) and proving that (. AN&)=1) A
(@ =>—w, A —w; A pre(r)(1))).

10-4.7. Relationships Between pre and post

Theorem 10-11. Letf € ((S x S)— B). V8,7 € (S— B),

1.
2.

Proof.

pre(0)B) = post(8~')(B), post (0XB) = pre(0-")(B)
If @ is deterministic, then:
post(@)(pre(B)(B)) = (B A post(@)true)) = B
If 8 is total, then:
B => pre(6)(post(0)(B))
If 0 is total and deterministic, then:
(B = pre(@)(y)) iff (post(O)(B) = 7)
post(@)B) = \y € (S — B): B = pre(f)(»)}
pre(@) () = \V{y € (S — B): post(6)(y) = B}

- P'e(o)(ﬁ) = As;.[3 5,:0(s,, 53) A B(s,)]1 = As,. [352:B(s2) A

07(s2, 5,)] = post(0~*)(B). post(6)B) = post((8-1)")(B) =
pre(6-")(B).
If @ is deterministic, then there exists 0 € (§— S) such
that 0(s,, 5,) < 5, = 0(s1) Therefore post(G)(pre(6)(B))
= As3.[3 5,: (3 Syl 8y = 0(51) A B(s2) A s3 = a(s!)] =
Ass[3 sy ﬂ(a(si)) A s3= 0(31)] post(O)(true) A B.
If 0 is total, then Vs, € S, B(ss) = (Blss) A (3 s,:
0(ss, 85)) = (3 s,¢ 0(ss5, 82} A (35,2 0(s,, 55) A B =
pre(@)post(B)(B)(ss).

SEC. 10-4 | ANALYSIS OF THE BEHAVIOR OF A DISCRETE DYNAMIC SYSTEM 315

4, If (B = pre(0)y)), then by isotony post(9)(8) = post(8)
(pre(0)(y)) = 7. If (post(8)(B) =), then by isotony f =
pre(@)(post(6)(B)) = pre(0)y). post(O)B)= /\[y: post(0)(B)
=9}=/Ay: B=pre(O)¥)}. pre(@)B)=\/{r:y=>pre(6)(B)}
= Viy: post(@)() = 1. m

Example 10-12. Accordingto Theorem 10-11.4, Floyd-Naur’s method
for proving the partial correctness of z with respect to ¢, ¥ which consists in
guessing an assertion 7 and showing that (v, A ¢) =) A (post(r)(1)) = 1)
A (v, A 1) = P)) is equivalent to Hoare’s method [Hoar69], which consists
of guessing an assertion 7 and showing that ((v. A ¢) A (z = pre()}1)) A
((va A =)

We have seen that the analysis of a system consists of solving “forward”
fixpoint equations of the form & = B X post(z)(®) or “backward” fixpoint
equations of the form a = B X pre(r)(®) (where f € (S— B) and X is
either V or A). In fact whenever a forward equation is needed, a backward
equation can be used instead, and vice versa.

Theorem 10-13.

V8 e (SxS)—B),VB e (S— B),
post@)(B) = A5.[3 s, € S: B(s1) A pre(@)(As.[s = 5]s)]
pre(0)(B) = A5.[3 s, € S: post(@)(Ass = 5]Ns;) A B(s2)]
Proof. post(@)(B) = As.[3s, € S: B(s) A O(sy, 5= A5[3s, € §:

B(s)) A(Is € S:(s=35) A sy, N = A5[3 5, € S: Blsy) A pre()
(As[s=3h(s)] m

Example 10-14. A total correctness proof of a program z with respect
to ¢, ¥ consists in showing that (v, A ¢) = pre(z*)(v,, A\ 'F)), that is to say
(v. A ¢) = lfp(Ac.[(v,, A) V pre(t)(@)])). Equivalently, using post, one can
show that: V5 € S, 0.(5) A ¢(5)) = (T s, € St v(s5) A P(s2) A Ifp(Ae.
[As.(s = 5) V post(t)(@)])(s.)) More generally we have:

post(t*YB) = A5[3 5, € St flsy) A WpAalis(s = 5) V pre(@@Disd]

pre(t*)(B) = A5[3 s, € S: B(ss) A Yp(Ae.[As.(s = 5) V post(@)@)])(s,)]
10-4.8. Partitioned Dynamic Discrete Systems
A dynamic discrete system (S, 7, v., ¥,, ¥;) is said to be partitioned if

there existn > 1, U, ..., U, 1, .. ., I, such that Vi € [1,], 3, is a partial
one-to-one map from S onto U, and {57 }(U,): i € [1, nJ}-is a partition of S,

(therefore S = L"J ;;'(U,) and every s € S is an element of exactly one
i=1
17'(UY).

316 SEMANTIC FOUNDATIONS OF PROGRAM ANALYSIS |/ CHAP. 10

When studying the behavior of a partitioned system, the equations
@ = B X post(z)(@)ora = B X pre(t)(«) can be replaced by systems of equa-
tions defined as follows. Let us define: Vi € [1,n), 0, € (S — B) — (U, —
B)), 0, =AB[Bo3'], oi' =ABfAs[s € 7' (U) A BG()]), 0 € (S — B)

- (fﬂ U, — B)) o =1A1p. (H 0:(.3)) = ABLa(B),...,0,(B)). aisastrict

isomorphism from (S — B) onto H(U,.—>B). Its inverse is o~! =
i=

KBu .o B[0B -

For any isotone operator f on (S — B), the diagram in Fig. 10-4
commutes, so that the sets of pre-fixed points, fixed points and post-fixed

f

{S—>B) e . - (S5 - B}
UI Iaq OI Ia.‘l
n PN > n
i£11 (U,~>B) A<ay, oou, @, > [0 F 0 ay, ..., a,)] ,-I=]1 (U; >B)
Figure 10-4

points of fcoincide (up to the isomorphism &) with the pre-solutions, solutions
and post-solutions to the direct decomposition of o = Sf(&) on H (U, — B)
which is the system of equations:

0 =0y0foo (&;,...,0H,)

o, =0,0foo W (&;,...,0%,)
In particular when f= Aa.[f X post(z)(@)] or f= Aa.[B X pre(z)(&)], we
have the following:

Theorem 10-15. Vi € [1, 1], 6, 0 Aa.[B X post(t)(@)] o o1 is equal
to ‘

YIC TN) [ai(ﬁ))0(jep\/ POSt(Tﬂ)(“J)):I
whereas o, o Aa.[f X pre(z)@)] 07! is equal to

Aoy, ..., 000 I:a,(ﬁ) X (pr e(fij)(“j))]

JE€suce, (i)

SEC. 10-5 | SEMANTIC ANALYSIS OF PROGRAMS 317

where
7; € (Ui X U)— B),1,;, = }v<s1; s -7 (s1), 171(s2))]
pred. = Ai{j € [,n]: (35, € Uy, 35, € Ut t;(84, 52)0}
suce, = Ai{j € [I,n]: (35, € U;, 35, € Ui 1,(51, 1))}

Proof.
0B K post(eNo™ '@ .., 4)) = 0dB) X o,(post(®(V/ o7 (@))

= 0B XV (post ()5 @) o 17").
Moreover
post(z)a; (@) o 17 = As,.[T 5, € S:a7'(@)(s,) A T(s4, 17'(5,))]
= As;.[3 51 € Uprals) A 7(17'(s1), 17 (s2))]
= As,.[3 5y € Ujiasy) A 54, 55)]
= post (T ;)(;).

Therefore \:/1 (post(@)(a;'@PN o) = post(z,)(e;) since

jE€pred, (i)
(j ¢ pred(i)) implies ¥V s,, 55, —7;(s, 5;). Also pre(t) = post(z~?),
(t,)"' =1, and succ, = pred... M

10-5. SEMANTIC ANALYSIS OF PROGRAMS

The fixed point approach to the analysis of the behavior.of total deter-
ministic discrete dynamic systems is now applied to the case of programs as
defined in Section 10-3.

A program <G, U, Ly where G = {V, €, @, E> and V = [1, n] — {{} de-
fines a partitioned discrete dynamic system <z, S, v, v.,, v;» where S = ([1, 1]
x U), Vi € [1,n], U, = U, 1, = Ae,md>.m, ;' = Am.{i, m)>. Hence two states
ey, my> and {c,, m,) are in the same block of the partition iff ¢, = c,, that
is, iff both states correspond to the same program point or are both erroneous.

10-5.1. System of Forward Semantic Equations Associated
with a Program and an Entry Specification.

The system of forward semantic equations P = F (¢$)(P) associated with
a program 7z and an entry specification ¢ € (U — B) is the direct decomposi-
tion of & = (v. A a;'(¢)) V post(z)e) on (U — B)*; that is,

P,=o(v. A 7' (@) V (le V)POSt(Tﬂ)(Pj)) i=1,...,n

pred (i)

318 SEMANTIC FOUNDATIONS OF PROGRAM ANALYSIS |/ CHAP. 10

From the abstract syntax and operational semantics of programs we
derive a set of construction rules for obtaining this system of equations from
the program text:

1. Ifiisthe program entry point, i = € and pred,(¢) = ¢ ; therefore P,
= 0.(v. A 07($)) = o (A, m).((c = €) A\ $(m))) = ¢. Otherwise
i # €, in which case g,(v. A o7'(§)) = Am. false and

P,= \/ post(t,)P)

JEpred; (i)

=\ dmy[Im, eU:Pim,) A @, m) = <i, my))]

JE pred, (7)
When i # € and i + £, notice that pred,(i) is contained in the set
of origins of the edges entering 7, that is, the set pred, (i) of predeces-
sors of the vertex i in the program graph G of z. The expression
Am,.[Im, € U: P(my) A T(j, m)) = <i, m,))] depends on the
instruction L({j, i) labeling the edge <{j, i>.

2. If j, iy is labeled with an assignment v = f(»), then
Amy[3my € U: P(my) N @), myD) = <i, my))]
= Am,[Im, € U: P(m) A m, € dom(f) A\ (m, = f(m,))]
3. If{j, i) is labeled with a test p, then
Amy[Imy € U: Pmy) A (2(<j, myD) = <i, my))]
= Am,[Im, € U: Pm,) A (m; & dom(p)) A\ p(m,)
TN (my =m,)]
= Amy. [P{m;) A (m, € dom(p)) A p(m,)]
4. Ifi=¢, then
Pe= \/ Amy[Im; € U:Pfm;) N @), m) = <& my))]

JEpred (&)

=P,V \/ Am, [Pm,) A\ (my & dom(expr(j)))]

where at(n) is the set of program points j preceding an assignment
v = f(v) or a test p(v) and expr(j) is the corresponding f or p.

The above analysis can be summarized by the following.

Definition 10-16. The system of forward semantic equations P =
F(d)(P) associated with a program n and an entry specification ¢ € (U — B)is
P.=¢
Pr=_\/ post(L(j,DP) i€ (l,n]—{el}

JEpred, (i)

= (., AmIPm) A m ¢ dom(expr(D) V P

Jj€at(m)

SEC. 10-5 | SEMANTIC ANALYSIS OF PROGRAMS 319

where V f € I(U), post(f) = AP.dm.[IAm' € U: P(m') A m’ € dom(f) A
m=f(m)]l; Vp € I(U), post(p) = AP.[Am.[P(m} \ m € dom(p) A p(m)]];
at(n) is the set of program points j preceding an assignment » = f(v) or a
test p(a) and expr(j) is the corresponding f or p.

Theorem 10-17. The system of forward semantic equations P
= F(¢)(P) associated with a program z and an entry specification
¢ € (U— B) is the direct decomposition of a = (v. A o7 ()
V post(z)(a) on (U — B)".

10-5.2. System of Backward Semantic Equations Associated
with a Program and an Exit Specification

As above the abstract syntax and operational semantics of programs
can be used in order to derive sets of construction rules for associating with
any program 7 the systems of equations which are the direct decomposition
of backward equations of type & = B ¥ pre(t){a) on (U — B)"; that is,

P=a(BHX V)lm1~[3 m, € U: (T({my, D) = <my, j>) A Pm,)]

. jEsuce, (@

i=1,...,n

The result of this study can be summarized by the following.

Definition 10-18. The system of backward semantic equations P —
B,(¥)(P) associated with a program n and an exit specification' ¥ € (U— B)is

Bo= N prelGDNR) i (L= (@,8)

JEsucc, (i

P, =Y

where V f € L(U), pre(f) = AP.[Am.[m € dom(f) \ P(f(m))]]; Vp € I(U),
pre(p) = AP.[Am.[m € dom(f) N\ p(m) A P(m)]]; and succ,(i) is the set of
successors of the vertex { in the program graph of z.

Theorem 10-19.
1. The direct decomposition P = B(P) of a = (v, A 6,'(F)
V pre(t)(a) on (U — B)* is
P, = B,(¥)(P) V error(i)) forie (1,n] —{,)
P,=¥Y VP,
P, =P,
where error(i)) = Am € UJ[P(m) \ i € at(n) A m ¢ dom

(expr®)); Vi e (1, n] — &), Yp(B): = Ifp(B(¥)),;; and
Ifp(B), = Am.[false].

320 SEMANTIC FOUNDATIONS OF PROGRAM ANALYSIS / CHAP. 10

" 2. The direct decomposition P = B(P) of & = —w, A pre(t)(&)

on (U— B)is
P, = B (Am.[true]) (P) fori e (I1,n] — {w, &)
P,=P,

P, = Am.[false]
Vi e (1, n] — {€}), gfp(B), = gfp(B(Am.[true)),, and gfp(B),

= Am.[false].

3. The direct decomposition P = B(P) of & = v, \/ pre(t)(®)
on (U— B)is
P, = B,(Am.[false])(P) V error(i) fori e ([1,n] — {w, &)
P,=P,

P, =)m.[true]
The least solution to the above system of equations is equal to
the least solution to

P, = B (Am.[false]),(Q) V Am.[m ¢ dom(expr(i))]

fori e ([1,n] — {w, &P
P, = m.[false]
P, = Am.[true]

where Q, stands for P, when i € ([1,n] — {®, &}), Q, stands
for Am.[false] and Q, stands for Am.[true].

4. The direct decomposition of & = —w, A —w, A pre(t)(®)
on (U— B)is

P, = B,(Am.[false)(P) fori e ([1,n] — {&)
P, =)m.[false]
5. The direct decomposition of & = As.[s = 5] V pre(r)(®) on
(U—B)yis
P, = im.[{i, m) = §] V B (Am.[false])(P) V error(i)
fori € (1, n] — {o, &)
P,=m[{oc,m)=35]V P,
Pe=12m[K¢{,my=35]V P,

10-5.3. Analysis of the Behavior of a Program

In order to illustrate the application of Theorem 10-9 to the analysis
of the behavior of a program, we choose the introductory example program z:

SEC. 10-5 | SEMANTIC ANALYSIS OF PROGRAMS 321

{1}
while x > 1000 do
{2}
x:=x+y;
{3}
od;
4}

It is assumed that the domain of values of the variables x and y is I = {n
€ Z: —b— 1< n< b} where b is the greatest and —b — 1 the least
machine-representable integer.

10-5.3.1. Forward semantic analysis

The system P = F($)(P) (where F(¢) € ((I* — B)* — (I* — B)®))
of forward semantic equations associated with the above program = and an
entry specification ¢ € (1> — B) is the following:

P, = ¢

Py = Kx,)I(P: V P)(x, ») A (x € I) A (x = 1000)]

Py=XKx,) [3x e LP(X,) A (X' +y) €) A (x=x"+y)]

Py = Kx, y)I(Py V P)(x,») A (x €) A (x < 1000)]

Pe= K DI, V P)x, y) A (x ¢ D)V (Po(x,) A ((x +) ¢ D))

The set of entry states which are ascendants of the exit states (i.e., cause
the program to terminate properly) is characterized by:

a.(v. A pre(r*)(v.,)

=0 (A5[3 5, € S:v,(s52) A post(z*)As.[s = F(s))

(Theorem 10-13)
= Am.[3 5, € S:v,(s5) A post(z*)(As.[s = e, mO(s)D
= Am[3 s, € S:v.(sy) A lfp(Aa[(v. A 67 (Am.[m = m)))

V post(@)@)D(s2)] (Theorem 10-4(3))

= Am[3 s, € S:v.(s2) A o7 (Yp(F(Am.[m = m])))(s,)]

(Theorem 10-17)

w33, € S:valo) A (N UpEGmtm = D52 |

]

1. X/ (3m, € Ut w67 m) A Yp(Em.Im = D) my) |

Am[Im, € U,: Yp(F(dm.[m = m]) (m,)]

322 SEMANTIC FOUNDATIONS OF PROGRAM ANALYSIS |/ CHAP. 10

The least fixed point P> of F(A{x, y>.[(x = %) A (¥ = 7)]) is computed
iteratively using a chaotic iteration sequence as follows:
P? = XKx, y>[false] i=1,...,4,¢
Pl=2 0 [x=) A(y=7)] wherelx, 53> e P
P} = Kx,).l(Pi V P)x,) A (x € I) A (x = 1000)]
=K,) e IN1000<X) A{(x=%) A (y =))]
PL=2x,[3xX e P, VAN (" +»DeDANx=x+))
=K WIEEINGE+5) e IN1000<H) A(x=%+5) A =7)]
P = XKx, p)IPL V P(x, ») A (x € D) A (x = 1000)]
=K, DUE e TA1000<E) A (x=5) A (y=7)
VEeIA@E+7p) elAl1000<x A 1000 < (X + 7))
NEx=x+7 Ay =7

Assume as induction hypothesis that
g
P = A(x, [T € [0,k —1]: _4}((:?: +ip) € I A 1000 < (X + ij))

ANx=x+j) A=y
then

P = A y)[3% € LR,) A +3) € D A= +)]
= Kx 03] € LK (@ +) € T A 1000< (G + 7))
AG+P) eDAE=%+i5) A=)
PE* = A) IPLV P, 3) A (5 € 1) A (x 2 1000)
= K y){3) € 0,: A G +) € T A 1000 < & + 7))

Ax=3%+jp) Ay =)
proving by induction on k that P% is of the form assumed in the induction
hypothesis. Then passing to the limit,

P=YV P

= K y[3) 2 0: AG +9) € T A 1000 < & + 7))
AG=F+i9) A0 =5)]

= A<{x, y>.[3j > 0: (1000 < min(%, X)) A\ (max(%, x) < b)
Ax=x+j) ANy =7)

SEC. 10-5 | SEMANTIC ANALYSIS OF PROGRAMS 323

(It is worth noting that the use of the symbolic entry condition A{x, y>.[(x
= X) A (y = y)] and of the above iteration strategy corresponds to a sym-
bolic execution of the program loop [Hant76] with the difference that all
possible execution paths are considered simultancously and the induction
step as well as the passage to the limit deal with infinite paths.) The remaining

components of Ifp(F(A{x, y>.[(x = X) A (¥ = 7)])) are:
P =KX, Ix=5% A (y =)
Py =Kx, p[3x e L P, A (X +»)eDAE=x+yp)
= XK, y>.[3) = 1: (1000 < min(x, x — 7)) A\ (max(%, x) < b)
ANx=x+j) A Q=]
PR = Kx, [PV P3)x,%) A (x € I) A (x < 1000)]
= Ax, O.[((* < 1000) A (x = %) A (x = 7))
V ((* =1000) A (7 < 0)
A @ =% + (B — 1000) div [7]) + 1)) A (v =5))]
P =K%, y)[(P3V PO)x,) A (x ¢ D) V (P3(x,) A ((x +») ¢ D)
vV P}
= Ax, PO.[(X > 1000) A (7> 0) A.(x = % + (b — ®)divi)p)
AN =7l
The set of entry states which cause the program to terminate properly
is characterized by

M7, 7503 %2, 72 € I: P3(xa, y,)] = A<x, p).[(% < 1000) V (§ < 0)]
The set of entry states leading to a run-time error is characterized by
o v. A pre(@®)(vy)) = Am[Im, € Uy lfp(F(Am.[m = m])(m,)]
that is,
KX, 7>[3 x5, ¥, € It PE(xz, ¥,)] = X, 7).[(% = 1000) A (F > 0)]
The set of entry states which cause the program to diverge is characterized
by
o (Ve N —pre(t*)(v, V v2)

= m.ﬁ[‘\:/l(Am, € Ui (v, V v X<, my))

A o homIm = D) (m) |

= Am[—(I m, € U,: fp(F(Am.[m = m))).(m,))
A —(3m, € Ug ifp(F.(Am.[m = m]))(m,))]

324 SEMANTIC FOUNDATIONS OF PROGRAM ANALYSIS |/ CHAP. 10

that is,
)'<i:}-’>'[_—'(3 x2,y2 € I: P:-,(styz)) /\ _l(EI x2’y2 € I: P?(xz,yz))]
= AE, FO[(E = 1000) A (v = 0)]

The set of descendants of the entry states satisfying the entry condition
¢ € (I* — B) is characterized by post(t*)(v, A o.'(§)); that is (Theorem
10-9 and Theorem 10-17) up to the isomorphism o by 0» = Ifp(F(9)):

or=¢
g = AKx, > [3) = 0:9(x — jy,») A (1000 < min(x — jy, x))
A (max(x — jy, x) < b)]
05 = Kx, y)[3j=1:9(x — jy,») A (1000 < min(x — jy, x — y))
A (max(x — jy, x) < b)]
02 = Kx, .I@(x, ») A (x <1000)) V (y <0) A (Fj=1:(x —jy,»)
Ax—jy<b) A (x <1000 <x — y))
e =Kx, [0 >0) A (3j=0:¢(x — j», »)
A1000 < x —jy<x<b<x+)
Equivalently O can be obtained from P* as follows:

o(post(z*)(v. A a;'(9)))
= 0{As:.[35:v.(8) A 0(D)E) A post(z*)ds.[s = 5])(s2)))
= Am,.[3 iz () A post(x*)(As.[s = <€, YN, my))]
= Am,.[Im: () A o~ ' (Yp(F(Am.[m = mD)C, my))]
= Amy.[3 m: §(m) A Up(F(Am.[m = mD)(m;)]

Therefore at each program point i the set of descendants of the entry states
satisfying the entry condition ¢ € (2 — B) is characterized by

P =MKx,)[3%, 7 € P:§(x, 7) A Pr(x, y)]
For example:
0 = Mx, »)[I%,7 € PP: §(x,7) A (¥ =1000) A (7 > 0)
Ax=x+(b—x)dvyy) Ny =)
= Ax, »).[3% € I: (3j: 9(x — j», ») A (x — jy = 1000)
A@>0)Ax=x+j) Aj=(b—x)divy)]
=0 I >0 A (3j=0: 6(x —jy,»)
A0 < x —jy<x<b) A (j=j+ (b— x)divy))]
= A)Ir > 0) A (37 =0:6(x — j», »)
A 000 < x—jy<x<b<x+)

SEC. 10-5 / SEMANTIC ANALYSIS OF PROGRAMS 325

We now recommence the semantic analysis of this program, but this
time using backward equations.

10-5.3.2. Backward semantic analysis

The system P = B,(¥)(P) (where B(¥) € ((I* — B)* — (> — B)*)
of backward semantic equations associated with the example program =
and an exit specification ¥ € (1> — B)-is the following:

Pi=XKxl((x €) A (x=>1000) A P,(x,»)) V (x € T)

A (& <1000) A Py(x, p)]
P, =K, pI((x +y) €) A Py(x + y,)]
Py = x, p).I((x € I) A (x=>1000) A Py(x,») V ((x € T)

A (x < 1000) A Py(x, y))]
P,=VY

The set of entry states which are ascendants of the exit states (i.e., cause
the program to terminate properly) is characterized by

ov. A\ pre(v*)(v.,))
= a.(v. A\ lIfp(Aa.[v,, V pre(z)Xa)]) [Theorem 10-9(2)]
= 0.(v. A o '(Ifp(B.(Am.[true])))) [Theorem 10-19(1)]
=Y, As.[v(s) A s € ;Y(U) A Ufo(B(Am.[trueD)(1(s))])

= o (Yp(B(Am.[true]). - 1)
= Up(B(Am.[true))),

The least fixed point P of the above system of equations where ¥ =
A{x, y).[true] is
Py = 2<x, y).0(x < 1000) V (3 < 0)]
T =K% Hx+») e DA (x+y<1000) V (y < 0)]
Py = IKx, y).[(x < 1000) V (y < 0)]
P2 = Xx, V>.[true]
The set of entry states which do not lead to a run-time error (i.e., cause
the program to properly terminate or diverge) is characterized by
ov. A —pre(t*)(v)
= o.(v. A gfo(Ax.[—w, A pre(t)(®)]) [Theorem 10-9(3)]
= o.(v. A o~ (gfp(B.(Am.[true))))) [Theorem 10-19(2)]
= gfp(B(Am.[true])),

326 SEMANTIC FOUNDATIONS OF PROGRAM ANALYSIS / CHAP. 10

The greatest fixed point §® of the above system of equations where ¥
= Ax, y).[true] can be computed iteratively starting from QF =
AKx, ¥>Jtrue), i=1,...,4, inventing the general term of a chaotic
iteration sequence, and passing to the limit:

07 = Kx, ».I(r <0) V (x < 1000)]

B=XKeUE+y<0V (x+y<1000) A (x +y) € D]

0% = Kx Iy <0) V (x < 1000)]

02 = Kx, y).[true]

The set of entry states leading to a run-time error is characterized by
Kx, 3 € P[=0%0x,] = Kx, y> € PJ(y > 0) A (x > 1000)].

Equivalently, the set of ascendants of the run-time error states is char-

acterized by pre(t*)(v;), which, according to Theorem 10-9(3) and Theorem
10-19(3), is equal (up to the isomorphism o) to the least solution R® to

Py = XKx, y).[(x = 1000) A Py(x, y)]
Po= K+ eD e Px+ MV (x+» ¢ D)
P, = %,)16 > 1000) A Py(x,)]
P, = I{x, y>.[false]
P, = A(x, y).[true]
that is, RY = Rg = A<x, y).[(x = 1000) A (¥ > 0)], Rg = A<{x, Y>.[((x + »)

=Z0A@>0)V (x+) ¢ D), R = Kx, y)[falsel, Rz = Ix, y).[true].
The set of entry states which cause the program to divergeis characterized

by AKx, ¥).[0%(x,) A —P(x, y)] = Ax, p).[(x = 1000) A (y = 0)].
Equivalently, the states which cause the program to diverge can be
characterized by —pre(r*)(v; V v,) = gfp(Aa.[—w, A —w; A pre(z)(@))),
which, according to Theorem 10-19(4) is equal (up to the isomorphism &)
to D* = gfp(B(A<x, v).[false])), that is, D?= Dg= D3 = I<{x, >.[(x
= 1000) A (y = 0)] and D3 = D2 = Xx, y>.[false].
The set of descendants of the input states satisfying an entry condition
¢ € (I* — B) is characterized by
post(z*)v. A 7°)¢))
=A5[2s, € S:vls) A a2 (@)s1) A Yp(Aa[As.[s = 5]
V pre(tX0)])(s,)]
= A5[IAm, € U:d(m) A o '(Ifp(o o Aafds.[s = 5]
V pre(z(@)] o 6~))Ke, m.p)]
=A5[2m, € U:¢(m) A lfp(o o Ax[Asfs = 5] V pre(z)(@)] e =) (m.)]

According to Theorem 10-19(5), the direct decomposition of A«.[As.[s = 5]
V pre(z)(@)] is the following when 7 is defined by our example program.

SEC. 10-5 | SEMANTIC ANALYSIS OF PROGRAMS 327

Py = XKx, IKLGp)> =58) V (x € I A x=>1000 A Py(x, y)
VxelAx<1000A Pyx,y) V (Phx,») A x ¢ D)
Py =K,)2, <> =8V (x+y e IAP(x+y)
V (Pex,) ANx+y ¢ I
Py = K%,) [3, {6 > =5 V (x € I A x = 1000 A Py(x, y))
V(xelIAx<1000 A Pyx,y) V (Pdx,») A x ¢ I)]
Py = Kx,)[4, <%, D> = 5) V Py(x, y)]
Py = XKx,)[KE<x, 10> = 5) V Pex, p)]
If P=(5) denotes lfp(a o Aa.[As.[s = 5] V pre(t)(®)] o 0~ 1), we determine that
P3(3) = XKx, WKL <% D) = §)
V((31j=0:(Vie[0,j1,1000 < x + iy < b)
A K2, <{x + 3, D> = §)
V(3j=1:(Vi e [0,j— 11,1000 < x + iy < b)
ANE+jye D AR+ =235)
V (3j=0:(Vi € [0,j — 1], 1000 < x + iy < b)
AG+jy eI A@+jy < 1000)-A (4 <x + jp, > = 5)
V (3j=1: (Vi€ [0,j — 1} 1000 < x + jy < b)
AE+iyEDAKSx+G— Dy,)=
At program point 7, the set of descendants of the input states satisfying ¢ is
oA5[3m, € U:¢(m) \ PAEm)) = Am[Im, € U d(m)
A P, mD)(m,)]

For our example ;
K, 3 [3<xe v € Pr (e, vy A PKE, <x, YOOI Xe YN
when i = 2, this is equal to
Kx, yy[3<x pep € Pigp(x y) A (3j = 0: Vi € [0,)],
1000 < x, +iy. <b) A K2, <x. + jye v = <2,<x, YN
= A%, .[3] = 0: d(x — jy, ») A 1000 < min(x — jy, x)
A (max(x — jy, x) < b)]

10-5.3.3. Forward versus backward semantic analysis of programs

In the literature on program verification, backward program analysis
is often preferred to forward analysis (e.g., [Dijk76]). Theorem 10-19(1)-(2)
clearly shows that the two approaches are not strictly equivalent, but this
point of view is complemented by Theorem 10-13 and Section 10-5.3, which
show that, using symbolic variables, one approach can serve as a substitute
for the other.

10-6. APPROXIMATE ANALYSIS OF PROGRAMS

Although the above approach to solving semantic fixed point equations
can lead to complete information about program behavior, it is essentially
mathematically ideal since it is well known that decision problems connected
with programs such as termination are algorithmically unsolvable. The
trouble is that fixed points are obtained as limits of infinitely long iteration
sequences and that machines are unable (and humans, as well, for nontrivial
examples) to guess a suitable induction hypothesis to be used in the induction
step which avoids the need to compute all terms of the iteration sequence.
Hence we must limit ourselves to constructive methods which automatically
compute approximate solutions to the semantic equations. Such approximate
information is often useful. For example in program verification systems, a
total correctness proof (Examples 10-6, 10-14) can be approximated by a
partial correctness proof (Examples 10-3, 10-5, 10-12). Optimizing compilers
only need a conservative approximate analysis of programs, since whenever
insufficient information is available no optimization will take place. For exam-
ple if an array index cannot be proved to be within the array bounds, a run-
time check can be generated. In the same way, a large part of the debugging
process can be automated to detect some but not all programming errors.

An example of approximate information about the behavior of a
program #(S, 7, v, v,,, ¥;) is given by a predicate P € (S — B) characterizing
a superset of the descendants of the entry states satisfying an input specifica-
tion ¢, that is, such that post(t*)(v, A @) = P. P gives a partial answer to the
termination problem since if P A v, is false, then 7 surely always diverges,
whereas if P A v, is not false, then one cannot conclude whether z terminates
or not. Also P can be used for a partial correctness proof (Example 10-3).
It follows from Theorem 10-9(1) that P must be an upper approximation
of the least solution to the equation & = (v, A ¢) V post(t)(x), that is, such
that lfp(Aa.[v. A @) V post(z)(@)]) = P.

Another example of approximate information about the behavior of
a program 7(S, T, V., V., ¥;) IS given by a predicate Q € (S — B) which is
a lower approximation of the greatest solution to the‘equation o = —w,
A —wg A pre(t)(®), that is, (Theorem 10-9(5)) such that Q = —pre(t*)
(v A v;). The approximation is that Q characterizes only a subset of the
states which cause 7 to diverge.

Hence an approximate program analysis can be automated by effectively
computing a lower or upper approximation of the least or greatest solution to
the fixed point equations x = f(x) on (S — B) considered in Theorem 10-9.
Qur approach consists in solving a simplified equation x = f'(x) on a com-
plete lattice L which is a simpler and computer-representable image of
(S — B). A solution to the simplified equation x = f’(x) will be computed
iteratively using an extrapolation technique in order to accelerate the con-

328

SEc. 10-6 | APPROXIMATE ANALYSIS OF PROGRAMS 329

vergence when necessary. We will consider only the upper approximation of
least fixed points since the other cases are duals to it.

10-6.1. Considering Simplified Equations

Assume we have to compute an upper approximation of the least
fixed point /fp(f) of an isotone operator f on a complete lattice L(=, |, T,
1, L). We will consider a simplified and computer-representable image L
of L and solve a less complex equation x = f(x) on L. [Cous79] justifies the
fact that the following connection must be established between L and L.

Definition 19-20. LetL(=, 1, 7,4, Mand (=, 1, T, U, M)be
complete lattices. L is an upper approximation of L iff there exists a one-to-one
complete M-morphism y from L onto L.

Example 10-21. Let n be a program over 7 integer variables X, . . .,
X,. Assume that at each program point i we have to determine the signs of
the variables X, . . . , X,,. This consists in finding out @, such that Ifp(F.(¢)),
= (, where O, belongs to the subset L} = L, = (I" — B) of predicates of

the form A(X,. .., X,,).[/”\1 P(X, ,)], where P, belongs to the subset L; =
J=

{AX.[false], AX[X = 0], AX.[—b — 1 < X < 0], AX[0 < X < b], AX [true]}
of L, = (I — B). We can define an upper approximation L, of L, as shown
in Fig. 10-5.

1

Figure 10-5

where y, € (L, — L,) is defined by

y, = As[case s in
1 — AX.[false]
~ S AX[-b—1< XL
0 — AX[X=0]
J—2X[0< X <P
T — AX.[true]
esac]

330 SEMANTIC FOUNDATIONS OF PROGRAM ANALYSIS [CHAP. 10

The upper approximation L, of L, can be defined as

f‘l = {<s1’ AL Sa>: (VJ € [1’ n]’ sj € Ez - {—L})} U {<—L’ AL] J_>}
and y, € (L, — L,) is such that

P2 =250y, 8> [1<X1, e XD, [,/\1 yz(s,)(X,)]]

Intuitively, y gives the meaning p(¥) of the elements % of L. y is assumed
to be one-to-one so that no two distinct elements of L can have the same
meaning. The hypothesis that y is a complete [J-morphism implies that for
all x € Ltheset{7 € L:x = p(5)} of upper approximations of x in I has a
least element, namely a(x) =[|{j € L: x = p(5)}. The close relationship
between a and y is described by the following:

Theorem 10-22. leta € (L — L)beAx[{7 € L: x = y(7)}. a is
a complete |_|-morphism from L onto L. & oy = A%.[a(y())] is the
identity function on L. y o a is an isotone, idempotent (o oyoa =
7 o &) and extensive (Y x € L, x = y o a(x)) operator on L. Moreover
y =47 [{x € L: a(x) = 7}.

Example 10-23. Coming back to Example 10-21, we have:

o, = AP € (I — B).[if P = AX|[false] then |
elsif P => A X.[X = 0] then O
elsif P = AX.[X < 0] then —
elsif P = AX.[X > 0] then -
else T fi]

a4, = AP e (I" —>13).[f[1 GOAX[A<Ks, o Xy Ky, XS € P01

P(Xla ey Xj—h X’ Xj+1, teey Xn)])]
For example,

&1 (A0 Ofx = 1) A (x + 3 =2) A even(y)])
= o (Ax[(1 < x < B) A even(X)]), a,(Ay[(—d+2<y<1)
A even(»)])>
=<{+ =

An upper approximation of the least fixed point /fp(f) of an isotone
operator f on the complete lattice L can be defined using an approximate
image f of f on (L — L) as follows:

SEC. 10-6 |/ APPROXIMATE ANALYSIS OF PROGRAMS 331

Definition 10-24. Let L(=, 1, T, LI,) be an upper _approxima-
tion of L(=, L, T, LI, (1) and f be an isotone operator on L. f is an upper
approximation of f on Liff fis an isotone operator on L such that (V* € L,

o f (7)) = f(F)).

Theorem 10-25. If f is an upper approximation of f on L, then
Ifo(f) = y(fp(f)) and gfo(f) = ¥(efp(f))-

Once an application-dependent upper approximation has been chosen
(Definition 10-20) and knowing the construction rules for associating a system
of semantic equations with a program (Theorems 10-17 and 10-19), one can
determine the construction rules for associating a system of approximate
equations with a program.

Example 10-26. Letusdetermine the constructionrules of the approxi-
mate equations corresponding to Example 10-21. For simplicity we consider
only the forward rule for the assignment x := x + 1 in a program with a
single variable x. The exact rule is Definition 10-16.

P= \/ post().x [x + 1I}P) where P, P, € (I — B)

JEpredg(

The approximate rule is Definition 10-24.
P, = az(\V4 post(),x [x + 1])(y2(P,))) where P, P; € L,

JEpred,(;

= | ocz(post(Ax.[x + 1D(y.(Py))) (Theorem 10-22)

jEpred (i)

It remains to analyze:

&y (post(Ax.[x + 1D@.(P))
= a,(Ax.[Ix" € I p,(P)(') A x' € dom(Ax.[x + 1) A x=x"+ 1))
= 0, (Ax [PYx — DA (—b—1<x<b— 1)
According to the possible values of P, we can distinguish the following cases:

x(post(Ax.[x + 1D@2(L)) = a,(Ax.[false]) = L
&y (post(Ax.[x + 1)) #,(0)) = e (Ax.[x = 1)) = +
& (post(Ax.[x + ID@(F)) = Ax[-b<x<1) =T
a;(post(Ax.[x + 1D@.(+) = t(Ax[I < x <b— 1) =+
%, (post(Ax.[x + 1D@2(T)) = a,(Ux[-b <x<b— 1) =T

More generally the approximate forward assignment rule consists,
given the signs of the variables before the assignment, in applying the rules
of signs to the r1ght-hand—s1de expression (4+ ++=1,++—=TT,
~ — J}=-,-% > =1,...) and assigning the result to the left-hand-
side variable. The signs of the other variables are left unchanged.

332 SEMANTIC FOUNDATIONS OF PROGRAM ANALYSIS |/ CHAP. 10

We can now write a program, which, given a program text z, constructs
the associated system of approximate equations x = f(x). Whenever L
satisfies the ascending chain condition, we can write a program for computing
the least fixed point Ifp(f) of any isotone operator f on L. Starting from the
infimum of L, the algorithm can proceed iteratively using any efficient chaotic
strategy until the iterates stabilize.

Example 10-27. The system of approximate equations associated with
the introductory example program

{1}
while x > 1000 do
{2}

{3}
od;

{4}

is the following:

Xy =9

X2, Y2 = smash({if (xy U x3) = = then | else 1 fi, y, L1 y3))

%3, ¥3p = smash({x, + ¥2, ¥2))

X4s Yoy = smash({xy LY x5, p4 U p3))

oV =i, E0VE.E0V (=) A@G="DPV ((x2=")
Ay =) then{L, L) else {x;, y,) fi

where smash({x, y>) = if (x = 1) or (y = L) then {1, 1) else {x, y> fi.
Taking ¢ = {{-, —>, a chaotic iterative resolution corresponding to a sym-
bolic execution of the program is the following:

L, y>=<LL,1) i=1,...,4¢

Ly =¢=<{+ >

$x3, yi> = smash(Cif (xi U x§) E = then | else 1- fi,y} L1 y) =<+, =D

x4, 3> = smash((xi + yi, y8) = <T, =D

<x3, y3> = smash({if (x} Ll x8) = = then | else + fi, y} LI y) =<+, =>

Stabilizing around the loop, the remaining components are

<xd, ¥3) = smash((x} U x3, yi U p3)) =<T, =)

GLYD ==V V(=P A0i=")
Vxi==)ANQ@i= 1) then{L, L) else {x3, . fi

= <—L’ —L>

x:i=Xx+y;

SEC. 10-6 | APPROXIMATE ANALYSIS OF PROGRAMS 333

The results are approximate but not useless since, e.g., they prove that no
overflow can occur when the entry specification (x > 0 A y < 0) is true.

10-6.2. Speeding Up the Convergence of Chaotic Iterations
Using Extrapolation Techniques

When L does not satisfy the ascending chain condition, infinitely many
steps may be necessary in order to ensure the convergence of a chaotic version
of the iterates | | f*(_L) to-the least fixed point [fp(f). It may also be the case

20 ’

that the number of iterations required is not infinite but so large as to be
unacceptable in practice.

Example 10-28. Inorder to analyze programs over ninteger variables
X,,..., X, let us consider:

1. The complete lattice L, = {1} U {{Lul: =b — 1 <I<u<b}
where | is the infimum and ([, #,] = [L, w,D) iff (L, <I,'<u,
< u,). The meaning of the elements of L, is given by y,(L)
= AX[false] and p,({], u]) = AX [< X < u].

2. The complete lattice L, = {{iy,...,ip: (Vi€ [l nli, € (L,
— MU L,..., LD} with y, = FICTTR A% / 14 ST

x>[A nt)® |

3. The resolution of the equation x = [0, 0] LI (x + 1) on L, where
1L+1=_1 and [,u] +1=[I+ 1, min(u+ 1,b)] involves a
very large number of iterates x° = |, x'=[0,0], x> = [0, 1],
x3=10,2],...,x*1 =0, 8], ¥*2 = [0, b].

However, using the notion of extrapolation [Cous77a], we are able to
speed up the convergence of the iteration. and obtain a close approximation
to the least fixed point in a finite number of steps.

Definition 10-29. A widening operator V.€ (N — (L X L — L)) is
such that:

1. Vi>0,Vx,ye Lxtiy=xV(j)y

2. For any ascending chain) S y' =... = y" = ... of elements
of L, the ascending chain x° = y°, x! = x* V(1) y*, ..., x" = x*"!
V(n) y*, . . . is eventually stable; i.e., there exists a k > 0 such that
for i >k, x* = x*. x* is called the limit of the chain.

334 SEMANTIC FOUNDATIONS OF PROGRAM ANALYSIS [CHAP. 10

A widening operator will be used to extrapolate each iterate until a
post-fixed point is reached, in which case an upper approximation of the least
fixed point has been found.

Theorem10-30. Let f be an isotone operatoron L(=, |, T, LI, M)
and V be a widening operator. The limit u of the sequence

x0=d
¥ =V + D) if () = x)
Xl = x» ‘ if f(x") = x

can be computed in a finite number of steps. Moreover [fp(f) = u and

f@eu

Example 10-31. ‘When L satisfies the ascending chain condition, one
can choose Vj > 0, V(j) = LI, in which case x* = Ifp(f). However the
widening operator may be necessary when the convergence of the iterates
must be speeded up as in Example 10-28. Although the above definition allows
a different extrapolation to be applied at each step, the widening operator
will most often be independent of j. For Example 10-28, one can choose
forallj > 0:

Vxe L, 1 ViDx=xVy () L=x
15 2] V,()) [E, 12]
=[if0< L <, thenOQ elsif I, < 1, then —b — 1 else I, fi,
ifu, <u, <0 then 0 elsif u; < u, then b else u, fi]
A widening V, on L, is obtained by applying V, componentwise:

<il’ LS] i»> Vl(j) <i,17 LR] i:l> = <il Vz(]) l’l’ LI] in VZ(J) l;,>

With regard to systems of equations it is not necessary to use a widening
for each component. Considering the program graph as defined in Section
10-3.1 (or the reversed graph for backward equations), the widening operation
need only be used for the components corresponding to loop head nodes.
A set S of loop head nodes is a minimal set of vertices such that any oriented
cycle in the graph contains an element of S. In general such a set is not unique,
and an arbitrary choice may be made (but when the graphis reducible, interval
headers [Alle70] should be preferred).

Example 10-32. The loop head nodes of the program graph in Fig.
10-6 are marked ©.

Example 10-33. When considering the approximation defined in
Example 10-28, the system of simplified forward equations corresponding

to the program ©.

Figure 10-6

{1}
2
31
4

is the following:
xuyo=9¢
(X3, o = smash({((x, U x5) 11 [10, 100]), (¥, LI y5)))
(X3, y3) = smash({x, + y2, 2))
{45 Yay = smash({((x, U x3) M (—b — 1,99, (v, LI y5)))
Xy Yoy = if $%a, y2) = (L, L) then{ L, 1) else underflow(x, y,)
LI overflow(x,, y,) fi

while (10 < x) A (x < 100) do
X:=x+Yy;

od;

336 SEMANTIC FOUNDATIONS OF PROGRAM ANALYSIS | CHAP. 10

where
VxelL, | lix=x011=ux,
dIrnx=xnl=1,
L4+x=x+1=1,
i, ua] L1 1Ly, u,] = [minly, 1), max(u,, u,)]
[1:,] 11 W, o] = if maxily, 1) < min(u,, u,) then [max(l,, 1,), min(u,, u,)]
else |_fi
lowl+hw]l=U+ L, +a]1[—b— 1,0
overflow([l,, w1}, 1, wo]) = if (g = 1) A (up = 1) then {({,, u4]
Mb—u,+ LD, (L, u] b —us + 16Dy else <L, 1> fi
underflow(lly, w,), [, w,]) = if (I, < —1) A (I, < —1) then {(Il;, uy}
Ml=b—1,—-b—2—1L), ([}, u]
Ml—b—1,—b—2—IDelse], 1> fi
smash((x, y)) = if (x= L) V (y = L) then (L, L} else {x, y Off

Taking ¢ = (|9, 11], [—1, +1]> the resolution uses the widening opera-
tors of Example 10-31 for the loop head node 2:

&y =<1L,1> i=1,...,4¢
Ly =¢ =<0, 1L[-L 1D
<x1, i) = {x§, ¥ V(1) smash({(x] LI x§) 1 [10, 100], (»i LI ¥9)D)
= <L V() [10, 11], 1 V(D [-1, 1D =<[10, 11}, [1, 1]>
x5, y3) = smash({x3 + yi, yi9) = <09, 121, [-1, 1D
<x8, ¥3> = <xi, y1> V1(2) smash({(x} LI x3) M [10, 100], (¥} L1 y3)))
= <[10, 11) V5(2) [10, 12}, [1, 1] V,2) [1, 1]> = <[10, B}, [- 1, 1]}

The effect of the widening is to extrapolate to zero or infinity (—b — 1 or
b) the bounds which are not stable around the loop.

x5, ¥ = smash((x3 + y3, y1) = 8. B}, [—1, +1D

According to the definition of the approximate iteration sequence in Theorem
10-30, we have

(xi, y%> = <x%= J’§> = <[IO, b]a [_1’ I]>

since <[10, 100}, [—1, 1]) = smash{{(x} LI x3) 1 [10, 100}, (yi LI »3)))
£ {x%, ¥3>. The remaining components are:

SEC. 10-6 | APPROXIMATE ANALYSIS OF PROGRAMS 337

x35 y3> = smash({((x} Ui x3) M [—b — 1,9D), (b LI »3)))
=<9 9L [-1, +1]>
xd v =i <33, ¥3) = <L, L) then< L, L) else underflow(x}, y3)
L1 overflow(x3, ¥3) fi
= <L, L) uL[b, 8L 11, 1) = <[, b}, [1, 1]

The approximate result is

xb, yip =<9 11}, [-1, 1>
<x3, y3> =<[10, b}, [-1, 1]}
3, ¥ =<09,8,[-1, 1>
&y =<099,[-L 1D
<x3, y3 =<b, b), 11, 1>

Any upper approximation # of the least fixed point fp(f) of an isotone
operator f on a complete lattice Z(=, 1, T, LI, M) can be improved by any
term of the decreasing chain x° = u, ..., x"*! = x" M f(x"), (We have
Ho(f) = u = x°. If by induction hypothesis /fp(f) = x*, then by the fixed
point property and isotony Ifp(f) = f(ifp(f)) = f(x), so that Ifp(f) = x* M
S(x") = x=*1, proving by recurrence that for all k > 0, Ifp(f) = x*.)

Yet notice that when u is already a fixed point no improvement is possi-
ble. In general the chain is strictly decreasing, and when L does not satisfy
the descending chain condition, it may not stabilize. However one can stop
the iteration process after any number of steps or use the following extrapola-
tion technique.

Definition 10-34. A narrowing operator A € (N — (L x L) — L))
is such that:

Vi>0,(Vx,ye Ly x),yExAj)yesx

2. Forany descending chainy® = y* 2... 2 y* =2 ... of elements of
L, the descending chain x° =) ..., x"=x"1A(n))y",...is
eventually stable.

Example 10-35. Coming back to Example 10-28, one can choose for
allj > 0:
Vxe L, 1| A(Dx=xA() L =1
[, ud A [y vl = [if Uy = b — 1) V (Iy = 0) then 1, else min(l}, 1) fi,
if (uy = b) V (u; = 0) then u, else max(u,, u,) fi]

338 SEMANTIC FOUNDATIONS OF PROGRAM ANALYSIS | CHAP. 10

This narrowing operator attempts to improve the zero or infinite bounds
(—b — 1 and b) which might have been too imprecisely extrapolated by the
widening operator.

Theorem 10-36. Letu € L be such that ([fp(f) =) and (f(u) = 4).
The decreasing chain x° = u, ..., x" = x*! A(n) f(x*"Y), ... is even-
tually stable. Moreover Yk > 0, Ifp(f) = x*.

Example 10-37. This is a continuation of Example 10-33.
$xts ¥ = <xd, ¥2) Ay(1) smash({((x} L1 x3) M [10, 100), (1 L3 y3)))
= <[10, b] A,(1) [10, 100], [—1, 1] A,(1) [1, 1>
<3, ¥$> = smash({(x4 + y4, y$D) = {19, 101], [-1, I])
x5 ¥2> = <xd, 78> A(2) smash({((x} L1 x4) 11 [10, 100], (1 L1 y3)))
= {[10, 100}, [}, 1]> = <x4, y%)

Stabilization around the loop has been achieved. The components depending
on {x}, y3> remain to be evaluated. The final result is

LD =1, [-L 1D
<x, ¥ = <[10, 100}, [1, 1]
<x3, ¥$> = <19, 101}, [-1, 1>
x> =<9,9.[-1,1p
g vy = (L, LD

10-6.3. Hierarchy of Approximate Program Analyses

Let us give three examples of approximate analysis of the same program.

Given an array R of integers whose elements are sorted in increasing
order, the following procedure searches for a given argument % and returns
the position m such that R(m) = k. When the search is unsuccessful, m
= Ib(R) — 1 where /b(R) and ub(R) are respectively the least and greatest
indices of R.

type table = array [1, 100] of integer;
procedure binary-search (var R: table; value k: integer;
result m: integer) =
var bi, bs: integer;
begin
bi := Ib(R); bs := ub(R);

SEC. 10-6 | APPROXIMATE ANALYSIS OF PROGRAMS 339

{1}
while bi < bs do
{2}
m ;= (bi 4 bs) div 2;
3
if £ = R(m) then
bi:=bs+ 1;
{4}
elsif k& << R(m) then
bs:=m—1;
{5}
else
bi:=m+1;
{6}
fi;
{1}
od;
{8}
if R(m) = k then m := Ib(R) — 1 fi;
9}

end;

The approximation considered in Examples 10-21, 10-23, 10-26, and
10-27 can be briefly sketched using a geometrical analogy. A predicate P
over two numerical variables x and y, whose characteristic set P is shown in
Fig. 10-7(a), is approximated from above by the predicate characterizing the
quadrant of the plane containing all the points of P, as shown in Fig. 10-7(b).
If, contrary to Example 10-21, we make a distinction between predicates such
as Ax.[x > 0] and Ax.[x > 0] and if we are only concerned by the behavior

{c) (d)
Figure 10-7

340 SEMANTIC FOUNDATIONS OF PROGRAM ANALYSIS / CHAP. 10

of the variables bi, bs, and m then the corresponding approximate analysis
of the procedure binary-search is the following:

P,=(Bi>0) A (bs>0)
P, =((bi>0) A (bs>0)
P,=Bi>0 A(bs>0) A (@m>0)
Po=0bBi>0) A(Bs>0A(@m>0)
Pi=Bi>0AGBs=0) A (m>0)
Pi=bi>0 A bs>0 A (m>0)
P,=bBi>0) A (Bs>0) A (m>0)
Py = (bi > 0) A (bs > 0)
Py, =(bi>0) A (bs>0)

The approximation considered at Examples 10-28, 10-31, 10-33, 10-35,
and 10-37 is more precise and consists of approximating the characteristic
set of P by the smallest rectangle including it and whose sides run parallel
with the axes, as shown in Fig. 10-7(c).

The corresponding analysis of the procedure binary-search is the following:
P, = (bi=1) A (bs = 100)
P, = (1<bi<100) A (1 < bs < 100)
Py =(1<5bi<100) A (1<bs<100) A (1 <m<100)
Pi=2<bi<101) A (1 <bs<100) A (1 <m<100)
P, = (1 < bi<100) A (0<bs < 99) A (1< m< 100)
Pe=Q2<bi<101) A (1 <bs<100) A (1 < m < 100)
P =(1<bi<101) A (0<bs < 100) A (1 <m < 100)
Py=(1<bi<101) A (0<bs < 100) A (1 <m < 100)
Py=(1<bi<101) A (0<bs < 100) A (0 < m << 100)

This analysis shows that all array accesses are correct, neither underflow
nor overflow can occur, the integer division by 2 can be implemented by a
logical right shift, i and bs should have been declared bi: 1.. 101; bs:
0..100, and the result m returned by the procedure is always included

between the bounds 0 and 100,
Some programming languages allow a declaration such as:

type table: array[1,n] of integer;

where 7 is a symbolic constant the value of which is known only at run time.
In such a case a more precise program analysis might be necessary in order to
discover relationships between bi, bs, m, and n. For example [Cous78], it can

SEC. 10-7 | BIBLIOGRAPHIC NOTES 341

be useful to look for linear equality or inequality relationships between the
numerical variables of the program. This consists in approximating the
characteristic set of a predicate P by the convex-hull of this set, as shown in
Fig. 10-7(d).
The corresponding analysis of the procedure binary-search is now:
Pi=0Bi=1 A(bs=n)
P,=(1<bi<bs<n)
P,=(1<bi<bs<<n) A(2Qm<>bi+bs<<2m-+1)
(hence 1 << m < n since m is integer)
P,=(1<bs<<n) A(bs<<2m<_2bs) \ (bi=0bs+ 1)
Pi=(1<bi<mAQ@bi—1<2m<bi+n AN(m=bs+1)
Pi=(1<bs<<n) A (bs<<2m<2bs) AN(bi=m+1)
P, = (m<bs+ 1) A (3bi << 2bs + n 4 3) A (3bi < 2bs - 2m - 3)
A QRbi<<2bs+3) A bs+m-1<bi+ n)
ANbi+m<bs+n+DAA<n A bs<<n) A (bs<2m)
A(bs +4<3bi+m A1 <2m) A (bs + 1< bi-+m)
Py =(1<bi) N(bs<nm) AN (bs<bi—1)
Notice that at program point {8} nothing is known about m. Contrary to the

previous analysis, it may be the case that » <1, in which case m is not
initialized.

10-7. BIBLIOGRAPHIC NOTES

References [Schae73, Aho77 (chapter 14), Hech77] are introductions to
program flow analysis which put emphasis on the boolean techniques (which
historically appeared first). This bibliography is devoted to program analysis
methods which do not make the hypothesis that the information to be gathered
about programs can be naturally represented as boolean vectors.

Nonboolean program analysis techniques can be traced back to [Naur66]
and [Sint72]; [Kild73, Wegb75] introduced iterative algorithms using a lattice
satisfying the ascending chain condition in order to represent the information
to be gathered about programs. The fixed point theory of approximate
program analysis is discussed by [Kam77, Cous77a]. The problem of using
iterative algorithms with lattices not satisfying the ascending chain condi-
tion is treated by [Cous77a]. [Tarj76] presents an efficient (but not general)
implementation of iterative algorithms which extends [Kenn75b, Aho76].
Noniterative program analysis methods include [Grah76, Reil77, Reil78,
Rose77a, Rose78a, Tarj75b]. Boolean techniques for interprocedural analy-

342 SEMANTIC FOUNDATIONS OF PROGRAM ANALYSIS / CHAP. 10

sis of recursive programs are proposed by {Spil72, Alle74, Lome75, Rose79,
Bart77a}, whereas [Cous77a, Shar80] handle more ambitious analyses related
to program verification.

Automatic methods for program analysis have numerous applications
including type determination [Jone76, Kapl78a, Tene74b], gathering informa-
tion for automatic data structure selection in very-high-level languages
[Schw75b, Schw75¢c], detection of induction variables and strength reduction
[Fong75, Fong76] or discovery of generalized common subexpressions
[Fong77] for set-theoretic laniguages, determination of affine equality rela-
tionships among variables of a program [Karr76], detection of programming
errors [Fosd76, Gill77], static array bound checking [Cous77a, Cous78,
Germ78, Harr77a, Suzu77, Wels77], determination of linear [Cous78] or
nonlinear [Berm76] invariant assertions, synthesis of resource invariants for
concurrent programs [ClaE79], and so on.

ACKNOWLEDGMENT

I owe a deep debt to C. Pair whose argumented advice to study program
analysis techniques using the model of discrete dynamic systems was very
helpful. I wish to thank Radhia Cousot for her collaboration.

Aho76

Aho77

Alle74

Bart77a

Berm76

Birk67

ClaE77

ClaE79

343

Bibliography

AHo, ALFRED V,, and JerrrEY D. ULLMAN, “Node Listings for Reducible
Flow Graphs,” J. Comput. Syst. Sci., 13, no, 3 (December 1976), 286-299,

AHo, ALFRED V., and JEFFrReYy D, ULLMAN, Principles of Compiler Design.
Reading, MA: Addison-Wesley, 1977.

ALLEN, Frances E., “Interprocedural Data Flow Analysis,” Information
Processing 74, Proc. IFIP Congress 74, Stockholm, Sweden (August 1974),
ed. J. L. Rosenfield, pp. 398-408. Amsterdam: North-Holland, 1974,

BARTH, JEFFREY M., “An Interprocedural Data Flow Analysis Algorithm,”
Conf. Rec. 4th ACM Symp. on Principles of Programming Languages, Los
Angeles, CA (January 1977), pp. 119-131,

BERMAN, LEONARD, and GrORGE MARKOWSKY, “Linear and Non-linear
Approximate Invariants,” IBM RC7241 (February 1976), T.J. Watson
Research Center, Yorktown Heights, NY,

BmRkHOFF, G., Lattice Theory (3rd ed.), Vol. 25. Providence, RI: AMS
Colloquium Publications, 1967.

CLARKE, E. M., Jr., “Program Invariants as Fixed Points,” Proc. 18th Ann.
Symp. on Foundations of Computer Science, Providence, RI (October—
November 1977), pp. 18-29.

, “Synthesis of Resource Invariants for Concurrent Programs,”
Conf. Rec. 6th ACM Symp. on Principles of Programming Languages, San
Antonio, TX (January 1979), pp. 211-221.

BIBLIOGRAPHY 344

Cous77a

Cous77b

Cous77c

Cous77d

Cous77e

Cous77f

Cous78

Cous79

Dijk76

Floy67

Fong75

Fong76

Fong77

Fosd76

Germ78

Gill77

Cousor, PATRICK, and RapHiA CousoT, “Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approxi-
mation of Fixpoints,” Conf. Rec. of 4th ACM Symp. on Principles of
Programming Languages, Los Angeles, CA (January 1977), pp. 238-252.

Cousort, PaTrICK, “Asynchronous Iterative Methods for Solving a Fixed
Point System of Monotone Equations in a Complete Lattice,” Rapport
de Recherche No. 88 (September 1977), Laboratoire d’Informatique,
Grenoble, France.

CousoTt, PATRICK, and RADHIA Cousor, “Automatic Synthesis of Optimal
Invariant Assertions: Mathematical Foundations,” Proc. ACM Symp.
on Artificial Intelligence and Programming Languages, Rochester, NY,
SIGPLAN Notices, 12, no. 8 (August 1977), 1-12.

, “Constructive Versions of Tarski’s Fixed Point Theorems,” Pacific
J. Math, 82, no. 1 (May 1979), 43-57.

, “Static Determination of Dynamic Properties of Recursive Proce-
dures,” IFIP Working Conf. on Programming Concepts, St. Andrews,
N.B., Canada (August 1977), ed. Erich J. Neuhold. New York: North-
Holland, 1978, pp. 237-277.

, “Static Determination of Dynamic Properties of Generalized Type
Unions,” SIGPLAN Notices, 12, no. 3 (March 1977), 77-94.

Cousor, PATRICK, and N, HALBwACHS, “Automatic Discovery of Linear
Restraints Among Variables of a Program,” Conf. Rec. 5th ACM Symp.
on Principles of Programming Languages, Tucson, AZ (January 1978),
pp- 84-97.

Cousort, PATRICK, and RapHIA CousoT, “Systematic Desigh of Program
Analysis Frameworks,” Conf. Rec. 6th ACM Symp. on Principles of
Programming Languages, San Antonio, TX (January 1979), pp. 269-282.

DUDKSTRA, EDSGER W., A Discipline of Programming. Englewood Cliffs, NJ:
Prentice-Hall, 1976.

Frovp, R. W., “Assigning Meanings to Programs,” Proc. Symp. in Applied
Mathematics of the AMS, ed. J. T. Schwartz, Providence, RI (1967),
19-32,

Fone, AMELIA C,, J. KaMm, and JErFFREY D. ULLMAN, “Application of Lattice
Algebra to Loop Optimization,” Conf. Rec. 2nd ACM Symp. on Principles
of Programming Languages, Palo Alto, CA (January 1975), pp. 1-9.

Fong, AMEUIA C., and JEFFREY D. ULLMAN, “Induction Variables in Very
High Level Languages,” Conf. Rec. 3rd ACM Symp. on Principles of
Programming Languages, Atlanta, GA (January 1976), pp. 104-112.

Fong, AmeLia C., “Generalized Common Subexpressions in Very High
Level Languages,” Conf. Rec. 4th ACM Symp. on Principles of Programming
Languages, Los Angeles, CA (January 1977), pp. 48-57.

Fospick, L. D., and L.J. OsTeRweIL, “Data Flow Analysis in Software
Reliability,” Comput. Surv., 8, no. 3 (September 1976), 305-330.

GERMAN, S., “Automating Proofs of the Absence of Common Runtime
Errors,” Conf. Rec. 5th ACM Symp. on Principles of Programming Lan-
guages, Tucson, AZ (January 1978), pp. 105-118.

GILLETT, W. D., “Iterative Global Flow Techniques for Detecting Program
Anomalies,” Ph.D, thesis UTUCDCS-R-77-868, (January 1977), University
of Illinois at Urbana-Champaign.

345

Grah76

Hant76

Harr77a

Hech77
Hoar69

Jone76

Kam77

Kapl78a

Karr76
Kell76

Kenn75b

Kild73

King69

Klee52

Lome75

Naur66

Park69

Pnue77

Reil77

BIBLIOGRAPHY

Granaw, S. L., and M, WEGMAN, “A Fast and Usually Linear Algorithm
for Global Flow Analysis,” J. ACM, 23, no. 1 (January 1976), 172-202.

HANTLER, S. L., and J. C. KiNG, “An Introduction to Proving the Correct-
ness of Programs,” Comp. Surv., 8, no. 3 (September 1976), 331-353.

HarrisoNn, WiLLiaM H., “Compiler Analysis of the Value Ranges for
Variables,” IEEE Trans. Software Eng., SE-3, no. 3 (May 1977), 243-250.

HEecuT, MATTHEW 8., Flow Analysis of Computer Programs. New York:
Elsevier North-Holland, 1977.

Hoare, C.A.R., “An Axiomatic Basis for Computer Programming,”
Commun. ACM, 12, no. 10 (October 1969), 576-583. ‘

Jongs, NeL D., and SteEvEN S, MUCHNICK, “Binding Time Optimization in
Programming Languages: Some Thoughts Toward the Design of an Ideal
Language,” Conf. Rec. 3rd ACM Symp. on Principles of Programming
Languages, Altanta, GA (January 1976), pp. 77-94.

Kam, J. B., and Jerrrey. D. ULLMAN, “Monotone Data Flow Analysis
Frameworks,” Acta Inf., 7, fasg: 3 (1977), 305-317.

KarLaN, M. A., and Jerrrey D. ULLMAN, “A General Scheme for the
Automatic Inference of Variable Types,” Conf. Rec. 5th ACM Symp. on
Principles of Programming Languages, Tucson, AZ (January 1978), pp.
60-75. :

KArr, M., “Affine Relationships Among Variables of a Program,” Acta
Inf., 6, fasc. 2 (April 1976), 133-151.

KELLER, R. M., “Formal Verification of Parallel Programs,” Commun. ACM,
19, no. 7 (July 1976), 371-384.,

Kennepy, KenNeTH W., “Node Listing Applied to Data Flow Analysis,”
Conf. Rec. 2nd ACM Syinp. on Principles of Programming Languages,
Palo Alto, CA (January 1975), pp. 10-21.

KimpaLL, G. A,, “A Unified Approach to Global Program Optimization,”
Conf. Rec. ACM Symp. on Principles of Programming Languages, Boston,
MA (October 1973), pp. 194-206.

Kimng, J., “A Program Verifier,” Ph.D. thesis, Department of Computer
Science, Carnegie-Mellon University, Pittsburgh, PA, 1969,

KieeNe, STEPHEN CoLE, Introduction to Metamathematics. New York:
D. Van Nostrand. 1952.

LoMeT, D. B., “Data Flow Analysis in the Presence of Procedure Calls,”
IBM Research Report RC-5728 (1975), T.J. Watson Research Center,
Yorktown Heights, NY.

NAUR, P. “Proof of Algorithms by Generalized Snapshots,” BIT, 6(1966),
310-316.

PaRrK, DAvip, “Fixpoint Induction and Proofs of Program Properties,” in
Machine Intelligence 5, ed. Bernard Meltzer and Donald Michie. New
York: American Elsevier, 1969, pp. 59-78.

PnuELL A., “The Temporal Logic of Programs,” Proc. 18th Ann, Symp. on
Foundations of Computer Science, Providence, RI (October-November
1977), pp. 46-57.

Rerr, Joan H., and HARrY R, LEwis, “Symbolic Evaluation and the Global
Value Graph,” Conf. Rec. 4th ACM Symp. on Principles of Programming
Languages, Los Angeles, CA (January 1977), pp. 104-118.

BIBLIOGRAPHY 346

Reil78

Rose77a

Rose78a

Rose79
Scha73

Schw75b

Schw75¢

Shar81

Sint72

Spil72

Suzu77

Tarj75b

Tarj76

Tene74b

Wegb75

Wels77

RErF, Joun H., “Symbolic Program Analysis in Almost Linear Time,” Conf.
Rec. 5th ACM Symp. on Principles of Programming Languages, Tucson,
AZ (January 1978), pp. 76-83.

RosEN, BARrY K., “Applications of High Level Control Flow,” Conf. Rec.
4th ACM Symp. on Principles of Programming Languages, Los Angeles, CA
(January 1977), pp. 38-47.

, “Monoids for Rapid Data Flow Analysis,” Proc. 5th ACM Symp.

on Principles of Programming Languages, Tucson, AZ (January 1978),

pp. 47-59.

, “Data Flow Analysis for Procedural Languages,” J. ACM, 26, no. 2
(April 1979), 322-344.

SCHAEFER, MARVIN, 4 Mathematical Theory of Global Program Optimization.
Englewood Cliffs, NJ: Prentice-Hall, 1973.

ScawarTz, JacoB T. “Optimization of Very High Level Languages I: Value
Transmission and its Corollaries,” J. Comput. Languages, 1 (1975), 161-194.

, “Optimization of Very High Level Languages II: Deducing Relation-
ships of Inclusion and Membership,” J. Comput. Languages, 1 (1975),
197-218.

SHARIR, M., and A. PneuLl, “Two Approaches to Interprocedural Data
Flow Analysis,” this volume, chap. 7.

SintzoFr, M., “Calculating Properties of Programs by Valuations on
Specific Models,” Proc. ACM Conf..on Proving Assertions about Programs,
New Mexico (1972), pp. 203-207.

SpILLMAN, THoMAS C., “Exposing Side-Effects in a PL/I Optimizing Com-
piler,” Information Processing 71, Proc. IFIP Congress 71, Ljubljana,
Yugoslavia (August 1971), ed. C.V. Freiman, 376-381. Amsterdam:
North-Holland, 1972.

Suzuki, NormIsA, and KiyosHI ISHIHATA, “Implementation of Array Bound
Checker,” Conf. Rec. of 4th ACM Symp. on Principles of Programming
Languages, Los Angeles, CA (January 1977), pp. 132-143,

TARJAN, RoBERT ENDRE, “Solving Path Problems on Directed Graphs,”

STAN-CS-75-528 (November 1975), Computer Science Department,
Stanford University, Stanford, CA.

, “Iterative Algorithms for Global Flow Analysis,” in Algorithms and
Complexity, New Directions and Recent Results, ed. J. F. Traub. New
York: Academic Press, 1976, pp. 11-101.

TENENBAUM, AARON, “Type Determination for Very High Level
Languages,” Report NSO-3 (October 1974), Computer Science
Department, New York University.

WeGBREIT, BEN, “Property Extraction in Well-founded Property Sets,”
IEEE Trans. Software Eng., SE-1, no. 3 (September 1975), 270-285.

WELsH, J., “Economic Range Checking in PASCAL,” Department of Com-
puter Science, Queen’s University, Belfast, Northern Ireland, October 1977.

