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REASONING ABOUT PROGRAM INVARIANCE PROOF METHODS

Patrick Cousot and Radhia Cousot

ABSTRACT

We present a mathematical model based on dynamic discrete transition
systems for constructing, explaining, verifying, comparing, optimizing and
transforming program proof methods. We are particularly interested in
invariance properties of parallel programs such as partial correctness,
absence of global deadlock or non-termination which consist in characteri-
zing a super-set of the possible descendents of the valid initial states.

We first characterize invariance properties using fixpoints and next
derive the fundamental sound and complete invariance proof method. Proving
the invariance of an assertion Y consists in showing that some global inva-
riant I stronger than Y is true for the valid entry states and remains true
after any transition. Known invariance proof methods (Floyd, Hoare, Naur,...
for sequential deterministic programs; Clarke, Clint,... for coroutines;
Howard, ... for monitors; Ashcroft, Ashcroft & Manna, Hoare, Keller, Lamport,
Mazurkiewicz, Newton, Owicki & Gries,... for parallel programs with shared
variables; Apt,Francez & de Roever, Cousot & Cousot, Levine,... for communi-
cating sequential processes & la Hoare;...) all reduce to the fundamental
invariance proof method and differ only because they use different decompo-
sitions of the global invariant into local assertions attached to program
control points. We formalize this notion of decomposition by means of Galois
connections, the mathematical properties of which are reminded. We next show
that a given decomposition of the global invariant into local assertions
associated with program control points can lead to a complete lattice of
distinct verification conditions. 1In order to illustrate this point we
propose several variants of the Lamport-Owicki proof rules. All these variants
are sound and complete althougth some of them require stronger invariants than
others. Invariance proof methods which have been designed for very different
programming languages can nevertheless be compared by showing that they rely
on similar decompositions of the global invariant. It is also remarked that
some decompositions lead to sound but intrinsically incomplete proof methods
when the correspondence between the global invariant and its decomposition
is not one-to-one for all programs. We next introduce the notion of reduction/
extension of dynamic discrete transition systems in order to formalize the
transformation of a program by introduction of auxiliary variables so that
the assertions interleaved in the program text need not explicitly mention
program control points. We finally compare our approach with other formalisms
for reasoning about program proof methods in particular program logics.




RESUME

Nous présentons un modele mathématique basé sur les systemes dynamiques
ad transitions discretes permettant de construire, expliquer, vérifier, comparer,
optimiser et transformer les méthodes de preuve de propriétés des programmes.
Nous nous intéressons particulierement aux propriétés d'invariance des program-
mes paralleles comme la correction partielle, 1'’absence d'interblocage global
ou la non-terminaison, qui consistent & caractériser un sur-ensemble des descen-
dants possibles des états d'entrée.

Aprés avoir caractérisé les propriétés d'invariance par point-fixe, nous
montrons que la méthode fondamentale de preuve d'invariance d'une assertion Y
consiste & découvrir une assertion plus forte I gqui est vraie pour les états
initiaux et reste vraie apres une transition quelconque. Les méthodes connues
de preuve d'invariance (Floyd, Hoare, Naur,... pour les programmes séguentiels
déterministes; Clarke, Clint,... pour les coroutines; Howard,... pour les
moniteurs; Ashcroft, Ashcroft & Manna, Hoare, Keller, Lamport, Mazurkiewicz,
Newton, Owicki & Gries,... pour les programmes paralléles partageant des varia-
bles communes; Apt,Francez & de Roever, Cousot & Cousot, Levine,... pour les
processus séquentiels communicants & la Hoare;...) se ramenent & la méthode
fondamentale et ne différent que par des décompositions différentes de 1'inva-
riant global en des assertions locales associées aux différents points de con-
tr6le du programme. Aprés avoir formalisé cette décomposition au moyen de
connections de Galois dont nous rappelons les propriétés mathématiques, nous
montrons qu’une méme décomposition de 1'invariant global en des assertions
associées aux points de contrdle du programme peut donner lieu a des
régles de vérification distinctes formant un treillis complet. Nous illustrons
ce résultat en proposant quelques variantes de la méthode de Lamport-Owicki,
qui sont toutes correctes et complétes bien que certaines d’entre-elles nécéssi-
tent 1'’emploi d'invariants plus forts gque d'autres. Des méthodes de preuve
d’'invariance ayant été congues pour des langages tres différents peuvent égale-
ment 8tre comparées en montrant gu’elles sont fondées sur des décompositions
similaires de 1l'invariant global. Nous remarquons également gue certaines
décompositions conduisent & des méthodes de preuve qui sont correctes mais
intrinséquement incomplétes quand la correspondance entre 1l'invariant global et
sa décomposition n'est pas injective pour tous les programmes. Nous introdui-
sons ensuite la notion de réduction/extension de systémes dynamiques & transi-
tions discretes qui permet de formaliser la transformation d'un programme par
introduction de variables auxiliaires afin d'éviter de mentionner explicitement
les points de contrdle du programme dans les assertions. Finalement, nous
comparons notre appoche pour raisonner sur les méthodes de preuve de programes

avec d'autres formalismes, notamment les logiques de programmes.




REASONING ABOUT PROGRAM INVARIANCE PROOF METHODS

Patrick Cousot* and Radhia Cousot**

1. INTRODUCTION

The essence of program proof methods such as those described by Naur([66 ],
Floyd[67], Hoare[69] and their followers may be difficult to explain concisely.
The main difficulty is the diversity of syntactic formalisms which are used for
representing algorithms. This difficulty is even more evident when concurrent
programs are concerned. For example, although similarities and differences are
intuitively observed between methods for proving invariance properties of
parallel programs such as Ashcroft[75], Hoare[75], Howard[76], Keller[761,
Lamport[77], Mazurkiewicz[77], Newton[75], Owicki & Griesl[76a,76b], it is
difficult to compare them in abstracto. Until now the design of invariance
proof methods has been ad-hoc and informal. The correctness of these methods '
is often established a posteriori (references in Apt[79]), rather it is more
advisable to formally construct a priori correct program verification methods.
Although soundness and completeness proofs rely on simple and similar principles
they are often long and wearisome. Instead of always restarting from scratch the
verification of program proof methods should be obtained from general purpose
theorems. The manipulation of program proof methods should also be considered.
For example can't Clarkel[801's method for proving correctness of coroutines be
considered as an optimization of Clint[731's method since simpler invariants are

needed? The transformation of a program proof method in order to adapt it to
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different language features is not always easier than the original and may be
error-proned (e.g. Apt, Francez & de Roever[79]). Rather program verification
methods should be manipulated usingcorrectness preserving transformations.

By analogy with what happened for programs the above arguments advocate
in favor of a mathematical formalism for reasoning about program proof methods
in particular for constructing, explaining, verifying, comparing, optimizing
and transforming them. We present such a mathematical model based on dynamic
discrete transition systems and illustrate it by means of an application to
invariance proof techniques for parallel programs sharing global variables and
synchronized by conditional critical sections. Finally other approaches are

discussed.

2. OPERATIONAL SEMANTICS

We assume that the set La of syntactically correct programs can be defined
by any context-sensitive syntax definition method. Defining the operational
semantics of the programming language La consists in defining for each program
Prela a set of states S(Pr) anda transition relation t(Pr)e[[S(Pr)xS(Pr)]~B]]
between any state and its possible successors. B={true,false} is the set of
truth values, it is a complete boolean lattice <B;=>,false,true,V,A,=> with

ordering false=>true.

Example 2.0.1. : Let us consider a language La where each program Prela
consists of parallel processes sharing global variables and synchronized by
conditional critical regions. The abstract syntax is as follows
- Programs Pr : D:;[P(1) Il P(2) |l---1] P(m)]} where m>1.
- Declarations D : x(1):t(1);...:x(8):£(S8) where §21.
- Variables x(i),ie[1,8].
- Types t(i),ie[1,8].
- Processes P(i),ie[1,m] ¢ A(1,1):C(4,1)5...3A01,0(i)):C(1,0(iN3A04,0(1)+1):stop
where o(i)21.
- Labels A(i,j).iel1,m],jel1,0(i)+1].
- Commands C(i,j),1iel1,m],Jel1,0(1i)]
. Null commands C(i,j),iel1,m],jeN(i) : skip.
. Assignment commands C(i,j).ie[1.m],JeA(d) : x(a(i,j):=eli,jlx) where

gﬁi,j]€[1,§j and e(i,j) maps dom(e(i,jllct into tlali,jhn.




. Test commands C(i,J).ie[1,m1,JeT (1) : if b(i,J)(x) go to A(i,nl(i,jlwhere
b(i,j) maps dom(b(i,jlet into truth values and n(i,jlel1,0(i)+1].

. Await commands C(i,3),iel1,7],jeW(i) : await b(i,j)(x) then x:=Ff(i,jlx)
where b(i,j) maps dom(b(i,j)lct into truth values and f(i,j) maps
dom(£(1:3Det into L

. Stop commands C(i,j),iel1,m],jeH(i) : stop.

{N(3),A(1),T(1),W(i),H(i)} is a partition of [1,0(i)].
The concrete syntax of some examples will freely deviate from the above abstract

syntax when the correspondence is obvious.

Let us now define the operational semantics. Concurrency in the execution
of a program is modeled by global nondeterminism in the selectiqn of successor
states

- Program locations : LﬁH{{A{i,j]:j€[1,gﬁi)+1]}:i€[1,ﬂj}.
(If {E(i):icI} is a family of sets the cartesian product M{E(i):icI} is
defined as the subset of Isy{E(i):ieI} of all functions f for which
Fild Ve Bl cfonualils el

=~ Btatesia [ S=tklE

- Transition relation :
te[[SxS]1~+B]
t=A([xa,ca],[xb,cbD.[3ie[1,ﬂJ.je[1,gﬁi)],K€[1,gli]+1]:[V2€[1.1J—{i}.

Cb[2]=ca(2J]A(Ca(i]=ﬁji.j]]A[cb(i]?A[i,KDACbm[i,j,k)[xa,xbﬂ

Com(i,j,K)el[txt1>Bl,iel1,m],jel1,0(i) ], kel1,0(i)+1]
Com(i,j.k)=A(xa,xb) .[(WMull(i,j)xa,xb)A k=j+1) V (Assign (i, jlxa,xb)A k=j+1)]
V Test(i,j,k)(xa,xb) V (Await(i,j)xa,xb) Ak=j+1}]

Mull(i,j)elltxt1+Bl,iel1,m], jel1,0(1)]
Mull(i,jl=A(xa,xb).[jeN(i) Axb=xal

Assign(i,j)elltxt1+Bl,iel1,m],jel1,0(1)]

Assign(i,j)=A(xa,xb).[jeA(i) Axaedom(eli,jNA xb=subst (xal(@(i,j)/e(i,]j)(xaN]
(If {E(i):iel} is a family of sets and xell{E(i):i€l},jel,veE(]) then
subst (x)(j/v) equals y such that y(j)=v whereas y(k)=x(k) for all kel
such that kzj. If n>1,j1,...,jneI and vleE[jl),...,vneE(jn] then
subst[xﬂjl/vl,...,jn/vn]=subst[subst[xnj]/vl]][jz/vz,...,jn/vn]).

Test(i;j»K]€[[EX£]_’B_J,iE[1 ;EJ:Jé[/l ’_q_(l] ]nk6L1xg(l]+1J
Test(i,j,k)=A(xa,xb).[JeT(1) Axb=xa Axaedom(b(i,j)) AL(b(1,3)xa) Ak=n(i,3))
v (Tb(i,j)xa) A k=j+1)1]




Avait(i,3)el[txt]+>Bl,iel1.m1],jel1,0(1)]
Await (1,3)=A(xa,xb) .[JeW(i) A xae(dom(b(i,3)) Ab(i,]lxa) A xaedom(f(1i,]))
A xb=f(i,jl(xa)]

The above semantics does require that statements be executed as indivisible
actions. This convention can be lifted for assignments and boolean éxpressions
when memory reference is indivisible and each assignment or boolean expression
refers at most once to at most one variable which can be changed by another

process while this statement or expression is beeing evaluated. End of Example.

3. FIXPOINT CHARACTERIZATION OF INVARIANCE PROPERTIES

Invariance properties of programs include partial correctness, absence of
deadlocks and non—-termination that is properties of programs that can be proved
by characterizing super-sets of the sets of states that can be reached during
execution of these programs.

We assume that E(Pr) is the set of possible entry specifications for the
program PreLa the meaning of which is given by e(Pr)e[E(Pr) ->P(Pr)] where
P(Pr)=[s(Pr) +B]. e(Pr)(¢) is a predicate over states which characterizes the
set of possible initial states corresponding to the entry specification $deE(Pr)
of program Pr.

Let Post(Pr)el[[S(Pr)xS(Pr)1+B]~[P(Pr) >P(Pr)1] be the "before-after”
predicate transformer defined as

Post (Pr)=X0.[Aw.[Asa.[dsbeS(Pr): w(sb) AB(sb,sa)ll]

By definition the set of states which may be reached during any execution
of program Pr starting with an initial value of the variables satisfying the
entry specification ¢eE(Pr) is characterized by Post(fjj(t(EEJ*IE(Ez)UbD where
t(EE)* is the reflexive transitive closure of t(Pr).

Let f(Pr)elE(Pr) »[P(Pr) »P(Pr)]] be A¢.[Aw.[e(Pri(¢) Vv Post (Pr)(t (Pr))(w) 1]
and Lfp be the least fixpoint operator for isotone operators on complete
lattices (Cousot & Cousot[79b1). Invariance proof methods (Cousot[79]) and
automatic program analysis techniques (Cousot & Cousot[78a]) are founded on the

following

THEOREM 3.0.1

l WPrela, Y¢eE(Pr), Post(Pr)(t(Pr) )e(Pr)(¢) = Lfp(f(Pr)($)

For the sake of conciseness the parameter Pr will be omitted and we will

write YPrela, VoeE, Post(t Ne(N=Lfp(f(9)).




4. FUNDAMENTAL SOUND AND COMPLETE INVARIANCE PROOF METHOD

Y eP is said to be invariant during execution of program Pr starting with
*
any state satisfying the entry specification ¢€E if and only if Post(t J(e(d))
= Y.

Example 4.0.1. : Assume that £ ¢ P characterizes exit states, ¢eE is an
entry specification and YeP is an exit specification. A partiel correctness
proof consists in showing the invariance of (&=>|) that is Post(t*)(€[¢D =
(E&=y). Let us define B=As.[V¥s'eS, —t(s,s')] so that B characterizes blocking
states. An absence of deadlock proof consists in showing the invariance of (R=>§)
that is Post[t*J[€(¢D2>[8:>£]- Finally a non-termination proof is also an
invariance proof since it consists in showing that Post(t*J(E[¢D:>[“EA“B]-

End of Example.

The above fixpoint characterization of Post[t*](€[¢n and Tarski's fixpoint

theorem lead to a sound and complete invariance proof method

THEOREM 4.0.2

WPrela, YoeE, WheP, [Post(t )e(9D=>Y] <= [ITeP & (F(PI1I=>TIA(I=>Y)]

Example 4.0.3. : The global assertion Y=A(x,c).[(c(1)=2 Ac(2)=2)=>(x=2]]
is invariant for the program :

x:integer;
[1: await true then x:i=x+1;
l11: await true then x:=x+1;

2:
2:
and the entry specification
$=(x=0) such that e($)=A(x,c).[c(1)=1Ac(2)=1Ax=0].
This can be proved using the assertion
T=h(x%:0) Llel1l=1Ac(2]=1 Ax=0]Y(c(1]=1 Aal2])=2 Ax=1]
V(c(1)=2Ac(2)=1 Ax=1)v(c(1)=2 Ac(2)=2 A x=2]]
such that €(¢)=>I and Post(t)(I)=>I and I=>y. End of Example.

Example 4.0.4. : Ashcroft[75] justifies his method for proving assertions
about parallel programs by a verification condition theorem which, using the
above notations, can be stated as
YPrela,YdeE,YeP,
[e(¢)=>y A Post (£)(Post (t* e (@A YI=p] <= [Post(t I(e(¢) =P ].

Ashcroft next remarks that we don’'t know exactly which states satisfy




Post[t*)(€[¢D so that "we could have left this term out of the verification
condition entirely”. He adds "however, if the impossibility of reaching
certain states is crucial for certain properties of a program to hold” then
we can "explicitly incorporate the impossibility into the assertions we wish
to prove valid and check the above condition for all states”. This informally
introduces the induction principle

¥YPrela, YoeE, YeP,

[3IeP: (e($)=TIA(Post (LN I)=>TIA(I=Y) ] = [Post[t*ne[¢n=?w]

later proved by Keller[76]. End of Example.

5. DECOMPOSITION OF A GLOBAL ASSERTION ABOUT PROGRAM STATES
INTO A SET OF LOCAL ASSERTIONS

According to theorem 4.0.2 an invariance proof consists in showing that
[3IeP: (e(P)=TI)A(Post(t)(I)=I)A(I=Y)]. A single global assertion I about
values of variables and program locations is used in order to describe sets
of program states. This verification condition can be decomposed into a
conjonction of verification conditions [4IeP: (e($)=>I)AN{Post (£t (K(I)=>I:keT}
A(I=y)} whenever the transition relation is of the form =l tlklskeT} da.2.
Ashcroftl[75], Keller[761).

Another type of decomposition consists in formulating this global
assertion using a set of local assertions interspread at appropriate places
in the program text. Without loss of generality the set of local assertions
used in the proof of a program Pr will be assumed to belong to a complete
boolean lattice <A;=>,false,true,V,A,~> (the symbols =>, false, true, VvV, A, =
are overloaded). The meaning of A will be formally specified by maps pe[P +A]

and BE[A-+P] which define a correspondence with P.

Example 6.0.1. : Naur[66], Floyd[67] and Hoare[69]'s invariance proof
methods are applicable to programs Pr involving a single process (r=a A
local assertion about values of variables is associated with each program
point, hence A=H{[E;+B]:je[1,gﬁ1]+1]}. The meaning of QeA is given by ETQ]=
Alx,c) . Lvic=A(1,3)AQ03)(x) : jel1,0(1)+11}]1. The set of local assertions
corresponding to a global assertion weP is plw)=Aj.[Ax.[w(x;A(1,3))1]. p

is a total complete isomorphism and p is its inverse. End of Example.

Since global assertions of P and sets of local assertions of A play

equivalent roles one is tempted to require pe[P>A] to be a total complete




lattice isomorphism. A weaker hypothesis turns out to be sufficient : p will
only be required to be a complete join-morphism (i.e. ¥XgP, p(vX)=vp(X). In

particular when X is empty, p . is false-strict].

6. GALOIS CONNECTIONS
bekuum P@QCt}

Complete join-morphism;ygarrespond in a one-to-one manner with Galois
connections (Pickert[52],Dubreil & Croisot[54]).

In what follows uX (respecfively nX) denotes the least upper bound
(respectively greatest lower bound) of a subset X of a poset <P;<> when it
exists. We define a Galois connection between posets <P;<> and <A;<> as a
pair (p,p) of total maps pe[P Al and pelA->P] which are isotone and such that
p3551 and 1<pop where 1 is the identity map. (This definition is equivalent
to the one of Birkhoff[40] and Ore[44] when considering the dual of <A;<>).
The partial maps 3e[[A+P]1+[P+A]] and 9¢[[P+A]+[A+P]1] are defined as

(6.0.1) 3=Ap.[Ax.[n{yeA: x<p(y)}]]
(6.0.2) 9=Ap.[Ay.[u{xeP: p(x)<y}]1]

Let <P;<> and <A;<> be posets and pe[P +Al, pelA>P]be total isotone maps.

Then it follows from Schmidt[53] and Pickert[52] that the following conditions
are equivalent :

(6.0.3) p is a complete u-morphism and B¥§[p1

(6.0.4) pops1 and 1<pep

(6.0.5) VYxeP, VyeA, (p(x)sy)<=>(x<p(y))

(6.0.6) 3(p)=p and d(p)=p

(6.0.7) p<d(p) and 3(p)<p

(6.0.8) p is a complete n-morphism and p=3(p)

If [p,Bj is a Galois connection between <P;<> and <A;<> then the above
results together with Zervos[71] imply :
(6.0.9) (pop=1) <= (p is onto) <=> (p is one-to-one)

(6.0.10) (pep=1) <= (p is one-to-one) <= [E'is onto)

Let <P;<,1,T,u,n,~> and <A:<,1,T,U,n,™ be boolean lattices. If f is
a function of a boolean lattice into a boolean lattice, we define f as
Ax[=(f(~(x)N 1, then : _
(6.0.11) (p,p) is a Galois connection between P and A if and only if [B)S)
is a Galois connection between A and P

(6.0.12) ¥ is onto (one-to-one) iff ¥ is onto (one-to-one)



Example 6.0.13. : If te[[SxS]~B] is a transition relation then its inverse
is t-1=X(51,82].[t[52,51]]. Define Pre as Ae.[Post[e_l]]. It is observed in
Cousotl 78] that [Post[t),P;e[t]] is a Galois connection between P and P. This
is used to prove that Floyd-Naur 's invariance proof method

VPrelLa,deE,peP, [3IeP: e($)=I A Post (£t)(I)=>1 AI=>¢]<:>[P03t[t*ne(¢n=»w]

is equivalent to Hoare's method

VPrela, peE,peP, [IIeP: €(¢]=>I/\I=>P;e(tHI)A I;éw]<:>[P03t(t*ng[¢nf$w]

It is also observed that VIeP, Pre(t)(I) => (Pre(t)I) v Pre(tltrue]) and
equality holds when t is deterministic (i.e. VYs1,52,53€5, (t(sy1,52) Atls1,83))
—>(s,=s3)). In that case (I=>Pre(t)(I)) is equivalent to (I APre(t)(truel) =
Pre(t)(I). End of Example.

7. THE COMPLETE LATTICE OF VARIANTS OF THE FUNDAMENTAL INVARIANCE
PROOF METHOD

Given Prela, let p be a complete join-morphism from the complete boolean
lattice <P;=>,false,true,V,A,™> of "global assertions” into the complete
boolean lattice <A;=>,false,true,V,A,™> of "sets of local assertions”. Define
5 as 9(p)-

A set VYeA of assertions is said to be invariant during execution of
program Ez_starting with any state satisfying the entry specification dek
if and only if :

(7.0.1)  p(Post (£ e(@M=>Y
or equivalently (3.0.1)
po(lfp (F (=Y
This property can be proved using any of the sound or sound and complete

variants of the fundamental invariance proof method 4.0.2 which are introduced

by the following

THEOREM 7.0.2
B ARl

Let ¥ be an isotone operator on the complete lattice <P;=>, false,true,V,A>

_lp be a complete v-morphism from P into the complete lattice <A;=>,false,true,V,A>,

1o be d(p) and F be poFQB. Then

(1) p(lfp(FN=>Lfp(E) and the inequality can be strict.

(2) If p isone-to-one (but this is not necessary) then pef=Fop so that
o(lfp(fN=1Lfp(F).




If moreover, there exists an isotone operator F on A such that QOF=F5p
then

(3) fbe) the inequality can be strict and equality holds if (but not
only if) p is onto.

(4) Let F be any isotone operator on A such that_ﬁ=¢F:=>F_then
LfplE) = AfptF) = Ifp(F) = pllfp(f 1+

(5) Further if F is any isotone operator on A such that p(lfp(f)=>1sp(F)
(respectively p(lfp(f))=Lfp(F) then VY¥eA, p(lfp(f))=¥ if (respectively
if and only if) [3IeA : (F(I)=I)A(I=VY) ].

Given an operational semantics, the design of an invariance proof method
consists in choosing A and p that is how sets of program states are going to
be described by assertions. Then theorem 7.0.2 leads to sound and complete
verification rules. If p is not onto, the complete lattice of FelA—Al] such
that_E=%>F=%fE is not reduced to a single element and several program
verification rules can be considered. In order to prove the invariance of
YeA, F-may require to guess a stronger invariant I than E_since[FIIJ:>I]
implies (F(I)=>I) which implies (F(I)=>I) but the reciprocal may not be true.
This argument in favor of F must be balanced by the fact that F leads to
simpler verification rules. In practice a balance must be found between
weaker invariants and more complicated verification rules or stronger invari-

ants and simpler verification rules.

8. CONSTRUCTING AN INVARIANCE PROOF METHOD

We study invariance proof technigues for parallel programs consisting
of concurrent processes sharing global variables and synchronized by condi-
tional critical sections as defined at example 2.0.1. Several well-known
methods are shortly reviewed and some of the possible alternatives are cons-

tructively introduced and discussed.

8.1 USING A SINGLE GLOBAL INVARIANT

In the invariance proof methods of Ashcroft[75] and Keller(76] a single
invariant is used to indicate correctness (see paragraph 4). As remarked at
paragraph 5 the ability to decompose the verification conditions is not lost.

However the use of a single invariant is inadequate for large programs.
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8.2 ASSOCIATING AN ASSERTION ABOUT VARIABLES WITH EACH CONTROLE STATE

One of the early attempts toward the decomposition of the global inva-
riant can be found in Ashcroftg Mannal70]. Converting a parallel program to
a nondeterministic serial program is one way of applying the idea of Naur,
Floyd and Hoare that is associating a local assertion about the values of the
variables with each possible value of the control state. Another way to apply
the same idea consists in defining :

(8.2.0.1) A = [L~>[t~>B]]
o = Aw.[rc.[Ax.[w(x,c)]1]]

Since p is bijective the corresponding invariance proof method is sound and

complete (th.7.0.2). Unfortunately this leads to [g{1]+1]x...x(gﬁﬂ)+1] local

assertions so that proofs tend to be very long.

8.3 ASSOCIATING AN ASSERTION ABOUT VARIABLES WITH EACH PROGRAM POINT

The above exponential explosion can be avoided by associating about
(g[1]+1]+...+[gﬁﬂj+1] local assertions with a program. For example one can
associate with each program point an assertion about the values of the
variables. Otherwise stated this consists in choosing :

(8.3.0.1) A = T{I{[t>Bl:je(1,0(i)+11}:1el1, 1]}
Aw.[Ai.[A.[Ax.[3cel:w(x,subst (c)(i/A(1,3M11]]
AQR.[A(x,c).[¥iel1,m], 3jel1,0(1)+1] :c(i)=A(41,]) AQ1)(F)x)1]

il

p

p

n

Keller[76] and Owicki & Gries[76b] have shown that the corresponding proof
method is not complete using informal arguments about an example. Theorem
7.0.2 gives a formal basis to such a reasoning : the proof method correspond-

ing to p is not complete if a program [T’ can be found such that p(Zfp(f(¢)) =
Lfp(F(¢)).

8.4 ASSOCIATING AN ASSERTION ABOUT VARIABLES AND PROGRAM LOCATION
COUNTERS WITH EACH PROGRAM POINT

An alternative to 8.3.0.1 consists in associating with each program point
an assertion about the memory state and the control state. This idea can be
extirpated out of Newton[75]'s ISIPA model and is clear in Lamportl771 (it is
also implicitly present in Owicki & Gries[76b], Mazurkiewiczi77] although the
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control state is simulated by history variables). Otherwise stated this
consists in choosing :

(8.4.0.1) A = I{I{[txL>BI:jel1,0(i)+11}:ie[1, 7]}
Aw-LAL.LAF.[A(x,c).[c(i)=A(1,]) Awlx,c)]1]]]
AQLA (x,e) . [Viel1,m], 35el1,00i)+1]: c(1)=A(1,3) AQ(1)(F)x,c)]]

i

e
0

(D,Bj is a Galois connection between P and A and p is one-to-one so that
according tc theorem 7.0.2.(2)-(5) the corresponding invariance proof method
is sound and complete. Let us introduce :
Post (m)(n,p) elL[ txL]1>B] »~[[txL]1+>B11, me[1,7],nel1,0(m) 1, pel1,0(m)+1]
Post (m)(n,p) =AY.[A(x,c).Lc(m)=A(m,p)A(Ix"et:P(x’,subst (c)(m/A(m,n)IA
Com(m,n,pl(x',x) 1]

so that if Y is an assertion about variables and control states which is true
before execution of command C(m,n), then Post(m)(n,p)(y) is true after execution

of C(m,n) and going to A(m,p). According to theorem 7.0.2, let us also

introduce :
(8.4.0.2) F e [E>[A>A]]
F = Ap.[pof(d)ep]
= AP LAY.LAL. LA .[A(x,6) .LL03=1 A (Vkel1,m],c(KkI=A(K,1NA ¢(x]]
vldnel1,0(1i) 1:Post (1)(n, 3IY(1)(n)A Cont{i}(¥N(x,c)]
vlc(i)=A(1,3) A dmel1,m]-{i},nel1,0(m) ], pel1,0(m)+11]:
Post (m)(n, pXY(1)(FIA ¥(m)n) A Cont{i,m}(¥)ix,c)I1I]]]
where
cont ¢ [28 "2V 5 fA>[[txL]>BI1]

Cont = AX.[AY.[A(x,c).[¥ke[1,m1-X,92e[1,0(k)+1T:c(k)=A (K, 2) A ¥(KI(R)(x,c)]]]

Let us define :
(8.4.0.3) e LE>[A>A]]
= ApLLAY.LAL. LA LA (x,c).[[3=1 A (Vkel1,m],c(k)=A(k,1]) A p(x]]
VL Anel1,g(1) J:Post (330 J WYL L 100 DEx% 0] ]
vlc(1)=A(1i,3) Admel1,mI-{i},nel1,0(m) ], pel1,0(m)+1]:

Post (m)(n,p)¥Y(m)(n)ix,c)l]1]1]]

F
F

such that VY¢eE, pof(dp)=F(dlop.

The invariance proof method corresponding to F is similar to the one introduced
by Newton[75] using a quite different definition of concurrent programs. We
have not found in the literature any invariance proof method similar to the

one corresponding to F. Since E?E we have in fact introduced a complete
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lattice of Fe[E~>[A~>A]] such that F=>F=>F each one corresponding to a
particular invariance proof methoed. For example, Lamport[77]'s method as well
as Owicki & Gries[76a]’'s method (except for the use of auxiliary variables)
correspond to :
(8.4.0.4) F e [E~>[A~>A]]
F = ApLAY.LAL.LAF.[A(x,c).[L3=1 A (Vke[1,m],c(K)=A(K,1)) A ¢ (x]]
V[ 3Inel1,0(i)1:Post (i)(n, jUY(1)(nD(x,c)]
vic(i)=A(1i,3) Admel1,m1-{i},nel1,0(m) 1, pel1,0(m)+1]:
Post(m)(n,p)¥Y(i)(j) A ¥Y(m)n)x,c)]111]1]

The first term corresponds to initialization, the second term corresponds to

a sequential proof and the third term to an interference-freeness proof. This
last term disappears when considering monoprocess programs (m=1) or multi-
process programs with assertions about parts of the store such that only ope-
rations acting on separate parts may be performed concurrently (e.g. Hoarel75]

Mazurkiewicz[77]).

Example 8.4.0.5 : Let us consider the following program with assertions
about program counters c and variables x :

x:integer;

{6(x)}

[1: {Y(MN(1) x,0} await true then x:=x+1;
11: {¥Y(2)(1) x,0)} await true then x:i=x+2;

: {¥(1)(2)(x,c)} stop
: {¥Y(2)(2)(x,c)} stop]

The verification condition (F($)(¥)=>¥) requires the verification of the

2
2

following formulas for all ce{1,2}x{1,2}, xeinteger :

Initialization
WHH1H&C]¢=Uﬂ1P1AC[D=lA¢U]]
‘M2H1H&C]¢=Uﬂ1F1AC(N=1A¢(ﬂ]

Sequential proof :
¥(1)(2)x,c) <=Post(1)(1,2)¥Y(1)1)N(x,c)
Y(2)2Xx,c) <=Post(2)(1,2)¥Y(2)1)(x,c)
(If the precondition of a statement is true and this statement is executed

then its postconditicn must be true).

Interference-freeness proof :
¥Y(1)(1)x,c) <[c(1)=1A Post(2)(1,2)¥(2)(1)(x,c]]
Y(1)(2)x,c) <=[c(1)=2A Post(2)(1,2)¥(2)(1)(x,c)]
Y(2)(1)x,c) <=L[c(2)=1A Post (1)(1,2)(¥Y(1)(1D(x,c]]
¥(2)(2)x,c) <=[c(2)=2A Post (1)(1,2)(¥Y(1)(1N(x,c]]
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(Any assertion ¥ used in the proof of a process P(i) must be true after

executing one step of any other process P(k)].

Notice that this differs from the interference freeness proof of Lamport
[77] and Owicki & Gries[76a] (i.e. E(¢MY]=>W] which would be of the form :
¥(1)(1)x,c) <=L[c(1)=1 APost(2)(1,2)Y¥(2)(1) AVI1N1 I R.2) ]

(Any assertion iy of process Eﬁi] must be invariant under execution of any
other process P(k). To prove this, it suffices to show that if control in
P(k) is at some point whose assertion is true, and y is true, then execu-

ting the next statement in P(k) will leave y true).

These verification conditions also differ from the ones corresponding to
(F(9)¥)=>¥). In that last case the sequential proof would be of the form :
Y(1)(2)x,c) <=Post(1)(1,2X¥(1)(1) A A(x,c).[(c(2)=1AY¥(2)(1)(x,C]
v(c(2)=2 A ¥(2)(2)(x,c) 1)(x,c)

A final remark is that although all invariance proof methods are complete,
it may be the case for some programs that some assertions can be proved inva-
riant using F but cannot be proved invariant using F(i.e. Lamport[77] and
Owicki & Gries[76a] method) without having to guess stronger assertions. For

the above example this would be the case of :

¢ ({x)=(x=0)
Y(1)(1)x,c)=(even(x]) Y{1)(2)x,c)=(x=1V x=3)
Y(2)(1)x,c)=(x=0V x=1) Y(2)(2)x,c)=(x=2V x=3)

End of Example.

8.5 USING A GLOBAL INVARIANT TOGETHER WITH LOCAL ASSERTIONS

Various invariance proof methods use a global invariant (e.g. the resource
invariance of Hoarel72], Owicki & Gries[76bJ], the monitor invariant of Howard

[76]) together with assertions interspread in the program text. Such a de-

composition is defined by :
([CtxL] »BI x M{I{[[txL] >B:jel1,0(i)+1]}:1iel1,m]})
Aw.[ (w,Ai.[Aj.[Alx,c).Lcli)=A(1,]j) Awlx,c)]]])]
AMw, ) [A(x,c)[wlx,c) A
(Viel[1,m1,35el1,00i)+1]: c(i)=A(1,]) AQ(1)(J)x,c))]]

[8+5:0:1]

i

A
P
o
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Since p is one-to-one the corresponding proof method using F is complete (th.
7.0.2.(2-5)). Notice that all properties of the program can be expressed using
only the global invariant. This disadvantage would disappear if in addition
to the global variables of domain t, each process P(i), ie[1,7] could have
access to local variables of domain tf(i). A possible decomposition would
"then be
(8.5.0.2) A = [[txL]>B] x I{I{[[txte(i)1+Bl:jel1,a(1)+11}:iel1, 7]}
p e [[ltxt&xL]~>Bl>A]
po= M E e L el I BdRetls wix;xLra)l;
AL EAFLXOx,x21) .[IxRetl, cels wlx,subst (x2)(i/x21i),c)111)]

Il

so that the global assertion would be about global variables and program locas
tion counters whereas local assertions would be about global variables and

visible local variables.

8.6 ADAPTING AN INVARIANCE PROOF METHOD TO NEW LANGUAGE FEATURES

All invariance proof methods amount to the same fundamental principle
(th. 4.0.2) but variants can be introduced by different decompositions of the
assertions about program states (th. 7.0.2). Hence in order to compare proof
methods for different languages or to adapt known methods to new language
features, it is sufficient to study the various possible decompositions. Let
us consider for example Hoare[78]'s communicating sequential processes. The
proof method of Apt, Francez &de Roever[79] is an adaptation of 8.5.0.1 whereas
Levin[79] is an adaptation of 8.4.0.1. Both differ from Cousot & Cousot[80]
which is based on yet another decomposition taking communication channels

into account.

9. EXPRESSIVENESS

At paragraph 7 we have stated a sound and complete method [3IeA :
F(¢)I)=>IAI=>y] for proving the invariance of YeA for any program Pr.
Invariance of ¥ was defined as p[Post(t*](€[¢DP=>W or according to 6.0.5 equi-
valently as Post(t*][€[¢D=¢51W]. This does not mean that using the above
invariance proof method any YeP can be proved invariant in the sense of para-
graph 4 that is Post(t*][€(¢D=9w. If A has not been chosen expressive enough
there may exist no YeA such that oY) =Y.
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Example 9.0.1 : The power of automatic program verification systems for
proving the partial correctness of programs is limited by their fundamental
incapability of guessing the invariant I and the fact that => is not computable.
The fact that I can always be chosen as Lfp(F(¢)) is of no help since Ifp(F(9))
is not computable for all programs. In order to circumvent these undecidability
results, the idea behind automatic program flow analysis (e.g. Cousot & Cousot
[77], Cousot & Cousot[79al]) is to consider weak computer representable properties
of programs for which Zfp(F(¢)) is either computable or approximable from above.
This means that not all properties YeP of program Pr can be expressed by YeA

i.e. p is not onto. End of Example.

The scope of applicability of the various invariance proof methods discussed
so far may be limited by the fact that some assertions of P cannot be expressed
in A. This cannot be the case when B'is onto. These results are better sum-

marized by the following

THEBREM: - 9.0, 2

¥YPrela, let <A;=>, false,true,v,A> be a complete lattice, p be a complete
join-morphism of P into A, p be d(p), Fe[E>[A~>A]] be Ab.[pof(dplop],
F,Fe[E~>[A~+A]] be isotone operators such that VY¢eE, QOF(¢]=FI¢]OQ and
F=>F=>F, then
(1)  VYoeE,VY¥eA, [o(Post[t*M€[¢D}=>W]<=>[HIeA:F[¢HI)=>IA ==Y ]
(2) If moreover p is one-to-one or E;isonto or 55p=1 then YoeE, YyeP,

[Post(t*H€[¢D=$¢]<=>[HIeA: FOUII=IAI=p)]

10. REDUCTION - EXTENSION

A common idea for proving properties of a program consists in reasoning
about a slightly transformed but eguivalent program. This is the case when
using auxiliary variables in invariance proofs. This notion can be formali-
zed as a reduction of dynamic discrete transition systems.

(10.0.1) Let Sr, Se be sets and tre[[Sr xSr]-—+B], tee[[Se xSe]~+B] be
transition relations. We say that (Sr,tr) is a o-reduction of

(Se,te) if and only if there exists a total map ¢ from Sr into

(Zse—¢] such that (¥x,yeSr, (xzy)=>(c(x)no(y) =#%)) and tr=R(te™).
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Where
(0.0 R e TlLgex Sl 83 [srxsri=0]]
R '= A0.EAlx:y)-LIX,YeSe: (Xeolx]) A (Yeoly]) AG(X,Y)T]
R e [[[SrxSr]1->Bl~>[[SexSel~+B]]
R = AB.LALX,Y).[Vx,yeSr, (Xeo(x) AYeol(y))=>0(x,y)]]

Notice that (R,R) is a Galois connection between [[Se x Sel~B] and
[[SrxSr]l—=»B] and R is onto. Let us define Pr=[Sr»B] and Pe=[Se~»B] and
introduce

(10.0.3) r ¢ [Pe+Pr]
= A2.[Ax.[IXeSe: (Xeo(x)JA Q(X]]
= [Pr >Pe]
= Aw.[AX.[¥xeSr, (Xeo(x))=w(x]]]

SR N
m

[E,;j is a Galois connection between Pe and Pr and r is onto. Therefore
(r,r) is a galois connection between Pr and Pe and T is onto (6.0.11-12).
The following theorem states that reachability properties are preserved by
reduction whence one can prove invariance properties of (Sr,tr) by reasoning

about its extension (Se,tel

THEOREM 10.0.4

If (Sr,tr) is a reduction of (Se,te) then :
(1) VoePr, Post(tr ) = r(Post(te XT($))
(2) VY¢ePr, VY¥ePe, [Post(te )T (dpN=>¥] = [Post(tr*1(¢)=>rm]

Example 10.0.5 : "Soundness of the auxiliary variables transformation”
Let Pr be a program and Pra be the same program augmented with auxiliary
variables which can only appear in assignments to auxiliary variables. This
means that Vie[1.m], there exists a total one-to-one map A(i) from the set
L(i) of labels of process P(i) into the set La(i) of labels of the corres-
ponding process Pa(i) such that commands of Pa(i) designated by a label
belonging to La(i)-A(i)(L(i)) are assignments to auxiliary variables whereas
commands labeled A(i,j) in P(i) and commands labeled A(1)(A(i,jDin Pa(i) are the
same (in particular a test command A(i,j):if b(i,3)(x) go to Ali,n(i.3)) of
P(i) is transformed into A(i)(A(i,3D:if b(i,3)(x) go to A(L)(A(L,n(1,300.

Let t (resp. ta) be the domain of the main (resp. auxiliary) variables.

Let S be txL and Se be t xtaxLa. Define ge[S~>(2°7-¢)1 as
A(x,c].[{(x,xa,%[c]]:xagzg}]and call te[[SxS]>B] and tae[([Sa xSal~+B] the

respective transition relations of the original and the transformed program
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as defined at 2.0.1. Then (S,t) is a o-reduction of (Sa,ta) so that, accord-
ing to theorem 10.0.4, one can prove invariance properties of the original
program by reasoning about the transformed program.

In particular, given a program Pr, an entry specification ¢ and assertions
YeA (where A:H{H{[E;*B]:je[1,g{i]+1]}:ie[1,ﬂj}), Owicki & Gries[7B8a] invariance
proof method consists in guessing a transformed program Pra and assertions
YaeAa (where Aa=IH{I{[txta +>Bl:je(1,0a(i)+11}:ie[1,m]}) such that e(¥Ya)=>Y
where e=AY¥a.[A1.[Aj.[Ax.[3xaeta,kel1,0a(i)+11: A (L)AL, N=A(1,K) A
Ya(i)(k)x,xa) 1111l and which can be proved invariant for Pra using theorem
9.0.2.1 and decomposition 8.3.0.1 (hence without refering to program location
counters).

This invariance proof method is sound since pa[Post(ta*](%(€[¢]D]=¢Wa
implies Post(t” )(e($N=>ropa(¥a)=>p(¥) by 6.0.5, 10.0.4.1, poropa=>e, 6.0.5
and therefore p(Post[t*][€(¢D]=>W. End of Example.

Example 10.0.6 : "Completeness of the auxiliary variables transformation”
The proof consists in showing that given PreLa, ¢eE, YeA such that
p(Post[t*][€[¢D]=>W, there exist Praela, YaeAa such that Ya can be shown
invariant for Pra without refering to program location counters (i.e.
pa[?[€[¢)]v Post(ta)(pa(Ya))=>Y¥a), e(¥a) is invariant for the original program
(ive. Post(t*)(€(¢n=55(e[WaJD and e(Ya)=>Y. Pra is constructed by adding one
auxiliary variable xa(i) to each process P(i) taking its values in C15 0039+
(or any other domain isomorphic with L(i)). To any command AT F) iC0EVS)

of Pr correspond commands 5}1,2j—1]:Eﬁi,j];&(i,Zj]:zgﬁi):=j iy e 5y
particular A(i,j):if b(i,j)(x) go to A(i,n(i,j)) is transformed inte A11.23-1)+
if b(i,j)x) go to A(i,2n(1,3)-1):A(i,2j):xali):=3) so that auxiliary variables
simulate program location counters. VYa is chosen as pa(Post(ta*]f;(€[¢DD.

End of Example.

Example 10.0.7 ': Let us propose answers to the open problems of Clarke
[80]. First "is there a proof system similar to the one originally described
by Owicki that does not require the use of history variables?”. The answer is
clearly yes when choosing the decomposition 8.4.0.1 instead of 8.3.0.1 i.e.
when using program location counters. Although this alternative may be found
inelegant, this result at least shows that proliferation of auxiliary varia-
bles (e.g. Gries[79]) can be avoided. More generally "are history variables
necessary for formal verification of concurrent programs?”. As shown by

theorem 8.0.2 the answer only depends on the decomposition p which is chosen.
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There is always one for which the answer is no (e.g. 8.2.0.1) and one for

which the answer is yes (e.g. 8.3.0.1). End of Example.

11. CONCLUSION

We have studied program proof methods in abstracto, using a mathematical
model based on dynamic discrete transition systems, a fixpoint characteriza-
tion of correctness properties, a decomposition of assertions using Galois
connections and a reduction of transition systems. This approach is quite
general and was illustrated by means of an application to invariance proof
techniques for parallel programs sharing global variables and synchronized
by conditional critical sections (the case of concurrent progréms designed
as networks of nondeterministic sequential processes, communicating with
each other explicitly, by the sole means of synchronous unbuffered message
passing is treated along the same lines in Cousot & Cousotl 80]). Although
only invariance properties have been considered, other properties of programs
such as liveness are amenable to the same formalization.

The model of dynamic discrete transition systems has already been used
in Keller[76], Pnuelli[77], Rosen[771], Abrial & Schuman[78] but the connection
between this highly abstract conceptual model and the means of presenting
programs is left unspecified, in particular the idea of decomposition is
absent. This idea appears in Cousot[78] (as partitionned dynamic discrete
systems) and in Cousot & Cousot[79a] (in a different although related context].
The observation that correctness properties of programs can be characterized
as fixpoints (Clarke[77], Cousot & Cousot[77], Flon & Suzuki[78], Van Lamsweerde &
Sintzoff[79]) can be traced back toPark[63]. Our notion of reduction/extension
of dynamic discrete transition systems is related to Lipton[75]'s reduction
of parallel programs. Lipton's intuitive notion of reduction has been forma-
lized by Kwong[77] but his definitions are too restrictive for formalizing
the use of auxiliary variables.

Program logics are alternate mathematical formalisms for reasoning about
program proof methods (e.g. Pratt[76], Hoare[78a], Salwicki[78]). They are
well-suited for decidability and computability results. However, these logics
- are tailored to particular languages (e.g. assignment, test, sequence, itera-
tion, non-deterministic choice) and syntax-directed. Therefore a particular

decomposition of the assertions about program states is chosen once for all.
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The model of dynamic discrete transition systems has already been used
in Keller[76], Pnuelli[77], Rosen[77], Abrial & Schuman[79] but the connection
between this highly abstract conceptual model and the means of presenting
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of dynamic discrete transition systems is related to Lipton[75]'s reduction
of parallel programs. Lipton's intuitive notion of reduction has been forma-
lized by Kwong[77] but his definitions are too restrictive for formalizing
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Program logics are alternate mathematical formalisms for reasoning about
program proof methods (e.g. Pratt[76], Hoare[78a], Salwicki[78]). They are
well-suited for decidability and computability results. However, these logics
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tion, non-deterministic choice) and syntax-directed. Therefore a particular

decomposition of the assertions about program states is chosen once for all.




19

Hence our study of decompositions would be very difficult with this formalism.
Moreover reasonings by induction on the syntactical structure of programming
languages have several drawbacks when context-dependencies are involved. For
example Milnel77] shows that continuations may be necessary in predicate-
transformers. Notice that these context-dependencies don't only come from
spaghetti-like languages. For example Cwicki's interference-freeness is a
context-sensitive notion that might be difficult to formalize using program

logics as they now stand.
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13. APPENDIX

13.1 Proof of Theorem 7.0.2

(1) - By fixpoint property pefop(lfp(FN=1fp(F) hence fep(lfp(Fl=>p(lfp(F))
by 6.0.5 so that pr(F]—$>p(pr[F]] by Tarski's fixpoint theorem proving that
pllfp(¥) == Ifp(F) by 6.0.5.

- Let P={a,b,c,d} be a complete lattice with strict ordering a<b<d and
a<c<d. Let A={e,g,h} be a _complete lattice with strict ordering e<g<h. Define
plal=p(cl=e, p(bl=p(dl=g, plel=c, plgl= p[h] d, fla)=a and f(b)=f(c)=Ff(d)=b.
WB have F(e)=F(g)=F(h)=g so that p(lfp(f)l=e<g=Lfp(F).

(2) - If p is one-to-one then pep=1 and Fep=pof so that p(lZfp(f)=1fp(F) by (4)
below.
I P=A={a,b} with a<b and f=F=p=Ax.[al, p=Ax.[b] then p(Lfp(£FN=1fp(F)
although p is -not one-to-one. g

(3} = EEQOFOBEFopogéﬁ since pop<i1. The inequality can be strict as shown by
the following example : P=A={a,b}, a<b, p(a)=p(bl=a, plal)=p(b)=b, f=F=1, Flal)=
F(b)=a. If p is onto then pep=1 so that F=F but the reciprocal is not true as

shown by example (2) when F=F.

(4) - Let X (resp. Y) be the upper iteration sequence for F (resp. f) starting
with false i.e. X(0)=false, X(8)=F(8-1)) for every successor ordinal § and
X(8)=v{X(a):a<8} for every limit ordinal § (Cousot & Cousotl[79b]). p is false-
strict whence X(0j=p(Y(0)). Assume X(a)=p(Y(a)) for every ordinal a<§. If
§ is a successor ordinal then X(8)=F(X(8-1))=F(p(Y©B-1))= p(FIY(S-1)=p(Y(S)) . IF
§ is a 1limit ordinal then X(8)=v{X(a):a<8}=v{p(Y(a)) :a<8}=p(v{Y(a):a<8§})=p(Y(S)).
By transfinite induction X(8)=p(Y(§)) for every ordinal §. According to Cousot
& Cousot[79b,th.3.3] there exist ordinals €1 and €2 such that Zfp(F)=X(e1)=
X(max(e1,€2))=p(Y(max(e1,e2M=p(Y(e2))= p[pr[f)) Moreover F=>F=>F implies
pr(E)“>pr(F)—>pr[F] =p(lfp(f)) and also p pr(fn—>pr(F) by (1) so that
equality holds.

(5) - If p(lfp(FN=>Lfp(F) and Y¥YeA such that [3IcA:F(I)=>I A I=>¥] then p(ilfp(f))
=1fp(F)=A{IecA:F(I)=>1}=Y¥ by Tarski's fixpoint theorem. Reciprocally if
p(lfp(FN=1fp(F) and p(lfp(fN=>Y¥ then F(Lfp(F)=Lfp(F) and Lfp(F)=V.

13.2 Proof of Theorems 3.0.1, 4.0.2 and 9.0.2

- If 01, 02¢[[SxS]~+B] then 61092=A[sa,5b].[ﬂ568:61[sa,s]AQZ(s,sb]]_ Let
eqe[[SxS]>B] be Alsa,sb).[sa=sb]. We have t*=1fp(A6.[eqvBot]). VYoeE,
A0-[Post(6)e(¢p)] is a complete v-morphism from the complete lattice [[SxS]-+B]
into the complete lattice P and )\0.[Post(8)(e(¢p)) Jor0.[eqvBet=Ff(¢plo
A8.[Post(0)e(¢) ] proving that Post(t*)Nelp)=1fp(f(¢)) by theorem 7.0.2.(4).

- Theorems 4.0.2 and 9.0.2.(1) follow from 3.0.1 and 7.0.2.(5).

- By Tarski's fixpoint theorem and theorem 7.0.2.(4), [JIcA:F($)I)=>I A
}pr[WJ]<=>[pr(F(¢)%=>p[w]]<=>[p(lfp(?(¢]n=>p[¢]j<=>[2fp(¥(¢)]=pop(pr(f(¢]B
=>pop(P)=y¥] by isotony and 6.0.10.

13.3 Proof of Theorem 10.0.4

YoePr, Post[tr W) Post(R(te NP =Ax. [ﬂyeSr ¢ LyIA(IXeo(x),Yealy): te*(Y,XD]
=Ax.[4YeSe: r(¢HY]A[3X€O(x] te*(Y,X) J=r(Post (te* T ().




