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REASONING ABOUT PROGRAM INVARIANCE PROOF METHODS

Patrick Cousot and Radhia Cousot

ABSTRACT

We present a mathematical model based on dynamic discrete transitlon
systems for constructlng, explaining, verifying, comparing, optimizing and
transforming program proof methods. We are particularly interested in
invariance properties of para11e1 programs such as partial correctness,
absence of globaI deadlock or non-termination which consist in characteri-
zing a super-set of the possible descendents of the valid initial states.

We first characterize invariance properties using fixpoints and next
derive the fundamental sound and complete invariance proof method. Proving
the invariance of an assertion tf consists in showing that some global inva-
riant I stronger than tp is true for the valid entry states and remains true
after any transition. Known invariance proof methods (F1oyd, Hoare, Naur,...
for sequential deterministic programs; CLarke, Clint, ... for coroutines;
Howard,... for monitors; Ashcroft, Ashcroft & llanna, Hoare, Keller, Lamport,
llazurkiewicz, Newton, Owicki & Gries,... for paralIe1 programs with shared
variables; Apt,Francez & de Roever, Cousot & Cousot, Levine, ... for communi-
cating sequential processes i la Hoare; . . . ) all reduce to the fundamental
invariance proof method and differ only because they use different decompo-
sitions of the global invariant lnto local assertions attached to program
control points. We formalize this notion of decomposition by means of Galois
connections, the mathematical properties of which are reminded. We next show
that a given decomposition of the global invariant into local assertions
associated with program control points can lead to a complete lattice of
distinct verification conditions. In order to lllustrate this poipt we
propose several- variants of the Lamport-Owlcki proof rules. All these variants
are sound and complete althougth some of them require stronger invariants than
others. Invariance proof methods which have been designed for very different
programming languages can nevertheless be compared by showing that they rely
on similar decompositions of the g1obal invariant. It is also remarked that
some decompositions Lead to sound but intrinsically incomplete proof methods
when the correspondence between the global invariant and its decomposition
is not one-to-one for all programs. We next introduce the notion of reductic:n/
extension of dynamic discrete transition systems in order to formallze the
transformation of a program by introduction of auxiliary variables so that
the assertions interleaved in the program text need not explicitly mention
program control points. We finally compare our approach with other formalisms
for reasoning about program proof methods in particular program logics.



RESUME

Nous pr6sentons un moddle math6matique bas6 sur les systDmes dynamiques
h transitions discrdtes permettant de construire, expliquer, vdrifier, comparer,
optimiser et transformer les m6thodes de preuve de propri6t6s des programmes.
Nous nous int6ressons particulldrement aux propri6t6s d'invariance des prograrn-
mes paralldles comnie La correction partielle, l'absence d'interblocage g1oba1
ou la non-terminaison, qui consj-stent i caract6riser un sur-ensemble des descen-
dants possibles des 6tats d'entr6e.

Aprbs avoir caract6ris6 1es propri6t6s d'invariance par point-fixe, nous
montrons que 1a m6thode fondamentale de preuve d'invariance d'une assertion {-r

consiste d d6couvrir une assertion plus forte I qui est vraie pour les 6tats
initiaux et reste vraie aprds une transition quelconque. Les m6thodes connues
de preuve d'invariance (Floyd, Hoare, Naur,... pour 1es programmes s6quentiels
ddterministes; Clarke, Clint,... pour Les coroutines; Howard,,.. pour 1es
moniteurs; Ashcroft, Ashcroft & lYanna, Hoar'e, Keller, Lamport, lulazurkj-ewicz,
Newton, Owicki & Gries,... pour 1es programmes paralldles partageant des varia-
bles communes; Apt,Francez & de Roever, Cousot & Cousot, Levine, ... pour les
processus s6quentlels comnunicants d la Hoarei . . . ) se ramdnent d la m6thode
fondamentale et ne diffdrent que par des d6compositions dlff6rentes de f inva-
riant globa1 en des assertions locales associ6es aux diff6rents points de con-
tr6le du programme. AprEs avoir formalis6 cette d6composition au moyen de
connections de Galois dont nous rappelons 1es propri6t6s math6matiques, nous
montrons qutune m6me b6composition de I'invariant g1obal en des assertions
associ6es aux points de contr6le du programme peut donner lieu d des
rbgles de v6rification distinctes formant un treillis complet. Nous illustrons
ce 16sultat en proposant quelques variantes de la m6thode de Lamport-Owicki,
qui sont toutes correctes et compldtes bien que certaines d'entre-el-1es n6c6ssi-
tent Itemploi d'invariants plus forts que d'autres, Des m6thodes de ppeuve
d'invariance ayant 6t6 congues pour des langages trds diff6rents peuvent 6ga1e-
ment 6tre compar6es en montrant qu'elles sont fond6es sur des d6compositions
simllaires de I'invariant g1oba1. Nous remarquons 6galement que certaines
d6compositions conduisent i des m6thodes de preuve qui sont correctes mais
intrinsdquement incomplbtes quand la correspondance entre I'invarlant global et
sa d6composition n'est pas injective pour tous 1es programmes. Nous introdui-
sons ensuite ta notion de r6duction/extension de systbmes dynamiques b transi-
tions discrdtes qui permet de formaliser la transformation d'un programme par
introduction de variables auxiliaires afin d'6viter de mentionner explicitement
1es points de contr6le du programme dans les assertions. Finalement, nous
comparons notre appoche pour raisonner sur l-es m6thodes de preuve de programes
avec dtautres formaLismes, notamment 1es logiques de programmes'
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REASONING ABOUT PROGRAIVI INVARIANCE PROOF METHODS

***Patrick Cousot and Radhia Cousot

1. INTRODUCTION

The essence of program proof methods such as those described by Naur[66-],
Ftoyd[671, Hoare[69] and their followers may be difficult to explain concisely.
The main difficulty is the diversity of syntactic formalisms which are used for
representing algorithms, This difficulty is even more evident when concurrent
programs are concerned. For example, althoughsimilarities and differences are
intuitively observed between methods for proving invariance properties of
parallel programs such as Ashcroft[75], Hoare[25], HowardlT6), KellertT6l,
Lamport[77], lYazurkiewiczlTTl, Newton[75], Owicki & Gries176a,76b), it is
difficult to compare them in abstracto. Until now the design of invariance
proof methods has been ad-hoc and informal. The correctness of these methods '

is often established a posteriori (references in Apt[791), rather it is more

advisable to formally construct a priori correct program verification methods.
Although soundness and completeness proofs rely on simple and similar princlples
they are often long and weaiisome. Instead of always restarting from scratch the
verification of program proof methods should be obtained from general purpose
theorems. The manipulation of program proof methods should also be considered.
For example can't Clarke[40-l's method for proving correctness of coroutines be

considered as an optimization of ClintllZf's method since simpler invariants are
needed? The transformation of a program proof method in order to adapt it to

x Universit6** CRTN-Nancy,
fhis work was

de Metz, Facult6 des Sciences, Ile
L.aboratoire Associ6 au CNRS n"262

supported by CNRS IATP ]nte11lgence

du Saulcy, 57000 f1etz, France

Artificiel 1e J
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different language features is not always easier than the original and may be

error-proned Ie.g. Apt, Francez & de Roever[79]]. Rather program verification
methods should be manipulated usingcorrectness preserving transformations.

By analogy with what happened for programs the above arguments advocate
1n favor of a mathematical formalism for reasoning about program proof methods

in particular for constructing, explaining, verifylng, comparing, optlmizing
and transformlng them. h/e present such a mathematlcal model based on dynamic

discrete transition systems and illustrate it by means of an application to
invariance proof techniques for parallel programs sharing global variables and

synchronized by conditional critical sections. Finally other approaches are
discussed.

?. OPERATIONAL SEI4ANTICS

l,rle assume that the set La of syntactically correct programs can be defined
by any context-sensitive syntax definition method. Defining the operational
semantics of the programming language E consists in defining for each program

Pr e La a set of states S(Prl and a transltion relation t(Plle [[S(Pr]xS(Pr)l *Bll
between any state and its possible successors. B={true,faLse} is the set of
truth values, it is a comptete boolean lattice <B;:>,false,true,V,A,-) with
ordering false:> tnue.

Eranrple 2.0.L.: Let us consider a language L.a where each program Prela
consists of parallel processes sharing global variables and synchronized by

conditional critical regions. The abstract syntax is as follows :

- Programs Pr : D;[P(1) ll lf z) ll ...11 pf nl] where n>1 .

- Declara'tions D : x(11:tt1);...ixt6l:-t(6) where 6>1'

- Variables x(il,ie[1,6].
- Types t(i),ie-[1,6]
- Processes P(iJ,ie[1,n] : ],(i,1J:C(i,1J;.,

where o(il>1.
- Labels l(i,j),ie[ 1,n),je[1,oIi)+1 ].
- Commands C(i,j),ie[ 1,Trf,36t1,o(i) J :

. Nu11 commands C(i,j),ie[1,Ttf ,jeNti) : skip.

. Assignment commands CIi,i),ie [1,n],ie A(il : x(u(i,i)J:=eIi, j)(x] whsre

o(i,i)e[1,6] and e(i,j) maps domG(i,j))gt into tIo(i,i]J'

. ;tr(i,oIi]) :C(i,otf )) ;](i,o(i]+1 I : stop
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. Test commands CIi,i],ie[1,L],ieTtii : if b(i,iltxl gs_to Iti,nti,j))where
b(i,j) maps dom(bti,j)ls! i.nto truth values and n(i,jle[1,oIi)+1].

. Await commands gtj",il,ie[1,n),jeW(iJ : await bti,i)(5) then x:=fIi,jX1)
where b(i,j) maps domft(i,jllc.t into truth values and f (i,j) maps

dom}li,j))ct into t.
. Stop commands C(i,j),ie[1,r),jeH(i) : stop.

{rurr.t,A(i},T(i),w(i),Htjl} is a partition of [1,oti]1.
The concrete syntax of some examples will freely deviate from the above abstract
syntax when the correspondence is obvious.

Let us now deflne the operational semantics. Concurrency in the execution
of a program is modeled by global nondeterminism in the selection of successor
states :

- Program locations : L=II{{}.(i, jl:ie t1,oIi]*11]:i6[1,i1]].
(If {Eti):isI} is a family of sets the cartesian product ii{E[i):iuI] is
defined as the subset of I-+u{E(iJ:ieI} of all functions f for which
f(i)€E(i) for all i€Il.

: States : S=!x!
- Transition relation :

te [[sxs] _+BJ

t = I t( xa , ca J , ( x b , c b ll . t I i- e t t , ri l , 3 e [ 1 , o ( i ] I , n e [ 1 , o t i ] * 1 -l : ( v.Q, € [ 1 , n ] - { i } ,
cb (.Q,1 =ca ( l, ll,r ( ca ( i I =I t i, j )l n t cb ( i I =l t i, K)b Com( i, j, k )( xa, xb Jl

Comli, j, ki e[ [txt ] + Bl, ie[1,n], i e[1,o ( i ] l, kc[ 1,o Ii ) +1 ]
Com(i, j,kl=lIxa,xb).lWvLL(i, jltxa,xb]^ k=j+1) v lAssign(i, jJ[xa,xb)^ k=i+1]

v Test(i,j, kJ(xa,xbl v (Auaitti, j Xxa,xbl ^ k=j+1 I l
NuLL (i, j ) e I t rxt 1 + t] l, i. e 11,Tt l,j € [ 1, o ( i ) ]
NuLL(i, j I =l(xa,xbJ . t:.ruf iJ ^ xb=xal

Assign( i, i I e t t!x!1 * B l, i e [ 1 , n] ' i e I t 'o ( i ) ]
Assign(i, jl=l(xa,xb).tj€A(i) nxaed.on{eli,j))A xb=szbst(xaXcl(i., il/9(i, jl(xalll

(If {E(i):ieI} is a family of sets and xell{E(i):ieI},3eI,veE(j) then

subst(xl(j/v) equals y such that y(j)=v whereas y(K)=xIk) for a1]. kel
such that k*j. If n>1,j1, ..,jneI anrJ vreE(irJ,...,vneE(jn) then

subst(x)(j, /v r, .. .,jnlvn) =substlsubsttxXj r/v, )Jt ir/v, jnlvn1 I .

Test(i, j , kl e [ [txt ] -' B l, i e [1 , n .1, j e [1 ,o t i ] l, k e [1 ,o ( i ) +1 .]

Testti,j,kl=l(xa,xbl.tjqL(i) nxb=xa nxaed.om(b(i,ill t[(b(i,jXxa) n(=a[i,j))
v (19(i, j)(xal ^ k=j*1lll
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Auait (i,i le tt!x!1 + Bl,ie [1,r),je [1,o(i] l
Auaitti, jl=l(xa,xbl.tjeW(il nxae(dom(!(i,i)l n b(i,iJ(xa] nxaedom(f ti,ill

n xb=f (i,:lf*f f
The above semantics does require that statements be executed as indivisible

actions. This convention can be lifted for assignments and boolean expressions
when memory reference is indivisible and each assignment or boolean expression
refers at most once to at most one variable which can be changed by another
process while this statement or expression is beeing evaluated. End of EtanrpLe.

3. FIXPOINT CHARACTERIZATION OF INVARIANCE PROPERTIES

Invariance properties of programs include partial correetrress, absence of
deadLocks and non-terrnination that is properties of programs that can be proved

by characterizing super-sets of the sets of states tlrat can be reached during
execution of these programs.

We assume that E(Prl is the set of possible entry specifications for the
program !1e La the meaning of which is given by e(Pr]e [E(Pr) +P(PrJ ] where

P(Pr)=[S(PI] +Bl, e(Pr) (01 is a predicate over states whlch characterizes the 
i

set of possible initial states corresponding to the entry specification QeE(Pr)
of program Pr.

Let Post(PrleIttStPr]xStPrl I +Bl + [P(Pr] +P(PrJ ll Ue the "before-after"
predicate transformer defined as !

post(pd =10. [tror. [trsa. IJsbe S(pr) : ur( sbJ n 0 ( sb, sa) ]l ll

By definition the set of states which may be reached during any execution
of program Pr starting with an initial value of the variables satisfying the
entry specificatlon QeE(Pr) is characterized by Post(Prl(tIPrJ*XE(Pr](0)l where

t(Pr)* i= th" reflexive transitive closure of t(Pr).
Let f (Pr)e IE(Pr] + [P(Pr] +P(Pr) ll Ue IQ.tlai.Ie(Pr]t0l v Post (PrXt(Pr]l(ol -ll

and Lfp be the least fixpoint operator for isotone operators on complete 
,.,..

lattices ICousot & Cousot[7Sb]1. Invariance proof methods (Cousot[79]) and

automatic program analysis techniques (Cousot & Cousot[79a]) are founded on the
following:

THE0RET4 3.0. 1

I vp".t-a, Y$eE(PrJ, Post(Pr)(ttPrl*Xr(prl(O\ = Lfptf(PrX0l)t--

i'i

For the sake of conciseness the parameter
write YPre La, YQe E, Posttt*)(e (Q\=Lfp(f (Oll .

Pr will be omitted and we will
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COMPLETE INVARIANCE PROOF METHOD

peP is said to
any state satisfying
-> ul-

be invariant during execution of program
the entry specification 0eE if and only

Pr
if

starting with
*Post(t l(et0ll

Eratnple 4. 0. 1. : Assume that { e P characterizes exit states, $eE is an

entry specification and iJ,teP is an exit specification. A partial correctness

invariance proof since it consists in showing that Posl(t
End of Eratnple.

The above fixpoint characterization of Post(t*lte(O) and
theorem lead to a sound and complete invarj-ance proof method :

THEOREI"I 4.O.2

proof consj.sts in showing the invariance of (q:>Ul that
(E:>U). Let us define B=trs.IVs'eS, -tIs,s']l so that B

states. An absence of deadlock proof consists in showing
that j s Postit*lte (O)l:>t8->ql. Finally a non-termination

The global assertion if =), [x, c ] . I
program :

stgp
stop I

YPreLa,YQeE,YtfeP,
te (01:>rf n Postl,t)(Post(t*)(e(0lln r!):>Ul <:>

Ashcroft next remarks that we don't know exactly

*is Post(t )(e(0ll :>
characterizes blocking
the invarj-ance of t 8:>61
proof is also an

" lt. t 4 )--t t-En-B I

Tarski's fixpoint

YQeE, Yrf;eP, lPost(t*l(e(0):>pl <:> []reP : ( f ( 0 lt I ):>I ) n t I:>tf.,) J

Enatnple 4. 0. 3.
is invariant for the

x:g!s.ger;
[t: await true then x:=x+1;
ll1, .r^,ai! true TGi x: =x+1;

and the entry specification :

0=(x=01 such that e(Q)=tr[x,cJ.Ic(1J=1 ^ct2)=1 nx=0].
This can be proved using the assertion :

I=l(x,cl .[ (ctl ]=1 ^ c(Z)=!n x=0)v(c[1)=1 n c(2)=Zn x=1 ]

vIc (1 )=2 n c(Z)=j n x=1 )v(c( 1 ) =Z A c (Z)=2 n x=2] l
such that e (01:>I and Postttl(Il=>I and I:>r|. End of Euatnple.

Eratnple 4. 0.4. Ashcroft[75] justifies his method for
about paralLel programs by a verification conditi-on theorem
above notations, can be stated as :

a.

(c(1) =ZA c(2)=2):> [x=2]l

proving assertions
which, using the

LPosttt*l te tOll :>qr I.
which states satisfy
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Post(t*)(etOl) so that "we could have left this term out of the verification
condition entirely". He adds "however, if the impossibility of reaching
certain states is crucial for certain properties of a program to hsld" then
we can "explicitly incorporate the impossibility into the assertions we wish
to prove valid and check the above condition for all states". This informally
introduces the induction principle :

YPreLa, VQeE, YtfeP,

t I Ie P : ( e t 0 l:>I I n (Po st( t )( I l:>I ) n ( I:>rl.r I f :> lPo s, ( t* X E t $ l):>U l
later proved by Ke11er[76]. End of Enatnple.

DECOMPOSITION OF A GLOBAL ASSERTION ABOUT PROGRAM STATES

INTO A SET OF LOCAL ASSERTIONS

According to theorem 4.0.2 an invariance proof consists in showing that
Ijfep: te(0):>I)n(Post(t](Il:>11n(l:>rf ) J. A single globa1 assertion I about
values of varj,ables and program locations is used in order to describe sets
of program states, This veri-fication condition can be decomposed into a

conjonction of verj-fication conditions []fep; (e (0):>Il nA{Post(t(k)ltIl:>I:keT}

^(I->U)] whenever the transltion relation is of the form t=v{t(kl:keT} te'g'
Ashcroft[75], Ke1ler[76]l .

Another type of decomposition consists in formulating this g1obal
assertion using a set of local assertions interspread at appropriate places
in the program text, Without loss of generality the set of local assertions
used in the proof of a program Pr will be assumed to belong to a complete
boolean lattice <A;:>,false,tnue,V,A,-) (the symboLs :), faLse, tT14e, v, n, -
are overl-oaded]. The meaning of A will be formally specified by maps pe [P -+A}

and 6e[n+p] which define a correspondence with P.

EratnpT.e 5.0.1. .. Naur[66], Floyd[67] and Hoare[69]'s invariance ploof
methods are applicable to programs Pr involving a single process tn=1 I . A

Iocal assertion about val-ues of variables is associated with each program

point, hence A=il{tt+Bl:je[1,o(1]+11]. The meaning of f,leA is given uV pfnt=
l(x,c).Ivtc=).(1,j)^n(j](xl : je[1,o(1)+1]]1. The set of local asserti-ons
corresponding to a g1oba1 assertion u-reP is p(ol=li.Ilx.[ur(x;l(1,i] ) ll. p

is a total complete isomorphism and I it it= inverse. End of EratnpLe.

Since global
equivalent 16les

assertions of P and sets of local assertions of A play
one is tempted to require pe[P+A] to be a total complete
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lattice isomorphism. A weaker hypothesis turns out to be sufficient : p w111

only be requlred to be a complete Join-morphlsm (i.e. YXgP, p(vXl=vp(X). In
particular when X is empty, p is false-strictJ.

r4** Fo4
Complete Joln-morphismJ)GrrespJnd ln a one-to-one manner with Galois

eonnections (Pickert[52],Dubreil & Croisot[54]) .

In what follows uX (respectively nX) denotes the least upper bound

(respectlvely greatest lower boundJ of a subset X of a poset <PlS> when it
exlsts. hJe define a Galois eonnection between posets <P;3> and <A;<> as a

pair (p,F) of total maps pe[P+A] and p.l-n*Pl which are isotone and such that
p"[<1 and 1<6-"p where 1 is the identi.ty map. tThis definition ls equivalent
to the one of Birkhoff[40] and 0re[44] when considering the dual of <A;S>).

The partlal maps Ee ttA+Pl +[P+A]l and a.tfp+Al +[A+P]l are defined as

(6.0.1) E=trF.trx.tn{yeA: x<Etyt}ll
(8.0.2) 5=lp.tlv.Iu{xeP: pIx)<y]ll

Let <Pt<> and (A;<) be posets and pe[P'rA], ge[A+P] betotal tsotone maps.

Then lt follows from Schmidt[53] and Pickert[52] that the followlng condltions
are equlvalent :

(6.0.31 p is a complete u-morphlsm and E=5fpl
(6.0.4) p"E<1 and 1<[op
(6.0.5) YxeP, YyeA, (p(x)<y)<=t(xs[-1y11
(6.g.6) atE)=p ano 5(p)=E-
(6.0.7) p<0tE) ano Stpl<F'
t6.0.8) E i" . complete n-morphism and p=0(pl

If tp,p) is a Galois connectlon between <Pr<> and <A;<> then the ebove

results together with Zervos[71] lmply :

(6.0.S1 (p.E'=t ) <+ (p is ontoJ <:> (p is one-to-one)
(6.0.10) (E-op=1) <:> (p is one-to-one) <:> (p f " ontoJ

Let <F;-(rIrT,Uror-) and <A;3rLTrUrfl ,-) be boolean lattices. If f is
a functlon of a boolean lattice into a boolean lattlce, we define i as

trx.[-[f (-(xJD ]' then t 
= _(6,0.11) tp,pl is a Galois connection between P and A lf and only if (p,p)

Is a Galois connectlon between A and P

(6.0.ln f is onto [one-to-one) lff ? is onto (one-to-one)
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[nunpLe 6.0.73..' If 16[[sxS1+B] is a transition relation then its inverse
-lis t -=).(sr,s2).[ttsr,s1)1. Define pre as \0.lPost(o-r]1. It is observed in

Cousot[79] that (Post(ti,Piettll is a Galois connection between P and P' This

is used to prove that Floyd-Naur ts invariance proof method :

ypre La, 0e E, ilep, t llep : e ( o l+I n Postt t lt I l:>I nI:>rJ.r1 <-':>lPostt t* l( e ( o)=->u l

is equivalent to Hoarets method :

Vpr.!g,QeE,ri.reP, []fep: etQ):>I xl=>fie(tl(Iln I:>r!l <-->lPost(t*l(etO))+Ul

It is also observed that YIeP, freft)tI) :> (Prettl(I) v'Pretl)ftvue\ and

equality holds when t is deterministic Ii.e. Ys1,s2,s3€S, (t(sr,szJ n tIsr'ssJ)
:>(sz=s3J). In that case u..:>pie(tltl) is equivalent to (I nPre(t)(true\ :>

Pre(illl) - End of EnatnPle'

THE COMPLETE LATTICE OF VARIANTS OF THE FUNDAMENTAL INVARIANCE

PROOF METHOD

Given Prela, Let p be a complete join-morphism from the complete boolean

lattice <Pr:>rfalse,tq'1te,VrA,-) of "global assertions" into the comple'te

boolean lattice <A;:>,faLse'trl)e'V'A'-) of "sets of locaL assertions"' Define

p as 3[g).
A set VeA of assertj-ons

program P-r starting with anY

if and onlY if :

(7.0.11 p(Post(t*)(e(Olll:>V
or equivalentlY (3.0'1 ) :

P(LfP(f(0))):>v
Thispropertycanbeprovedusinganyofthesourrdorsoundandcomplete
variants of the fundamental invariance proof method 4.o.2 whlch are introduced

by the following :

THEOREM 7 .O.2

I

I
I

I

p

p

is said, to be invariant dur'ing execution of
state satisfying the entry specification QeE

Let f be an isotone oPerator
be a comPlete v-morPhism from P

ue E(pJ and F be P"f "[' Then :

(1) pWpGD:>LfplF) and the inequality can be strict'
Q) If p is one-to-one (but this is not necessary) then p"1=Fop so that

on the complete lattice <P i:>,faLse'tv'uer V' A )
into the complete lattice <A;==>'false'true'v'A>'

plLfpff))=LfP(F) .



I
I
I
I
I
I

s

If moreover, there exists an isotone operatot F on A such that p"1=p"p
then:

t3l F F, the inequality can be strict and equality holds if [but not
only ifl p is onto.

(4) Let F be any isotone operator on A such that F:> F:> f tnen :

LfpG) = LfpG) = LfpTt = p(Lfpff)).
t5) Further if F is any isotone operator on A such that p(Lfp(f)):>Lip(F)

Irespectively p r,LfpGD=LfpGD then YVe A, p(Lfp (f ]l:>Y if (respectivelv
if and only if I []ren : (F(Il:>rlntr:>Yl l.

Given an operational semantics, the design of an j-nvariance proof method

consists in choosing A and p that is how sets of program states are going to
be described by assertions. Then theorem 7.0.2 leads to sound and complete
verification rules. If p is not onto, the complete lattice of Fe[A-+A-] such

that F:> F:>F is not reduced to a sing]e element and severa] program

verification rules can be considered. In order to prove the invariance of
veA, F may require to guess a stronger invariant I than F since trrrl:>rl
implies (FtIl:>I) which implies (F(Il:>Il but the reciprocal may not be true.
This argument in favor of F must be balanced by the fact that F leads to
simpler verification ruLes. In practice a balance must be found between

weaker invariants and more complicated verification rules or stronger invari-
ants and simpler verification rules.

8. CONSTRUCTING AN INVARIANCE PROOF METHOD

We study invariance proof techniques for parallel programs consisting
of concurrent processes sharing g1oba1 variables and synchronized by condi-
tional critical sections as defined at example 2.0'1. Several well-known
methods are shortly reviewed and some of the possible alternatives are cons-

tructively introduced and discussed.

8.1 USING A SINGLE GLOBAL INVARIANT

In the invariance proof methods of Ashcroft[75] and Keller[76-] a single
invariant is used to indicate correctness Isee paragraph 4)' As remarked at
paragraph 5 the ability to decompose the verification conditions is not lost '

However the use of a single invariant is inadequate for large programs'

ll
l1I
It
TI
!t
!tt
L
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S.2ASSOCIATINGANASSERTIoNABoUTVARIABLESWITH EACH CONTROLE STATE

One of the ear1Y attemPts toward
riant can be found in Ashcroft& tulannaI

a nondeterministic serial program is
Floyd and Hoare that is associating a

variables with each possible value of
the same idea consists in defining :

(8.2,0.11 A = tL-+[t+B]l
P = trtrr.[trc'[]'x'[ul(x'c] lll

Since p is bijective the corresponding invariance
complete (th.7.O.D. Unfortunately this leads to
assertions so that proofs tend to be very long'

Keller[76] and Owicki & Gries[76b] have shown that the

method is not complete using informal arguments about

7.O.2 gives a formal basis to such a reasoning : the

ing to p is not complete if a program Pr can be found

Lfpf,r @\ .

the decomposition of the global inva-
70). Converting a parallel program to
one way of aPPlYing the idea of Naur'

tocal assertion about the values of the
the control state. Another way to apply

proof method is sound and

to(1 l+1 Jx...x(o(nJ+11 local

corresponding Proof
an examPle. Theorem

proof method corresPond-
such that PILfP (f t0ll) *

8.3 ASSOCIATING AN ASSERTION ABOUT VARIABLES l'lITH EACH PROGRAM POINT

The above exponential explosion can be avoided by associating about

(o(11+1J+.,.+(o(Tl+11 loca1 assertions with a program' For- example one can

associate with each program point an assertion about the values of the

variables. 0therwise stated this consists i'n choosing :

(8.3.0.1) A = II{11{tt-}B]:je[1,o(i]*tl]:le[1,r]]
9 = trur.t^i'tIj.[trx.[]ce L:t,..r( x,substtc](i/}.ti, j )) ]]]]
p = fn.[tr(x,c].[Vie I l,trf , ]ietl,otil+11 : c(il=tr(i'i) ^CItiXjl(xlll

8.4 ASSOCIATING AN

COUNTERS }JITH

ASSERTI0NABOUTVARIABLESANDPROGRAMLOCATION

EACH PROGRAM POINT

An alternative to 8.3.0.1 consists in associating with each program point

an assertion about the memory state and the control state' This idea can bg

extirpated out of NewtonlTsl's ISIPA model and is clear in LamporIlTTf (it is
also implicitly present in Owicki &Grie5[76b], llazurkiewiczlTTl although the
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I
I
I
t
I
t
I
I
I
I
r
t
r
t
I'
It
!
tt
tr
It

control state is simulated by history variablesJ. 0therwise stated this
consj-sts in choosing:

(8.4.0.11 A = II{i]{tqt*Bl:ie[1,o(i]+11]:ie[1,n]]
P = ).o.tIi.tfj.f l,Ix,c) .IcIi] =]ti, j ) n ur(x,c) llll
p = fn.Il(x,c] .[Yiet1,n], lj.[1,o'(i] +1 I : c(il =trti, j ) n CI(i)(j Xx, clll

(p,i-l js a Galois connection between P and A and p is one-to-one so that
according tc theorem 7.A.2.{2)-tS) the corresponding invariance proof method
is sound and complete. Let us introduce :

Postln)(n, p) ei It txL] + Bl +[t!x!] + Bll, me[1,n], ne[ 1,o(m] l, pe[1,oIm] +1 l
Post(n)(n,p) =hJ;.[trtx,cJ.Ic(mJ=tr[m,p)n(lx'et:rf (x',subst(c)[m/L(m,nj]ln

Com(m, n,pJ(x',xll ll
so that if tJ,r is an assertion about variables and control states which is true
before execution of command C(m,nl, 111sn Post[m][n,pXtf] is true after execution
of C(m,nJ and going to l(m,pJ. According to theorem 7.8.2, let us also
introduce :

(8.4.o.2) I . tE->[A+A]l
F = lO.Ip"f(O)"p]

= f0.tlv.tIi.LIj.[tr(x,c] .ttj=1 n (vke[1,r],c(kl=l(k,tlln 0tx)l
v[ ]ne[ 1, o ( i ) f zpost( i J( n, j )(V ( i )(il n Cont{ i} tVllt x, c) ]
v[c(i] =l(i, j l,r lme[1,n]-{i}, ne[1,o(mJ ], pe[ 1,o(mJ +1 ] :

Post (d(n,bXY(i)(j )^ Ytm)(nl n Cont{i,m} (YlXx,c) llllll
where

Cont
Cont

Let us define :

(8.4.0.3) F

t-

such that VQeE,

trlt 'r7-+ [A + t t!x!] + Bl I l
lx.tlV.[tr[x,c].Ivre[1,n]-X,ll.e[1,o(k]+11:ctk)=lIk,[) nV(k]t.Q,Xx,c)lll

e IE + [A -+A]i
= I0. tfY. tli. tfj . [].(x, cl . [[j=1 n (Yke[ 1,Tr'],c (kl =tr( k, 1 J) ^ 0 (xll

v[]ne [1,o(i)f ;Post (i](n, j ltV(i"lIn]lIx, c] l
v[c (i] =I(i, j ) n lmeIt,n]-{i}, ne[ 1,oIm) 1, pe[ 1,o(mJ +1 ] :

Post (n)(n, p XV(mlt n J)( x, c ll I I I I l
p"f (01=rtol.p.

The invariance proof method corresponding to F is similar to the one introduced
by Newtonl75] using a quite different definition of concurrent programs. l,rJe

have not found in the literature any invariance proof method similar to the
one corresponding to F. Since FzF we have in fact introduced a complete
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lattice of Fe[E-+[A+A]l such that F:>F:>F each one corresponding to a

particular invariance proof method. For example, Lamport[77)'s method as we]l
as Owicki &Gries[76a]'s method Iexcept for the use of auxiliary variab]esJ
correspond to :

(s.4.0.4) F

F

e Ir + [n +A]l
f0.tfV.tIi.tIj.ttr(x, cl .tt j=1 ^ (Yk€[1,n],c(kl =I(k,1ll ^ 0(xll

v[ ]ne [ 1 , o ( i )f :Post I i JI n, j XV t i ]( n l)( x, c ll
v[c(i)=l(i, j) n lme [1,T]-{i},ne [1,o(m]l,pe [1,o_(m)+'l]:
Post(n)(n, pXY( i l(j ) n VImX n JJ(x, c)] I ll I l

The first term corresponds to initialization, the second term corresponds to
a sequential proof and the third term to an interference-freeness proof. This
last term dlsappears when considering monoprocess programs tn=1 I or multi-
process programs with assertions about parts of the store such that only ope-
rations acting on separate parts may be performed concurrently (e.g. Hoare[751
l4azurkiewiczLTT )) .

EratnpLe 8.4.0.5 : Let us consider the following program with assertions
about program counters c and variables x :

x: integer;
{0f xl }
It: {Vttlt'1X x,cJ} await true then xz=x+1i 2z {V(1X2)(x,d} etop
ll I t {u tzltl }( x, c) } au,gt! tnue Tjien x==x+2i 2: {v ( 2lt 2)( x, c) } stopf

The verification condition tFf OltVl+Vl requires the verification of the
following formulas for all ce{1,2}x{l,z}, xeiqbeger :

Initialization:
V(1X1J( x, cJ <:Ic(1]=1 n e(21=1 n 0(xl l
V(2)(1 )( x, cl <:Ic (1)=1 n clZ)=1 ^ 0(x] l

Sequential proof :

Y(1 X2){x,c) ePost(1 l(1, 2)(V (11(1 ll(x,cl
V ( 2l( 2){x, c) <:Post(2)(1,2)(V (2)(1 JJ(x,c J

(If the precondition of a statement is true and this statement is executed
then its postcondition must be trueJ.

Interference-freeness proof :

Y(1 )t1 )(x,cl <:Ic(1 ] =1 n Post(2)(1,2XY(21t1 l)(x,cll
Y(11(2)(x, cl <: I c(1)=2n Post(2)(1,2)(V(2]t1llIx,c ]l
V QX 1 J( x, c I <: I c (2) =1 n Post ( 1 )( 1 , 2 ]t V t 1 lt 1 ll( x , c ll
VtZ)t2)(x,cl <':Ic (2)=2n Post(1 ](1, 2l(Vt1 )(1 )l(x,c)l
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in the proof of a process P[ii
any other process Ptkl l.

must be true after

Notice that this differs from the interference freeness proof of Lamport

L77) and 0wicki & Gries[76a] (i.e. f=COlf Vl:tVJ which would be of the form :

vtl l(.1 J(x, c) <:Ic(1 ]=1 npost(2)(1,nryQ){1 I ^ V(1 X1 ll(x,cJ l

(Any assertion rJ.r of process P(iJ must be invariant under execution of any

other process Ptkl. To prove this, it suffices to show that if control ln
P(k) is at some point whose assertj-on is true, and ,4t is true, then execu-
ting the next statement in P(kl will leave U trusJ.

These verification conditions also differ from the ones csrresponding to
(F(OltVl==>Vl. In that last case the sequential proof would be of the form:

Y( 1 )t 2)(x, c) <F=Post( 1 l( 1, 2XY( 1 lt 1 I ^ ),( x, cl . [ ( c (2) =1 n Yt 2]t 1 )( x, c)l
v t c ( 2l =2 x Y Q)Q){x, c JJ I J( x, cJ

A final remark is that although all invarj.ance pr"oof methods are complete,
it may be the case for some programs that some assertions can be proved i-nva-
riant usirrg F but cannot be proved invariant usirrg F ti.e. LamportlTTl and

3wicki & Grles[76a] methodl without having to guess stronger assertions. For
the above example this would be the case of :

0(xl=(x=01
V(1 X1 J[x, cJ = (even(x]J
Y(21(1 J(x, c) = (x=0 v x=1 J

End of Erarnple.

vi1 lt2){x,cl = [x=1 v x=3]
y( 2l( 2)lx, c) = (x=2 v x=3 J

8.5 USING A GLOBAL INVARIANT TOGETHER WITH LOCAL ASSERTIONS

Various invariance proof methods use a globa1 invariant (e.g. the resource
invariance of HoareiTz), Owicki & Grlesl76b], the monitor invariant of Floward

t76ll together with assertions interspread in the program text. Such a de-

composition is defined bY :

(8. 5.0. 1 ) A = (tttxlJ -+ Bl x n{IIitt-!*!] + Bl :i el1,o(il +1 l] : ie[1,n.]] )

I = trtrr.[ (t.r,tri.tlj.[tr(x,c] .Ic(i) =trti, j ) n tl)[x,c] _llll l
P = f [ur,Qj.Il(x,c].[tl(x,cJ n

tYie[ 1,rf,]jet1,oIiJ+1]: c(il=tr(i,j) nCI(il(jXx,c))Ji
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Since p is one-to-one the ccrresponding proof method using F is complete (th.
7.O,2.tz-il). Notice that atl properties of the program can be expressed using
only the global invariant. This disadvantage would disappear if in addition
to the globa1 variables of domain t, each process P(iJ, ie[1,n] could have

access to local variables of domain t[(f]. A possible decomposition would

then be :

(8.5.0.2) n = tt!x!l *Bl xII{II{tt!x!!ti] I +el:je[1,o(i)*1]]:ie[1,n]]
P € [tt!x!!x!]+Bl-]Al
p = trul.[ (l(x,c] .[]x.Q,et.Q,: cdIx'x'l',cJ ],

Ii . i)i . [ tr ( x, x.Q,i ] . [ ]x!,et[, ce L : tl ( x, subst (x0')(i / xt"i], c I I I I l

so that the global assertion would be about g1obaI variables and program I'oca-

tion counters whereas local assertions would be about g1oba1 variables and

visible local variables,

8.6 ADAPTING AN INVARIANCE PROOF METHOD TO NEI'I LANGUAGE FIATURES

Al1 invariance pr-oof methods amount to the same fundamental principle
tth. 4.O.D but variants can be introduced by different decompositions of the
assertions about program states (th. 7.5.D. Hence in order to compare proof
methods for different languages or to adapt known methods to new language

features, it is sufficient to study the Various possible decompositions. Let

us consider for example Hoare[78]'s communicatlng sequential processes. The

proof method of Apt, Francez&de Roever[73] is an adaptation of 8.5.0.1 whereas

Levinl79] is an adaptation of 8.4.0.1. Both differ from Cousot & Cousot[80]
which is based on yet another decomposition taking communication channels

into account.

9. EXPRESSIVENESS

At paragraph 7 we have stated a sound and complete method []IeA :

F(OXII:>In I:>rfl for proving the invariance of VeA for any program Pr'
Invariance of V was defined as plPost(t*l(e(Ol)l:>V or according to 6.0.5 equi-
valently as Post(t*l(etOll+p(Yl . This does not mean that using the above

invariance proof method any rireP can be proved invariant in the sense of para-

graph 4 that is post(t*Xe(Ol):>U. If A has not been chosen expressive enough

there may exist no VeA such that OtVl=.1r.

I

I
I
I
I
I

-l

I

I

i

I
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The power of automatic program verification systems for
proving the partiaL correctness of programs is limited by their fundamental
incapability of guessing the invariant I and the fact that:> is not computable.
The fact that I can always be chosen as Lfp(F($)) is of no help since Lfp(ft$))
is not computable for all programs. fn order to circumvent these undecidability
results, the idea behirrd automatic program flow analysis Ie.g. Cousot &Cousot
177f, Cousot & Cousot[79a]l is to consider weak computsr representable properties
of programs for which Lfp(f&D is either computable or approximable from above.
This means that not all properties {eP of program Pr can be expressed by VeA

i.e. I is not onto. End of ErasnpLe.

The scope of applicability of the various invariance proof methods discussed
so far may be limited by the fact that some assertions of P cannot be expressed
in A. This cannot be the case wnen p is onto. These results are better sum-

marized by the following ;

THE0REw| 9.O.2

YPr< La, let <A;:>,false,true,v, A> be a complete lattice, g be a complete
FeIE + [A -+A]J ue 16.Ip"f tO] "pl,join-morphism of P into A, p b" 5tp),

F,FeIE + [A +A]l be isotone operators such that YQeE, p"f[0)=f(0]oP and
F, then :

vSe E,YVe A, lp@ost(t*ltetOl)l:>Vl<:>tlre n: F tQ)trl:>r ^ 1:>Vl
If moreover p is one-to-on" ot Iis onto or ["p=1 then YQe E, Ytpe P,

lPost(t*l(e (O)l:>Ul<:>[]reR: F(0)(rl:>r n r:>ptrll l

10. REDUCTION - EXTENSION

A common idea for proving properties of a program consists in reasoning
about a slightly transformed but equivalent program. This is the case when

using auxiliary variables in invariance proofs. This notion can be formali-
zed as a reduction of dynamic discrete transition systems.

(10.0.1) Let Sr, Se be sets and tre [[Sr x Sr] -+Bl, tee [[Se x Se-] +Bl Ue

transition relations. We say that ISr,trJ is a o-reduction of
(Se,te) if and only if there exists a total map o from Sr into
(zS'-g) such that (Yx,ye Sr, (x*yJ:>(o(xlno(y) * l)) and tr*=R(te*).

F -> F:>
(11

(2)
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Where

t 10.0.21 [[[Se x Se] +Bl -] [[Sr x Sr] +311
IO.tI (x,y) .[]X,Ye Se: (XeoIxi] n IYeoIy]l n 0(X,Yl ll
[[[sr x sr] + Bl + [[Se x Se] +Bll
I0.tf (X,Yl.IYx,ye Sr, (Xeo(x) n Yeo(y)]:> 0(x,yi ll

Notice that (R,R) is a Galois connection between [[Se xSe] -+Bl and

[[Sr x Sr] -+Bl and R is onto. Let us define Pr=[Sr+B] and Pe-[Se +B]

Re
R=
R-u
R=

€

€

and

introduce i

( 10 .0.31 r
r
r
;

IPe +Pr]
lfl. [].x. []Xese: (Xeotxl)n fl(Xlll
IPr+Pe]
).o. [trX. IYxeSr, (Xeo(x]):>trt( x)l l

ISr,tr) is a reduction of (Se,te) then :

ygePr, Post(tr*)t0l = r(Postf t"*ltitOltt
Yge Pr, YVe Pe, lPosttt"*XitOll:>vl :> lPostttr*)t6l:>r(V) l

(r,il is a Galois connection between Pe and Pr and r is onto. Therefore
3-fi,il is a galois connection between Pr and Pe and r is onto (6.0'11-12),

The following theorem states that reachability properties are preserved by

reduction whence one can prove j-nvariance properties of (Sr,trJ by reasoning
about its extension ISe,teJ :

THEOREI1 10.0.4

If
(11

{2)

Eranrple 10.0. 5 : "Soundness of the auxiliary variables transformation"
Let Pr be a program and Pra be the same program augmented with auxiliary
variables which can only appear in assignments to auxiliary variables. This
means that Yie[1,n), there exists a tota] one-to-one map tr(i) from the set
L(i) of labels of process P(iJ into the set La(il of labels of the corres-
ponding process Patil such that commands of Pe(i) deslgnated by a label
belonging to La(i-l-l(i)(1.(1JJ are assignments to auxiliary variables whereas

commands labeled Iti,j) in Ptil and commands labeled I(ilttr(i,illin !g(il are the
same (in particular a test command Iti,i):if b(i, j)(xl go to ),(i,a(i, j)) of
Ptil is transformed into l(iXI(i, j)):if Ui, j)(x) go to l(i)(tr(i,n(i, j)))).
Let t (resp. tu) be the domain of the main (resp. auxiliary) variables.
Let S be !x! and Sa be t xta xLa. Define oe[S* Qsa-il) as

),(x,cl.t{t x,xa,},(cl):xa€ta }l and call te[[SxS] -+Bl and tae [[Sa x Sa-] +Bl the
respective transition relations of the original and the transformed program
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as defined at 2.0.1. Then tS,tl is a o-reduction of ISa,taJ so that, accord-
ing to theorem 1O.O.4, one can prove j,nvariance properties of the original
program by reasoning about the transformed program.

In particuLar, given a program Pr, an entry specification Q and assertions
VeA (where A=II{II{[t-+B]:je[1,o(i]+11]:ie[1,r_]]1, Owicki &GriesIz6a] invarlance
proof method consists in guessing a transformed program Pra and assertions
YaeAa (where Aa=lT{iI{tlrE+Bl:je[1,oaIi)+1]]:ieIt,nl]J such that e(val:>v
where e=),Va.tli.tIj.l_lx.[]xaeta,ke [1,oa(i]+11:].(i)(tr(i,j))=tr(i,k) n
Va(i)(kJ(x,xalllll anci which can be proved invariant for Pra using theorem
9.O.2.1 and decomposition 8.3.0.1 [hence without refering to program location
countersJ.

Tl-ris invariance proof method is sound since paLposttta*lrite(Qlll-l:>va
implies Post(t*l(e tg)):>r"fr(Va j:>ptVl by 6.0.5, 1a.o.4.j, popolT:) e, 6.0.5
and therefore p (Posttt*)(e(Ollj:>V . End of EuampLe.

Erarnple 10. 0.6 :
The proof consists in

"Completeness of the auxiliary variables transformation"
showing that given PreLa, SeE, YeA such that

Q(Post(t*l(e (Oll):>Y, there exist pru.r-u,lulnu such that ya can be shown
invariant for Pra without "*fering to O"O*.-r locatiorr counters (i.e.
pa(r{e(0))v Post(ta)(GtYall)+Val, e(Ya) is invariant for the original program
(i.e. Post(t*l(ef0):>pte(Va)l) and e(Val:>V. pra 1s constructed by adding one
auxiliary variable xa(iJ to each process P(i) taking its values in [1,oIi)+1J
(or any otirer domain isomorphic with L(i)). To any command l(i,jl:Cti,j)
of Pr correspond commands lti ,2j-11 :c(i,j I ;l (i,zj] :xa(i) : =j of pra (in
particular ),(i, j I :g| Uti, j Xx) go to i,r,n,r;,,jll is transformed into L(i,2lIi,2i-1)
=!:l b(i,jXxl go to f(i,"nti,j)-1J;l(i,2j):x1(i):=jJ so that auxiliary variabtes
simulate program location counters. Ya is chosen as pa (post(ta*lti(e(Q)))).
End of Eratnple.

Eranrple 10.0.7 : Let us propose answers to the open problems of Clarke
IB0l. First "is there a proof system similar to the one originally described
by Owicki that does not require the use of history variables?". The answer is
clearly yes when choosing the decomposition 8.4.0.1 instead of 8.3.0.1 i.e.
when using program location counters. Although this alternative may be found
lnelegant, this result .at least shows that proliferation of auxiliary varia-
bles (t.g. Gries[79]l can be avoided, More general]y "are history variables
necessary for formal verification of concurrent programs?". As shown by
theorem 9.O.2 the answer only depends on the decomposition p which is chosen.



18

There is always one for which the answer i5 n0 [e.g. 8.2.O.1) and one for
which the answer is yes te.g. 8.3.0.11 . End of Enatnple.

11. CONCLUSION

We have studied prog:ram proof methods in abstracto, using a mathematical
model based on dynamic discrete transition systems, a fixpoint characteriza..
tisn of correctness properties, a decomposition of assertions using Galois
connections and a reduction of transition systems. This approach is quite
general and was illustrated by means of an application to j-nvariance proof
techniques for para1lel programs sharing global variables and synchronized
by conditional critical sections Ithe case of concurrent programs designed

as networks of nondeterministic sequential processes, communj-cating with
each other explicitly, by the sofe means of synchronous unbuffered message

passing is treated along the same lines in Cousot & Cousotl 80J ) . Although
only invari.ance properties have been considered, other properties of programs

such as liveness are amenable to the same formalization.
The model of dynamic discrete transition systems has aIr'eady been. used

in KellerfT6), Pnuetli[77 ], Rosen[ 77), Abria] & Scl-ruman[ 79] but the connection

between this highly abstract conceptual model and the means of presenting
programs is left unspecified, in particular the idea of decomposition is
absent' This idea appears in Cousot[79] (as partitionned dynamic discrete
systems) and in Cousot & Cousot[79a] (in a different although related context) '
The observation that correctness properties of programs can be characterized
as fixpoints (Clarke[77], Cousot &Cousotf,77l, Flon &suzuki[78], Van Lamsweerde&

Sintzoff[79]J can be traced back toPark[69,]. Our notion of reduction,/extension
of dynamic discrete trarrsition systems is related to LiptonlTSf' s reduction
of parallel programs. Lipton's intuitive notion of reduction has been forma-

lized by Kwongl77) but his definitions are too restrictive for formalizing
the use of auxiliarY variables.

program logics are alternate mathematicai formal-isms for reasoning about

prograft proof methods (e.g, Prattl76], Hoare[78a1, Salwicki[78]). They are

well-suited for decidability and computability results. However, these logics
are taifored to particular languages (e.g. assignment, test,' sequence' itera-
tion, non-deterministic choiceJ and syntax-directed. Therefore a particular
decomposition of the assertions about program states is chosen once for all'
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which the answer is

1B

which the answer is no (e.g. 8.2.8.1) and one for
te.g. 8.3.0.11. End of EuanrPle.

1T. CONCLUSION

We have studied program proof methods in abstracto, using a mathematical
model based on dynamic discrete transition systems, a fixpoint characteriza-
tion of correctness properties, a decomposition of assertions using Galois
csnnections and a reduction of transition systems. This approach is quite
general and was illustrated by means of an application to invariance proof
techniques for parallel programs sharing global variables and synchronized
by conditional critical sections (the case of concurrent programs designed

as networks of nondeterministic sequential processes, communicating with
each other explicitly, by the soLe means of synchronous unbuffered message

passing is treated along the same Lines in Cousot &Cousot[B0l]. Although
only invariance properties have been considered, other properties of programs

such as liveness are amenable to the same formalization.
The model of dynamic discrete transition systems has already been. used

in Keller[76], Pnuell,il77l, Rosen[77], Abrial &Scfuuman[79] but the connection

between this highly abstract conceptual model and the means of presenting
programs is left unspecified, in particular the idea of decomposition 1s

absent. This idea appears in Cousot[79] (as partitj-onned dynamic discrete
systemsJ and in Cousot & Cousot[79a] [in a different a]though related context) '
The observatlon that correctness properties of programs can be characterized
as fixpoints (Clarke[77], Cousot &Cousotf,77l, Flon &suzuki[78], Van Lamsweerde&

sintzoffIZg]) can be traced back toPark[69-], Our notion of reduction,/extension
of dynamic discrete trarrsition systems is related to LiptonlT5)' s reduction
of paralleI programs. Lipton's intuitive notion of reduction has been forma-

lized by Kwong[ 77f but his definitions are too restrictive for formalizing
the use of auxiliarY variables.

program logics are alternate mathemati-cai formalisms for reasoning about

program proof methods Ie.g. Pratt[76], Hoare[7Bal, SalwicKi[78]). They are

well-suited for decidability and computability results. However, these logics
are tailored to particular' languages Ie.g. assignment, test,' sequence, ltera-
tion, non-deterministic choice) and syntax-directed. Therefore a particular
decomposition of the assertions about program states is chosen once for all'

for
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Hence our study of decompositions would be very difficult with this formalism.
lyoreovel reasonings by induction on the syntactical structur'e of programming

languages have several drawbacks when context-dependencles are involved. For

example l1i lne[ 77 ] shows tl-rat continuations may be necessary in predicate-
transformers. Notice that these context-dependencies don't only come from

spaghetti-like languages. For example Cwicki's interference-freeness is a

context-sensitive notion that might be difficult to formalize using program

logics as theY now stand.
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13. APPENDIX

13.1 Proof of Theoren 7 .0.2
(1) - By fixpoint property pofo OttypGD=LfptL) hence f "p|fp(Fl):> pttfprcn

by 6.0.5 so that Lfp(f ):>|llfpV,ll by Tarski's fixpoint theorem proving that
p(Lfp(f )) =+ Lfp(r) by 6.0.5.

- Let P={a,b,c,d} be a complete lattice with strict ordering acb<d and
a<c<d. Let A={e,g,h} be a completg lattice with strict ordering ecg<h. Define
p(a)=p(c)=e, p{b)=p(d)=g, p(e)=c, p(g)=p(hj=d, f(al=a and f(bJ=fIc)=fId)=b.
We have I(e)=F(g)=F(h)=g so that p(LfpGD=e < g=Lfp(F).

e) - If p is one-to-one then p'"p=1 and Fog=gof so that p(LfpffD=LfptF) by t4l
befow.

-If P=A={a,b} with a<b and f=f=p=lx.Ia-], p=f*.Ib] then p(LfpGD=Lfp(F)
althriilg h p is not one-to-one

t3) - F=pofop=fopop<F since p"p<1. The
the following example ' P=A={a,b}, d<b,
F(bl=a. If p is onto then_p"p=1 so that
shown by example (2) when F=F.

{q - Let X (resp. Y) be the upper iteration sequence for F (resp. f) starting
with false i.e. X(0)=false, X(61=F(6-1ll for every successor ordinal 6 and
X(61=v{X(oJ:cl<6} for every limit ordinal 6 (Cousot & Cousot[7Sb]1. p is faLse*
strict whence X(0i=p(Y(01). Assume_X(cll=p(Y(gll for every ordinal cl<6. If
61s a successor ordinal then X(61=F(Xt6-11)=Ftp(yt6-1lll=p(f(y{6-1ll)=pty(611 . If
6 is a limit ordinal then X(6)=v{X(cr):o<6}=v{ptY(oll :cr<6}=p(v{v(al:o<6}l=p(Yt6ll .

By transfinite induction X(6)=p(Y(61) for every ordinal 6. According to Cousot
& Cousot[79b,th.3,3] there exist ordinals e'l and e2 such thatLfp(FI=X(e1)=
X(man(e1,e211=p(Y(ma.r(e1,eZl|]=pIY(e2))=Qtlfp{f )). Moreover F:> F:> F imp}ies
Lfprcl+t.fpG):>Lfp(Fi=p(Lfprcn and also p(LfpGD:>Lfp(Fi- ny (1) so that
equality holds.
(51 - If p(LfpGD:>LfpG ) and YeA such that [J]eA:F(I)->I n I+Vl then pf.Lf1:G))

+Lfp{F)=n{IeA:F(Il:>I}+V by Tarski's fixpoint theorem. Reciprocally if
p(Lfp(f D=LfpG) and p (.Lfpff )l:>Y then F tLfpGD=Lfp{F) and Lfp (F)->V.

13.2 Proof of Theorems 3.0.1,4.0.2 and 9.0.2

- If 01 , lZeL[SxS] -+Bl then 01o02=l(sa,sbJ.[]seS:01 [sa,s)n02[s,sb]1. Let
eqe[[SxS] +Bl be ],(sa,sbl.Isa=sb]. We have 1*=7fp(f0.IeqvQ"t]). YPeE,
),0.lpost(0)(e(01)l is a complete v-morphism from the complete lattice [[SxS] +Bl
into the complete lattice P and X0.lPost(01(e($))1"16.Ieqv0"t]=f(0lo
).8,fPost(0)(etQ)) I proving that Post(t*lIe (fi)=Lfp(f (O]) by theorem 7.0 -2.(4).

- Theorems 4.0.2 and 9,0'2. (1 I follour from 3.0.1 and 7.0.2. (51 '- By Tarski's fixpoint theorem and theorem 7.A.2-(4), []16A:F(0)tIi:>In
r:> p ( rf.r ) l<:>[ Lfp G ( 0 ]):>p ( U ) I <:> t p (Lfp ( r ( $ ))):>p ( V ) I <:> t Lfp G ( Q )) = p " p (Lfp t.f (QD)
:>g"0tV)=01 by isotony and 6.0.10.

13.3 Proof of Theorem 1.0.0.4

YQePr, flostttr*lt6) =Post(R(te*))(Q)=lx.[]yeSr:0!y)ntlXeo(xJ,Yeo(y): te*(Y,x))l
=trx.IJYeSe: Ft0]tY j^(lxe o(xJ :te^ (Y,X)J 1=p(Post (te^ )tT(01)) .

inequality can be strict as shown by
p(al=p(bJ=a, P(aJ=p(b)=b, f=F=1, F(eJ=
F=F but the reciprocal is not true as


