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Challenge:

Design and implementation of an analyzer for
multi-threaded C programs that ...

� deals with (arrays of) function pointers;

� deals with heap-allocated data;

� tracks flow- and context-sensitive information ...

� detects global invariants � Mutual Exclusion

� is sufficiently efficient :-))
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1. The Key Idea:

� track values of local variables through (classical)
interprocedural analysis;

� approximate globals and heap by safe invariants ...
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Problem:
� Our fixpoint engine is local;

� It explores explores the program demand-driven:

� functions are only analyzed for actually occurring
arguments :-)

� global variables formally depend also on
un-realizable function calls :-(

� local solving does not succeed :-((

� � � solving with side effects
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2. Some Details: Base Analysis

Demand:

� tracking of storage layout;

� tracking of addresses;

� tracking of int values;

� tracking of mutex locks;

� tracking of strings.
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2.1. int Constants

Example:

if (x == 7) pthread_mutex_lock (&me);

...

if (x == 7) pthread_mutex_unlock (&me);
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The Classical Analysis:
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?

... does not track negative information :-(
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Idea 1:
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Anti-constants are not quite sufficient :-(

Idea 2:

� Track each possibly hold set of locks separately;

� Join variable assignments only relative to a possible set of
locks :-)
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2.2. Tracking Mutex Locks

Sadly enough,
� ... pthread mutex locking may fail;

� ... some code checks whether locking has succeeded.

� � � We cannot assume that a lock has been acquired before
the check point;

� � � We must track variables holding return values of
pthread_mutex_lock().
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Example:

ret = pthread_mutex_lock (Mutex);

while (ret == 4)

ret = pthread_mutex_lock (Mutex);

if (ret != 0) RetCond = FALSE;

else while (RetCond) {...}
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3. Results

We obtained ...

� a reasonably efficient analyzer which is able to deal with
almost all benchmark applications provided to us by
Airbus (varying in size between 10,000 and 60,000 LOC)
...

� whch is reasonably precise to flag few spurious warnings.

Some numbers:
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Benchmark Threads Base Analysis

1 3 .30 73831

2 4 1.00 133098

3 0 .28 107066

4 3 .15 52419

5 3 1.33 157010

6 7 18.15 248761

7 25 6.21 447505
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Benchmark Threads Checked Locks

1 3 .36 77001 8

2 4 1.30 186806 37

3 0 .24 88172 0

4 3 .20 61302 6

5 3 25.30 682210 36

6 7 2.56 291278 13

7 25 4.20 ? ?
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Benchmark Threads Unchecked Locks

1 3 .32 73116 7

2 4 1.05 150104 29

3 0 .19 78002 0

4 3 .20 60783 6

5 3 3.48 276745 31

6 7 15.49 716220 13

7 25 ? ? ?
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The Universal Tiny Problem
Solver
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Simple Idea:
� Compute set of reachable configurations exactly!

� Represent this set as BDD :-)

� int value � � 32 bits :-))

thread pc � � int value

configuration � � vector of int’s :-))

� Implement Posix thread function calls directly
as BDD operations :-)

� Provide whatever can be compiled into this structure ...
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Consequences:

Abstraction from scheduling policies

No Support for:

� recursion;

� dynamic addresses;

� iterated thread creation;

� general multiplication :-(

� � � but:
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Instead, we provide:
� non-recursive procedures with reference parameters;

� local variables;

� indexed jumps;

� nested arrays, structs;

� array accesses indexed with iteration variables;

� unknown values :-)
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Results:

� We have implemented with various (semi-naive) fixpoint
iteration strategies;

� We have experimented with various benchmark programs:

� a correct use of Hoare monitors (from AIRBUS);

� a flawed use of Hoare monitors (from AIRBUS);

� dining philosophers of various sizes;

� bounded buffers with semaphores;

� reader–writer locking;

� Peterson’s algo;

� Bakery algo � � �
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� We found the usual results:

� Flawed programs are often easier to analyze :-)
� There was no unique best iteration strategy :-(

� The tool, though, was efficient enough to analyze the
given benchmark programs — at least for small problem
instances :- �

� Abstract interpretation based extra tool is needed to
extract the concurrent control protocol out of realistic
programs ...
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