
The Trier Mutex Analyzer

DAEDALUS Project, 2002

Helmut Seidl

Varmo Vene

Markus Müller-Olm

1



Challenge:

Design and implementation of an analyzer for
multi-threaded C programs that ...

� deals with (arrays of) function pointers;

� deals with heap-allocated data;

� tracks flow- and context-sensitive information ...

� detects global invariants � Mutual Exclusion

� is sufficiently efficient :-))

2



1. The Key Idea:

� track values of local variables through (classical)
interprocedural analysis;

� approximate globals and heap by safe invariants ...

3



y
x 2

6

z = x + y;

z

4



y
x 2

6

z = x + y;

z

y
x 2

6

5



y
x 2

6

z = x + y;

y
x 2

6

8
z

6



Our System:
Program

Fixpoint Engine

Frontend

Base Analysis

Answer

7



Our System:
Program

Fixpoint Engine

Frontend

Base Analysis

Analysis Property

Answer

8



Problem:
� Our fixpoint engine is local;

� It explores explores the program demand-driven:

� functions are only analyzed for actually occurring
arguments :-)

� global variables formally depend also on
un-realizable function calls :-(

� local solving does not succeed :-((

� � � solving with side effects

9



Our System:
Program

Fixpoint Engine

Frontend

Base Analysis

Analysis Property

Answer

10



Our System:
Program

Fixpoint Engine

Frontend

Base Analysis

Analysis Property

Answer

with Side Effects

11



2. Some Details: Base Analysis

Demand:

� tracking of storage layout;

� tracking of addresses;

� tracking of int values;

� tracking of mutex locks;

� tracking of strings.

12



2.1. int Constants

Example:

if (x == 7) pthread_mutex_lock (&me);

...

if (x == 7) pthread_mutex_unlock (&me);

13



The Classical Analysis:

0−2 −1 +1 +2

?

... does not track negative information :-(

14



x == 7

lock(...);

unlock(...);

x == 7

x ?

15



x == 7

lock(...);

unlock(...);

x == 7

x 7

x ?

16



x == 7

lock(...);

unlock(...);

x == 7

x 7

x ?

x ?

x 7me

17



x == 7

lock(...);

unlock(...);

x == 7

x 7

x ?

x ?

18



x == 7

lock(...);

unlock(...);

x == 7

x 7

x 7

x ?

x ?

19



x == 7

lock(...);

unlock(...);

x == 7

x 7

x ?

x ?

x ? x 7

x 7

20



x 7

x 7

x == 7

x == 7

lock(...);

unlock(...);
x ?

x ?

x ?

21



Idea 1:

?

0−2 −1 +1 +2

+1

+1,+2 +1,+3

0

22



x == 7

lock(...);

unlock(...);

x == 7

x ?

23



x == 7

lock(...);

unlock(...);

x == 7

x 7

x ?

24



x == 7

lock(...);

unlock(...);

x == 7

x 7

x ?

x 7

x 7me

25



x == 7

lock(...);

unlock(...);

x == 7

x 7

x ?

x ?

26



x == 7

lock(...);

unlock(...);

x == 7

x 7

x 7

x ?

x ?

27



x == 7

lock(...);

unlock(...);

x == 7

x 7

x ?

x ?

x 7 x 7

x 7

28



x 7

x 7

x == 7

x == 7

lock(...);

unlock(...);
x ?

x ?

x ?

29



Anti-constants are not quite sufficient :-(

Idea 2:

� Track each possibly hold set of locks separately;

� Join variable assignments only relative to a possible set of
locks :-)

30



x == 7

lock(...);

unlock(...);

x == 7

x ?

31



x == 7

lock(...);

unlock(...);

x == 7

x 7

x ?

32



x == 7

lock(...);

unlock(...);

x == 7

x 7

x ?

me x 7

x 7

33



x == 7

lock(...);

unlock(...);

x == 7

x 7

x ?

x 7 me x 7

34



x == 7

lock(...);

unlock(...);

x == 7

x 7

x ?

x 7 me x 7

me x 7

35



x == 7

lock(...);

unlock(...);

x == 7

x 7

x ?

x 7 me x 7

x 7 me x 7

x 7

36



x == 7

lock(...);

unlock(...);

x == 7

x 7

x 7 me x 7

me x 7

x ?

x ?

37



2.2. Tracking Mutex Locks

Sadly enough,
� ... pthread mutex locking may fail;

� ... some code checks whether locking has succeeded.

� � � We cannot assume that a lock has been acquired before
the check point;

� � � We must track variables holding return values of
pthread_mutex_lock().

38



Example:

ret = pthread_mutex_lock (Mutex);

while (ret == 4)

ret = pthread_mutex_lock (Mutex);

if (ret != 0) RetCond = FALSE;

else while (RetCond) {...}

39



3. Results

We obtained ...

� a reasonably efficient analyzer which is able to deal with
almost all benchmark applications provided to us by
Airbus (varying in size between 10,000 and 60,000 LOC)
...

� whch is reasonably precise to flag few spurious warnings.

Some numbers:

40



Benchmark Threads Base Analysis

1 3 .30 73831

2 4 1.00 133098

3 0 .28 107066

4 3 .15 52419

5 3 1.33 157010

6 7 18.15 248761

7 25 6.21 447505

41



Benchmark Threads Checked Locks

1 3 .36 77001 8

2 4 1.30 186806 37

3 0 .24 88172 0

4 3 .20 61302 6

5 3 25.30 682210 36

6 7 2.56 291278 13

7 25 4.20 ? ?

42



Benchmark Threads Unchecked Locks

1 3 .32 73116 7

2 4 1.05 150104 29

3 0 .19 78002 0

4 3 .20 60783 6

5 3 3.48 276745 31

6 7 15.49 716220 13

7 25 ? ? ?

43



The Universal Tiny Problem
Solver

44



Simple Idea:
� Compute set of reachable configurations exactly!

� Represent this set as BDD :-)

� int value � � 32 bits :-))

thread pc � � int value

configuration � � vector of int’s :-))

� Implement Posix thread function calls directly
as BDD operations :-)

� Provide whatever can be compiled into this structure ...

45



Consequences:

Abstraction from scheduling policies

No Support for:

� recursion;

� dynamic addresses;

� iterated thread creation;

� general multiplication :-(

� � � but:

46



Instead, we provide:
� non-recursive procedures with reference parameters;

� local variables;

� indexed jumps;

� nested arrays, structs;

� array accesses indexed with iteration variables;

� unknown values :-)

47



Results:

� We have implemented with various (semi-naive) fixpoint
iteration strategies;

� We have experimented with various benchmark programs:

� a correct use of Hoare monitors (from AIRBUS);

� a flawed use of Hoare monitors (from AIRBUS);

� dining philosophers of various sizes;

� bounded buffers with semaphores;

� reader–writer locking;

� Peterson’s algo;

� Bakery algo � � �

48



� We found the usual results:

� Flawed programs are often easier to analyze :-)
� There was no unique best iteration strategy :-(

� The tool, though, was efficient enough to analyze the
given benchmark programs — at least for small problem
instances :- �

� Abstract interpretation based extra tool is needed to
extract the concurrent control protocol out of realistic
programs ...

49


