
Worst Case Execution Time Prediction

2

Hard Real-Time Systems

� Controllers in planes, cars, plants, … are
expected to finish their tasks within reliable
time bounds.

3

Timing Validation

� Schedulability analysis has to show that all timing
requirements will be met
� Takes into account:

� System design (event based, time triggered, ...)
� Outside world (maximal arrival rates, minimal interval between

events, ...)
� Scheduling policy (round robin, RMA, time triggered, RTOS, ...)
� ...

� All results from the Scheduling Theory require the
Worst Case Execution Time (WCET) of the tasks to be
known

4

Certification

Certificate:

Program terminates

in 82 ms on MicroS…

� Certificates

� Stand alone tool
for e.g. TÜVs

� To proof timings
to obtain certificates
from TÜVs

5

Support during SW-Development

Loop L31: IC=191
1910 h 382 m

Loop L31: IC=191
1910 h 382 m

56: I-miss
57: I-hit
….

56: I-miss
57: I-hit
….

_main: WCET 166.2 ms
BCET 157.0 ms

_main: WCET 166.2 ms
BCET 157.0 ms

6

Modern Hardware
� Multiple memories, caches, pipelines, branch

prediction, …

� Performance depends on execution history.
This makes the prediction difficult

� No information means: assume the worst

� Switching off caching reduces performance by
a factor of 30 (EADS study)

7

General Problems with State
Based Processor Features
� Problem: Modern hardware <=> predictability of

execution time

� Software monitoring, dual loop benchmark, direct
measurement with logic analyzer, hardware simulation
are no longer generally applicable.

� Choosing the fastest available processor, praying, or
crossing fingers is not a true alternative.

8

A Traditional Approach

� Partition the application into code snippets,
� Determine their worst-case inputs,
� Measure their runtime with these inputs,
� Combine these results to find the worst-case

path and its runtime.

� Error-prone and expensive!

9

Some Architectural Challenges
� The empty cache is not necessarily the “worst case

cache”

� The global round robin counter/PLRU state bits can be
changed by interrupt routines

� Unified cache => instructions and data interfere
=> measurements for all possibilities of interference
necessary

� A cache miss is not necessarily the worst case

10

Solution: Static WCET Analysis

� The WCET analyzer computes save upper
bounds of the execution time of the tasks in a
program for all inputs

� Static program analysis based on Abstract
Interpretation

� The analysis design is proven to be correct

11

WCET Analyzer

� Input: an executable program, starting points, loop iteration counts, call targets
of indirect function calls, and a description of bus and memory speeds

� Computes Worst-Case Execution Time bounds of tasks

12

Scope

� The WCET analyzer assumes no interference
from the outside. Effects of interrupts, IO,
timers, other (co-) processors are not reflected
in the predicted runtime and have to be
considered separately.

13

Input
� An executable (e.g. in ELF or COFF format).
� User annotations

� Call targets for all indirect function calls
� Upper bounds on the iteration counts of all loops (and recursions)

� A description of the (external) memories and buses (i.e. a list of
memory areas with minimal and maximal access times)
� To be provided once for a new board

� A task
� Can be arbitrarily selected by a start address or a function name
� A task denotes a sequentially executed piece of code (no threads,

no parallelism, no waiting for external events)
� The code of a task is compiled by a C-compiler from a restricted

subset of ANSI-C (no dynamic data structures, no setjmp/longjmp)

14

Call Graph
Calls contributing to the WCET are red

15

Control Flow Graph
Worst case path is red

16

Cycle-Wise
Evolution of
Cache/
Pipeline
States

17

Cache/
Pipeline
State

18

Overall Structure
Executable

program

CFG Builder

Loop Trafo

Value Analyzer

Cache/Pipeline
Analyzer

Static Analyses

ILP-Generator

LP-Solver

Evaluation

Path Analysis

CRL
File

PER
File

WCET
Visualization

Loop
bounds

AIP
File

19

The ColdFire
Pipeline
� Fetch Pipeline of 4 stages

� Instruction Address Generation
(IAG)

� Instruction Fetch Cycle 1 (IC1)
� Instruction Fetch Cycle 2 (IC2)
� Instruction Early Decode (IED)

� Instruction Buffer (IB) for 8
instructions

� Execution Pipeline of 2 stages
� Decoding and register operand

fetching (1 cycle)
� Memory access and execution

(1 – many cycles)

20

Pipeline
Model

21

PPC755 Pipeline

� Complex branch prediction
� Superscalar: up to two instructions per cycle

dispatched and retired
� Out-of-order execution

� Integer instructions,
� Floating point instructions and
� Loads may be reordered

� Speculative execution
� After predicted branches, instructions are executed

speculatively
� Speculative loads may occur

22Pipeline of the PPC755

23

Pipeline Model

24

� Loops are
analyzed like
procedures

� This allows for
� Virtual inlining
� Virtual unrolling
� Better address

resolution
� Burst accesses
� Selectable

precision
� Optional user

constraints

Analysis
of Loops

25

Limitations
� Well behaved code (ABI)
� No exceptions
� Only aligned accesses
� No VM settings
� Some instructions not to be used

26

Advantages

� The WCET analyzer allows you to:
� inspect the timing behavior of (timing critical

parts of) your code

� The analysis results
� are determined without the need to change the

code
� hold for all executions (for the intrinsic cache and

pipeline behavior)

27

Advantages

� The results are precise
� The computation is fast
� The WCET analyzer is easy to use
� The WCET analyzer works on optimized code
� The WCET analyzer saves development time by

avoiding the tedious and time consuming
(instrument and) execute (or emulate) and measure
cycle for a set of inputs over and over again

28

Planned Extensions

� Support for code generators
� E.g. recognition of generated patterns to avoid the

need of user annotations on generated code

� Automatic detection of the number of loop
iterations in the executable

� Further targets

29

Support for a New Processor
Model

� Front end for executables
� Modeling of the pipeline according to the

documentation
� (Modeling of the cache)
� Verification of the pipeline model on the real

hardware or reliable emulator

30References
� LCTRTS’ 97. Ferdinand, Martin, and Wilhelm. Applying Compiler Techniques to Cache Behavior

Prediction.
� RTSS’ 98. Theiling and Ferdinand. Combining Abstract Interpretation and ILP for Microarchitecture

Modeling and Program Path Analysis.
� STTT Journal. Martin. PAG -- An Efficient Program Analyzer Generator
� LCTES’ 99. Schneider and Ferdinand. Pipeline Behavior Prediction for Superscalar Processors by

Abstract Interpretation.
� RTS Journal. Ferdinand and Wilhelm. Efficient and Precise Cache Behavior Prediction for Real-Time

Systems.
� RTS Journal. Kästner and Thesing. Cache-Aware Pre-Runtime Scheduling.
� RTS Journal. Theiling and Ferdinand. Fast and Precise WCET Prediction by Separated Cache and Path

Analysis.
� RTSS ´00. Schneider. Cache and Pipeline Sensitive Fixed Priority Scheduling for Preemptive Real-Time

Systems.
� RTCSA´ 00. Theiling. Extracting Safe and Precise Control Flow from Binaries
� LCTES’ 01. Theiling. Generating Decision Trees for Decoding Binaries
� EMSOFT’ 01. Ferdinand et al., Reliable and Precise WCET Determination for a Real-Life Procesor
� MSP’ 02. Heckmann. The Influence of Replacement Strategy on Static Prediction of Cache

Contents
� ECRTS’ 02. Thesing, Langenbach, Heckmann. Pipeline Behavior Prediction Analysis for

Real-Time Systems by Pipeline Modeling
� EMSOFT’ 02. Theiling. ILP-based Interprocedural Path Analysis
� SAS’ 02. Langenbach, Thesing, Heckmann. Pipeline Modeling for Timing Analysis
� WCET’ 02. Langenbach, Ferdinand, Wilhelm. Worst Case Execution Time Prediction

email: info@AbsInt.com
http://www.AbsInt.com

	Worst Case Execution Time Prediction
	Hard Real-Time Systems
	Timing Validation
	Certification
	Support during SW-Development
	Modern Hardware
	General Problems with State Based Processor Features
	A Traditional Approach
	Some Architectural Challenges
	Solution: Static WCET Analysis
	WCET Analyzer
	Scope
	Input
	Overall Structure
	The ColdFire Pipeline
	Pipeline Model
	PPC755 Pipeline
	Pipeline of the PPC755
	Pipeline Model
	Analysisof Loops
	Limitations
	Advantages
	Advantages
	Planned Extensions
	Support for a New Processor Model
	References
	

