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Hard Real-Time Systems

� Controllers in planes, cars, plants, … are 
expected to finish their tasks within reliable 
time bounds.
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Timing Validation

� Schedulability analysis has to show that all timing 
requirements will be met
� Takes into account:

� System design (event based, time triggered, ...)
� Outside world (maximal arrival rates, minimal interval between 

events, ...)
� Scheduling policy (round robin, RMA, time triggered, RTOS, ...)
� ...

� All results from the Scheduling Theory require the 
Worst Case Execution Time (WCET) of the tasks to be 
known
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Certification

Certificate:

Program terminates

in 82 ms on MicroS…

� Certificates 

� Stand alone tool 
for e.g. TÜVs

� To proof timings 
to obtain certificates 
from TÜVs
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Support during SW-Development

Loop L31: IC=191
1910 h  382 m

Loop L31: IC=191
1910 h  382 m

56: I-miss
57: I-hit
….

56: I-miss
57: I-hit
….

_main: WCET 166.2 ms
BCET  157.0 ms

_main: WCET 166.2 ms
BCET  157.0 ms
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Modern Hardware
� Multiple memories, caches, pipelines, branch 

prediction, …

� Performance depends on execution history. 
This makes the prediction difficult

� No information means: assume the worst 

� Switching off caching reduces performance by 
a factor of 30 (EADS study)
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General Problems with State 
Based Processor Features
� Problem: Modern hardware <=> predictability of 

execution time

� Software monitoring, dual loop benchmark, direct 
measurement with logic analyzer, hardware simulation  
are no longer generally applicable.

� Choosing the fastest available processor, praying, or 
crossing fingers is not a true alternative.



8

A Traditional Approach

� Partition the application into code snippets,
� Determine their worst-case inputs,
� Measure their runtime with these inputs,
� Combine these results to find the worst-case 

path and its runtime.

� Error-prone and expensive!
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Some Architectural Challenges
� The empty cache is not necessarily the “worst case 

cache”

� The global round robin counter/PLRU state bits can be 
changed by interrupt routines

� Unified cache => instructions and data interfere 
=> measurements for all possibilities of interference 
necessary

� A cache miss is not necessarily the worst case
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Solution: Static WCET Analysis

� The WCET analyzer computes save upper 
bounds of the execution time of the tasks in a 
program for all inputs

� Static program analysis based on Abstract 
Interpretation

� The analysis design is proven to be correct
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WCET Analyzer

� Input: an executable program, starting points, loop iteration counts, call targets 
of indirect function calls, and a description of bus and memory speeds

� Computes Worst-Case Execution Time bounds of tasks 
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Scope

� The WCET analyzer assumes no interference 
from the outside. Effects of interrupts, IO, 
timers, other (co-) processors are not reflected 
in the predicted runtime and have to be 
considered separately.
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Input
� An executable (e.g. in ELF or COFF format). 
� User annotations

� Call targets for all indirect function calls 
� Upper bounds on the iteration counts of all loops (and recursions)

� A description of the (external) memories and buses (i.e. a list of 
memory areas with minimal and maximal access times)
� To be provided once for a new board 

� A task 
� Can be arbitrarily selected by a start address or a function name
� A task denotes a sequentially executed piece of code (no threads, 

no parallelism, no waiting for external events)
� The code of a task is compiled by a C-compiler from a restricted 

subset of ANSI-C (no dynamic data structures, no setjmp/longjmp)
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Call Graph
Calls contributing to the WCET are red
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Control Flow Graph
Worst case path is red
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Cycle-Wise 
Evolution of 
Cache/
Pipeline 
States
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Cache/
Pipeline 
State



18

Overall Structure
Executable

program

CFG Builder

Loop Trafo

Value Analyzer

Cache/Pipeline 
Analyzer

Static Analyses

ILP-Generator

LP-Solver

Evaluation

Path Analysis

CRL
File

PER
File

WCET
Visualization

Loop
bounds

AIP
File
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The ColdFire
Pipeline
� Fetch Pipeline of 4 stages

� Instruction Address Generation 
(IAG)

� Instruction Fetch Cycle 1 (IC1)
� Instruction Fetch Cycle 2 (IC2)
� Instruction Early Decode (IED)

� Instruction Buffer (IB) for 8 
instructions

� Execution Pipeline of 2 stages
� Decoding and register operand 

fetching (1 cycle)
� Memory access and execution 

(1 – many cycles)
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Pipeline 
Model
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PPC755 Pipeline

� Complex branch prediction
� Superscalar: up to two instructions per cycle 

dispatched and retired
� Out-of-order execution

� Integer instructions,
� Floating point instructions and
� Loads may be reordered

� Speculative execution
� After predicted branches, instructions are executed 

speculatively
� Speculative loads may occur
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Pipeline Model
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� Loops are 
analyzed like 
procedures

� This allows for 
� Virtual inlining
� Virtual unrolling
� Better address 

resolution
� Burst accesses
� Selectable 

precision
� Optional user 

constraints

Analysis
of Loops
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Limitations
� Well behaved code (ABI)
� No exceptions
� Only aligned accesses
� No VM settings 
� Some instructions not to be used
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Advantages

� The WCET analyzer allows you to:
� inspect the timing behavior of (timing critical 

parts of) your code 

� The analysis results
� are determined without the need to change the 

code
� hold for all executions (for the intrinsic cache and 

pipeline behavior)
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Advantages

� The results are precise
� The computation is fast
� The WCET analyzer is easy to use
� The WCET analyzer works on optimized code
� The WCET analyzer saves development time by 

avoiding the tedious and time consuming
(instrument and) execute (or emulate) and measure 
cycle for a set of inputs over and over again
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Planned Extensions

� Support for code generators
� E.g. recognition of generated patterns to avoid the 

need of user annotations on generated code

� Automatic detection of the number of loop 
iterations in the executable

� Further targets
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Support for a New Processor 
Model

� Front end for executables
� Modeling of the pipeline according to the 

documentation
� (Modeling of the cache)
� Verification of the pipeline model on the real 

hardware or reliable emulator
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