
Automatic Verification of Temporal Properties

of Concurrent Heap-Manipulating Programs

using Evolution Logic
Tel Aviv University, School of Computer Science, TR 338/02

Eran Yahav1, Thomas Reps2, Mooly Sagiv1, and Reinhard Wilhelm3

1 School of Computer Science, Tel-Aviv University, Tel-Aviv 69978,
{yahave,msagiv}@post.tau.ac.il

2 Computer Science Dept., University of Wisconsin, Madison, WI 53706; USA,
reps@cs.wisc.edu

3 Informatik; Universität des Saarlandes, 66123 Saarbrücken; Germany,
wilhelm@cs.uni-sb.de

Abstract. This paper addresses the problem of establishing temporal
properties of programs written in languages, such as Java, that make
extensive use of the heap to allocate—and deallocate—new objects and
threads. Establishing liveness properties is a particularly hard challenge.
One of the crucial obstacles is that heap locations have no static names
and the number of heap locations is unbounded. The paper presents a
framework for the verification of Java-like programs. We use first-order
modal logic to specify temporal properties of heap evolutions; this logic is
a simple variant of existing first-order modal logics that allow expressing
universe changes. The paper also presents an abstract-interpretation al-
gorithm that automatically verifies temporal properties expressed using
the logic.

1 Introduction

Modern programming languages, such as Java, make extensive use of the heap.
The contents of the heap may evolve during program execution due to dynamic
allocation and deallocation of objects. Moreover, in Java, threads are first-class
objects that can be dynamically allocated. Statically reasoning about temporal
properties of such programs is quite challenging, because there are no a-priori
bounds on the number of allocated objects, or restrictions on the way the heap
may evolve. In particular, proving liveness properties of such programs, e.g., that
a thread is eventually created in response to a request made to a web server, can
be a quite difficult task.

1.1 Main Results and Comparison to Previous Work

The contributions of this paper can be summarized as follows:

1. We introduce a first-order modal (temporal) logic [10, 9], that allows to give
natural specifications of temporal properties of programs with dynamically
evolving heaps.

2. We develop an abstract interpretation [4] for verifying that a program satis-
fies such a specification.

3. We implemented a prototype of the analysis using the TVLA system [12].

4. We applied this implementation to verify several temporal properties, in-
cluding liveness properties of Java programs with evolving heaps.

The rest of this section elaborates on these contributions and contrasts them
with previous work. More related work is discussed in the full paper.

A Temporal Logic Supporting Evolution The specification language, Evo-
lution Logic, is a first-order linear temporal logic, which allows specifying prop-
erties of the way program execution causes the heap to evolve.

It is natural to consider the concrete semantics of a program as the set of its
execution traces [5, 18], i.e., infinite sequences of configurations, later on called
worlds. First-order logical structures provide a natural representation of config-
urations with an unbounded number of objects: an individual of the structure’s
universe corresponds to an anonymous, unique store location, and predicates
represent properties of store locations. Such a representation is storeless, and
allows properties of the the heap contents to be maintained while abstracting
from the actual physical store location.

This gives rise to traces in which configurations along the trace may have
different universes. Such traces can be seen as models of a first-order modal
logic with a varying-domain semantics [9].

This framework generalizes other specification methods that address dynamic
allocation and deallocation of objects and threads. In particular, its descriptive
power goes beyond PLTL and finite-state machines (e.g., [2]).

[3] introduces the Bandera Specification Language (BSL), which allows the
user to write complicated specifications via common high-level patterns. BSL
defines observable primitive predicates that are used as propositions of the tem-
poral specification. Thus, BSL properties correspond to the class of temporally
separable properties (see Section 2.2) in which it is impossible to relate individ-
uals of different configurations. Moreover, it is impossible to refer to the exact
moments of allocation and deallocation of an object in BSL.

Program properties can be verified by showing that they hold for all traces.
Technically, this can be done by evaluating their first-order modal-logic formulae
against all traces. We use a variant of Lewis’s counterpart theory in order to cast
modal models (and formulae evaluation) in terms of classical predicate logic with
transitive closure [13]. However, while Lewis quickly turns away from adopting a
counterpart relation that is reflexive, transitive, and symmetric, these are the ex-
act characteristics in which we are interested for our transworld-equality relation
(see Section 4.3).

Abstract Interpretation of the Trace Semantics Program verification us-
ing the above concrete semantics is clearly non-computable in general. We there-
fore represent potentially infinite sets of infinite concrete traces by one abstract
trace. Infinite parts of the concrete traces are folded into cycles of the abstract
traces. Termination of the abstract interpretation on an arbitrary program is
guaranteed by bounding the size of the abstract trace. Three abstractions are
employed: (i) explicitly representing finite prefixes of the infinite trace, (ii) repre-
senting multiple concrete configurations by a single abstract configuration, and
(iii) creating cycles when the same abstract configuration reoccurs in the trace.

Because of this simple abstraction, we may fail to show the correctness of
certain programs, even though they are correct. Fortunately, we can use reduc-
tion mechanisms as employed in program verification. These reductions replace
a formula that specifies a property by a weaker formula, which, together with
an assumption, implies the original one. For instance, one can verify that a loop
that checks the condition x != NULL, where x points to a linked list, will always
terminate by showing that on every loop iteration the set of memory locations
reachable from x decreases. Another example is using fairness to simplify the
task of proving liveness.

As in finite-state model-checking (e.g., [18]), we let the specification formula
affect the abstraction by making sure that abstract traces that fulfill the formula
are distinguished from the ones that do not. However, our abstraction does not
fold the history of the trace into a single state. This idea of using the specification
to affect the precision of the analysis was not used in [17, 20]. The above cited
works only handled safety properties.

A lot of research has been aimed at verifying properties of parametric systems
in which the size of the system depends on a parameter. One approach for the
verification of parametric systems is the construction of a network invariant
simulating the behavior of an environment that consists of an arbitrary number
of threads [19]. In this approach, a network invariant is first constructed, and
then used as an environment in the verification of a single thread. Construction
of a network invariant can be automated in some cases [1], but often requires
some insight and understanding of system behavior. In contrast, when using
our abstract interpretation abstract traces are constructed that represent the
network invariants, as well as other properties of data.

In [15], a special case of the abstraction from [20, 21], named “counter abstrac-
tion”, is used to abstract an infinite-state parametric system into a finite-state
one. They use static abstraction, i.e., have a preceding model-extraction phase,
while abstraction in this paper is applied dynamically on every step of state-
space exploration, enabling us to handle dynamic allocation and deallocation of
objects and threads. Note that program behavior may depend on the allocation
and deallocation patterns, and not all systems may be turned to parametric ones
in which all threads are pre-allocated.

In [21], we have used observing-propositions defined over a first-order con-
figuration to extract a propositional Kripke structure from a first-order one.
The extracted propositional structure was than subject to classic PLTL model-

checking techniques. This approach is rather limited, because individuals of dif-
ferent configurations could not be specifically related. In Section 2.2, we state
this approach in terms of our current trace-based framework.

Prototype Implementation We have implemented a prototype of the frame-
work, and used it to verify temporal properties of small but interesting programs.
Results are reported in Section 5.

Applications We have used the framework to specify the following properties,
and verify some of them.

Termination of sequential heap-manipulating programs: The framework has
been applied to verify the termination of sequential heap-manipulating programs.
Termination is shown by providing a ranking-function based on the set of items
reachable from a variable iterating over the linked data structure. In particular,
we have verified termination of all example programs from [6].

Temporal properties of concurrent heap-manipulating programs: We have used
the framework to verify temporal properties of concurrent heap-manipulating
programs—in particular, liveness properties, such as the absence of starvation
in programs using mutual exclusion, and response [14] properties. We have also
applied the framework to programs with an unbounded number of threads.

Specification of general heap-evolution properties: The framework has been
used to specify in a general manner, various properties of heap-evolution, such
as properties of garbage-collection algorithms.

Eliminate
prefix

Validate
FO(ω)

Trace
Explore

ω

FO(ω)

FO

program

FO transition
system

Yes
�

maybe

Fig. 1. Framework Overview

1.2 Running Example

Consider a web server in which threads are dynamically allocated in response to
received http requests. Whenever a request is received, a new thread is allocated
to handle it. Assume that worker-threads are competing for some exclusively
shared resource, such as exclusive access to a data file, and that each thread
handles a single request and then terminates and is subject to garbage collection.
Figure 2 shows fragments of a Java program implementing such a naive web
server.

Dynamic allocation of threads is common when implementing servers [8].
Even when using thread-pools to avoid the cost of rapid construction and garbage
collection of thread objects, the size of the thread pool is usually adapted dy-
namically to improve server responsiveness [11].

public class Listener implements Runnable {
...

public void run() {
while(true) {
...

request = requestStream.readObject();

...

worker = new Thread(new Worker(request));

worker.start();

...

} } }
public class Worker implements Runnable {
Request myRequest;

Resource myResource;

...

public void run() {
...

synchronized(myResource) { lw1

...

myResource.processRequest(myRequest); lwc

...

} lw2

} }

Fig. 2. Java code fragment for a web-server with no explicit scheduling

A number of interesting properties for the naive web server implementation
are shown in Table 1 as properties P1–P4.

Due to the unbounded arrival of requests to the web server, and the fact that
a thread is dynamically created for each request, property P2 does not hold for

rval[v]

rval[v]

heldBy

blocked

at[lw_c]

at[lw_1]

rval[v]

rval[v]

rval[v]

at[lw_c]

at[lw_1]

at[lw_1]

blocked

succ

rval[v]

rval[v]

rval[v]

at[lw_2]

at[lw_1]

at[lw_1]

blocked

heldBy

rval[v]

rval[v]

rval[v]

at[lw_2]

at[lw_c]

at[lw_1]

blocked

heldBy

succ succ

Fig. 3. A trace fragment demonstrating barging: a newly allocated thread acquires the
lock before a thread that was already blocked on the lock.

the naive implementation (e.g., see Figure 3). In order to guarantee the absence
of starvation (P2), we introduce a scheduler thread into the web server. The
web server now consists of a listener thread (as before) and a queue of worker
threads managed by the scheduler thread. The listener thread receives an http

request, creates a corresponding worker thread, and places the new thread on a
scheduling queue. The scheduler thread picks up a worker thread from the queue
and starts its execution (which is still a very naive implementation).

When using a web server with a scheduler, a number of additional properties
of interest exist, labeled P5–P8. These are accompanied by the queue-related
properties, Q1–Q4.

Figure 4 shows fragments of a web-server program in which threads use an
explicit FIFO scheduler that imitates the scheduling policy implemented in most
JVMs in practice.

1.3 Overview of the Verification Procedure

Figure 1 provides an overview of how a temporal property involving heap evolu-
tion is verified. First, the property ϕ is specified in ETL . This is by no mean a
trivial task, as is common for temporal-logic-based specifications. The formula
is then translated in a straightforward manner into a first-order logical formula,
FO(ϕ), using a translation procedure described in Appendix A. An abstract-
interpretation procedure “Trace Explore” is then applied to explore finite pre-
fixes of the trace, using 3-valued logic to interpret formulae. A post-processing
phase, “Eliminate Prefix”, eliminates trace prefixes that are not maximal, i.e.,
are a prefix of other explored traces. Finally, the formula FO(ϕ) is validated
against the remaining prefixes. When FO(ϕ) is satisfied by all remaining (fi-
nite) traces, it is guaranteed that the original ETL formula ϕ satisfies all infinite
traces. However, it may be the case that for some programs that satisfy the ETL
specification, our analysis only yields “maybe”.

public class Listener implements Runnable {
protected Queue schedQueue;

...

public void run() {
while(true) { la1

...

request = requestStream.readObject(); la2

...

worker = new Thread(Worker(request)); la3

schedQueue.enqueue(worker); la4

...

} } }
public class Scheduler implements Runnable {
protected Queue schedQueue;

protected Resource protectedResource;

...

public void run() {
while(true) { ls1

...

synchronized(protectedResource) { ls2

while(protectedResource.isAcquired())

protectedResource.wait(); ls3

// may block until queue is not empty

worker = schedQueue.dequeue(); ls4

worker.start(); ls5

} } } }
public class Worker implements Runnable {
Request myRequest;

Resource myResource;

...

public void run() {
synchronized(myResource) { lw1

...

myResource.processRequest(myRequest); lwc

...

myResource.notifyAll()

} lw2

} }

Fig. 4. Java code fragment for a web-server with an explicit scheduler

Pr. Desc Formula

P1 mutual exclusion over the shared resource
�∀t1, t2 : thread.(t1 6= t2)
→ ¬(at[lwc](t1) ∧ at[lwc](t2))

P2
absence of starvation for worker threads
competing for shared resource

�∀t : thread.at[lw1](t) → ♦at[lwc](t)

P3
a thread is only created when
a request is received

�(∀t : thread.¬ � t)∨
(∀t : thread.¬ � t) U (∃v : request. � v)

P4 each request is followed by thread creation
�∃v : request. � v
→ ♦∃t : thread. � t

P5
mutual exclusion of listener and scheduler
over scheduling queue

�∀t1, t2 : thread.(t1 6= t2)
→ ¬(at[ls2](t1) ∧ at[la3](t2))

P6
each created thread is eventually
inserted to the scheduling queue

�∀t : thread. � t
→ ♦∃q : queue.∃h.rval[head](q, h) ∧ rval[next]∗(h, t)

P7
each scheduled worker thread was
removed from the scheduling queue

�∀t : thread.at[lw1](t)
→ ¬∃q : queue.∃h.rval[head](q, h) ∧ rval[next]∗(h, t)

P8
each worker thread waiting in the queue
eventually leaves the queue

∃q : queue.�∀t : thread.
((∃h : rval[head](q, h) ∧ rval[next]∗(h, t))
→ ♦¬(∃h : rval[head](q, h) ∧ rval[next]∗(h, t)))

Q1
when no queue action is currently
executing, the tail is reachable
from the head

�∃v1 : rval[tail](q, v1)
→ ∃h : rval[head](q, h) ∧ rval[next]∗(h, v1)

Q2
a thread created by listener is eventually
inserted at queue tail

�∃tl : thread.∃v.at[la5](tl) ∧ rval[xi](tl, v)
→ ♦∃q : queue.rval[tail](q, v)

Q3
the head of queue is eventually
taken by scheduler

�∃ts : thread.∃q : queue.∃v.at[ls4](ts)
∧ rval[head](q, v) → ♦rval[xd](ts, v)

Q4
head always points to the first
element of the queue

�∀v1, v2∀q : queue.rval[head](q, v2)
→ ¬rval[next](v1, v2)

Table 1. Web server ETL specification

1.4 Paper Outline

Section 2 introduces trace-semantics based on first-order modal logic, and shows
how to extract trace properties by using the language of first-order linear-
temporal logic. Section 3 gives an implementation of this concrete semantic via
first-order logic. Section 4 shows how abstract traces are used to conservatively
represent sets of concrete traces. Section 5 gives a short description of the proto-
type implementation. Finally, Section 6 concludes the paper and discusses future
work.

2 Trace Semantics

We consider the semantics of a program to be the set of its possible infinite
traces. This means that the exit of the program is connected to itself via a
special skip action making the transition system total. Each trace consists of a
sequence of configurations.

Definition 1. [Configuration] A program configuration is represented via a first-
order logical structure W = 〈Uw, ιw〉, where Uw is the universe of the structure,
and ιw is the interpretation function mapping predicates to their truth values,
that is, for each p ∈ P of arity k, ιw(p) : Uk

w → {0, 1}.

Definition 2. [Trace] A trace is an infinite sequence of configurations π1

Dπ1
,eπ1

,Aπ2−−−−−−−−→

π2

Dπ2
,eπ2

,Aπ3−−−−−−−−→ . . ., where: (i) each configuration represents a global state of
the program, π1 is an initial state, and for each πi, its successor configuration
πi+1 is derived by applying a single program action to πi; (ii) Dπi

⊆ Uπi
is

the set of individuals deallocated at πi, and Aπi+1
⊆ Uπi+1

is the set of in-
dividuals newly allocated at πi+1; (iii) each pair of consecutive configurations
πi, πi+1 is related by a stepwise evolution function, a bijective renaming function
eπi

: Uπi
\Dπi

→ Uπi+1
\Aπi+1

.

2.1 Extracting Trace Properties

In order to extract trace properties, we need a language that can relate informa-
tion from different worlds (configurations in the trace). We define the language of
evolution logic (ETL), which is a first-order linear temporal logic with transitive
closure as follows:

Definition 3. [ETL Syntax]

1. a logical literal ϕ = l ∈ {0,1} is an atomic formula with no free variables
FV (ϕ) = ∅. A logical formula ϕ = p(x1, . . . , xn) where p is an n-ary pred-
icate is an atomic formula with FV (ϕ) = {x1, . . . , xn}. If x is a logical
variable, ϕ = �x (resp. ϕ = �x) is an atomic formulae, and FV (ϕ) = {x}
The formula ϕ = (x1 = x2) is an atomic formula with FV (ϕ) = {x1, x2}.

2. if ϕ,ψ are formulae, then θ1 = (ϕ ∨ ψ) and θ2 = ¬ϕ are formulae, where
FV (θ1) = FV (ϕ) ∪ FV (ψ) and FV (θ2) = FV (ϕ)

3. if ϕ,ψ are formulae, then θ1 = ϕ U ψ and θ2 = χϕ are formulae, where
FV (θ1) = FV (ϕ) ∪ FV (ψ), and FV (θ2) = FV (ϕ)

4. if ϕ is a formula, and x ∈ FV (ϕ), then ∃x.ϕ is a formulae with free variables
FV (ϕ) \ {x}

5. if ϕ is a formula such that v1, v2 ∈ FV (ϕ) and v3, v4 6∈ FV (ϕ), then
(TC v1, v2 : ϕ)((v3, v4)) is a formula with free variables (FV (ϕ) \ {v1, v2})∪
{v3, v4}

The designated operators � and � allow the specification to refer to the
exact moments of birth and death (respectively) of an individual.1

Shorthand Formulae: For convenience, we also allow formulae to contain
the usual shorthand notations ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ), ϕ → ψ = ¬ϕ ∨ ψ,
∀x.ϕ = ¬(∃x.¬ϕ), ♦ϕ = T U ϕ, and �ϕ = ¬(T U ¬ϕ). We also use the
shorthand p∗(v3, v4) for (TC v1, v2 : p(v1, v2))(v3, v4) ∨ (v3 = v4), when p is a
binary predicate.

The predicates we use in this paper to record information about a single
program configuration include the predicates of Table 2 and additional predicates
defined in the following sections. In the sequel, we will use unary predicates such
as thread to represent type information. This could have been expressed using
many-sorted logics, which we have decided to avoid for expository purposes.
Instead for convenience we define the shorthands:

∃x : type.ϕ = ∃x.type(x) ∧ ϕ

∀x : type.ϕ = ∀x.type(x) → ϕ

Predicates Intended Meaning

thread(t) t is a thread

{at[lab](t) :
lab ∈ Labels}

thread t is at label lab

{rval[fld](o1, o2) :
fld ∈ Fields}

field fld of the object o1

points to the object o2

heldBy(l, t)
the lock l is held by
the thread t

blocked(t, l)
the thread t is blocked
on the lock l

waiting(t, l)
the thread t is waiting
on the lock l

Table 2. Predicates used to record information about a single program configuration

1 these operators could be extended to handle allocation and deallocation of a (possibly
unbounded) set of individuals.

Example 1. The formula �∀t : thread.(at[lw1](t) → ♦at[lwc](t)) specifies the ab-
sence of starvation for worker threads in the running example program (Fig-
ure 2).

The formula �∃t : thread.♦at[lwc](t) expresses the fact that always some
thread eventually enters the critical section. The formula ∃t : thread.♦at[lwc](t)
states that some thread eventually enters the critical section.

Example 2. Table 3 shows a number of interesting properties, and their specifi-
cation in ETL .

Property 1 of Table 3 states that globally, each individual that is allocated
during program execution is eventually deallocated. Note that the universal
quantifier quantifies over individuals of the configuration in which it is evalu-
ated. The individuals that are allocated in the current configuration are related
to some future configuration in which they will be deallocated. The tempo-
ral structure of this property could be classified as a Response structure [14],
in which allocations have deallocation responses. Response properties are very
commonly used in specifications of finite-state systems [7].

Properties 2 and 3 establish a ranking function for linked data structures
based on transitive reachability. These properties require that the set of indi-
viduals transitively reachable from an index variable traversing the structure
will decrease on each iteration of the traversing loop. Note that these properties
relate an unbounded number of individuals of one configuration to another. For
example, in the case of non-increasing reachability, the non-reachable individuals
of the configuration in which the program is at the loop head are related to a
future configuration in which the program is at the loop head.

Properties 4 and 5 are again response properties, stating that in a concur-
rent producer/consumer program in which the producer enqueues item into an
unbounded queue and the consumer dequeues items from that queue, every
produced item is eventually enqueued and every consumed item is eventually
dequeued.

Property 6 is self explanatory, and property 7 is a desired property of a
garbage collector — that all non-reachable items are eventually collected.

Evolution Semantics First-order modal logic may be given a constant do-
main semantics in which the domain of all worlds is fixed or a varying domain
semantics in which the domains of worlds may vary and are generally not re-
quired to intersect. In these semantics, an object may exist in more than a single
world, and an equality relation is predefined to express global equality between
individuals of the domain of the model [9].

To maintain the notion of equality in the presence of dynamic allocation and
deallocation without the need to update a predefined global equality relation, we
use an evolution semantics, which is adapted from Lewis’s counterpart semantics
[13].

In this semantics, an individual cannot exist in more than a single world; each
world has its own domain, and domains of different worlds are non-intersecting.

Under this model, equality need only be defined within a single world’s bound-
ary. Individuals of different worlds are incomparable by definition. To relate
individuals of different worlds, an evolution mapping is defined.

In the following definitions, head(π) denotes the first configuration in a trace
π, tail(π) denotes the suffix of π without the first configuration, and last(π)
denotes the last configuration of π. πi denotes the suffix of π starting at the i-th
configuration.

Definition 4. [Evolution mapping] Let τ be the finite prefix of length k of the
trace π. We say that an individual u ∈ Uhead(τ) evolves into an individual u′ ∈
Ulast(τ) in the trace π in k steps, and write π |=k u u′ when there is a
sequence of individuals u1, . . . , uk such that u1 = u and uk = u′ and for each
two successive configurations in τ , ui+1 = eτi

(ui).

Definition 5. [Assignment evolution] Let τ be the finite prefix of length k of
the trace π. Given a formula ϕ and an assignment Z mapping free variables to
individuals of a universe Uhead(τ). We say that π |=k Z Z ′ (Z evolves to
Z ′ in π in k steps) if for each free variable fvi of ϕ, π |=k Z(fvi) Z ′(fvi),
Z(fvi) ∈ Uhead(τ), and Z ′(fvi) ∈ Ulast(τ).

Definition 6. [ETL evolution semantics]
We inductively define when an ETL formula ϕ is satisfied over a trace π with

an assignment Z (denoted by π, Z |= ϕ).

– π, Z |= 1, and not π, Z |= 0.
– π, Z |= p(x1, . . . , xk) iff ιhead(π)(p)(Z(x1), . . . , Z(xk)) = 1
– π, Z |= (x1 = x2) iff Z(x1) = Z(x2) and Z(x1) ∈ Uhead(π)

– π, Z |= ¬ϕ iff not π, Z |= ϕ
– π, Z |= ϕ ∨ ψ iff π, Z |= ϕ or π, Z |= ψ
– π, Z |= ∃x.ϕ iff there exists u ∈ Uhead(π)

s.t. π, Z[x 7→ u] |= ϕ(x)
– π, Z |= (TC v1, v2 : ϕ)(v3, v4) iff

there exists u1, . . . , un+1 ∈ Uhead(π)

s.t. Z(v3) = u1, Z(v4) = un+1,
and for all 1 ≤ i ≤ n, π, Z[v1 7→ ui, v2 7→ ui+1] |= ϕ

Temporal modalities:

– π, Z |= χϕ iff tail(π), Z ′ |= ϕ where π |=1 Z Z ′.
– π, Z |= ϕ U ψ iff there exists k ≥ 1 s.t., πk, Z ′ |= ψ and π |=k Z Z ′

and for all 1 ≤ j < k, πj , Z ′′ |= ϕ and π |=j Z Z ′′,

Allocation and deallocation operators:

– π, Z |= �v when Z(v) ∈ Ahead(tail(π)).
– π, Z |= �v when Z(v) ∈ Dhead(π).

We write π |= ϕ when π, Z |= ϕ for each assignment Z.

It is worth noting that the first-order quantifiers in this definition range only
over the individuals of a single world, yet the overall effect achieved by using the
evolution mapping is the ability to reason about individuals of different worlds,
and how they relate to each other. In essence, the assignment Z[x 7→ u] binds x
to (the evolution of) an individual from the domain of the world over which the
quantifier was evaluated (cf. the semantics of χ and U).

succ

currWorld

succx x x

succ

currWorld

succx x
x

(a)

(b)

Fig. 5. Interaction of first-order quantifiers and temporal operators

The combination of first-order quantifiers and modal operators creates com-
plications that do not occur in propositional temporal logics. In particular, the
quantification domain of a quantifier may vary as the universe of underlying
configurations varies.

Example 3. The formula ∃x.�p(v) states that the pointer variable p remains
constant throughout program execution, and points to an object that existed
in the program’s initial configuration. On the other hand, the formula �∃x.p(v)
simply states that p never has the value null, but allows it to point to different
objects throughout program execution, and in particular to objects that did not
exist in the initial program configuration. An example for such trace prefixes is
shown in Figure 5, where in (a) x points to the same object in all configurations
and in (b) it points to different objects in different configurations.

Definition 7. [ETL Satisfaction] We say that the program satisfies an ETL
formula ϕ when all infinite traces of the program satisfy ϕ.

The evolution semantics allows each world to have a different universe, thus
conceptually representing a varying-domain model, which allows dynamic allo-
cation and deallocation of objects and threads. Note that in this semantics, the
only relation that crosses world boundaries is the evolution mapping.

In Section 3 we give a possible implementation of this semantics via our
first-order logic framework.

No. Property Formula

1
all allocated objects
are eventually deallocated

�(∀v. � v → ♦� v)

2
diminishing reachability from
index variable i at loop head (llh)

�(∃v, v0.at[llh](t0) ∧ rval[i](t0, v0) ∧ rval[next]∗(v0, v)
∧ ♦(at[llh](t0) ∧ ¬∃v0 : rval[i](t0, v0) ∧ rval[next]∗(v0, v)))

3
non increasing reachability from
index variable i at loop head (llh)

�(∀v.at[llh](t0) ∧ ¬∃v0 : rval[i](t0, v0) ∧ rval[next]∗(v0, v)
→ �¬at[llh](t0) ∨ ¬∃v0 : rval[i](t0, v0) ∧ rval[next]∗(v0, v))

4
every produced item
is eventually queued

�(∀v.at[lp1](t) ∧ �v
→ ♦∃v0.rval[head](t0, v0) ∧ rval[next]∗(v0, v))

5
every consumed item
is eventually dequeued

�(∀v.at[lt4](t) ∧ rval[xd](t, v)
→ ♦¬(∃v0.rval[head](t0, v0) ∧ rval[next]∗(v0, v)))

6
absence of starvation
in critical section

�(∀t : thread.♦at[lcrit](t))

7
non reachable objects
eventually collected

�(∀v.♦�
∧

x∈V ar

sl∈Sel

¬∃v0.rval[x](t0, v0) ∧ rval[sel]∗(v0, v))

→ ♦� v)

Table 3. Sample ETL Specifications

2.2 Separable Specifications

It is interesting to consider subclasses of ETL for which the verification prob-
lem is somewhat easier. Two such classes are spatially separable and temporally
separable specifications.

Spatially separable specifications do not place requirements on the relation-
ships between individuals of a historical world. As implied by their name, such
specifications are separable on the spatial dimension, i.e., they allow each indi-
vidual to be considered separately. Therefore, they could be considered as a set
of propositional verification problems — one for each individual. This set could
be solved by a single analysis in parallel by separately tracking the state of each
individual.

Definition 8. [Spatial Separability] An ETL formula ϕ is said to be spatially
separable when temporal operators in ϕ are only applied to first-order formulae
with the same single free variable.

In temporally separable specification there is no relation between individuals
across worlds. Essentially, this corresponds to the extraction of propositional in-
formation from each world, and having temporal specifications over the extracted
propositions. This class was addressed in [21].

Definition 9. [Temporal Separability] An ETL formula ϕ is said to be tempo-
rally separable when temporal operators in ϕ are only applied to closed first-order
formulae.

3 Expressing Trace Semantics using First-Order Logic

In this section we use first-order logic to represent traces, we encode temporal
operators using standard first-order quantifiers. This allows us to automatically

derive the abstract semantics of Section 4. It can be shown that this could be used
to define different kinds of temporal logic such as the µ-calculus. One limitation
of our first-order logical structures, is that they do not explicitly represent infinite
traces. However, we will show in Section 4 that this does not affect the soundness
of our analysis although it may lead to overly conservative results. Our initial
experience indicates that we may show some temporal properties for program
with dynamically allocated storage.

3.1 Representing Finite Trace Prefixes

We encode a finite prefix of a trace via a first-order logical structure using the
set of designated predicates specified in Table 4. Successive worlds are connected
using the succ predicate. Each world of the trace may contain an arbitrary
number of individuals. The predicate exists(o, w) relates an individual o to a
world w in which it exists. Each individual only exists in a single world. The
evolution(o1, o2) predicate relates an individual o1 to its counterpart o2 in a
successor world. The predicates isNew and isFreed hold for newly created or
deallocated individuals.

Definition 10. [Concrete Trace] A concrete trace parameterized by a set of
predicates P , each with a fixed arity, is a trace encoded as a first-order logi-
cal structure T = 〈UT , ιT 〉, where UT is the universe of the trace, and ιT is
the interpretation function mapping predicates to their truth value in the logical
structure, that is, p ∈ P of arity k, ιT (p) : Uk

T → {0, 1}.
To exclude structures that cannot represent valid traces, we impose certain

hygiene condition in the spirit of [17]. For example, we require that each world
has at most one successor (predecessor) and that every configuration but the last
has exactly one successor.

In the sequel, the set of traces is denoted by CTraces[P]. We will omit P to
mean the set of predicates in Table 4.

Predicate Intended Meaning

world(w) w is a world

currWorld(w) w is the current world

initialWorld(w) w is the initial world of the trace

succ(w1, w2) w2 is the successor of w1

exists(o, w) object o is in world w

evolution(o1, o2) object o1 evolves to o2

isNew(o) object o is new

isFreed(o) object o is freed

Table 4. Trace predicates

The following definition converts a finite prefix of a trace as defined in Sec-
tion 2 into a first-order structure.

Definition 11. [Representation Mapping] We define the representation map-
ping rep of a finite prefix τ of infinite trace to the the first-order structure that
corresponds to τ . That is, every configuration is mapped to a world, with succ
predicate holding for successor configurations.

rval[v]

rval[v]

rval[v]

succsucc

rval[v]

rval[v]

rval[v]

heldBy

rval[v]

rval[v]

rval[v]

heldBy

blocked

at[l_1]

at[l_1]

at[l_1]

at[l_c]

at[l_1]

at[l_1]

at[l_c]

at[l_1]

at[l_1]

currWorld

rval[v]

rval[v]

rval[v]

heldBy

blocked

at[l_c]

at[l_1]

at[l_1]

blocked

succ

Fig. 6. A concrete trace T6

Example 4. The trace T6
\ shown in Figure 6 consists of 4 configurations. Grey

edges, crossing world boundaries, are evolution edges, relating objects of different
worlds. Note that these are the only edges which cross world boundaries.

3.2 Exact Extraction of Trace Properties

Once traces are represented via first-order logical structures, trace properties
could be extracted by evaluating formulae of first-order logic with transitive
closure.

Definition 12. [Translation] We translate a given ETL formula ϕ to an FOTC
formula FO(ϕ) by making the underlying trace structure explicit, and translating
temporal operators to FOTC claims over worlds of the trace.

The translation procedure is straightforward, and given in Section A.

Example 5. The property ∃t : thread.♦at[lc](t) of Example 1 is translated to

∃w : world.∃t : thread.initialWorld(w)∧
exists(t, w) ∧ ∃w′∃t′ : thread.succ∗(w,w′)∧
exists(t′, w′) ∧ evolution∗(t, t′) ∧ at[lc](t

′)

which evaluates to 1 for the trace prefix of Figure 6.

The property �∀t : thread.♦at[lc](t) could be translated to the following
formula using the predicates of Table 4:

∀w : world.∀t : thread.exists(t, w) →
∃w′ : world.∃t′ : thread.succ∗(w,w′)
∧ exists(t′, w′) ∧ evolution∗(t, t′) ∧ at[lc](t

′)

Definition 13. The meaning of a formula ϕ, denoted by [[ϕ]]π(Z), yields a
truth value in {0, 1}. The meaning of ϕ is defined inductively as follows:

Atomic Formulae For an atomic formula consisting of a logical literal l ∈
{0,1}, [[l]]π(Z) = l (where l ∈ {0, 1}).
For an atomic formula of the form p(v1, . . . , vk),

[[p(v1, . . . , vk)]]π(Z) = ιπ(p)(Z(v1), . . . , Z(vk))

For an atomic formula of the form (v1 = v2),

[[v1 = v2]]
π(Z) =

{

0 Z(v1) 6= Z(v2)
1 Z(v1) = Z(v2)

Logical Connectives When ϕ is built from subformulae ϕ1 and ϕ2,

[[ϕ1 ∨ ϕ2]]
π(Z) = max([[ϕ1]]

π(Z), [[ϕ2]]
π(Z))

[[¬ϕ1]]
π(Z) = 1 − [[ϕ1]]

π(Z)

Quantifiers When ϕ has a quantifier as the outermost operator,

[[∃v1 : ϕ1]]
π(Z) = maxu∈Uπ [[ϕ1]]

π(Z[v1 7→ u])

Transitive Closure When ϕ is of the form (TC v1 : v2)(ϕ1)v3v4,

[[(TC v1 : v2)(ϕ1)v3v4]]
π(Z) =

maxn ≥ 1, u1, . . . , un+1 ∈ U,
Z(v3) = u1, Z(v4) = un+1

minn
i=1[[ϕ1]]

π(Z[v1 7→ ui, v2 7→ ui+1])

We say that π and Z satisfy ϕ (denoted by π, Z |= ϕ) if [[ϕ]]π(Z) = 1. We
write π |= ϕ if for every Z we have π, Z |= ϕ.

3.3 Action Semantics

Informally, a program action ac consists of a precondition pre(ac) under which
the action is enabled, which is expressed as logical formula, and a set of formulae
updating the values of predicates according to the effect of the action. Enabled
actions extend the trace with a newly created configuration where the interpre-
tations of every predicate p of arity k is determined by evaluating a formula
ϕp(v1, v2, . . . , vk) which may use v1, v2, . . . , vk and all predicates in P . (refer to
[17]).

4 Exploring Finite Abstract Traces via Abstract

Interpretation

In this section we give an algorithm for conservatively determining the validity
of a program with respect to ETL temporal properties. Our initial experience, as
reported in Section 5, is that this algorithm can be used to automatically verify
temporal properties of heap manipulating programs.

There are four main ingredients to our approach: (i) the expressive power of
ETL , which allows us to show that we can safely consider only finite prefixes;
(ii) the need to delay the evaluation of temporal properties until the traces can
no longer be extended, to make the result of the analysis useful; (iii) the finite
representation of potentially unbounded finite prefixes of traces using 3-valued
logical structures with the values {0, 1, 1/2}, where 1/2 represents “unknown”
value due to abstraction. (iv) The recording of intermediate values of tempo-
ral properties using special instrumentation predicates to avoid resulting 1/2
values for many liveness properties due to abstraction. These instrumentation
predicates accumulate temporal properties on-the-fly while the abstract trace is
extended

The rest of this section is organized as follows: In Section 4.1 we show how
to finitely represent finite trace prefixes via 3-valued logical structures. In Sec-
tion 4.2, we describe our abstract interpretation algorithm. Section 4.3 then
presents trace-instrumentation predicates needed to refine the precision of our
analysis, and defines the crucial notion of transworld-equality via a designated
instrumentation predicate. In addition, Section 4.3 shows how to derive some of
the specifically required instrumentation predicates for a given ETL formula.

4.1 Finitely Representing Trace Prefixes

The following definition imposes an order on truth values of the 3-valued logic
as in [17].

Definition 14. [Information Order] For l1, l2 ∈ {0, 1, 1/2}, we define the infor-
mation order on truth values as follows: l1 v l2 if l1 = l2 or l2 = 1/2.

Definition 15. [Representing traces via 3-valued logic] An abstract trace is a
3-valued first-order logical structure T = 〈UT , ιT 〉, where UT is the universe of
the abstract trace, and ιT is the interpretation mapping predicates to their truth
values, that is, p ∈ P of arity k, ιT (p) : Uk

T → {0, 1, 1/2}.

We also use a designated predicate sm to express whether an individual may
represent more than a single node. We assume that sm is 0 for concrete struc-
tures.

We denote by [[ϕ]]T3 (Z) the meaning of ϕ in a 3-valued logic [17]. Also, we
say that a trace T with an assignment Z potentially satisfies a formula ϕ when
[[ϕ]]T3 (Z) ∈ {1, 1/2} and denote this by T,Z |=3 ϕ.

Embedding into Bounded Traces

Definition 16. [Embedding Ordering of Abstract Traces]
Let T = 〈U, ι〉 and T ′ = 〈U ′, ι′〉 be abstract traces encoded as first-order

structures. A function f : T → T ′ such that f is surjective is said to embed T
into T ′ if for each predicate p of arity k, and for each u1, . . . , uk ∈ U :

ι(p(u1, u2, . . . , uk)) v ι′(p(f(u1), f(u2), . . . , f(uk))) (1)

and

|{u|f(u) = u′}| > 1 v ι′(sm(u′)) (2)

This sets sm to a non-zero value for each abstract individual that may rep-
resent more than a single concrete individual.

We say that T ′ represents T when there exists such an embedding f .

One way of creating an embedding function f is by using canonical abstrac-
tion. Canonical abstraction maps concrete individuals to an abstract individual
based on the values of the individuals’ unary predicates. All individuals hav-
ing the same values for unary predicate symbols are mapped by f to the same
abstract individual.

A tight embedding is a special kind of embedding—one in which informa-
tion loss is minimized when multiple individuals of T are mapped to the same
individual in T ′:

Definition 17. A structure T ′ = 〈UT ′

, ιT
′

〉 is a tight embedding of T =
〈UT , ιT 〉 if there exists a surjective function t embed : UT → UT ′

such that, for
every predicate p of arity k,

ιT
′

(p)(u′1, . . . , u
′
k) =

⊔

t embed(ui)=u′

i
,1≤i≤k

ιT (p)(u1, . . . , uk) (3)

and for every u′ ∈ US′

,

ιT
′

(sm)(u′) = (|{u|t embed(u) = u′}| > 1) t
⊔

t embed(u)=u′

ιT (sm)(u) (4)

When a surjective function t embed possesses both properties (3) and (4), we
say that T ′ = t embed(T).

Example 6. Figure 8 shows an abstract trace with 3 abstract configurations. A
node with double-line boundaries is a summary node representing possibly more
than a single concrete node. Similarly, the world with a double-line boundaries, is
a summary world representing possibly more than a single world. Dashed edges
are 1/2 edges representing values that may or may not be true. For example, a
1/2 successor edge between two configurations represents the possible succession
of configurations.

4.2 Abstract Interpretation

Our abstract semantics represents abstract states using 3-valued structures.
When a trace is extended, we evaluate formula’s precondition and its update
formulae using 3-valued logic. The 3-valued interpretation is a reinterpretation
of Definition 13 over a 3-valued domain.

We extend mappings on individuals to operate on assignments: If f : UT →
UT ′

is a function and Z : V ar → UT is an assignment, f ◦ Z denotes the
assignment f ◦ Z : V ar → UT ′

such that (f ◦ Z)(v) = f(Z(v)).
The following theorem is one of the components in showing the soundness of

the analysis.

Theorem 1. [Embedding Theorem, [17]]
Let T = 〈UT , ιT 〉 and T ′ = 〈UT ′

, ιT
′

〉 be two concrete traces encoded as first-
order structures, and let f : UT → UT ′

be a function such that T vf T ′. Then,
for every formula ϕ and complete assignment Z for ϕ, [[ϕ]]T (Z) v [[ϕ]]T

′

(f ◦ Z).

It often happens that the temporal properties evaluate to 1/2, due to an
overly conservative approximation. In the next section we present a machinery
for refining the abstraction to allow successful verification in interesting cases.

Example 7. Space precludes us from showing a real application, as in the web-
server. Instead, we use an artificial example which is also used in the next section.
Figure 7 shows an abstract trace in which the property P (v) U Q(v) holds for
the single individual but the formula P (v) U Q(v) evaluates to 1/2 since the
successor (and evolution edge have 1/2 value).

P P Q

initialWorld

succ succ

succsucc

Fig. 7. An abstract trace T7 with a single individual for which P (v) U Q(v) holds, but
evaluates to 1/2

Predicting Temporal Behavior using Abstraction One of the most diffi-
cult issues in proving liveness properties, since a liveness property is sometimes
only satisfied by an infinite trace. Still, the following theorem guarantees that

even though our abstract interpretation only explores the representation of finite
prefixes, the solution that we obtain is sound.

Theorem 2. For every ETL formula ϕ, every (infinite) trace π, and every as-
signment Z : FV (ϕ) → Uπ, there exists a finite prefix of π, τ such that:

π, Z |= ϕ ⇐⇒ g(τ), t embed ◦ Z |=3 FO(ϕ) (5)

where g = t embed ◦ rep.

Proof. appears in the full paper, by structural induction on the ETL formula.

Unfortunately the above theorem does not lead to a useful procedure for
verifying liveness properties, since these properties may not turn out to hold on
short prefixes. Therefore, an oblivious analysis that considers all finite prefixes
can only show correctness of safety properties. Our chaotic iteration algorithm
ignores traces which are prefixes of other traces.

4.3 Property Guided Instrumentation

To refine the abstract interpretation throughout the analysis, we maintain more
precise information about correctness of temporal formulae as traces are being
constructed. Generally, this principle is referred to in [17] as the Instrumentation
Principle. This work goes beyond what was mentioned there, by showing how
one could actually obtain instrumentation predicates from the temporal specifi-
cation. In Section 5, we report the result of verifying temporal properties when
using this procedure.

The rest of this subsection is organized as follows. In Section 4.3 we introduce
special kind of instrumentation predicates that are crucial in order to handle
evolution of heap allocated objects. Then, in Section 4.3 we introduce predicates
which are derived from the temporal specification.

Trace Instrumentation The predicates in Table 5 are required for preserving
properties of interest under abstraction. For example, the instrumentation pred-
icate current(o) denotes that o is a member of the current world, and should be
distinguished from individuals of predecessor worlds.

Predicate Intended Meaning Formula

twe(o1, o2)
object o1 is equal

to object o2 possibly
across worlds

(o1 == o2)
∨evolution∗(o1, o2)
∨evolution∗(o2, o1)

current(o)
object o is a member
of the current world

∃w : world(o, w)
∧currWorld(w)

Table 5. Trace instrumentation predicates

rval[v]

succ

succ

rval[v]

heldBy

currWorld

rval[v]

rval[v]

heldBy

blocked

at[l_1] at[l_1]

at[l_c]

at[l_c]

rval[v]

rval[v]

at[l_1]

at[l_1]

succ

initialWorld

at[l_1]
rval[v]

Fig. 8. An abstract trace T6 representing the concrete trace T6
\

Transworld Equality : In the evolution semantics, two individuals are consid-
ered different incarnations of the same individual when one may be transitively
evolved to the other. We refer to this notion of equality as transworld equality
and introduce an instrumentation predicate twe(v1, v2) to capture this notion.

Since our abstraction operates on traces (and not only single configurations),
individuals of different worlds may be abstracted together. Transworld equality is
crucial for distinguishing a summary node that represents different incarnations
of the same individual from a summary node that may represent a number of
different individuals.

An example of transworld equality is given in Figure 9 in which the 1-valued
twe self-loop to the summary thread-node at label lc records the fact that this
summary node actually represents multiple incarnations of a single thread and
not a number of different threads.

Temporal Instrumentation Given an ETL specification formula, we con-
struct a corresponding set of instrumentation predicates for refining the ab-
straction of the trace according to the property of interest. The set of instru-
mentation predicates essentially corresponds to the sub-formulae of the original
specification. In this paper, we only use sub-formulae that correspond to tem-
poral operators, and evaluate the spatial ones as usual.

Example 8. Recall Example 7 in which the property ∃v : P (v) U Q(v) evalu-
ated to 1/2 although being satisfied by the trace. We now add the temporal
instrumentation predicates Ip(v) and Iq(v) to record the value of the temporal
subformulae. The predicates are updated according to their value in the previ-
ous configuration. Note the use of transworld equality instrumentation to more
precisely record transitive evolution of objects. In particular, this provides the
information that the summary node of the second configuration is an abstraction
of different incarnations of the same single object.

rval[v]

succ

succ

rval[v]

heldBy

currWorld

rval[v]

rval[v]

heldBy

blocked

at[l_1] at[l_1]

at[l_c]

at[l_c]

rval[v]

rval[v]

at[l_1]

at[l_1]

succ

initialWorld

at[l_1]
rval[v]

twe

twe

twe

twe

twe
twe

twe

twe

twe
twe

Fig. 9. Abstract trace with transworld equality instrumentation. Only 1-valued
transworld equality edges are shown

P P Q

initialWorld

succ succ

succsucc

twetwe

twe twe twe

Ip Ip Iq

Fig. 10. An instrumented abstract trace T10 with a single individual for which
P (v) U Q(v) holds

5 Prototype Implementation

We have implemented a prototype of our framework based on the TVLA frame-
work [12]. We have used the prototype implementation to verify the termination
of sequential programs manipulating singly-linked lists and of concurrent heap
manipulating programs, results are given in Table 6. Running times were mea-
sured using Sun’s JVM1.3 for Windows 2000, running on a 900MHZ Pentium
III. The prototype implementation used is a naive implementation, using TVLA,
without applying any additional optimizations.

5.1 Analysis Cost

The cost of verifying general properties using this framework could be very high.
This should not (and probably does not) come as a surprise considering the set-
ting in which the framework operates. This setting is extremely challenging, it
includes the most notorious features of a verification environment: concurrency,
dynamic allocation of objects, dynamic allocation of threads, object references,
and references to threads. As far as we know, there are no other analyses support-
ing this combination of features with the precision provided by our framework.
In particular, many existing analyses assume a simplified program model with
no support for at least one of dynamic allocation of objects, dynamic allocation
of threads, references to object, and references to threads [16].

A nice feature of the framework is its adaptivity, the cost of verification re-
duces when programs verified do not use the complicated features (e.g., paramet-
ric systems which use no dynamic allocation), and when the verified properties
are simple.

This framework sheds some light on the complications arising in verifica-
tion with a varying domains model. The amount of information that should be
recorded for verifying general properties of such programs is extremely high. Nev-
ertheless, instances of this framework could be applied to subclasses of the gen-
eral specifications. In particular, Section 2.2 identifies two specification classes
for which more efficient verification could be applied.

6 Conclusion

We have presented a parametric framework for verifying temporal properties of
concurrent Java-like programs. The framework uses a first-order temporal logic
which is implemented using 3-valued first-order logic by exploring finite trace
prefixes.

A Translation of ETL to FOTC

We say that a ETL sub-formula is temporally-bound if it appears under a tem-
poral operator. Translations for temporally-bound and non-temporally-bound
formulae are different, since non-temporally-bound formulae should be bound to
the initial world of the trace.

public void put(int value) {
QueueItem x i = new QueueItem(value); lp0

synchronize(this) { lp1

if (tail == null) { lp2

tail = x i; lp3

head = x i; lp4

} else {
tail.next = x i; lp5

tail = x i; lp6

}
} lp7

} lp8

public QueueItem take() {
synchronized(this) { lt0

QueueItem x d;

if (head != null) { lt1
newHead = head.next; lt2
x d = head; lt3
x d.next = null; lt4
head = newHead; lt5
if (newHead == null) { lt6

tail = null; lt7
}

}
} lt8
return x d; lt9

}

Fig. 11. Queue implementation used by producer / consumer. Note that the queue is
unbounded

Program Property Time Configurations

tr search termination 134 144

tr insert termination 2215 363

tr delete termination 2658 406

tr delall termination 268 165

tr swap termination 96 82

tr reverse termination 500 189

tr getlast termination 288 113

one-shot mutual exclusion absence of starvation 472 1918

web server P2 3864 4048

web server P3 10472 9015

web server P4 7307 5411

web server P6 10431 8892
Table 6. The programs and properties verified with running times and number of
configurations. Programs below the two horizontal line are concurrent programs.

Definition 18. [ETL translation to FOTC] We denote by 〈ϕ〉w the bounded
translation of a formula ϕ in a world w and by 〈ψ〉 the non-bounded translation.
This is referred to as FO translation is Section 3.

– 〈ψ〉 = ∃w : world.initialWorld(w) ∧ 〈ψ〉w

– if ϕ is an atomic formula other than �x and �x then 〈ϕ〉w = 〈ϕ〉 = ϕ.
If ϕ = �x then 〈ϕ〉w = 〈ϕ〉 = isNew(x). If ϕ = �x then 〈ϕ〉w = 〈ϕ〉 =
isFreed(x).

– 〈ϕ ∧ ψ〉w = 〈ϕ〉w ∧ 〈ψ〉w, 〈ϕ ∨ ψ〉w = 〈ϕ〉w ∨ 〈ψ〉w, 〈¬ϕ〉w = ¬〈ϕ〉w

–

〈ϕ(x1, . . . , xn) U ψ(y1, . . . , yk)〉w =

∃w′ : world.∃y′1, . . . , y
′
k : succ∗(w,w′) ∧ 〈ψ(y′1, . . . , y

′
k)〉w

′

∧

1≤i≤k evolution
∗(yi, y

′
i)

∧∀w̃ : world.∃x′1, . . . , x
′
n : (succ∗(w, w̃)

∧ succ∗(w̃, w′) → 〈ϕ(x′1, . . . , x
′
n)〉w̃

∧

1≤j≤n evolution
∗(xj , x

′
j))

–

〈χϕ(x1, . . . , xn)〉w = ∃w′ : world.∃x′1, . . . , x
′
n : succ(w,w′)

∧ 〈ϕ(x′1, . . . , x
′
n〉

w′ ∧

1≤j≤n evolution
∗(xj , x

′
j)

∧ exists(x′j , w
′)

– 〈∃x ϕ〉w = ∃x : exists(w, x) ∧ 〈ϕ〉w

Simplified translations may be used for the ♦ and � temporal operators as
shown by the following example.

References

1. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck. Parameterized verification with
automatically computed inductive assertions. Lecture Notes in Computer Science,
2102, 2001.

2. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

3. J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby. A language framework for
expressing checkable properties of dynamic software. In SPIN, pages 205–223,
2000.

4. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixed points. In Symp.
on Princ. of Prog. Lang., pages 238–252, New York, NY, 1977. ACM Press.

5. P. Cousot and R. Cousot. Temporal abstract interpretation. In Proc. of 27th
POPL, pages 12–25, Jan. 2000.

6. N. Dor, M. Rodeh, and M. Sagiv. Checking cleanness in linked lists.
In SAS’00, Static Analysis Symposium. Springer, 2000. Available at
“http://www.math.tau.ac.il/∼ nurr”.

7. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. In Proceedings of the 1999 International Conference on
Software Engineering (ICSE’99), pages 411–421, New York, May 1999. Association
for Computing Machinery.

8. B. Eckel. Thinking in Java. Prentice-Hall, 2000.
9. M. Fitting and R. Mendelsohn. First-Order Modal Logic, volume 277 of Synthese

Library. Kluwer Academic Publishers, Dordrecht, 1998.
10. G.E. Hughes and M.J. Creswel. An Introduction to Modal Logic. Methuen, London,

1982.
11. D. Lea. Concurrent Programming in Java. Addison-Wesley, Reading, Mas-

sachusetts, 1997.
12. T. Lev-Ami and M. Sagiv. TVLA: A framework for Kleene based static anal-

ysis. In SAS’00, Static Analysis Symposium. Springer, 2000. Available at
http://www.math.tau.ac.il/∼tla.

13. D. Lewis. Counterpart theory and quantified modal logic. Journal of Philosophy,
LXV(5):113–126, 1968.

14. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, New York, 1995.

15. A. Pnueli, J. Xu, and L. Zuck. Liveness with (0,1,infinity)-counter abstraction. In
Proceedings of CAV 2002. To appear.

16. M. Rinard. Analysis of multithreaded programs. Lecture Notes in Computer Sci-
ence, 2126:1–??, 2001.

17. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
In Symp. on Princ. of Prog. Lang., 1999.

18. M. Vardi and P. Wolper. Reasoning about infinite computations. Information and
Computation, 115(1):1–37, 15 Nov. 1994.

19. P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with
network invariants. In J. Sifakis, editor, Proceedings of the International Workshop
on Automatic Verification Methods for Finite State Systems, volume 407 of LNCS,
pages 68–80, Berlin, June 1990. Springer.

20. E. Yahav. Verifying safety properties of concurrent Java programs using 3-
valued logic. In Proc. of 27th POPL, pages 27–40, Mar. 2001. Available at
http://www.cs.tau.ac.il/∼yahave/popl01.ps.

21. E. Yahav, T. Reps, and M. Sagiv. LTL model checking for systems with unbounded
number of dynamically created threads and objects. Technical Report TR-1424,
Computer Sciences Department, University of Wisconsin, Madison, WI, March
2001.

