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Course and personal notes are the only allowed documents. It will not be answered to any question
during the exam. If a question is ambiguous, imprecise or incorrect, it is part of the question to
solve the ambiguity, imprecision or incorrectness by indicating all required hypotheses together
with the solution, if any. All questions are independent and can be answered in any order.

Let us recall the following theorem:
Theorem 1 If 〈L, 6, ⊥〉 is a cpo, F ∈ L → L is monotonically increasing, 〈L, v〉 is a poset, α ∈
L → L is continuous 1,2, F ∈ L → L commutes (resp. semi-commutes) with F that is α ◦ F = F ◦ α 3
(resp. α ◦ F v F ◦ α) then α(lfp6

⊥ F ) = lfpv
α(⊥) F (resp. α(lfp6

⊥ F ) v lfpv
α(⊥) F). �which may be useful in some questions.

Question 1
Sintzoff (1972) presents the rule of signs abstraction in the following way:

“a × a + b × b yields always the object “pos” when a and b are the objects “pos” or“neg”, and when the valuation is defined as follows :
pos+pos = pos pos × pos = pospos+neg = pos,neg pos × neg = negneg+pos = pos,neg neq × pos = negneg+neg = neg neg × neg = posV(p+q) = V(p)+V(q) V(p × q) = V(p) × V(q)V(0) = V(1) = . . . = posV(-1) = V(-2) = . . . = neg

The valuation of a × a+ b × b yields “pos” by the following computation :
1α is continuous if and only if it preserves existing lubs of increasing chains.2The continuity hypothesis for α can be restricted to the iterates F 0 , ⊥, Fn+1 , F (Fn), Fω ,

⊔
n> Fn of the leastfixpoint of F .3The commutation property α ◦ F (x) = F ◦ α(x) is only required for all x ∈ L such that γ ◦ α(x) 6 lfp6 F or evenjust for the iterates of the least fixpoint of F .
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V(a) = pos,neg V(b) = pos,negV(a × a) = pos × pos, neg × neg V(b × b) = pos × pos, neg × neg= pos,pos = pos = pos,pos = posV(a × a+ b × b) = V(a × a)+V(b × b) = pos+pos = pos”
What is wrong about it?
Answer to question 1
We have “pos × neq = neq” with “V(0) = pos” and “V(-1) = V(-2) = . . . = neg” so V(0 × -1) =V(0) × V(-1) = pos × neq = neq, proving that 0 = 0×−1 < 0!
Question 2
A multiplication m×n = r can be checked by summing the digits of integer m modulo 9, summingthe digits of n modulo 9, and checking that their product modulo 9 is equal to the sum of the digitsof the result r modulo 9. For example, 1234 → 10 mod 9 = 1

× 5678 → 26 mod 9 = 8= 7006652 → 26 mod 9 = 8succeeds, while 1234 → 10 mod 9 = 1
× 5678 → 26 mod 9 = 8= 7006651 → 27 mod 9 = 7 6= 1× 8 mod 9fails.

• Show that this casting out nines is an abstraction.
• Is it a proof 4 ?
• Can you cite a sound generalization of the idea used in program analysis?
Answer to question 2
• Casting out nines is a sound method of checking equations because of a property of modulararithmetic. Specifically, if n and n′ (respectively, m and m′) have the same remainder modulo 9,then so do n×m and n′×m′. To compute n modulo 9, one observes that the sum of the digits ofthe decimal writing of an integer has the same remainder, modulo 9, as this integer. Of courseall 9 digits in n and m can be cast out.
• This is an example of abstraction by over-approximation because the number is replaced by theset of all numbers which have the same remainder modulo 9. Of course a failure is a proof that
n × m 6= r.
• However a success is not a proof of correctness of the multiplication since changing m, n and rmodulo 9 (e.g. by exchanging digits in the decimal representation or adding 9’s) yields the samefalse positive result.The same reasoning is valid for other operations +, −, /, etc. A sound generalization of the ideaisthe congruence abstraction used in program analysis.

4In French it is called a “proof by 9”.
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Question 3
Define the reflexive transitive closure r? of a relation r ∈ ℘(S × S) on a set S as r? , ⋃

n∈N rnwhere the powers rn, n ∈ N are defined as r0 , {〈s, s〉 | s ∈ S} (which is the identity relation),
rn+1 , r ◦ rn, and the composition of relations is r ◦ r′ , {〈s, s′′〉 ∈ S × S | ∃s′ ∈ S : 〈s,
s′〉 ∈ r ∧ 〈s′, s′′〉 ∈ r′}. Prove that the reflexive transitive closure r? of the relation r is anabstraction of the partial trace semantics ~r of this relation r defined as

~r n , {π ∈ Sn | ∀i ∈ [0, n − 1] : 〈πi, πi+1〉 ∈ r}, n > 0
~r ,

+∞⋃
n=1~r

n

Answer to question 3
Define
α?(T ) , {〈π0, πn−1〉 | π ∈ T ∧ |π| = n}

Let us show that α?(~rn) = rn be recurrence on n.
α?(~r1)= r0 Hdef. α? and ~r1I
α?(~rn+1)= {〈π0, πn〉 | π ∈ Sn+1 ∧ ∀i ∈ [0, n] : 〈πi, πi+1〉 ∈ r} Hdef. α? and ~rn+1I= {〈σ, π′n〉 | 〈σ , π′0〉 ∈ r ∧ π′ ∈ Sn ∧ ∀i ∈ [0, n − 1] : 〈π′i, π′i+1〉 ∈ r}

Hletting π = σπ′I= r ◦ {〈π′0, π′n〉 | π′ ∈ Sn ∧ ∀i ∈ [0, n − 1] : 〈π′i, π′i+1〉 ∈ r} Hdef. ◦I= r ◦ α?(~rn+1) Hdef. α? and ~r1I= r ◦ rn Hind. hyp.I= rn+1 Hdef. rn+1I
It follows that

α?(~r)
= α?(+∞⋃

n=1~r
n) Hdef. ~rI

= +∞⋃
n=1α

?(~r n) Hdef. α?I
= +∞⋃

n=1 r
n Has shown aboveI

= r? Hdef. r?I �

Question 4
Prove that
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Theorem 2 If 〈L, v, >〉 is a dcpo5, F ∈ L → L is monotonically increasing, γ ∈ L → L is
co-continuous 6, F ∈ L → L commutes with F that is γ ◦ F = F ◦ γ then γ(gfpv> F ) = gfp6

γ(>) F. �

Answer to question 4

By the dual of 1 (in particular since 〈L, 6〉 −−−→←−−−αγ 〈L, v〉 implies 〈L, w〉 −−−→←−−−γα 〈L, >〉).
Question 5
Let 〈L, 6, ⊥, ¬〉 be a complete Boolean lattice (where ¬ is the unique complement). Prove that
〈L, 6〉 −−−→←−−−¬

¬ 〈L, >〉 is a Galois isomorphism.
Answer to question 5
For all x, y ∈ L, we have
¬x > y

⇔ ¬¬x 6 ¬y
⇔ x 6 ¬y

which is the definition of a Galois connection. ¬ is a isomorphism with inverse ¬ since ¬¬x = x .
Question 6
Using Th. 1 and Q. 5, prove the following theorem due to David Park (1969)
Theorem 3 If F ∈ L → L is monotonically increasing on a complete Boolean lattice 〈L, 6, ⊥, ¬〉
then ¬ lfp6

⊥ F = gfp6

¬⊥ ¬ ◦ F ◦ ¬ . �

Answer to question 6

By Th. 1, for 〈L, 6〉 −−−→←−−−¬¬ 〈L, >〉, ¬ ◦ ¬ is the identity and lfp> F = gfp6 F .
Question 7
Prove the following theorem providing a condition for fixpoints of an increasing map on a completeBoolean lattice to be unique.
Theorem 4 (D. Park) Let f ∈ L 1−→ L be an increasing map on the complete Boolean lattice 〈L,
v, ⊥, >, t, u, ¬〉. Then

(1) lfp f̃ u lfp f = ⊥(2) (lfp f̃ t lfp f = >) ⇔ (lfp f = gfp f )
where f̃ , ¬ ◦ f ◦ ¬. �

5A dual complete partial order (dcpo) has glbs of decreasing chains.6γ is co-continuous if and only if it preserves existing glbs of decreasing chains.
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Answer to question 7

(1) lfp f v gfp f HTarski’s theoremI

⇒ ¬gfp f v ¬lfp f Hconjugate in complete Boolean latticeI
⇒ ¬gfp f u ¬lfp f v ¬lfp f u lfp f Hdef. glb in a latticeI
⇒ ¬gfp f u ¬lfp f v ⊥ Hdef. complementI
⇒ ¬gfp f u ¬lfp f = ⊥ H⊥ is the infimumI

⇒ lfp f̃ u lfp f = ⊥ Htheorem 4I

(2, ⇐) >= ¬lfp f t lfp f Hdef. complementI= ¬gfp f t lfp f Hsince lfp f = gfp fI= lfp f̃ t lfp f Htheorem 4I

(2, ⇒) lfp f̃ t lfp f = > HhypothesisI
⇒ lfp f = ¬lfp f̃ Hdef. complementI
⇒ lfp f = gfp f HTh. 3I �

Question 8
The interval analysis of the following program

P , 1x := 100 ; while 2(x =/= 0) do 3x := (x - 1); od4.
has the following interval equations

X1 = [min_int, max_int]}
X2 = [100, 100] t L X3 = ∅ ? ∅ : let [a, b] = X3 in[max(a − 1, min_int),max(b − 1, min_int)] M}
X3 = (X2 u [min_int, −1]) t (X2 u [1, max_int])
X4 = X2 u [0, 0]

The resolution of the equations by iteration with widening/narrowing yields a rather impreciseresult.
% ocamlc interval.ml intervalWidening.ml intervalNarrowing.ml \
? invariant.ml invariantWidening.ml invariantNarrowing.ml \
? transformerBounded.ml iterator.ml \
? reachability_narrowing_bounded.ml
% time ./a.out
1:( -1073741824 ,1073741823) 2:( -1073741824 ,100) 3:( -1073741824 ,100) 4:(0 ,0)

0.000u 0.000s 0:00.00 0.0% 0+0k 0+0io 0pf+0w
%Propose a refinement of the interval widening to improve the precision of the analysis.
Answer to question 8
The imprecision is due to the widening jumping over 0. The problem can be avoided by refiningthe widening with a threshold at 0.
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∅
`
y , y

x
`
∅ , x[a, b] ` [c, d] , [L c < a ? L 0 6 c ? 0 : −∞ M : a M,

L d > b ? L b > 0 ? 0 : +∞ M : b M]

Question 9
Consider the syntax of the repeat command is

C ∈ C , commands
C ::= . . .

| repeatC until `B where ` 6∈ inJC Kand inJrepeatC until `BK , {`} ∪ inJC K

Execution of the repeatC until `B command starts with that of the loop body C

i JrepeatC until `BK , i JC K

Execution of the loop body C ends at label ` just before evaluation of the condition B

C ::= . . .
| repeatC 1 until `B f JrepeatC until `BK, f JC K

f JC 1K, `
Define the transitional semantics TJrepeatC until `BK of the repeat command so that executionof the loop body C is repeated until the condition B is true.
Answer to question 9

TJrepeatC until `BK ,
{〈ρ, `〉 −→ 〈ρ, i JrepeatC until `BK〉 | false ∈ BJBKρ}
∪ {〈ρ, `〉 −→ 〈ρ, f J[repeatC until `BK]〉 | true ∈ BJBKρ}
∪ TJC K

Question 10

Let U be a universe and F ∈ ℘(U) 1−→ ℘(U) a ⊆-increasing function on ℘(U) defining lfp∅⊆ F ∈
℘(U). What is the set R of inference rules such that the formal system 〈U, R〉 defines exactly thesame set lfp∅⊆ F?
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Answer to question 10
Choose R = {Pc | P ∈ ℘(U) ∧ c ∈ F (P)}. The consequence operator is then F so 〈U, R〉 defines
lfp⊆

∅
F . Let F be the consequence operator for R . We have

Proof
F (X )= {c | ∃Pc ∈ R : P ⊆ X} Hdef. consequence operator F for R .I

= {c | ∃Pc ∈ {
P
c | P ∈ ℘(U) ∧ c ∈ F (P)} : P ⊆ X} Hdef. RI= {c | c ∈ F (P) ∧ P ⊆ X} Hdef. ∈I= ⋃

{F (P) | P ⊆ X} Hdef. ∪I= F (X ) Hsince P ⊆ X implies F (P) ⊆ F (X ) since F is increasing so ⋃
{F (P) | P ⊆ X} ⊆ F (X )and inversely X ⊆ X by reflexivity so F (X ) ∈ {F (P) | P ⊆ X} so F (X ) ⊆ ⋃

{F (P) | P ⊆ X}I
�

Question 11
Let us consider the following program P .

1x := ? ;
while 2(1 < x) do3x := x - 2
od4.

Formally define the program property that once initialized the variable x keeps the same parity.
Answer to question 11
We state that on any prefix execution trace π the difference of any two values of x is even (butwhen control is at program point 1).
{S ∈ ℘(S+) | ∀π ∈ S : ∀i, j ∈ dom(π) : (l(πi) 6= 1 ∧ l(πj ) 6= 1)⇒(∃k ∈ Z : πi(x)− πj (x) = 2k)}

Question 12
Define the abstraction and concretization for the “bounding abstraction” of the trace semanticswhich cuts traces at a given depth n, so that the abstract semantics has all its traces of length atmost n. This abstraction is left implicit in bounded model-checking.
Answer to question 12
The bounding abstraction αbn , n > 0 cut traces at length n while preserving those of shorterlength.
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αbn ∈ ℘(S+) 7→ ℘(S6n), S6n ,
⋃
k6n
Sk

αbn(T ) , {bn(π) | π ∈ T}
bn(π) , π when π ∈ Sk ∧ k 6 n
bn(π) , π0 . . . πn−1 when π ∈ Sk ∧ k > nThe concretization extend traces beyond length n by any possible behavior (so that nothing isknown on traces after n steps).
γbn ∈ ℘(S6n) 7→ ℘(S+)

γbn(B) , {π ∈ S+ | bn(π) ∈ B}
so that 〈℘(S+), ⊆〉 −−−−→←−−−−

αbn

γbn
〈℘(S6n), ⊆〉

αbn(T ) ⊆ B
⇔ {bn(π) | π ∈ T} ⊆ B Hdef. αgI
⇔ ∀π ∈ T : bn(π) ∈ B Hdef. ⊆I
⇔ T ⊆ {π ∈ S+ | bn(π) ∈ B} Hdef. ⊆I
⇔ T ⊆ γbn(B) Hdef. γbnI
Question 13
Consider the following transition abstraction from sets of traces to a transition relation.

ατ ∈ ℘(S+) 7→ ℘(S × S)
ατ (T ) , {〈πi, πi+1〉 | ∃n > 1 : π ∈ T ∩ Sn ∧ 0 6 i < n − 1}1. Provide an example proving that this abstraction can loose information on the set of traces.2. Provide a characterization of those sets of traces for which the abstraction loose no information.
Answer to question 13
The concretization is

γτ ∈ ℘(S × S) 7→ ℘(S+)
γτ (T ) , {π ∈ Sn | n > 1 ∧ ∀i ∈ [0, n − 2] : 〈πi, πi+1〉 ∈ T}.1. Given S = {a, b} and S = {ab, ba}, we have ατ (S) = {〈a, b〉, 〈b, a〉} to that γτ ({〈a, b〉, 〈b,
a〉}) is (a(ba)∗(ε|b))|(b(ab)∗(ε|a)) using a regular expression notation.2. The sets of traces for which the abstraction loose no information are those that are prefix-closeand history-insensitive.

Question 14
Prove that given h ∈ X ∈7→ ℘(Y), defining αh(P) , ⋃

{h(x) | x ∈ P} yields a Galois connection
〈℘(X), ⊆〉 −−−→←−−−

αh

γh
〈℘(Y), ⊆〉 (this is the abstraction commonly used in model-checking).Prove that any Galois connection 〈℘(X), ⊆〉 −−−→←−−−αγ 〈℘(Y), ⊆〉 can be put in that form for anappropriate choice of h such that α = αh and γ = γh.Provide an example of abstraction 〈℘(X), ⊆〉 −−−→←−−−αγ 〈A, v〉 that cannot be put in that form.
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Answer to question 14
For all P ∈ ℘(X) and Q ∈ ℘(Y),

αh(P) ⊆ Q
⇔

⋃
{h(x) | x ∈ P} ⊆ Q Hdef. αh(P) , ⋃

{h(x) | x ∈ P}I
⇔ ∀x ∈ P : h(x) ⊆ Q Hdef. ⋃

I

⇔ P ⊆ {x ∈ X | h(x) ⊆ Q} Hdef. ⊆I
⇔ P ⊆ γh(Q)
by defining γh(Q) , {x ∈ X | h(x) ⊆ Q}. Given 〈℘(X), ⊆〉 −−−→←−−−αγ 〈℘(Y), ⊆〉, define h ∈ X ∈7→ ℘(Y)by h(x) = α({x}). We have 〈℘(X), ⊆〉 −−−→←−−−

αh

γh
〈℘(Y), ⊆〉 as shown above. Moreover for P ∈ ℘(X),

αh(P)= ⋃
{h(x) | x ∈ P} Hdef. αh(P) , ⋃

{h(x) | x ∈ P}I= ⋃
{α({x}) | x ∈ P} Hdef. h(x) = α({x})I= α(⋃{{x} | x ∈ P}) Hα preserves lubsI= α({x | x ∈ P}) Hdef. ⋃

I= α(P) Hdef. ∈I
and for Q ∈ ℘(Y),

γh(Q)= {x ∈ X | h(x) ⊆ Q} Hdef. γh(Q) , {x ∈ X | h(x) ⊆ Q}I= {x ∈ X | α({x}) ⊆ Q} Hdef. h(x) = α({x})I= {x ∈ X | {x} ⊆ γ(Q)} HGalois connection inversionI= {x ∈ X | x ∈ γ(Q)} Hdef. ⊆I= γ(Q) Hdef. ∈ and γ(Q) ∈ ℘(X)I
The interval abstraction is obviously not of that form.
Question 15
Show that the program property “to be deterministic” (i.e. to have only one possible execution trace,either finite or infinite) is neither a safety nor a liveness property.
Answer to question 15
The property of a program P with states SJPK “to be deterministic” is {{π} | π ∈ SJPK+∞}. Thisis not a trace property hence neither a safety nor a liveness property.
Question 16
Is the infinite union of safety properties a safety property?
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Answer to question 16
The infinite union of safety properties is not a safety property. For example, terminating in exactly
n steps is a safety property. To check it at runtime just count the number of steps and produce analarm after n steps. Their infinite union is termination, which is not a safety property.
Question 17
The abstract best transformer for the interval abstraction has been shown to be[a1, b1]− [a2, b2] = [a1 − b2, b1 − a2] (1)
Assume that variable x has a value x ∈ [−100, 100]. For the value of the expression x-x, calculate
x − x as indicated in (1). Can you do better? Why does − is so-called the best abstraction of −on powersets?
Answer to question 17
We have x − x = [−200, 200] whereas once could imagine [0, 0] which looks better. Nevertheless
− is the best abstraction after the Cartesian abstraction, which ignores that the two parameterscorrespond to the same program variable and so returns the same result for x − x and x − y,
x = [−100, 100], y = [−100, 100].
Question 18
The partial trace semantics of a transition system 〈S, I, F, T〉 is Pt , {π ∈ Sn | n > 1 ∧ ∀i ∈[0, n − 2] : 〈πi, πi+1〉 ∈ T} = lfp⊆ Ft where Ft(X ) , S1 ∪ {πσσ ′ | πσ ∈ X ∧ 〈σ, σ ′〉 ∈ T}. Iheprefix trace semantics is defined as the restriction of the prefix trace semantics to traces startingwith an initial state. Pti , {π ∈ Sn | n > 1 ∧ π0 ∈ I ∧ ∀i ∈ [0, n − 2] : 〈πi, πi+1〉 ∈ T}. Thisprefix trace semantics has the following fixpoint characterization Pti = lfp⊆ Fti where Fti(X ) ,
{π ∈ S1 | π0 ∈ I} ∪ {πσσ ′ | πσ ∈ X ∧ 〈σ, σ ′〉 ∈ T}.Find an abstraction α such that Pti = α(Pt). Then derive the fixpoint characterization of Ptifrom that of Pt using Th. 1.
Answer to question 18

The abstraction is 〈℘(S+), ⊆〉 −−−→−→←−−−−
α

γ
〈℘(S+), ⊆〉 where α(X ) = {π ∈ X | π0 ∈ I}. Fti is derivedfrom Ft using the commutation condition of Th. 1.

α ◦ Ft(X )= {π ∈ (S1 ∪ {πσσ ′ | πσ ∈ X ∧ 〈σ, σ ′〉 ∈ T}) | π0 ∈ I} Hdef. function composition ◦, α and FtI= {π ∈ S1 | π0 ∈ I} ∪ {πσσ ′ | πσ ∈ X ∧ π0 ∈ I ∧ 〈σ, σ ′〉 ∈ T} Hdef. ∈I= {π ∈ S1 | π0 ∈ I} ∪ {πσσ ′ | πσ ∈ {πσ ∈ X | π0 ∈ I} ∧ 〈σ, σ ′〉 ∈ T} Hdef. ∈I= {π ∈ S1 | π0 ∈ I} ∪ {πσσ ′ | πσ ∈ α(X ) ∧ 〈σ, σ ′〉 ∈ T} Hdef. αI= Pti(α(X )) Hdef. PtiI

So by Th. 1, Pti = α(Pt) = α(lfp⊆
∅

Ft) = lfp⊆
α(∅) Fti = lfp⊆

∅
Fti.

10/12



Question 19
Consider the polyhedral abstraction where the abstract properties P are the conjunction of linearinequalities ∧m

i=1 ∑n
j=1 aji 6 bi written

P = Ax 6 b= {Aix + bi | i ∈ [1, m]}= {a1
i x1 + . . .+ ajixj + . . .+ ani xn 6 bi | i ∈ [1, m]}

= {
n∑
j=1 a

j
i 6 bi | i ∈ [1, m]}

We say that polyhedron P entails a constraint φ = ∑
i aixi 6 bi when ∧

P ⇒φ that is {x ∈ Qn |
Ax 6 b} ⊆ {x ∈ Qn |

∑
i aixi 6 bi}, written P |= φ.The concretization is
γP (P) , γP (〈A, b〉) , {x ∈ Qn | Ax 6 b}

that is the set of all possible values of the program numerical variables that satisfy all constraintsin P .Prove that ∀φ1 ∈ P1 : γP (P1) = γP ((P1 \ {φ1}) ∪ {φ2}) if and only if P1 |= φ2 and ((P1 \
{φ1}) ∪ {φ2}) |= φ1.
Answer to question 19
If φ = ∑

i aixi 6 bi, define
γP (φ) , {x ∈ Qn |

∑
i
aixi 6 bi}

If follows that if P is given by Ax 6 b then
γP (P)= {x ∈ Qn | Ax 6 b} Hdef. γP (P)I

= {x ∈ Qn |
n∧
i=1Aix 6 bi} Hconjunctive interpretation of Ax 6 bI

= ⋂
{x ∈ Qn | i ∈ [1, n] ∧ Aix =6 bi} Hdef. ∩I⋂
{γP (Aix 6 bi) | i ∈ [1, n] ∧ Aix 6 bi} Hdef. γP for a single constraintI= ⋂
{γP (φ) | φ ∈ P} Hdef. P = {Aix 6 bi | i ∈ [1, n]}I

Assume φ1 ∈ P1.
γP (P1) = γP ((P1 \ {φ1}) ∪ {φ2})

⇔ γP (P1) = ⋂
φ∈(P1\{φ1})∪{φ2}

γP (φ) Has shown above for γPI
⇔ γP (P1) = ⋂

φ∈P1\{φ1}
γP (φ) ∩ γP (φ2) Hdef. ∩I

⇒ γP (P1) ⊆ γP (φ2) Hby reflexivity and def. glbI
⇔ P1 |= φ2 Hdef. |= and γP aboveIMoreover,
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γP (P1) = γP ((P1 \ {φ1}) ∪ {φ2})
⇔

⋂
φ∈P1

γP (φ) = γP ((P1 \ {φ1}) ∪ {φ2}) Has shown above for γPI
⇔

⋂
φ∈P1

γP (φ) ∩ γP (φ1) = γP ((P1 \ {φ1}) ∪ {φ2}) Hφ1 ∈ P1 by hypothesisI
⇒ γP ((P1 \ {φ1}) ∪ {φ2}) ⊆ γP (φ1) Hby reflexivity and def. glbI
⇔ (P1 \ {φ1}) ∪ {φ2} Hdef. |= and γP aboveI

Reciprocally, assume (P1 |= φ2) ∧ ((P1 \ {φ1}) ∪ {φ2}) |= φ1 or equivalently, by definition of |=and γP above, that (γP (P1) ⊆ γP (φ2)) ∧ (γP ((P1 \ {φ1}) ∪ {φ2}) ⊆ γP (φ1)). Then,
γP (P1) = ⋂

φ∈P1
γP (φ) Has shown above for γPI

= ⋂
φ∈P1\{φ1}

γP (φ) ∩ γP (φ1) Hsince φ1 ∈ P1I
= ⋂

φ∈P1\{φ1}
γP (φ) ∩ γP (φ1) ∩ γP (φ2)

Hsince ⋂
φ∈P1\{φ1} γP (φ) ∩ γP (φ1) = γP (P1) ⊆ γP (φ2)I

⇔
⋂

φ∈(P1\{φ1})∪{φ2}
γP (φ) ∩ γP (φ1) Hdef. ⋂

I �

Question 20
Prove the following statements to be wrong: “the widening approach to program static analysis
is useless since it is always possible to perform an iterative static analysis using a finite abstract
domain”Ãě 7 and “widenings can always be designed by further abstraction in an abstract domain
satisfying the ascending chain condition” 8.
Answer to question 20
This is due to the confusion between the static analysis of a given specific program P and thestatic analysis of all programs P ∈ W of a language with infinitely many different programs asshown by the interval analysis of the following program

P(n) , 1x := 1 ; while 2(x <= n) do 3x := (x + 1); od4.
for all possible values of n.

ON

7R.B. Kieburtz and M. Napierala. Abstract semantics. In S. Abramsky and C. Hankin, eds., Abstract Interpretation
of Declarative Languages, chapter 7, pp. 143–180. Ellis Horwood, Chichester, U.K., 1987.8C. Hankin, S. Hunt: Approximate Fixed Points in Abstract Interpretation. In Sci. Comput. Program. 22(3):283–306(1994)

12/12


