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Course and personal notes are the only allowed documents. It will not be an-
swered to any question during the exam. If a question is ambiguous, imprecise
or incorrect, it is part of the question to solve the ambiguity, imprecision or
incorrectness by indicating all required hypotheses together with the solution,
if any.

We describe the syntax of grammars using the following meta-grammar
(that is grammar of grammars).

T terminals T
N nonterminals N
V , T ∪N vocabulary (T ∩N = ∅)
G ::= P G | P grammar
P ::= N ‘::=’ ARS production

ARS ::= RS ‘|’ ARS | RS alternative right sides
RS ::= S RS | S right sides

S ::= N | T | ‘ε’ symbols

This meta-grammar has the meta-symbols ::=, |, ε, the meta-terminals {‘::=’,
‘|’, ‘ε’} ∪ V such that {‘::=’; ‘|’, ‘ε’} 6∈ V and the meta-nonterminals {G, P,
ARS, RS, S, N, T} 6∈ V . We assume that all productions of the grammar
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with the same left side nonterminal have their right sides grouped, with the
alternative right sides separated by |. For example

X ::= YX
| ε

Y ::= a
| b

Question 1
Provide a structural definition of the transition system of a grammar (by in-
duction on the meta-grammar).

Answer to question 5
The structural definition of the transition system of a grammar is

τJPGK = τJPK ∪ τJGK
τJN‘::=’ARSK = {〈pNq, prq〉 | p, q ∈ V JGK? ∧ r ∈ AJARSK}
AJRS ‘|’ARSK , AJRSK ∪ AJARSK

AJSRSK , AJSK ·AJRSK (1)
AJNK , {N}
AJT K , {T}
AJ‘ε’K , {ε}

Question 2
Prove that the correctness of the structural definition of the transition system
of a grammar (that is the equivalence of the definitions in questions 4 and 5).

Answer to question 6
In equation (1), we have defined:

τJGK , α(PJGK)
where α(X ) , {〈pNq, prq〉 | p, q ∈ V JGK? ∧ 〈N, r〉 ∈ X}

Let τ ′JGK satisfying eq. (2). We prove that τJGK = τ ′JGK by structural induc-
tion on the metasyntax of G.
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τJPGK

= α(PJPGK) Hdef. τJGKI

= α(PJPK ∪ PJGK) Hdef. PJPKI

= α(PJPK) ∪ α(PJGK) Hα preserves joinsI
= τJPK ∪ τJGK Hdef. τJGKI

= τ ′JPK ∪ τ ′JGK Hinduction hyp.I
= τ ′JPGK Hdef. eq. (2) of τ ′JGKI

τJN‘::=’ARSK
= α(PJN‘::=’ARSK) Hdef. τJGKI

= α({〈N, r〉 | r ∈ AJARSK}) Hdef. PJPKI

= {〈pNq, prq〉 | p, q ∈ V JGK? ∧ r ∈ AJARSK} Hdef. αI
= τ ′JN‘::=’ARSK Hdef. eq. (2) of τ ′JPKI

AJRS ‘|’ ARSK
= {RJRSK} ∪ AJARSK Hdef. AJARSKI
= AJRSK ∪ AJARSK Hdef. AJRSKI

AJS RSK
= {RJS RSK} Hdef. AJRSKI
= {RJSK · RJRSK} Hdef. RJRSKI
= {RJSK} · {RJRSK} Hdef. ·I
= AJSK ·AJRSK Hdef. AJSK & AJRSKI
AJNK = {RJNK} = {N}

AJT K = {RJT K} = {T}

AJ‘ε’K = {RJ‘ε’K} = {ε}

Question 3
Let us define the reflexive transitive closure r? of a relation r ∈ ℘(S×S) on a
set S as r? ,

⋃
n>0 rn where the powers rn of r are r0 , {〈x, x〉 | x ∈ S} , 1S

(identity relation), rn+1 = rn ◦ r = r ◦ rn, and the composition of relations is
r ◦ r′ , {〈x, x′′〉 | ∃x′ ∈ S : 〈x, x′〉 ∈ r ∧ 〈x′, x′′〉 ∈ r′}. Prove that r? =
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lfp⊆
∅

λX . 1S ∪ r ◦ X= lfp⊆
∅

λX . 1S ∪ X ◦ r (where lfp6a f is the 6-least fixpoint
of f which is 6-greater than or equal to a, if any).

Answer to question 7
Theorem 1

r? = lfp⊆ λX . 1S ∪ X ◦ r

PROOF 〈℘(S×S), ⊆, ∅, S, ∪, ∩〉 is a complete lattice and λX . 1S∪X ◦ r
is increasing since

X ⊆ Y HhypothesisI
⇒ X ◦ r ⊆ Y ◦ r Hdef. relation composition ◦I
⇒ 1S ∪ X ◦ r ⊆ 1S ∪ Y ◦ r Hdef. lubI

λX . r ◦ (1S ∪ X ) is increasing since
X ⊆ Y HhypothesisI

⇒ (1S ∪ X ) ⊆ (1S ∪ Y ) Hdef. lubI
⇒ r ◦ (1S ∪ X ) ⊆ r ◦ (1S ∪ Y ) Hdef. relation composition ◦I

The existence of the fixpoints follows from Tarski’s fixpoint theorem.

We have r? =
⋃
n∈N rn = r0∪

⋃
n>0 rn = r0∪

⋃
n≥0 rn+1 = r0∪

⋃
n≥0(r ◦ rn)

= r0∪r ◦ (
⋃
n≥0 rn) = 1S∪r ◦ r? so that r? is a fixpoint of λX . 1S∪X . Let R be

another fixpoint that is R = 1S ∪ X ◦ R . We have r0 = 1S ⊆= 1S ∪ X ◦ R = R .
Assume by induction hypothesis that rn ⊆ R then rn+1 = r ◦ rn ⊆ r ◦ R ⊆
1S ∪ X ◦ R = R . By recurrence, ∀n : rn ⊆ R proving r? =

⋃
n∈N rn ⊆ R to be

the least fixpoint. �

Question 4
The derivation semantics of a grammar is the reflexive transitive closure τJGK?

of its transition semantics τJGK defined in questions 4 and 5. Let us define
the ⊆-increasing transformer:

BJARSK ∈ ℘(V ?×V ?) 1−→ ℘(V ?)
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as follows:

BJRS | ARSKr , BJRSKr ∪ BJARSKr (2)
BJSRSKr , BJSKr · BJRSKr (3)
BJNKr , {p | 〈N, p〉 ∈ r} (4)
BJT Kr , {T} (5)
BJεKr , {ε} (6)

where X · Y = {pq | p ∈ X ∧q ∈ Y} is the concatenation of sets of protosen-
tences and ε is the empty protosentence.

Let us define

BJGK ∈ ℘(V ?×V ?) 1−→ ℘(V ?×V ?)

as follows:

BJPGKr , BJPKr ∪ BJGKr (7)
BJN ::= ARSKr , IV ? ∪ {〈pNq, p′mq′〉 | 〈p, p′〉 ∈ r ∧

m ∈ BJARSKr ∧ 〈q, q′〉 ∈ r}
(8)

which can be illustrated as follows

Prove that lfp⊆
∅
BJGK = τJGK?.

Answer to question 8
Lemma 2 (Derivation Extension Lemma) If 〈p, q〉 ∈ τJGK? and 〈r, s〉 ∈ τJGK?

then 〈pr, qs〉 ∈ τJGK?. e

PROOF Let us first prove that

if 〈p, q〉 ∈ τJGK then 〈rp, rq〉 ∈ τJGK and 〈ps, qs〉 ∈ τJGK. (9)

Indeed
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〈p, q〉 ∈ τJGK

⇒ ∃p1, p2, N,m : p = p1Np2 ∧ q = p1mp2 ∧ 〈N, m〉 ∈ PJGK Hdef. τJGKI

⇒ ∃p1, p2, N,m : rp = rp1Np2 ∧ rq = rp1mp2 ∧ 〈N, m〉 ∈ PJGK Hdef. string
equalityI

⇒ 〈rp, rq〉 ∈ τJGK Hdef. τJGKI

The proof is symmetric in the second case.

Let us now prove that
if 〈p, q〉 ∈ τJGK? then 〈rp, rq〉 ∈ τJGK? and 〈ps, qs〉 ∈ τJGK? (10)

The proof is by recurrence on n ≥ 0 for τJGKn.

For n = 0, 〈p, q〉 ∈ τJGK0 = IV ? so p = q hence rp = rq proving 〈rp,
rq〉 ∈ τJGK0.

For n + 1, if 〈p, q〉 ∈ τJGKn+1 then ∃p′ : 〈p, p′〉 ∈ τJGKn and 〈p′,
q〉 ∈ τJGK. So 〈rp, rp′〉 ∈ τJGKn by induction hypothesis and 〈rp′,
rq〉 ∈ τJGK by the previous lemma (10) so 〈rp, rq〉 ∈ τJGKn+1 by
composition.

If 〈p, q〉 ∈ τJGK? then ∃n : 〈p, q〉 ∈ τJGKn so 〈rp, rq〉 ∈ τJGKn ⊆ τJGK?.
The proof is symmetric in the second case.

Finally, if 〈p, q〉 ∈ τJGK? and 〈r, s〉 ∈ τJGK? then 〈pr, qr〉 ∈ τJGK?

and 〈qr, qs〉 ∈ τJGK? by the previous lemma (11) so that 〈pr, qs〉 ∈ τJGK?

by composition. �

Lemma 3 (Separate Derivation Lemma) For all n ∈ N, 〈pq, m〉 ∈ τJGKn if
and only if ∃p′, q′ ∈ V ? : ∃n1, n2 ∈ N : 〈p, p′〉 ∈ τJGKn1 ∧ 〈q, q′〉 ∈ τJGKn2

∧ n = n1 + n2 ∧ m = p′q′ e

PROOF By recurrence on n. For n = 0, we have:

〈pq, m〉 ∈ τJGK0

⇔ m = pq Hdef. τJGK0 = IV ?I

⇔ ∃p′, q′ : p = p′ ∧ q = q′ ∧ m = p′q′ Hdef. string equalityI

⇔ ∃p′, q′ ∈ V ? : ∃n1, n2 ∈ N : 〈p, p′〉 ∈ τJGKn1 ∧ 〈q, q′〉 ∈ τJGKn2 ∧ 0 =
n1 + n2 ∧ m = p′q′ Hsince n1, n2 ∈ N and n1 + n2 = 0 implies
n1 = n2 = 0I
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For n+ 1, we have:

〈pq, m〉 ∈ τJGKn+1

⇔ ∃m′ : 〈pq, m′〉 ∈ τJGKn ∧ 〈m′, m〉 ∈ τJGK Hdef. τJGKn+1 = τJGKn ◦ τJGK
and ◦I

⇔ ∃p′, q′, n1, n2 : 〈p, p′〉 ∈ τJGKn1 ∧ 〈q, q′〉 ∈ τJGKn2 ∧ n = n1 + n2 ∧ m′ =
p′q′ ∧ 〈p′q′, m〉 ∈ τJGK Hby ind. hyp.I

⇔ ∃p′, q′, n1, n2, N, r : 〈p, p′〉 ∈ τJGKn1∧〈q, q′〉 ∈ τJGKn2∧n = n1+n2∧m′ =
p′q′∧ [(∃p1, p2 : p′ = p1Np2∧m = p1rp2q′)∨ (∃q1, q2 : q′ = q1Nq2∧m =
p′q1rq2)] ∧ 〈N, r〉 ∈ PJGK Hby def. τJGK and string equalityI

⇔ ∃p′, q′, n1, n2 : 〈p, p′〉 ∈ τJGKn1 ∧ 〈q, q′〉 ∈ τJGKn2 ∧ n = n1 + n2 ∧ m′ =
p′q′ ∧ [(∃p′′ : 〈p′, p′′〉 ∈ τJGK ∧ m = p′′q′) ∨ (∃q′′ : 〈q′, q′′〉 ∈ τJGK ∧ m =
p′q′′)] Hby def. τJGKI

⇔ [∃p′′, q′, n1, n2 : 〈p, p′′〉 ∈ τJGKn1+1 ∧ 〈q, q′〉 ∈ τJGKn2 ∧ n + 1 = n1 +
n2 + 1 ∧ m′ = p′′q′] ∨ [∃p′, q′′, n1, n2 : 〈p, p′〉 ∈ τJGKn1 ∧ 〈q, q′′〉 ∈
τJGKn2+1 ∧ n+ 1 = n1 + n2 + 1 ∧ m′ = p′q′′] Hdef.
τJGKn+1 = τJGKn ◦ τJGK and ◦I

⇔ ∃p′, q′ ∈ V ? : ∃k1, k2 ∈ N : 〈p, p′〉 ∈ τJGKk1 ∧ 〈q, q′〉 ∈ τJGKk2 ∧ n+ 1 =
k1 + k2 ∧ m = p′q′ Hchoosing either k1 = n1 + 1, k2 = n2 with p′ = p′′ or
k1 = n1, k2 = n2 + 1 with q′ = q′′I �

Corollary 4 If rn =
⋃n
k=0 τJGKk then 〈pq, m〉 ∈ τJGK? implies ∃p′, q′ : 〈p,

p′〉 ∈ rn ∧ 〈q, q′〉 ∈ rn ∧ m = p′q′. e

PROOF

〈pq, m〉 ∈ rn

⇔ ∃k ≤ n : 〈pq, m〉 ∈ τJGKk Hsince rn =
⋃n
k=0 τJGKk I

⇒ ∃p′, q′, k1 ≤ n, k2 ≤ n : 〈p, p′〉 ∈ τJGKk1 ∧〈q, q′〉 ∈ τJGKk2 ∧m = p′q′ Hby
the separate derivation lemma 3I

⇒ ∃p′, q′ : 〈p, p′〉 ∈ rn ∧ 〈q, q′〉 ∈ rn ∧ m = p′q′ Hsince rn =
⋃n
k=0 τJGKk I

�

Corollary 5 〈pq, m〉 ∈ τJGK? if and only if ∃p′, q′ : 〈p, p′〉 ∈ τJGK? ∧ 〈q,
q′〉 ∈ τJGK? ∧ m = p′q′. e
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PROOF

〈pq, m〉 ∈ τJGK?

⇔ ∃n ∈ N : 〈pq, m〉 ∈ τJGKn Hsince τJGK? =
⋃
n∈N τJGKnI

⇔ ∃p′, q′, n1, n2 : 〈p, p′〉 ∈ τJGKn1 ∧ 〈q, q′〉 ∈ τJGKn2 ∧ m = p′q′ Hby the
separate derivation lemma 3I

⇔ ∃p′, q′ : 〈p, p′〉 ∈ τJGK? ∧ 〈q, q′〉 ∈ τJGK? ∧ m = p′q′ Hsince
τJGK? =

⋃
n∈N τJGKnI �

Theorem 6 (Fixpoint Grammar Derivation Semantics) τJGK? = lfp⊆ BJGK where
BJGK is defined in definitions (8) and (9). e

PROOF We first prove that BJGK(τJGK?) ⊆ τJGK? so that by Tarski’s
least fixpoint, we conclude that lfp⊆ BJGK ⊆ τJGK?;

Then we prove that τJGK? ⊆ lfp⊆ BJGK and conclude by antisymmetry.

The first part of the proof consists in proving that BJGK(τJGK?) ⊆ τJGK?.

First, we show that

AJSK× BJSK(τJGK?) ⊆ τJGK? (11)

The proof is by case analysis.

If S = ε then BJεK(τJGK?) = {ε} by (7) and 〈ε, ε〉 ∈ τJGK? by reflexivity;

If S = T then BJT K(τJGK?) = {T} by (6) and 〈T , T 〉 ∈ τJGK? by reflexivity;

If S = N then we have 〈N, p〉 ∈ τJGK? by def. (5) of BJNK(τJGK?) , {p | 〈N,
p〉 ∈ τJGK?}.

Second, we show that

AJRSK× BJRSK(τJGK?) ⊆ τJGK? (12)

The proof is by structural induction on RS.

The base case RS = S has been already handled by the previous lemma
(12);
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Otherwise RS = SRS′, in which case by (2) and (4), AJRSK×BJRSK(τJGK?)
= (AJSK ·AJRS′K)× (BJSK(τJGK?) · BJRS′K(τJGK?)).
We have AJSK × BJSK(τJGK?) ⊆ (τJGK? by the previous lemma (12) and
AJRS′K × BJRS′K(τJGK?) ⊆ τJGK? by induction hypothesis. It follows that
AJRSK× BJRSK(τJGK?) ⊆ τJGK? by the derivation extension lemma 2.

Third, we show that for any production P = N ::= RS1 | . . . | RS` (with
` ≥ 1) of the grammar G, we have:

{N} × BJRSiK(τJGK?) ⊆ τJGK? (13)

Indeed, the definition (2) of τJPK when p = q = ε implies that

{N} ×AJRS1 | . . . | RS`K ⊆ τJPK ⊆ τJGK?

By definition (2) of AJRS1 | . . . | RS`K =
⋃̀

i=1
AJRSiK, we have

{N} ×AJRSiK ⊆ τJGK?

Moreover, by the previous lemma (13), AJRSiK × BJRSiK(τJGK?) ⊆ τJGK?,
hence by composition:

{N} × BJRSiK(τJGK?) ⊆ τJGK? ◦ τJGK? ⊆ τJGK?

Fourth, we show that for any production P = N ::= ARS of the grammar
G, we have:

{N} × BJARSK(τJGK?) ⊆ τJGK? (14)

We have ARS = RS1 | . . . | RS` where ` ≥ 1. The definition (3) of BJARSK

implies that BJARSK =
⋃̀

i=0
BJRSiK. By the previous lemma (14), {N}×BJARSK

= {N}×
⋃̀

i=0
BJRSiK(τJGK?) =

⋃̀

i=0
{N}×BJRSiK(τJGK?) ⊆

⋃̀

i=0
τJGK? = τJGK?.

Fifth, we show that

BJN ::= ARSK(τJGK?) ⊆ τJGK? (15)

By reflexivity, IV ? ⊆ τJGK?;
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By the previous lemma (15), m ∈ BJARSK(τJGK?) implies 〈N, m〉 ∈ τJGK?

so
{〈pNq, p′mq′〉 | 〈p, p′〉 ∈ τJGK?∧m ∈ BJARSK(τJGK?)∧〈q, q′〉 ∈ τJGK?}

⊆ {〈pNq, p′mq′〉 | 〈p, p′〉 ∈ τJGK? ∧ 〈N, m〉 ∈ τJGK? ∧ 〈q, q′〉 ∈ τJGK?}
⊆ τJGK? Hby the separate derivation corollary 5I;

By def. (9) of BJN ::= ARSK(τJGK?), we conclude that

BJN ::= ARSK(τJGK?) ⊆ τJGK? .

Sixth and finally, we show that for any grammar G = P1 . . . P` (where
` ≥ 1), we have BJGK(τJGK?) ⊆ τJGK?

Indeed, G = P1 . . . P` with ` ≥ 1 and, by def. (8) and (9) of BJGK,

BJGK(τJGK?) =
⋃̀

i=1
BJGK(τJPiK?) ⊆

⋃̀

i=1
τJPiK? = τJPiK? by the previous lemma

(16).

The second part of the proof consists in proving that τJGK? ⊆ lfp⊆ BJGK.

In the following we let rn =
⋃n
k=0 τJGKk .

First, we show that
〈RJSK, m〉 ∈ rn⇒m ∈ BJSKrn (16)

The proof is by case analysis.

If S = N then RJNK , N so 〈N, m〉 ∈ rn implies m ∈ {p | 〈N, p〉 ∈ r} =
BJSKrn;

If S = T then RJT K , T so 〈T , m〉 ∈ rn implies 〈T , m〉 ∈ τJGK0 so T = m
since 〈T , m〉 6∈ τJGK by def. of τJGK so 〈T , m〉 6 τJGKn when n > 0. It
follows that m = T ∈ {T} , BJT Kr.

If S = ε then RJεK , ε so similarly 〈ε, m〉 ∈ rn implies m = ε. It follows
that m = ε ∈ {ε} , BJεKr.

Second, we show that

m′ ∈ AJRSK ∧ 〈m′, m〉 ∈ rn⇒m ∈ BJRSKrn (17)

The proof is by structural induction on RS.
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The base case RS = S follows from the previous lemma (17) since AJSK =
{RJSK};

Otherwise RS = SRS′. If m′ ∈ AJSRS′K then m′ ∈ AJSK · AJRS′K by (2)
so m′ = s′q′ where s′ ∈ AJSK and q′ ∈ AJRS′K.
Since 〈m′, m〉 = 〈s′q′, m〉 ∈ rn the separate derivation corollary 4 implies
that m = pq with 〈s′, p〉 ∈ rn and 〈q′, q〉 ∈ rn.
So by the previous lemma (17), p ∈ BJSKrn and by ind. hyp., q ∈ BJRS′Krn.
By def. (4) of BJSRS′K, we have m = pq ∈ BJSKrn · BJRS′Krn = BJRSKrn.

Third, we show that

m′ ∈ AJARSK ∧ 〈m′, m〉 ∈ rn⇒m ∈ BJARSKrn (18)

The proof is by structural induction on ARS:

The base case ARS = RS is handled by the previous lemma (18);

Otherwise ARS = RS | ARS′ so if m′ ∈ AJRS | ARS′K = AJRSK∪AJARS′K
by (2) then two cases have to be considered:

Either m′ ∈ AJARS′K so 〈m′, m〉 ∈ rn implies m ∈ BJARS′Krn by induc-
tion hypothesis;
Otherwise m′ ∈ AJRSK so 〈m′, m〉 ∈ rn implies m ∈ BJRSKrn by the
previous lemma (18).

It follows that m ∈ BJRSKrn ∪ BJARS′Krn = BJRS | ARS′Krn = BJARSKrn
by (3).

Fourth, we show that

if P = N ::= ARS then τJPK ◦ rn ⊆ BJPKrn (19)

Let us calculate

τJPK ◦ rn

= {〈pNq, pm′q〉 | p, q ∈ V JGK? ∧ m′ ∈ AJARSK} ◦ rn Hby def. (2) of τJPKI

= {〈pNq, s〉 | p, q ∈ V JGK? ∧ m′ ∈ AJARSK ∧ 〈pm′q, s〉 ∈ rn} Hby def. ◦I

⊆ {〈pNq, p′mq′〉 | p, q, p′, q′ ∈ V JGK? ∧m′ ∈ AJARSK ∧ 〈p, p′〉 ∈ rn ∧ 〈m′,
m〉 ∈ rn ∧ 〈q, q′〉 ∈ rn} Hby the separate derivation corollary 4I
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⊆ {〈pNq, p′mq′〉 | p, q, p′, q′ ∈ V JGK? ∧ 〈p, p′〉 ∈ rn ∧m ∈ BJARSKrn ∧ 〈q,
q′〉 ∈ rn} H by the previous lemma (19)I

⊆ BJPKrn Hby P = N ::= ARS and def. (9) of BJPKI

Fifth, we show that

τJGK ◦ rn ⊆ BJGKrn (20)

The proof is by structural induction on G.

The base case G = P follows from the previous lemma (20).

Otherwise G = PG′, and then
τJPG′K ◦ rn

= (τJPK ∪ τJG′K) ◦ rn Hby def. (2) of τJPG′KI
= (τJPK ◦ rn) ∪ (τJG′K ◦ rn) Hby def. ◦I
⊆ BJPKrn ∪ BJG′Krn Hby previous lemma (20) and ind. hyp.I
= BJGKrn Hby G = PG′ and def. (8) of BJGKI

Sixth, we show that

BJGKrn ⊆ SdJGK , lfp⊆
∅
BJGK (21)

The proof is by recurrence on n.

For n = 0, we have G = P or G = PG′ so by (8) and (9), τJGK0 = IV ? ⊆
BJGK(SdJGK) = SdJGK by the fixpoint property SdJGK , lfp⊆ BJGK;

For n + 1, we have rn+1 =
⋃n+1
k=0 τJGKk = τJGK0 ∪

⋃n
k=0 τJGKk+1 = IV ? ∪

τJGK ◦
⋃n
k=0 τJGKk = IV ? ∪ τJGK ◦ rn.

We have just shown above that IV ? ⊆ SdJGK. It remains to prove that
τJGK ◦ rn ⊆ SdJGK.
We have τJGK ◦ rn ⊆ BJGKrn by the previous lemma (21) and BJGKrn ⊆
SdJGK by recurrence hypothesis so τJGK ◦ rn ⊆ SdJGK by transitivity. �

Seventh and finally,
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τJGK?

= IV ? ∪ τJGK ◦ τJGK? Hfixpoint definition of τJGK? in question 7I
= IV ? ∪ τJGK ◦

⋃

n≥0
rn HτJGK? =

⋃

n≥0
rnI

= IV ? ∪
⋃

n≥0
τJGK ◦ rn Hby def. ◦I

⊆ IV ? ∪
⋃

n≥0
BJGKrn Hby previous lemma (21)I

⊆ SdJGK Hby previous lemma (22)I �

ON

13


