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Course and personal notes are the only allowed documents. It will not be an-
swered to any question during the exam. If a question is ambiguous, imprecise
or incorrect, it is part of the question to solve the ambiguity, imprecision or
incorrectness by indicating all required hypotheses together with the solution,
if any.

We describe the syntax of grammars using the following meta-grammar
(that is grammar of grammars).

T terminals T
N nonterminals N
VvV & TUuN vocabulary (T NN = f)
G == PG | P grammar
P = N'"="ARS production
ARS == RS ‘| ARS | RS alternative right sides
RS == SRS | S right sides
S == N | T | '€ symbols
This meta-grammar has the meta-symbols ::=, |, &, the meta-terminals {":=’,

', '€’} U V such that {"=:="; *|', '€’} ¢ V and the meta-nonterminals {G, P,
ARS, RS, S, N, T} ¢ V. We assume that all productions of the grammar




with the same left side nonterminal have their right sides grouped, with the
alternative right sides separated by |. For example

X YX

Y

S-Q M

Question 1

Provide a structural definition of the transition system of a grammar (by in-
duction on the meta-grammar).

Answer to question 5

The structural definition of the transition system of a grammar is

[PG] = [P] U t[C]
T[N“:='ARS] = {(pNgq, prq)|p,q € V[G]* Ar € AJARS]}
A[RS ''ARS] %= A[RS] U A[ARS]
A[SRS] = A[S] - A[RS] (M
ANl = (N}
AlT] = (T}
Ale]l = {e}

Question 2

Prove that the correctness of the structural definition of the transition system
of a grammar (that is the equivalence of the definitions in questions 4 and 5).
Answer to question 6

In equation (1), we have defined:
T[C] a(PIal)
where  a(X) {{pNq. prq) | p.q € V[G]" A(N, r) € X}

Let 7'[G] satisfying eq. (2). We prove that t[G] = 7/[G] by structural induc-

> >

tion on the metasyntax of G.



— 1[P(]

= a(P[PC])

= a(P[P]U P[G])
a(P[P]) U a(P[G])
[P] U t[(C]

= T[P]UT[C]

= 7[P(]

— 1[[N':='ARS]

= a(P[N":='ARS])

al{(N, ) | € ALARS]})

{{pNq. prq) | p,q € V[G]" Ar € A[ARS]}
= 7'[N::='ARS]

— A[RS ‘| ARS]
{R[RS]} U A[ARS]
= A[RS] U A[ARS]

— A[S RS]

= {R[S RS]}

= {R[S]- RIRS]}

= {R[S]} - {R[RS]}

= A[S] - A[RS]

— ANl = {RIN]} = {N}

— ATl = {R[T]} = {T}
— Alel = (R[]} = {e}

Question 3

(def. T[G]§

(def. P[P]§

{a preserves joins§
{def. T[C]§
{induction hyp.§
(def. eq. (2) of T'[C]§

(def. T[G]§

(def. P[P]§

{def. af

(def. eq. (2) of T'[P]§

Ldef. AJARS]S
{def. A[RS]S

{def. A[RS]
Ldef. R[RS]S

(def. -§
Ldef. A[S] & A[RS]S

Let us define the reflexive transitive closure r* of a relation r € p(S x S) on a
set S as r* £ | J,5o r" where the powers r" of r are P2 {(x,x)|x €S} 2L

(identity relation), r"*" = r" o r = r o r", and the composition of relations is
ror 2 {{x, x"y| I €S :{x x)ern{x, x") € r} Prove that r* =
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lfpj AXJsUro X= lfp@g AX-JsU X or (where lfpj f is the <-least fixpoint
of f which is <-greater than or equal to a, if any).

Answer to question 7

Theorem 1
o= Ifp AX-JsUXor
ProoF — (p(SxS), C, 0, S, U, N) is a complete lattice and AX « IsUX o r
is increasing since
XCY {hypothesis §
= XorCVYeor { def. relation composition ©§
= JUXerClsUYor {def. lub§

AX<ro(Js UX) is increasing since

XCY {hypothesis §
= (IUX)C (IsUY) {def. lub§
=>ro(lsUX)Cro(JsUY) { def. relation composition ©§

—— The existence of the fixpoints follows from Tarski's fixpoint theorem.

— Wehave r* ={J,cn " = rPUU, 50 1" = rPUU, 50 "1 = rPUU, 5o (r o r™)
=r0Uro (J,s0r") = IsUr o r* so that r* is a fixpoint of A X - JsUX. Let R be
another fixpoint thatis R=JsUX o R. We have ' = C=J;UX o R=R.
Assume by induction hypothesis that r” C R then Ml =romCroRC
Js U X o R = R. By recurrence, ¥n : r" C R proving r* = J,cn " C R to be
the least fixpoint. ™

Question 4

The derivation semantics of a grammar is the reflexive transitive closure t[G]*
of its transition semantics t[G] defined in questions 4 and 5. Let us define
the C-increasing transformer:

B[ARS] € p(V*xV*) <> p(V*)



as follows:

B[RS | ARS]r =& B[RS]r U B[ARS]r (2)
B[SRS]r = BI[S]r- B[RS]r (3)
BINIr = {p[(N, p) € r} (4)

B[T]r = {T} ()

Ble]r & {&} (6)

where X-Y ={pqg | p € X Aq € Y} is the concatenation of sets of protosen-
tences and € is the empty protosentence.
Let us define

B[G] € p(V*xV*)~Ls p(V*x V*)
as follows:

B[PG]r = B[P]ru B[G]r (7)
B[N == ARS]r £ 1y« U{(pNg, p'mq’) | {p, p’) € r A (8)
m € BJ[ARS]rA{q, q') € r}

which can be illustrated as follows

p N q

Prove that h‘pgg B[G] = t[G]".

Answer to question 8

Lemma 2 (Derivation Extension Lemma) If{p, q) € t[G]" and{r,s) € t[G]"

then {pr, qs) € T[G]". 0
PrRooF — Let us first prove that

if (p, q) € 7[G] then (rp, rq) € t[G] and (ps, gs) € T[C]. 9)
Indeed



(p, q) € 7[(]
= 3p1,p2, N,m :p =piNp2 A g = p1mp2 A (N, m) € P[] {def. T[G]§
= 3p1,p2, N,m :rp =rpiNp2 Arq = rpimpa A (N, m) € P[G] ({def. string
equality
= (rp, rq) € 7[G] (def. T[G]§

The proof is symmetric in the second case.

—— Let us now prove that
if (p, q) € T[G]" then (rp, rq) € T[G]" and {(ps, gs) € T[G]" (10)
The proof is by recurrence on n > 0 for 7[G]".

— Forn =0, (p, q¢) € 7[G]° = Iy~ so p = g hence rp = rq proving {rp,
rq) € 7[G]°.

— Forn+1, if (p, q) € [G]"™" then Ip’ : (p, p’) € 7[G]" and (p’,
q) € t[G]. So {(rp, rp’) € T[G]" by induction hypothesis and {rp’,
rq) € t[G] by the previous lemma (10) so (rp, rq) € t[G]""" by
composition.

If {p, q) € T[G]" then 3n : {p, q) € t[C]" so (rp, rq) € T[G]" C 7[G]".
The proof is symmetric in the second case.

— Finally, if {p, q) € T[G]" and (r, s) € t[G]" then {(pr, qr) € t[C]"
and (gr, gs) € t[G]" by the previous lemma (11) so that (pr, gs) € 7[G]"
by composition. ™

Lemma 3 (Separate Derivation Lemma) For all n € N, {pq, m) € [G]" if
and only if Ip’, ¢’ € V* :Iny,ny € N: (p, p') € 7[G]" A (q, q’) € T[G]™
An=ni+n Am=pq O

Proor By recurrence on n. —  For n = 0, we have:

(pq, m) € 7[G]°

& m=pq Zdef T[[Gﬂo = |\\/*S

& 3pq:p=pAg=qg Am=p'q {def. string equality§

& 3Jp',q" € V*:3n,ny e N:(p, p') € T[G]" A{q, q') € T[G]" A0 =
n+nyAm=p'q {since n1,n2 € N and nq + ny = 0 implies
n1 =ny =0§



—— For n +1, we have:

(pq, m) € r[G]"""

& Im’ :(pq, m'y € T[G]" A(m’, m) € T[G] {def. T[G]""" = 7[G]" o 7[C]
and of

< 3p',q  ny,ny:{p, p') € T[G]" A{q, ¢') € T[G]"* An=ny+nyAm =
p'qa’ Np'q’, m) € T[] (by ind. hyp.§

& 3p',q'  ny,ny, N, r:{p,p’y € t[G]" Nq,q") € T[G]">An = n1+naAm’ =
p'q" Al(3p1,p2: p" = piNpa Am = pirp2q')V(3g1,G2: ¢" = giNga Am =
p'qirq2)] AN (N, r) € P[C] (by def. T[G] and string equality§

< 3p',q  n,ny:{p, p') € T[G]" A{q, ¢') € T[G]"* An=n1+nyAm =
p'a’ NEp":(p, p") € T[G] Am =p"q )V (39" :(q', ¢") € T[G] Am =
p'q")] {by def. [G]§

& [3p".q n1,n2: (p, p") € T[G]"T A (g, ¢') € T[G]" An+1 = n +
np+1Am = p"qIVvEp,q" ni,na: (p, p') € t[G]" A(q, q") €
t[GI™ T " An+1=n14+n+1Am =p'q"] {def.
t[G]"" = 7[G]" © 7[G] and o

& 3¢ €V 3k ke N:(p, p)e 1[G Alq, ¢') € T[G]* An+1=
ki + ko Am = p’'q" {choosing either k = n1 + 1, ko = ny with p’ = p” or
ki =nq, ko = ny + 1 with ¢’ = q”§ m

Corollary 4 If r" = | Ji_, t[G]¥ then (pq, m) € T[G]* implies 3p’,q" : (p,

pyEN(q q)yer"Am=pq. O
PRrooF

{(pq, m) e r”
& 3k < n:{pq, m) e 7[G]F {since r" = (Ji_o t[G]F §

= 3p'.q' ki <nka<n:(p p)et[G"A(q, q') € T[G]* Am = p'q’ {by
the separate derivation lemma 3§

= 3¢ (p. p)Er"A{g, ¢)Er" Am=p'q’ {since r" = Jj_o T[G]" §
|

Corollary 5 {pq, m) € t[G]" if and only if 3p’,q" : {p, p’) € T[G]" A {(q,
q") € T[G]" Am=p'q" 0



PRrooF
(pq, m) € [G]"
& dn e N:{(pqg, m) e t[C]" {since T[C]" = U, e T[G]"S

& 3p'.q" m.nz:(p, p') € T[G]" A {(q, q') € T[G]" Am =p'q"  (by the
separate derivation lemma 3§

& 3p'.q" (p, p') € T[C]" N (q, q') € T[C]" Am = p'q’ {since
t[C]" = Upen 7IG]"S m

Theorem 6 (Fixpoint Grammar Derivation Semantics) t[G]" = lfpg B[G] where
B[G] is defined in definitions (8) and (9). 0

ProoF — We first prove that B[G](t[G]*) C t[G]" so that by Tarski's
least fixpoint, we conclude that lfpg B[G] < T[G]%;

—— Then we prove that T[G]* C lfpg B[G] and conclude by antisymmetry.

—— The first part of the proof consists in proving that B[G](t[G]*) C [C]".
— First, we show that

A[S] = BIS](<[G]") < r[GT (11)
The proof is by case analysis.
- If S = ¢ then B[e](r[G]") = {€} by (7) and (¢, €) € T[G]" by reflexivity;
- If S =T then B[T](r[G]*) = {T} by (6) and (T, T) € t[G]" by reflexivity;
- If S = N then we have (N, p) € T[G]" by def. (5) of BIN](t[G]*) = {p | (N,

p) € 7[GI"}-

— Second, we show that

A[RS] x B[RS](t[G]") € T[G]* (12)
The proof is by structural induction on RS.

— The base case RS = S has been already handled by the previous lemma
(12);



- Otherwise RS = SRS/, in which case by (2) and (4 AX[[RS]] x B[RS](t[G]")
= (A[S] - A[RS']) x (B[S](r[C]") - BIRS']( T[[G]]

We have A[S] x B[S](t[G]*) C (r[G]" by the previous lemma (12) and
A[RS’] x B[RS'](t[G]*) € t[G]" by induction hypothesis. It follows that
A[RS] x B[RS]([G]*) € t[G]" by the derivation extension lemma 2.

— Third, we show that for any production P = N ::= RSy | ... | RS, (with
¢ > 1) of the grammar G, we have:

{N} x B[RS {](<[C]") < ~[c]" (13)
Indeed, the definition (2) of T[P]] when p = g = € implies that
{N}x A[RS1|...| RS < t[P] < ]G]

¢
By definition (2) of A[RS: | ... | RS¢] = | J A[RSi], we have
i=1

(N} x A[RS] < <[G]*

Moreover, by the previous lemma (13), A[RS;] x B[RS:](t[G]*) C t[G]",
hence by composition:

[N} x BIRS](<[G]") < [G]" = <[G]" < <[G]*

— Fourth, we show that for any production P = N ::= ARS of the grammar
G, we have:

{N} x BIARS](r[C]") < =[] (14)
We have ARS = RS1 | ... | RSy where £ > 1. The definition (3) of BJARS]
¢

implies that BJARS] = U B[RS;]. By the previous lemma (14), { N} x B[ARS]

i=0
¢

= {N} x UB RS (z[G]") U{N} x BIRS{](r[G]") € | ] 7[G]" = ~[G]".

—_ Flfth, we show that
B[N ::= ARS](z[G]") C 7[G]* (15)

- By reflexivity, ly+ C 7[G]";



- By the previous lemma (15), m € BJARS](t[G]") implies (N, m) € t[G]*
SO
{{(pNg, p'mq’) | {p, p’) € T[G]" Am € BJ[ARS](t[G]")A(q., q¢') € T[G]"}
C {(pNg, p'mq’) | (p, p') € T[G]" A(N, m) € T[G]" A(q, q') € T[G]"}
C

- By def. (9) of B[N ::= ARS](t[G]"), we conclude that

B[N ::= ARS](t[G]") < ~[G]".

— Sixth and finally, we show that for any grammar G = P;... Py (where
¢ > 1), we have B[G](t[G]") C t[G]*
Indeed, G = Pq...Pp with ¢ > 1 and, by def. (8) and (9) of B[G],

¢ ¢

BIGN(=[G]") = | BIGN=[P:]") € | t[Pd* = t[Pd" by the previous lemma
i=1 i=1

(16).

—— The second part of the proof consists in proving that T[G]* C lfpg B[G].

In the following we let r” = | Ji_, 7[G]*.
— First, we show that

(R[S], m) € r" = m € B[S]r" (16)
The proof is by case analysis.

- If S =N then R[N] 2 N so (N, m) € r" implies m € {p | (N, p) € r} =
B[S]r";

— It S=T then R[T] 2 T so (T, m) € r" implies (T, m) € 7[G]° so T =m
since (T, m) & t[G] by def. of T[G] so (T, m) /£[G]" when n > 0. It
follows that m = T € {T} £ B[T]r.

- If S = € then R[e] = € so similarly (e, m) € r" implies m = €. It follows
that m = € € {e} £ B[e]r.

— Second, we show that
m' € A[RS] A {(m’, m) € r" = m € B[RS]r" (17)

The proof is by structural induction on RS.

10

T[G]” {by the separate derivation corollary 5§;



The base case RS = S follows from the previous lemma (17) since A[S] =

{RIST}:

Otherwise RS = SRS’. If m" € A[SRS'] then m" € A[S] - A[RS’] by (2)
so m’ = s'q’ where s’ € A[S] and q’ € A[RS'].

Since (m’, m) = (s'q’, m) € r" the separate derivation corollary 4 implies
that m = pq with (s’, p) € r" and (¢’, q) € r".

So by the previous lemma (17), p € B[S]r" and by ind. hyp., g € B[RS']r".
By def. (4) of B[SRS'], we have m = pg € B[S]r" - B[RS']r" = B[RS]r".

Third, we show that
m’ € AJARS] A (m’, m) € r" = m € BJARS]r" (18)

The proof is by structural induction on ARS:

— The base case ARS = RS is handled by the previous lemma (18);

Otherwise ARS = RS | ARS" so if m’ € A[RS | ARS'] = A[RS] U A[ARS']
by (2) then two cases have to be considered:

- Either m’ € A[ARS’] so {m’, m) € r" implies m € B[ARS’]r" by induc-
tion hypothesis;

- Otherwise m" € A[RS] so (m’, m) € r" implies m € B[RS]r" by the
previous lemma (18).

It follows that m € B[RS]r" U BJARS]r" = B[RS | ARS']r" = B[ARS]r"
by (3)-

Fourth, we show that

if P=N:=ARS then t[P]er" C B[P]r" (19)

Let us calculate

IN

T[P] o r"
{{pNg, pm'q) | p.q € V[G]* Am" € AJARS]} o r" {by def. (2) of T[P]§
{{pNgq, s) | p,q € V[G]* Am’ € AJARS] A (pm’q, s) € r"} by def. of

{(pNq, p'mq’y | p.q.p'.q" € V[G]" Am" € A[ARS] A{p, p') € r" A (m,
myer"A{q, q') € r"} {by the separate derivation corollary 4§
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C {{(pNq, p'mq’) | p,q.p’.q" € V[G]" A{p, p’) € r" Am € B[ARS]r" A(q,
q')er'} { by the previous lemma (19)§
C B[P]r" (by P = N :=ARS and def. (9) of B[P]§

— Fifth, we show that
t[G] - " C B[G]r" (20)

The proof is by structural induction on G.

— The base case G = P follows from the previous lemma (20).

— Otherwise G = PG’, and then

T[PG] o r"
= (r[PJUT[C])er" (by def. (2) of T[PC']§
= («[P] > ") U (x[GT] » ") by def. o§
C B[P]r"u B[G']r" {by previous lemma (20) and ind. hyp.§
= B[G]r" (by G = PG’ and def. (8) of B[G]§

— Sixth, we show that
BIG]r" < SYIG] £ up, BIG] (21)
The proof is by recurrence on n.

- Forn =0, we have G = P or G = PG’ so by (8) and (9), 7[G]® = Iy~ C
B[G](SY[G]) = SY[G] by the fixpoint property SI[G] 2 fp"~ B[G];

- For n + 1, we have r"+' = |11 7[G]* = 7[G]° U Ui T[G]*T" = 1v- U
t[G] o Ui, T[G]* = lv- U T[G] o r.

We have just shown above that Iy~ C SdﬂG]]. It remains to prove that
t[G] - r" C SYC].

We have t[G] o r" C B[G]r" by the previous lemma (21) and B[G]r" C
SY[G] by recurrence hypothesis so T[G] o r” C SY[G] by transitivity. m

— Seventh and finally,
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IN

N

T[G]*
ly« U T[G] » T[G]
ly+ U T[G] © U r"

n>0

[y~ U U T[G] o r"

n>0

ly-u | BIG]"
n>0

s7Iq]

{fixpoint definition of T[G]”* in question 7§
ey = J s
n>0
{by def. of
(by previous lemma (21)§

(by previous lemma (22)§ m

)
0
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