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Course 2-6 “Abstract interpretation: application to verification
and static analysis”

P. Cousot

Questions and answers of the partial exam of
Friday November 23th, 2007, 8:45–11:45

The questions can be considered in any order (assuming the results of the previous ones).
The grade of each question will be marked independently of the others. If a question is
ambiguous or even erroneous, it is part of the question to solve the ambiguity or error. The
difficulty of each question is estimated by one star for the easiest and three stars for the more
difficult ones. Course handout and personnal notes are the only authorized documents.

1. Traces

Given a set S, we let S? be the set of finite sequences over the set S including the empty
sequence ε, S+ , S? \ {ε}, Sω be the set of infinite sequences over S, S∝ , S? ∪ Sω be the
set of finite or infinite sequences over S1, and S∞ , S+ ∪ Sω be the set of nonempty finite or
infinite sequences over S. We let |σ| ∈ N ∪ {ω} be the length of σ ∈ S∝, in particular |ε| = 0
and Sn , {σ ∈ S? | |σ| = n}. We let • be the concatenation of traces so that ε • σ = σ • ε = σ
and σ • ς = σ when σ ∈ Sω. If σ ∈ S+ then |σ| > 0 and σ = σ0 • σ1 • . . . • σ|σ|−1. If σ ∈ Sω
then |σ| = ω and σ = σ0 • σ1 • . . . • σn • . . ..

Given X, Y ∈ ℘(S∝), we define X+ , X ∩ S+, Xω , X ∩ Sω and X v Y , X+ ⊆
Y + ∧Xω ⊇ Y ω.
Question 1.1 (?) Prove that 〈℘(S∞), v〉 is a complete lattice (and provide the infimum,
supremum, least upper bound (lub) t and greatest lower bound (glb) u).
Answer to question 1.1

See the course, we have
⊔
i∈∆

Xi =
⋃
i∈∆

X+
i ∪

⋂
i∈∆

Xω
i . ut

2. Trace semantics of the eager λ-calculus

2.1 Syntax

The syntax of the λ-calculus with constants is
1The “proportional to” symbol ∝ is used as a pictogram similar to “infinity” ∞ but with the possibility of

emptyness.
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x, y, z, . . . ∈ X variables
c ∈ C constants (X ∩ C = ∅)
c ::= 0 | 1 | . . .
v ∈ V values
v ::= c | λ x . a
e ∈ E errors
e ::= c a | e a

a, a′, a1, . . . , b, , . . . ∈ T terms
a ::= x | v | a a′

We write a[x ← b] for the capture-avoiding substitution of b for all free occurences of x within
a. We let FV(a) be the free variables of a.

2.2 Trace semantics

We define the call-by-value semantics of closed terms (without free variables) T , {a ∈ T |
FV(a) = ∅}.

The application (λ x . a) v of a function λ x . a to a value v is evaluated by substitution
a[x ← v] of the actual parameter v for the formal parameter x in the function body a. This
cannot be understood as induction on the program syntax since a[x ← v] is not in general a
strict syntactic subcomponent of (λ x . a) v. Recursion will be handled using fixpoints in the
complete lattice 〈℘(T∞), v〉 of traces defined in Question 1.1.

For a ∈ T and σ ∈ T∞, we define the application a@σ of a term a to a trace σ to be
σ′ ∈ T∞ such that ∀i < |σ| : σ′i = a σi and similarly the application σ@a of a trace σ to a
term a to be σ′ such that ∀i < |σ| : σ′i = σi a.

The bifinitary trace semantics ~S ∈ ℘(T∞) of the closed call-by-value λ-calculus T can be
specified in fixpoint form ~S = lfp

v ~F where the set of traces transformer ~F ∈ ℘(T∞) −→ ℘(T∞)
describes big steps of computation

~F (S) , {v ∈ T∞ | v ∈ V} ∪ (a)
{(λ x . a) v • a[x ← v] • σ | v ∈ V ∧ a[x ← v] • σ ∈ S} ∪ (b)
{σ@b | σ ∈ Sω} ∪ (c)
{(σ@b) • (v b) • σ′ | σ 6= ε ∧ σ • v ∈ S+ ∧ v ∈ V ∧ (v b) • σ′ ∈ S} ∪ (d)
{a@σ | a ∈ V ∧ σ ∈ Sω} ∪ (e)
{(a@σ) • (a v) • σ′ | a, v ∈ V ∧ σ 6= ε ∧ σ • v ∈ S+ ∧ (a v) • σ′ ∈ S} . (f)

The definition of ~F has (a) for termination, (b) for call-by-value β-reduction, (c) and (d)
for left reduction under applications and (e) and (f) for right reduction under applications,
corresponding to left-to-right evaluation. (b), (d) and (f) cope both with terminating and
diverging traces.
Question 2.1 (??) Prove that ~F is ⊆-monotone but not v-monotone (e.g. using the term
θ θ where θ , λ x . x x).
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Answer to question 2.1
⊆-monotony holds for (a) and ∪ and can be proved for all cases (b)–(f) of the form

F (S) = {f(a, a′, ..., σ, σ′) | p(a, a′, ...) ∧ g(σ) ∈ S+ ∧ h(σ′) ∈ S} so that S ⊆ S ′ implies
F (S) ⊆ F (S ′).

For a counter-example to v-monotony, define X+ , X ∩ T+, Xω , X ∩ Tω and consider
θ , λ x . x x, X = {(θ θ)ω} (where aω , a • a • a • ...) and Y = {(λ x . x θ) • θ, (θ θ)ω}. We have
X v Y since X+ = ∅ ⊆ {(λ x . x θ) • θ} = Y + and Xω = {(θ θ)ω} ⊇ {(θ θ)ω} = Y ω. However
~F (X) 6v ~F (Y ). Indeed by (d), we have ((λ x . x θ) θ) • (θ θ) • (θ θ)ω = ((λ x . x θ) θ) • (θ θ)ω ∈
~F (Y ) while ((λ x . x θ) θ) • (θ θ)ω 6∈ ~F (X) by examining all cases (a)—(f). ut

Recall that S+ , S ∩ T+, Sω , S ∩ Tω so S+ ∩ Sω = ∅ and define
~S+ , lfp

⊆ ~F+ where ~F+(S) , (~F (S+))+ .

Define
~Sω , gfp

⊆ ~F ω where ~F ω(S) , (~F (~S+ ∪ Sω))ω .

Question 2.2 (?) Prove that ~S+ and ~Sω are well-defined.
Answer to question 2.2

By Question 2.1, ~F+ ∈ ℘(T+) −→ ℘(T+) is ⊆-monotone so lfp
⊆ ~F+ does exist on the

complete lattice 〈℘(T+), ⊆, ∅, T+, ∪, ∩〉 by Tarski’s fixpoint theorem [2].
By Question. 2.1, ~F ω ∈ ℘(Tω) −→ ℘(Tω) is ⊆-monotone so gfp

⊆ ~F ω does exist on the
complete lattice 〈℘(Tω), ⊆, ∅, Tω, ∪, ∩〉 by Tarski’s fixpoint theorem [2]. ut
Question 2.3 (??) Let L+ and L− be a partition of the set L. For all X, Y ⊆ L, define
X+ , X ∩L+, X− , X ∩L−, and (X v Y ) , (X+ ⊆ Y +)∧ (X− ⊇ Y −). Let F ∈ ℘(L) −→
℘(L) be ⊆-monotone2 such that ∀X ⊆ L : (F (X))+ = F (X+). Define F+(X) , (F (X+))+,
S+ = lfp

⊆
F+, F−(X) , (S+ ∪ F (X−))−, S− = gfp

⊆
F−.

Prove that S , S+ ∪ S− = lfp
v
F .

Answer to question 2.3
〈℘(L), ⊆〉 is a complete lattice and F is ⊆-monotone when so are F+ and F− proving that

lfp
⊆
F+ and gfp

⊆
F− exist by Tarski’s fixpoint theorem [2]. We first prove that S is a fixpoint

of F .

S

= S+ ∪ S−

= F+(S+) ∪ F−(S−)
Hby fixpoint definitions S+ , lfp

⊆
F+ and S− , gfp

⊆
F−I

= (F (S+))+ ∪ (F (S+ ∪ S−))− Hdef. F+ and F−I
= (F (S))+ ∪ (F (S))− Hsince (F (S+))+ = (F (S))+ and S = S+ ∪ S− I

= F (S) Hsince ∀X ⊆ L : X = X+ ∪X−I
2but not necessarily v-monotone.
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To prove that S is the v-least fixpoint of F , let T be another fixpoint of F that is T = F (T ).
It follows that T+ ∪ T− = (F (T ))+ ∪ (F (T ))− so T+ = (F (T ))+ and T− = (F (T ))− since
L+ ∩ L− = ∅. Therefore T+ = (F (T ))+ = (F (T+))+ = F+(T+) hence S+ ⊆ T+ since
S+ , lfp

⊆
F+. Moreover T− = (F (T ))− = (F (T+ ∪ T−))− ⊇ (F (S+ ∪ T−))− = F−(T−) by

⊆-monotony of F . It follows that T− ⊆ S− by Tarski’s fixpoint theorem [2] for gfp
⊆
F− . We

conclude that S v T by def. of v. ut
By Question 2.1 and 2.3, it follows that

~S , ~S+ ∪ ~Sω = lfp
v ~F . (1)

Question 2.4 (??) Prove that

~S = gfp
⊆ ~F .

Answer to question 2.4
By Question 2.1, ~F is ⊆-monotone so gfp

⊆ ~F exists by Tarski’s fixpoint theorem [2].
By Question 1, ~F (lfp

v ~F ) = lfp
v ~F so lfp

v ~F ⊆ gfp
⊆ ~F by def. gfp , proving (lfp

v ~F )+ ⊆
(gfp

⊆ ~F )+ and (lfp
v ~F )ω ⊆ (gfp

⊆ ~F )ω. Moreover ~F (gfp
⊆ ~F ) = gfp

⊆ ~F so lfp
v ~F v gfp

⊆ ~F by
def. lfp , proving that (lfp

v ~F )ω ⊇ (gfp
⊆ ~F )ω hence (lfp

v ~F )ω = (gfp
⊆ ~F )ω by antisymmetry.

It remains to prove (lfp
v ~F )+ ⊇ (gfp

⊆ ~F )+. Given a trace ς ∈ (gfp
⊆ ~F )+ = (~F (gfp

⊆ ~F ))+,
we prove that ς ∈ (~F (lfp

v ~F ))+ = (lfp
v ~F )+. The case (a) is trivial, the cases (c) and (e) are

impossible since ς is finite and cases (b), (d), and (f) follow by induction on the length |ς|
of ς. In all these case, we have ς = f(σ, σ′) ∈ (~F (gfp

⊆ ~F ))+ with |σ| < |ς| and |σ′| < |ς| so
σ, σ′ ∈ (lfp

v ~F )+ by induction hypothesis proving that ς = f(σ, σ′) ∈ (~F (lfp
v ~F ))+ = (lfp

v ~F )+

by respective def. (b), (d), and (f) of ~F . ut
Question 2.5 (??) Prove that the bifinitary trace semantics ~S is suffix-closed in that

∀σ ∈ T∞ : a • σ ∈ ~S =⇒ σ ∈ ~S .

Answer to question 2.5
We proceed by structural induction on the closed term a. Assume a • σ ∈ ~S = ~F (~S). The

case a • σ = v is impossible since ∀σ ∈ T∞ : σ 6= ε.
If a • σ = (λ x . a′) v • a′[x ← v] • σ′ then σ = a′[x ← v] • σ′ ∈ ~S by def. of ~F .
If a • σ = σ′@b where σ′ ∈ ~Sω ⊆ ~S then a = (a′ b) and σ′ = a′ • σ′′ ∈ ~S so σ′′ ∈ ~Sω ⊆ ~S by

induction hypothesis proving that σ = σ′′@b ∈ ~F (~S) = ~S.
If a • σ = (σ′@b) • (v b) • σ′′ where σ′ • v ∈ ~S+ and (v b) • σ′′ ∈ ~S then σ′ = a′ • σ′′′ where

a = (a′ b) so a′ • σ′′′ • v ∈ ~S+ ⊆ ~S proving σ′′′ • v ∈ ~S+ ⊆ ~S by induction hypothesis and so
σ = (σ′′′@b) • (v b) • σ′′ ∈ ~F (~S) = ~S.

If a • σ = a′@σ′ where σ′ ∈ ~Sω ⊆ ~S then a = (a′ b) and σ′ = b • σ′′ so σ′′ ∈ ~Sω ⊆ ~S by
induction hypothesis proving that σ = a′@σ′′ ∈ ~F (~S) = ~S.

Finally, if a • σ = (a′@σ′) • (a′ v) • σ′′ where a′, v ∈ V, σ′ • v ∈ ~S+, and (a′ v) • σ′′ ∈ ~S then
a = (a′ b) and σ′ = b • σ′′′ so b • σ′′′ • v ∈ ~S+ proving that σ′′′ • v ∈ ~S+ by induction hypothesis
hence σ = (a′@σ′′′) • (a′ v) • σ′′ ∈ ~F (~S) = ~S. ut

– 4 –



Question 2.6 (?) Prove that the bifinitary trace semantics ~S is total in that it excludes
intermediate or result errors

∀a ∈ T : 6 ∃σ, σ′ ∈ T∝, e ∈ E : a • σ • e • σ′ ∈ ~S .

Answer to question 2.6
Assume, by reductio ad absurdum, that a •σ •e •σ′ ∈ ~S then e •σ′ ∈ ~S since ~S is suffix-closed.

By structural induction on e, if e = e1 a then, by definition of ~S = ~F (~S), ∃σ′′ : e1 • σ
′′ ∈ ~S,

which is impossible by induction, or e = c a and then ∃σ′′ : c •σ′′ ∈ ~S = ~F (~S) so σ′′ = ε, which
excludes all cases (c)–(f), the only possible ones for e. ut
Question 2.7 (?) Prove that the finite maximal traces are blocking in that the result of a
finite computation is always a final value

∀σ ∈ T∞ ∪ {ε} : σ • b ∈ ~S+ =⇒ b ∈ V .

Answer to question 2.7
By induction on the length of σ and definition of ~S+ = ~F (~S) ∩ T+. ut

3. Relational semantics of the eager λ-calculus

3.1 Relational abstraction of traces

The relational abstraction of sets of traces is
α ∈ ℘(T∞) −→ ℘(T× (T ∪ {⊥})) (2)

α(S) , {〈σ0, σn−1〉 | σ ∈ S ∧ |σ| = n} ∪ {〈σ0, ⊥〉 | σ ∈ S ∧ |σ| = ω}
γ ∈ ℘(T× (T ∪ {⊥})) −→ ℘(T∞)

γ(T ) , {σ ∈ T∞ | (|σ| = n ∧ 〈σ0, σn−1〉 ∈ T ) ∨ (|σ| = ω ∧ 〈σ0, ⊥〉 ∈ T )}

Question 3.1 (?) Prove that

〈℘(T∞), ⊆〉 −−−→−→←−−−−
α

γ
〈℘(T× (T ∪ {⊥})), ⊆〉 . (3)

Answer to question 3.1

α(S) ⊆ T

⇐⇒ {〈σ0, σn−1〉 | σ ∈ S ∧ |σ| = n} ∪ {〈σ0, ⊥〉 | σ ∈ S ∧ |σ| = ω} ⊆ T

Hdef. αI

⇐⇒ ∀σ ∈ S+ : 〈σ0, σ|σ|−1〉 ∈ T+ ∧ ∀σ ∈ Sω : 〈σ0, ⊥〉 ∈ T ω

Hdef. ⊆, S+ , S ∩ T+, and Sω , S ∩ TωI
⇐⇒ S+ ⊆ {σ | |σ| = n ∧ 〈σ0, σn−1〉 ∈ T} ∧ Sω ⊆ {σ | |σ| = ω ∧ 〈σ0, ⊥〉 ∈ T}

Hdef. ⊆, T+ , T ∩ (T× T), and T ω , T ∩ (σT× {⊥})I
⇐⇒ S ⊆ γ(T ) HS = S+ ∪ Sω and def. γ(T )I
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ut
The bifinitary relational semantics ñS , α(~S) = α(lfp

v ~F ) can be defined in fixpoint form
as lfp

v ñ
F where the big-step transformer ñF ∈ ℘(T× (T ∪ {⊥})) −→ ℘(T× (T ∪ {⊥})) is

ñ
F (T ) , {〈v, v〉 | v ∈ V} ∪ (4)

{〈(λ x . a) v, r〉 | v ∈ V ∧ 〈a[x ← v], r〉 ∈ T} ∪
{〈(a b), ⊥〉 | 〈a, ⊥〉 ∈ T} ∪
{〈(a b), r〉 | 〈a, v〉 ∈ T+ ∧ v ∈ V ∧ 〈(v b), r〉 ∈ T} ∪
{〈(a b), ⊥〉 | a ∈ V ∧ 〈b, ⊥〉 ∈ T} ∪
{〈(a b), r〉 | a, v ∈ V ∧ 〈b, v〉 ∈ T+ ∧ 〈(a v), r〉 ∈ T} .

Question 3.2 (?) Prove that ñF is ⊆-monotone but not v-monotone.
Answer to question 3.2
⊆-monotony holds for the first constant case and ∪ and can be proved for all other cases

of the form F (S) = {f(a, a′, ..., σ, σ′) | p(a, a′, ...) ∧ g(σ) ∈ S+ ∧ h(σ′) ∈ S} so that S ⊆ S ′

implies F (S) ⊆ F (S ′).
The counter-example of Question 2.1, X = {〈(θ θ), ⊥〉} and Y = {〈λ x . x θ, θ〉, 〈θ θ, ⊥〉}

with X v Y but ñF (X) 6v ñ
F (Y ) shows the absence of monotony. ut

Question 3.3 (? ? ?) Prove the commutation property α(~F (S)) = ñ
F (α(S))

Answer to question 3.3
α is a complete ∪-morphism, so we calculate α(~F (S)) by cases.

α({v ∈ T∞ | v ∈ V})
= {〈v, v〉 | v ∈ V} Hdef. α and |v| = 1I

α({(λ x . a) v • a[x ← v] • σ | v ∈ V ∧ a[x ← v] • σ ∈ S})
= α({(λ x . a) v • a[x ← v] • σ | v ∈ V ∧ a[x ← v] • σ ∈ S+}) ∪

α({(λ x . a) v • a[x ← v] • σ | v ∈ V ∧ a[x ← v] • σ ∈ Sω})
HS = S+ ∪ Sω and α preserves lubsI

= {〈(λ x . a) v, r〉 | v ∈ V ∧ 〈a[x ← v], r〉 ∈ α(S)+} ∪
{〈(λ x . a) v, ⊥〉 | v ∈ V ∧ 〈a[x ← v], ⊥〉 ∈ α(S)ω} Hdef. αI

= {〈(λ x . a) v, r〉 | v ∈ V ∧ 〈a[x ← v], r〉 ∈ α(S)}
Hdef. T+ , T ∩ (T× T) and T ω , T ∩ (T× {⊥})I

α({σ@b | σ ∈ Sω})
= {〈(σ0 b), ⊥〉 | σ ∈ Sω} Hdef. α and @I

= {〈(σ0 b), ⊥〉 | 〈σ0, ⊥〉 ∈ α(S)} Hdef. αI

= {〈(a b), ⊥〉 | 〈a, ⊥〉 ∈ α(S)} HS ⊆ T∞ so σ0 ∈ TI

α({(σ@b) • (v b) • σ′ | σ • v ∈ S+ ∧ v ∈ V ∧ (v b) • σ′ ∈ S})
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= α({(σ@b) • (v b) • σ′ | σ • v ∈ S+ ∧ v ∈ V ∧ (v b) • σ′ ∈ S+}) ∪
α({(σ@b) • (v b) • σ′ | σ • v ∈ S+ ∧ v ∈ V ∧ (v b) • σ′ ∈ Sω})

HS = S+ ∪ Sω and α preserves lubsI
= {〈(σ0 b), r〉 | σ • v ∈ S+ ∧ v ∈ V ∧ 〈(v b), r〉 ∈ α(S)+} ∪
{〈(σ b), ⊥〉 | σ • v ∈ S+ ∧ v ∈ V ∧ 〈(v b), ⊥〉 ∈ α(S)ω}) Hdef. α and @I

= {〈(σ0 b), r〉 | 〈σ0, v〉 ∈ α(S)+ ∧ v ∈ V ∧ 〈(v b), r〉 ∈ α(S)}
Hdef. T+ , T ∩ (T× T), T ω , T ∩ (T× {⊥}), and αI

= {〈(a b), r〉 | 〈a, v〉 ∈ α(S)+ ∧ v ∈ V ∧ 〈(v b), r〉 ∈ α(S)}
HS ⊆ T∞ so σ0 ∈ TI

α({a@σ | a ∈ V ∧ σ ∈ Sω})
= {〈(a σ0), ⊥〉 | a ∈ V ∧ σ ∈ Sω} Hdef. α and @I

= {〈(a σ0), ⊥〉 | a ∈ V ∧ 〈σ0, ⊥〉 ∈ α(S)} Hdef. α and T ω , T ∩ (T ∪ {⊥})I
= {〈(a b), ⊥〉 | a ∈ V ∧ 〈b, ⊥〉 ∈ α(S)} HS ⊆ T∞ so σ0 ∈ TI

α({(a@σ) • (a v) • σ′ | a, v ∈ V ∧ σ • v ∈ S+ ∧ (a v) • σ′ ∈ S})
= α({(a@σ) • (a v) • σ′ | a, v ∈ V ∧ σ • v ∈ S+ ∧ (a v) • σ′ ∈ S+}) ∪

α({(a@σ) • (a v) • σ′ | a, v ∈ V ∧ σ • v ∈ S+ ∧ (a v) • σ′ ∈ Sω})
HS = S+ ∪ Sω and α preserves lubsI

= {〈(a σ0), r〉 | a, v ∈ V ∧ 〈σ0, v〉 ∈ α(S)+ ∧ 〈(a v), r〉 ∈ α(S)+} ∪
{〈(a σ0), ⊥〉 | a, v ∈ V ∧ 〈σ0, v〉 ∈ α(S)+ ∧ 〈(a v), ⊥〉 ∈ α(S)ω} Hdef. αI

= {〈(a b), r〉 | a, v ∈ V ∧ 〈b, v〉 ∈ α(S) ∧ 〈(a v), r〉 ∈ α(S)}
HT ω , T ∩ (T ∪ {⊥}) and S ⊆ T∞ so σ0 ∈ TI .

Hence, we have the commutation property α(~F (S)) = ñ
F (α(S)) when defining ñF by (4). ut

Question 3.4 (?) Prove that ñS
+

, α(~S+) = lfp
⊆ ñ
F+ where ñF+(S) ,

ñ
F (S+).

Answer to question 3.4
To prove that α(~S+) = α(lfp

⊆ ~F+) is equal to lfp
⊆ ñ
F+ = ñ

S
+
, we observe that α preserves

∪ and α ◦ ~F+ = ñ
F+ ◦ α by Question. 3.3 so α(lfp

⊆ ~F+) = lfp
⊆ ñ
F+ by [1, Th. 3]. ut

Question 3.5 (? ? ?) Prove that ñS
ω

, α(~Sω) = gfp
⊆ ñ
F ω where ñF ω(S) , (ñF (ñS

+
∪ Sω))ω.

Answer to question 3.5
We must prove that α(~Sω) = α(gfp

⊆ ~F ω) is equal to gfp
⊆ ñ
F ω = ñ

S
ω
.

To prove that α(gfp
⊆ ~F ω) ⊆ gfp

⊆ ñ
F ω, we let Xδ, δ ∈ O and Xδ, δ ∈ O be the respective

transfinite iterates of ~F ω and ñ
F ω from X0 = Tω and X

0 = T × {⊥} so that α(X0) ⊆ X
0

hence X0 ⊆ γ(X0) by (3) in Sect. 3.1. Assume, by induction hypothesis, that ∀β < δ :
Xβ ⊆ γ(Xβ). We have ∀β < δ : (⋂β′<δXβ′) ⊆ γ(Xβ) hence (⋂β<δXβ) ⊆ (⋂β<δ γ(Xβ))
by definition of the greatest lower bound (glb) ∩ and theregore (⋂β<δXβ) ⊆ γ(⋂β<δXβ)
by (3) in Sect. 3.1 so Xδ = ~F ω(⋂β<δXβ) ⊆ ~F ω(γ(⋂β<δXβ)) by monotony. It follows
that Xδ ⊆ γ(ñF ω(⋂β<δXβ)) = γ(Xδ) since α ◦ ~F ω = ñ

F ω ◦ α by Question. 3.3 implies
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α ◦ ~F ω ◦ γ = ñ
F ω ◦ α ◦ γ hence α ◦ ~F ω ◦ γ ⊆̇

ñ
F ω by (3) in Sect. 3.1 and monotony that is

~F ω ◦ γ ⊆̇ γ ◦
ñ
F ω by (3) in Sect. 3.1. Hence ∃λ ∈ O : gfp

⊆ ~F ω = Xλ ⊆ γ(Xλ) = γ(gfp
⊆ ñ
F ω)

and we conclude by (3) in Sect. refsec:Relational-abstraction-of-traces.
To prove that gfp

⊆ ñ
F ω ⊆ α(gfp

⊆ ~F ω), we show that ∀〈a, ⊥〉 ∈ gfp
⊆ ñ
F ω : ∃σ ∈ gfp

⊆ ~F ω :
σ0 = a. To do so for any 〈a, ⊥〉 ∈ gfp

⊆ ñ
F ω, we prove by transfinite induction on δ that

∀δ ∈ O > 0 : ∀〈a, ⊥〉 ∈ gfp
⊆ ñ
F ω : ∃σ ∈ Tω : σ0 = a ∧ σ ∈

⋂
β<δ

Xβ .

For δ = 1, ⋂β<δXβ = X0 = Tω and a ∈ T.
Assume by induction hypothesis, that ∃σ ∈ Tω : σ0 = a ∧ ∀η ∈ O : 0 < η < δ : σ ∈⋂

β<ηX
β. We have σ ∈ ⋂η<δ ⋂β<ηXβ = ⋂β<δXβ et we must show that ∃σ ∈ Tω : σ0 =

a ∧ σ ∈ Xδ = ~F ω(⋂β<δXβ). Because the iterates Xδ, δ ∈ O are decreasing, this implies
∃σ ∈ Tω : σ0 = a ∧ σ ∈ ⋂β<δXβ.

It remains to show, by structural case analysis on a, that if σ ∈ S : σ0 = a, then
∃σ′ ∈ ~F (S) : σ′0 = a where S = ⋂β<δXβ.

If a ∈ V then 〈a, ⊥〉 6∈ gfp
⊆ ñ
F ω.

If a = (λ x . a′) v, v ∈ V then 〈a, ⊥〉 ∈ gfp
⊆ ñ
F ω = ñ

F ω(gfp
⊆ ñ
F ω) so by (4), 〈a′[x ← v],

⊥〉 ∈ gfp
⊆ ñ
F ω. By induction on δ, we have ∃σ′ ∈ Tω : σ′0 = a′[x ← v] ∧ σ′ ∈ ⋂β<δXβ so that,

by (b), (λ x . a′) v • a′[x ← v] • σ′ ∈ ~F (⋂β<δXβ) = Xδ.
If a = (a′ b) then there are four subcases.
If 〈a′, ⊥〉 ∈ gfp

⊆ ñ
F ω ⊆ ⋂β<δXβ then, by induction hypothesis on δ, we have ∃σ′ ∈ Tω :

σ′0 = a′ ∧ σ′ ∈ ⋂β<δXβ so that, by (c), σ′@b ∈ ~F (⋂β<δXβ) = Xδ is such that σ′0 = (a′ b) = a
by definition of @.

If 〈a′, v〉 ∈ ñS
+

= α(~S+), v ∈ V, and 〈(v b), ⊥〉 ∈ gfp
⊆ ñ
F ω then, by induction hypothesis

on δ, we have ∃σ′ ∈ Tω : σ′0 = (v b) ∧ σ′ ∈ ⋂β<δXβ. By definition (2) of α in Sect. 3.1, there
exists ς ∈ T+ : ς ∈ ~S+ ∧ |ς| = n ∧ 〈ς0, ςn−1〉 = 〈a′, v〉 proving by definition (d) of ñF that
∃σ′′ = (ς@b) ; σ′ ∈ ñ

F (⋂β<δXβ) = Xδ where, by definition, ς • c ; c • ς ′ , ς • c • ς ′. We have
σ′′0 = (ς@b)0 = (ς0@b) = (a′@b) = a.

If a′ ∈ V and 〈b, ⊥〉 ∈ gfp
⊆ ñ
F ω then by induction hypothesis on δ, ∃σ′ ∈ Tω : σ0 =

b ∧ σ′ ∈ ⋂β<δXβ proving by definition (e) of ñF that σ = a′@σ′ ∈ ñ
F (⋂β<δXβ) = Xδ with

σ0 = (a′@σ′)0 = (a′ σ′0) = (a′ b) = a.
If a′, v ∈ V, 〈b, v〉 ∈ ñS

+
= α(~S+), and 〈(a′ v), ⊥〉 ∈ gfp

⊆ ñ
F ω then, by induction hypothesis

on δ, we have ∃σ′ ∈ Tω : σ′0 = (a′ v) ∧ σ′ ∈ ⋂β<δXβ. By definition (2) in Sect. 3.1 of α,
there exists ς ∈ T+ : ς ∈ ~S+ ∧ |ς| = n ∧ 〈ς0, ςn−1〉 = 〈b, v〉 proving by definition (f) of ñF that
(a′@ς) ; σ′ ∈ ñ

F (⋂β<δXβ) = Xδ with σ0 = (a′@ς)0 = (a′ ς0) = (a′ b) = a. ut

Question 3.6 (?) Prove that ñS , α(~S) = α(lfp
v ~F ) = lfp

v ñ
F .

Answer to question 3.6
By (1) and Question 3.3, we have ~S = ~F (~S) so ñS , α(~S) = α(~F (~S)) = ñ

F (α(~S)) = ñ
F (ñS)

proving that ñS is a fixpoint of ñF . By Questions 3.4, 3.5, and 2.3, we have ñS = lfp
v ñ
F . ut

Contrary to the case of the trace semantics in Question. 2.4, the relational semantics
cannot be defined coinductively.

– 8 –



Question 3.7 (??) Prove that (lfp
v ñ
F )+ ( (gfp

⊆ ñ
F )+ and (lfp

v ñ
F )ω = (gfp

⊆ ñ
F )ω so

ñ
S 6= gfp

⊆ ñ
F .

Answer to question 3.7
By Question 3.2, ñF is ⊆-monotone so gfp

⊆ ñ
F exists by Tarski’s fixpoint theorem [2].

By Question. 3.6, ñF (lfp
v ñ
F ) = lfp

v ñ
F so lfp

v ñ
F ⊆ gfp

⊆ ñ
F by def. gfp , proving (lfp

v ñ
F )+ ⊆

(gfp
⊆ ñ
F )+ and (lfp

v ñ
F )ω ⊆ (gfp

⊆ ñ
F )ω. Moreover ñF (gfp

⊆ ñ
F ) = gfp

⊆ ñ
F so lfp

v ñ
F v gfp

⊆ ñ
F by

def. lfp , proving that (lfp
v ñ
F )ω ⊇ (gfp

⊆ ñ
F )ω hence (lfp

v ñ
F )ω = (gfp

⊆ ñ
F )ω by antisymmetry.

Let θ , λ x . x x and 0 , λ f . λ x . x. 〈θ θ, 0〉 belongs to T∞. If 〈θ θ, 0〉 = 〈x x[x ← θ], 0〉
belongs to an iterate of ñF then, by def. (4) of ñF , 〈(λ x . x x) θ, 0〉 = 〈θ θ, 0〉 belongs to the
next iterate, hence, by transfinite induction on the iterates, to gfp

⊆ ñ
F . However, there is no

finite trace in ~S starting with term θ θ and ending with term 0 so, by Question. 3.6, 〈θ θ,
0〉 6∈ α(~S) = lfp

v ñ
F , proving (lfp

v ñ
F )+ 6= (gfp

⊆ ñ
F )+. ut
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