TOWARDS A UNIVERSAL MODEL
FOR
STATIC ANALYSIS OF PROGRAMS

(PRELIMINARY DRAFT)
January 1977

Patrick COUSOT and Radhia COUSOT*™

Laboratoire d'Informatique, U.S.M.G., BP. 53
38041 Grenoble Cedex, France

TOWARDS A UNIVERSAL MODEL
FOR
STATIC ANALYSIS OF PROGRAMS

(PRELIMINARY DRAFT)
January 1977

Patrick COUSOT*and Radhia COUSOT**

Laboratoire d'Informatique, U.S.M.G., BP. 53
38041 Grenoble Cedex, France

ABSTRACT

The abstract interpretation of vrograms is a mathematical model
for static analysis of programs :

a new interpretation is given to the program text and this allows
the building of a system of equations. The analysis of the program then
consists in verifying that a solution provided by the user is correct,
or in computing this solution, or else in discovering a good approxima-

tion of this solution.

* Attaché de Recherche au C.N.R.S., Laboratoire Associé n° 7.

*x This work was supported by IRTA-SESORI under grants 75-~035 and 76-160.

The abstract interpretation of programs was formalized in Cousot
[1977al. Only a few lattice theoretical results are recalled here for

the paper to be self-contained.

Our main purpose is to show that most program analysis techniques
may be understood and modelled as abstract interpretations of programs.

This is illustrated by the following examples :

- Global data flow analysis,

- Analysis of program performance,

- Denotational semantics of programs,

- Proofs of program partial correctness,
- Proofs of program termination,

- Symbolic execution of programs,

- Type verification/discovery,

- Finite/infinite state program analysis.

The application of abstract interpretation in studying these anpa-
rently unrelated techniques renders the connexion between them clear and
straightforward. Moreover, numerous mis-understood nroblems are high-

lighted when explained by the model of abstract internretation.

1. INTRODUCTION

Let us introduce the abstract interpretation of programs by means
of a very intuitive and trivial example. Suppose we are interested in dis-

covering the sign of the integer variable 1 in the (non-terminating) program :

i := 1 ; while true do 1 := i+l

Let us note + the fact that i is positive, = that i is negative,
% the fact that i is an integer which sign is unknown. For reasons
which will be explicited later we note L the fact that nothing is known

about 1.

Besides we associate invariants P, P,, P, with various noints

{1}, {2} and {3} of the program :

i:=1 {1} ; while true do {2} i := i+1 {3} ;
The value of P, P,, P, may be i, -, +or L depending on the dynamic pro-

perties of i at the respective nrogram points {1}, {2} or {3}.

T

According to the semantics of usual programming languages, we

know that

- i is positive at program point {1} since it is equal to 1.

Therefore

- The sign of i at point {2} may be P, when coming from point {1}
or P, when coming from point {3}. Therefore

P, =P orp,

where the operator or is defined by :

+or + =4
+or * =1
+ or £ = ¢

for L =+

etc.

- Finally suppose the sign of i is P,, the sign of"i+I"is"?, & +",

where the operator 8 1is defined by the rules of signs

i® o+ =+
T @ 4=+
is i=12
L @8 + =1
etc.
Hence the sign P, of i after the assignement"i := i+1"is"P, @ +".There-

fore

Notice that our simple reasoning permits to establish a system of

three relations between the three invariants P;, P P

2> ©3
P, = +
P, =P, or Py
P, =P, B +
Since P,, P,, P, need not satisfy any other constraint, any solution of

the system of equations

= +

1
X, =X or X
X, = X, 8 +

would be an acceptable candidate for the invariants.

Solutions of that system exist, and in general are not unique

X X X

1 2 3
(a) + + +
(b) i i +

However, a best solution (a) exists since + is a more precise result than

+.

The best solution (a) can be automatically constructed by successive ap-

proximations, as follows :

First approximation :

X1 = 1
X2=J.
X, =1

The second approximation is obtained by revplacing X;, X,, X; by L in the

right hand side of the system of equations. We get

]
1]
+

>
1

1 or

-
1
—

L @ + =1

Third aporoximation

X =+
1
X =4+or 1 =+
2 ——
‘3=_LEE+=_L
Fourth approximation
X, =+
X, =+or 1= +
X, =+ 8 + = +

A last iteration recognizes that no change occurs in the values of X, X

X
3

2’

oo
o e
o}
2
+
i
+

1
+
B
+
il
+

This is a certainly toilsome but at least systematic and simply
automatizable way to prove that i is positive in the proaram

i =1 {1} ; while true do {2} i :=1i+1 {3}

However this abstract interpretation is not very powerful since
changing "i := i+1" by "i := 1-2", we get a modified system of equa-
tions

X, = +
X, = % or X,
3 =%, B+

o
|

which least solution is :

The fact that i is negative at pnrogram point {3} is not captured by this
abstract interpretation because of the rule "+ B + = &', A more careful
analysis taking account of the absolute value of i would be necessary to

discover this fact.

The same inaccuracy occurs with other abstract interpretations (such
as casting out of nines in arithmetic, parity checks in hardware, dimen-—
sional analysis in physics, ...) : they permit to automatically verify
sufficient (yet in general not necessary) conditions of truth or false-

ness of a property, (Sintzoffl1372]).

However more refined (but may be not fully automatizable) abstract
interpretations may be used to analyze stronger properties of programs.

For example the program

i:=1 {1} while i < Ndo {2} i := i+1 {3} ;
may be analyzed using the following equations over predicates
(i =1)

2 = (PIC_)E P3)and(i < N)
P, =P, (i « i-1)

o
1]

which solution 1is

' P.o= (1 =1)
P, = (1 < N)éﬂéﬂl < i)iﬂi(i < N)
P, = (1 N)Eggﬂz < i)and(i £ N)

A
A

The purpose of this paper is to show that most techniques for ana-
lyzing properties of programs may be understood as particular abstract

interpretations.

2. INTRODUCTION TO THE MATHEMATICAL MODEL USED IN ABSTRACT
INTERPRETATION OF PROGRAMS

2.1 The Complete Lattice of Abstract Contexts

The set A of abstract contexts is supposed to be a lattice. We use

the symbols
g, L, T, U, 0, 0,0

to denote respectively the partial ordering, the infimum, the supremum,
the join of two elements, the meet of two elements, the join of a set of
elements, and the meet of a set of elements. The definitions and mathema-
tical properties of these notions can be found in many places, for example

Birkhoff[19731,

Example

In the introduction we used A = {1, ;, =, i} where T was denoted .

'The ordering relation & is defined by its diagram :

yaN
S

For instance + £ * since the assertion that 1 is a positive integer is
less unprecise than the assertion that 1 is simply an integer. The in-

ltroduction of 1L is necessary to make the poset {+, -, +} a lattice.

In general we will consider infinite lattices and will require them
to be complete, that is by definition for any non-void part {Xi[i e A}

of A the join
U{Xi[ie A}

and meet

[{x. | iea}
i

must exist for any arbitrary indexing set A.

Zwample

Let A be the subset of rational numbers included in the interval
[3, 4]. It is a lattice with ordering <, infimum 3, supremum 4, join
max, meet min. The strictly increasing chain P, = 3, P, = 3.1, Py= 3.14,
~e.s Po = 3.14159, ... converges towards T which does not belong to A.
Consequently II{Pil i > 1} does not exist in A which proves that A is not

complete,

Hypothesis

The set A of abstract contexts is supposed to be a complete lattice

(g, 1, 7, U, 1, I, .

Lemma
|
k

1
The set A is a complete lattice (;k, Les Ts

uk,rya Hk} Hk).

The following definitions are usual

{<X;5 «eus X > s <Y, ., Yk>} <=> {(Xi =Y., ¥i=1,...,k}
Ky eewy XU <Y, e, Y > = <X UYL, XU Y
ete,

We drop the subscript k when unambiguously available from context.

2.2 System of Equations Associated with a Program

A fixpoint equation :
X = F(X)

with k variables, that is of the form

= £1(X, oy X))

s
i

X, = fk(xl, e, Xk)

is associated to the k cutpoints of the program.

The variables (X;, ..., Xk) range over the complete lattice A.

The syntactic process which permits to associate a system of equations
with a particular program is not formalized here, and will be informally

sketched for each of the further examples,

Definition
= daGel
A function £ : D » D' from the poset (D, <) in the poset (D', &) is

iorder—preserving (synonymously monotonic or isotone) if and only if

{¥(x, y) e D?, {x < y} => {f(x) ¢ £(y)}}

Hypothesis
i 2
i . k .

| The functlonsfi : A > A are supposed to be order-pnreserving.

;(The point of monotonicity is that the better we define the argument

i

!contexts (X, oeey Xk)’ the better we define the resulting context
ﬁfi(X1’ ceey Kk)).

Lemma

i
i The map F : Ak - Ak is preserving the ordering <) -

2.3 Existence of Solutions to the System of Equations

Theorem (Tarskil 19551).

. . k. .
The order-preserving map F of the complete lattice A~ in itself has

[_. . . k . .
‘lepOlntS (that is ¥(a) = a for some a € A). In fact, the fixpoints of F

{form a complete lattice for ordering =

Corollary 1 (Least fixpoint).
The least fixpoint U(F) of F is given by :

w® =T 0x ¢ A F(X) g x}

Corollary 2 (Greatest fixpoint).

|
! The greatest fixpoint M(F) of F is given by the formula

k
M(E) = {Xxea |X 5, F(X))
The above results permit to discuss the existence of solutions to
the system of equations. However they do not provide an algorithmic cons-

truction of the extreme fixpoints., Additional hypothesis are necessary

to provide constructive methods.

2.4 Construction of the Extreme Solutions of the System of Equations

2.4.1 Construction of the Least Figpoint of F
De finttion
Amap f : D > D' from the complete lattice (D, =, L) in the complete
lattice (D', &', U') is called upper-semi-continuous 1if whenever
X=1{x,, Xpy «2v, X, ...} where X cDand x € x T ... E x_E
; 1 2 n 1 2 n
ithen

BN = IEx) | x € X

Note that upper-semi- continuocus functions have the monotonicity

property and preserve upper limits.

f(lim (Xn)) = lim (f(xn))

n-—->o0 n-co

Hypothests

. k . .
The functions fi : A" > A are supposed to be upper-semi-continuous,

Lemma

i k k
’ The map F : A~ - A" is an upper-semi-continuous function from the

complete lattice Ak in itself.

Theorem (Kleenel 1952], first recursion theorem)

The least fixpoint U(F) of an upper-semi-continuous function F from
the complete lattice A¥ in itself is the limit of the nereasing approxt—
mation sequence given by the formula

o
wE) = O ek
n=0
where
‘ F' is the n-fold composition of F with itself (F%(X) = X,
Fn+](X) = F(Fn(X))) and Lk is the least element of Ak (a k-tuple which

elements are equal to L).

Notice that :

k k
Ls F(L)

. k . . o . . k
since I 1s the infimum of the lattice A . Hence

k
) = Fn+1(ik)

is easy to prove by recurrence on n using the property that F is order pre-
serving. This implies that the successive approximations

K= r Sy, e, w2y,

*

form an increasing chain :

k k

1 =P k

Y = FL(LO) S -0 Sk Fn(ik) ST

k

Hence
mky

=

=
[=}

~

—
=

~

1

=F

and

= lim Fn(ik)
n=0 n->o

= 8
>}

3
~

[

I
~

1

Infinitely many successive approximations may be necessary to pass to the

limit when the approximation sequence is indefinitely strictly increasing.

Otherwise, the first p terms of the sequence are strictly increasing
. p, k i . .

but terms of higher rank are equal to F'(1). This situation of ut-

most practical interest is found in particular when the lattice A

(or simply A) satisfies the ascending chain condition.

Definition (ascending chain condition)
A partly ordered set (P, <) satisfies the ascending chain condition (resp.
decreasing chain condition) if and only if every strictly increasing

(resp. decreasing) chain is finite.

a.4.2 Construction of the Greatest Fixpoint of F.

Similarily, supposing the fi’ i e [1, k] to be lower—-semi-conti-
nuous functions from the complete lattice Ak in A, the greatest
fixpoint M(F) of F is the limit of the decreasing approximation sequence
given by the formula :

MEEY = T FN(TS)
n=0

2.4.3 Extreme Fixpoints of F.

The functions fi’ i e [1, k] will be said to be continuous when both
lower-semi-continuous and upper-semi-continuous. In that case, the extreme
fixpoints of F may be constructed as the limits of the increasing and de-

creasing approximation sequences.

2.5 Discussion on Altermate Mathematical Models

Arbitrary posets are not in general complete lattices. Other well-
known fixpoint theorems might be used in such a case (a.o. Abian and Brown
[19611, Hoft[1976], etc.). Other convenient algebras permit to give cons-
tructive definitions of fixpoints (a.o. chain complete partly ordered sets,
complete ordered F-magma Nivat[1974], Courcelle and Nivat[1976],
initial comntinuous algebras Goguen et al.[1977]). However we choose to use
the complete lattice model because it is well-~known. Moreover any poset can

be made a complete lattice by known systematic methods (a.o., Mac Neille[19371).

2.6 Whrning

Subsequently we will apply the above theorems without paying

careful attention to formalities.

3. APPLICATION TO PERFORMANCE ANALYSIS OF PROGRAMS
This example of application is presented first, since it permits to

understand the utilized mathematical model by analogy with numerical ana-

lysis techniques.

3.1 Assoctating a_System of Equations to a Program

The performance of programs may be analyzed by deriving for each
program point the final value of an imaginary counter which is incremen-

ted each time control goesthrough that point.

We will model the program by a directed graph which nodes are junc-

tion, branch or separation (test) points.

Suppose we are given for each test o in the program the probability
p(a) that this test will be true after being evaluated. We wish to deter-
mine the expected frequency Ci of traversing each arc i in the program
during a single execution of the whole program. Under simplifying Markov
assumptions (Cocke and Kennedyl19741) the expected frequencies are given
by the solution of a system of equations generated from the program by

applicatien of Kirschoff's laws of conservation of flow :

13

C, =1 (single entry arc)
Cp, = Cy + Cy
C, =C, . p(aw)

@]
]

L C2 . (] - P(OL))

The main difficulty is to obtain the probabilities p(a). In general,
an exact expression in terms of known properties of the input cannot be
obtained, e.g. internal tests may depend on computed quantities having
no simple relation to the input. A major simplification is to consider
tests as Markov processes, i.e. the probability is constant and indepen-
dant of prior history. The values of these probabilities are supposed to

be "given'", e.g. might be determined by measurements.

3.2 The Complete Lattice of Abstract Contexts

Abstract contexts are positive reals R ordered by the natural or-
dering < (). The least upper bound operation (] is the maximum max, and
the greatest lower bound operation [1 is the minimum min operation. The
infimum L of the poset IR+ is equal to 0 = glﬁ{i| ie IR+}. Notice that

we are not considering a complete lattice since the expression
. . +
MAX{i| i e R}

. . . + .
is not defined. Let us include a supremum T denoted <« to IR , that is

by definition
R +
w=MAX{i| i e R}

Now IR+ (<, 0, ©, max, min, MAX, MIN) is a complete lattice (Birkhoff
[19731).

3.3 Solving the Equations

Let us simplify the equations by elimination of the variables C; and Cj
(and supposing that the value of p(a) is given by p)
C,=1+C, . p

2
Cl+ 02 . (1=-p)

C, depends only on itself so that we can solve first the subsystem :

14

jc, =1 +¢C . p

i.e. C F(C,) where F(x). = 1+x.p.

2

It is obvious that the solutions of this equation are 1/(1-p) and
o, However let us go on with the example applying the theorems of para-

graphs 3.3 and 3.4.

The function F is order-preserving, since :
{ng}=>{1+x,psl+y.p}
(Recall 0 < p < 1).

Note

The prove that F is order—preserving needs not be done for every

particular program. In general it is possible to show that the isotony (or

continuity) of F is a direct consequence of the syntactic method which

is utilized to built the system of equations.

Tarski's theorem then states that the extreme fixpoints of F are

u(F) = MIN{x e IR+| 1 +x=p £ x}
= MIN[1/ (1 -p), «]
=1/ 41=p)

M(F) = MAX{x ¢ R | I +x.p> x}
= MAX{[0, 1/ (1=-p)] u {=}}

= ©o

which is easily understood by the following geometric interpretation :

F(x) A x

M(F) »
\—\ﬁ’» :
2
W(F)
ll
0 > x
1#¢1=p) 1/p
l4+x.p= x Ltx.p=sx

15

Note that this definition of the fixpoint is not constructive,

however the approximation sequences give an algorithm to compute them.

The map F is clearly continuous since it is infinitely distributive

that is for any indexing set A we have

1+MAX{xi| le d} p=MAX{1+xi.p|ie A}

— The descending approximation sequence leads to the maximal fixpoint

)\ = 0D

>
Il

! F(Xy) l+w,p =

=)\0

pe The ascending approximation sequence leads to the minimal fixpoint :

X =0

A, =F(R) =1+0.p = 1

A, =F(X{) =1+1.p q

Ay =F(A,) =1+(1+p).p=1+p + p’
-1

Ao s8R) s haprpt b o r

» 8

The limit of the ascending approximation sequence is an infinite series

which sum is W(F) =1/ (1-p).

- The classical geometric interpretation is the following

A
FGe) l+x.p

Approximation L 1/(1-p)
Sequence :

Notice that this abstract interpretation of programs leads to a
system of linear equations. The increasing approximation sequence cor-
responds to the Jacobi's iterative method known as 'successive appro-

ximations" (for numerical coefficients).

4. COPING WITH INFINITE APPROXIMATION SEQUENCES

Since approximation sequences may be infinite the algorithmic cons-—
truction of exact solutions as their limits may be impossible. Hence
other methods must be used to analyze the program properties. We can

roughly classify these methods as follows

4.1 Verification of the Correctness of a Solution Provided by the

Programmer
4.1.1 A solution S of the system of equations is provided by the
user. The problem simply consists in verifying that F(S) = S.
4.1.2 The user may also provide the solution of the equations by

giving the value S(n) of the general term S, of the approximation
sequence Sy, ..., S_, The problem is then to verify that
s(0) = 15 (or ™) and S(n+1) = F(5(n)). The solution S of the

equations is obtained by passing to the limit S = lim (S(n)).
n->0

4.2 Automatized Computation of the Exact Solution

4.2.1 The exact solution of the equations may be obtained by the

limit of the approximation sequence when the length of this sequence

is finite.

For infinite approximation sequences the exact solution may also

be obtained by other resolution methods

4.2.2 Formal resolution of the equations by eliminations and

simplifications,

4.2.3 Resolution of difference equations as follows : the recurrence
relationship §, = ik and Sn+1 = F(Sn) between consecutive terms of
the approximation sequence leads to a system of difference equa-
tions, which may be solved to get S, as a function of n, Sn = 5(n)

which gives the least solution S as lim (S(n)).
n-—>00

4.3 Verification of Properties of the Exact Solutions

Generally some properties of programs may be proved to hold without
full knowledge of the solution S of the system of equations. It just
suffices to prove some property P(S) of S. Since the solution S of the
equations is defined as the limit of an approximation sequence §,, .

5, = Fn(SO), ... one can prove P(S) using one of the following induction

rules

4.3.1 From {P(S.) and {P(F'(S.)) => P(Fn+]
o/ 2Dd 0

(e.g. De Bakker and Scott[19691]).

(SO))}} infer P(S).

4.3.2 From ¥i {(¥j| j < i) P(F(S,)) => p(p'"!

(e.g. Morris[19711]).

(Sy))} infer P(S).

The previous rules may be also written more stylishly
4.3.3 From {P(S,) and {{(¥X)P(X)} =>{P(F(X))}}} infer P(S).

Warning : These induction rules may be used only for "admissible" predicates

P. (See e.g. Mannal 19741).

4.4 Approximation of the Solution

When the approximation sequences are infinite ome can approximate
the least (greatest) fixpoint S of F by an upper approximation Su such
that S 5 S, and S, is "sufficiently close" to S (or by a lower approxi-

mation SQ such that SQ S S and SQ is "sufficiently close" to S).

18

The approximates SQ and SU may be obtained by strengthening the iterates
in the increasing or decreasing apvoroximation sequences (e.g. Cousot[1976],

Cousot[1977al, Sintzoffl[19761).

Note that in methods 4.1, 4.2, 4.3 one can also use approximations of
the solution (provided that one can define what is a correct approximation

of the solution , this is usually the purpose of the partial ordering Ek).

4.5 Example : Performance Analysis of Programs

Numerous techniques for static analysis of programs use the above
alternative methods and this will be examplified in the subsequent para-

graphs.

Let us see for example how 4.2.3 and 4.2.2 permit to understand the
papers of Wegbreit[1975a] and Kennedy and Zucconi[1977] dealing with per-

formance analysis of programs,

The linear equations may be solved by establishing a recurrence re-
lationship between consecutive terms of the ascending approximation se-
quence. This leads to a system of difference equations which may be auto-

matically solved (Cohen and Katcoff[19761)

Example
The recursive equation C, = 1+C,.p has a solution C,(o) defined by
C,(0) =0
C,(n+1) = 1+C,(n) . p

These simple difference equations have the solution :
C,(n) = (1+pM)/(1-p)

and lim pn =0 since 0 < p < 1 thus C(®) = 1/(1=-p), (or © if p=1).

N>

The linear equations may also be solved by formal substitutions, suc-—
cessively applying simplification rules until obtaining equations which
solution is known. This is the method usually used when solving equations

by hand.

18

The approximates SQ and SU may be obtained by strengthening the iterates
in the increasing or decreasing apvoroximation sequences (e.g. Cousot[1976],

Cousot[1977al, Sintzoffl[19761).

Note that in methods 4.1, 4.2, 4.3 one can also use approximations of
the solution (provided that one can define what is a correct approximation

of the solution , this is usually the purpose of the partial ordering Ek).

4.5 Example : Performance Analysis of Programs

Numerous techniques for static analysis of programs use the above
alternative methods and this will be examplified in the subsequent para-

graphs.

Let us see for example how 4.2.3 and 4.2.2 permit to understand the
papers of Wegbreit[1975a] and Kennedy and Zucconi[1977] dealing with per-

formance analysis of programs,

The linear equations may be solved by establishing a recurrence re-
lationship between consecutive terms of the ascending approximation se-
quence. This leads to a system of difference equations which may be auto-

matically solved (Cohen and Katcoff[19761)

Example
The recursive equation C, = 1+C,.p has a solution C,(o) defined by
C,(0) =0
C,(n+1) = 1+C,(n) . p

These simple difference equations have the solution :
C,(n) = (1+pM)/(1-p)

and lim pn =0 since 0 < p < 1 thus C(®) = 1/(1=-p), (or © if p=1).

N>

The linear equations may also be solved by formal substitutions, suc-—
cessively applying simplification rules until obtaining equations which
solution is known. This is the method usually used when solving equations

by hand.

19

This simplification process is generally presented as a sequence of
reductions of the program graph by clementary transformations (Grahaml 19727,

Kennedy and Zucconil1977]).

Example
Cl C1 c,
Y
C, = - G = c" = c
C

R o Y

C,
c. = c' = 9.'_‘__'..& c. =¢gm

- 1 .

3 e I-pl@) __ . %c"' -
CZ o Cl +CL’ Cu = Cll CH = CIH

The method is applicable only when considering appropriate applications
(using algebras allowing the above formal maninpulations) and appropriate
programs which permit a simple simplification algorithm (i.e. the program
flow graph must be "reducible", which is a frequent case but not a general

one (Kennedy and Zucconil 19771).

5. APPLICATION TO GLOBAL DATA FLOW ANALYSIS

In analyzing a computer program for purposes of code improvement, it is
necessary to be able to trace at compile time the flow of information
through a program. This analysis is called "global data flow analysis", and
is used in connection with code improvement techniques (such as constant
propagation, common subexpression elimination, moving invariant computations
out of loops or reduction of the number of store-load sequences between
memory and high-speed registers), (Aho and Ulimanl[1973], Allenl[19711],
Branquart et =1.[1973], Cocke[1970], Fong et al.[1975], Hecht[1975], Hecht
and Ullman[19731, Jensenl[1965], Kam and Ullmanl1976], Kennedyl 197131,
Kildall[1973], Morel and Renvoisel 19747, Schaefer[19731, Schwartz[1975],
Ullmanf 19757, Urschler{1974], Wegbreit![1975b1).

20

Global data flow analysis involves solving a class of problems
each of which can be dealt with essentially the same manner that is
solving a system of equations established by a suitable interpretation

of the program.

The classical systematic techniques for global flow analysis,
that is
(a) - The Cocke-Allen interval analysis, typified by Allen[1971] and
Cocke[19701].
(b) - The iterative methods, typified by Hecht and Ullman[19737.

differ only by the way they solve the system of equations.

Methods (a) are a graph formulation of an algorithm which formally
solves the equations (see 4.2.2). They are applicable only to a limited
class of recursive equations (corresponding to '"reducible" program flow

graphs) and to a limited class of interpretations.

Methods (b) correspond to the resolution of the equations by successive
approximations (see 4.2.1) and therefore are not subject to the limitations

of the Cocke-Allen interval approach.

(Aside, given a particular interpretation the practical question of
which of the two approaches 1s the most efficient has not yet received a

conceptual answer, see a.o. Kennedyl 1976]).

5.1 Constant Propagation

A fairly simple case of program analysis and optimization occurs
when constant computations are evaluated at compile-time. Consider the

following skeletal program, Kildall[1973]

{1}
{2}
{3}
{4}
{5}
{6}
{7}

il
o
<+
(on

o
]
o
+
(e}

The abstract contexts associated to the various program points are state
vectors P,, ..., P, which associate an abstract value with each of the
variables of the program. We will note Pa(b) the abstract wvalue of b in
the abstract context associated to program point {3}. The set of abstract

values is the infinite lattice

The symbol T will be the value of non-constant variables.

If the program has n variables x;, ..., X then abstract contexts

are state vectors belonging to the product lattice Lt

The system of equations corresponding to our example is

, = <T, T, T, T, T>
, = P,(a <« 1)(c «0)
3 = Py LGPy

Py(b « 2)

=P,(d «P,(a) B P,(b))
e = Ps(e « P.(b) 8 P (c))
= PG(C <« 4)

o= 2e I v B o B v By v B
«w F
I

with the following notations

-~ P(x « v) is the state vector P where the value of variable x is changed

to v, hence : P(x « v)(y) = if x =y then v else P(y) fi

- P i) Q designates the component by component union of the lattice LS.
Therefore (P 1L, Q)(x) = P(x) U} Q(x) for x = a, b, ..., e where !} is de-
fined by

TUx=xT7T=T, ¥&x ¢ L
Ltix =xilLl=x, ¥xecl

igj=41if i = j then i else 7 fi, ¥i,j e I

22

- ® is the abstract addition operator

x B L =1, ¥x ¢ L

'_
ks
fl

THB x=x B T=1, ¥x e L-{2}

i@ j=1i+3, ¥i,j ¢ M

Notice that the system of equations is of the form :
X = F(X) with F: (L% - L%
Since every strictly increasing chain of L is of length at most 3, (LS)7
satisfies the ascending chain condition (see 2.4.1). This imnlies that
the iterative method of resolution of the system of equations converges in

at most 3 x 5 x 7 + 1 successive ilterations.

The successive approximations are the following

a b c d e
Pi 1 <1< 7 1 L 1l 1 1 Initialisation
P, T T T T T
P2 1 T 0 T T
P3 1 T 0 T T

Step 1

P, 1 2 0 T T
P5 1 2 0 3 T
P 1 2 0 3 2
P7 1 2 4 3 2
Py 1 T T T T
PL+ 1 2 T T T
P, 1 2 T 3 T Step 2
P 1 2 T 3 T
P 1 2 4 3 7
P, 1 T T T T
P, 1 2 T T T
P 1 2 T 3 T Step 3, stabilization, stop
P, 1 2 T 3 T
P7 1 2 4 3 T

23

The final result is that "a" is constant equal to 1, and "b" and "d"

are constant in the loop as soon as they have been assigned.

5.2 Live Variables

This example is representative of the "boolean techniques of program
optimization'. It has been intensively studied in the litterature (a.o.,
Allen and Cockel[1976], Hecht and Ullman[1973], Kennedy[1971], Schaefer{1973],
Ullman[1973]) so that very efficient algorithms exist (Aho and Ullman[1975],
Kennedyl[1975], Tarjan[1976]).

Given a variable X, which is defined at various points in a program,
we wish to determine for each point p in a program flow graph whether or
not X will be used after control leaves p. We say that X is lZve at p
if it can be used again and dead at p otherwise. The "live" information would
be useful in register allocation for example since the value of a variable

which can never be used again needs not be saved.

Suppose the program has been represented by its control flow graph
in which each node represents a basic block and each edge represents a pos-—

sible block to block transfer.

For each block b in the program we have to determine the set live(b)
of variables X for which there is a path from the entry point of b to a
use of X, which path is definition-clear with respect to X (i.e. contains

no redefinition of the variable X).

Let use(b) be the set of variables which have exposed uses in block
b, i.e., those variables with a definition-clear path from the entry of

block b to a use within b.

Let clear(b) be the set of variables X for which the path through

the basic bloc b is definition-clear with respect to X.

Note that the sets used(b) and clear(b) can be computed by a local

examination of block b.

24

Now there exists an X-definition-clear path from the entry of b
to a use of X if and only if there exists such a path to a use within
b or there exists an X-definition clear path through b to a successor
of b and there to a use.

In equation form :
live(b) = use(b) u (K\/) (clear(b) n live(x))) fig. 5.2.a
xeSucc(b) T
For an exit node which has no successors and contains no commands we
have

live(e) = ¢

Note

Since the above system of equations does not necessarily have a
unique solution we want the smallest such solution (the ordering is set

inclusion ¢).

Consider for example a program such as

begin i := 1 ; while ... do ... od ; j :=1i end.

where "i" and "j" are not used in the loop body. The greatest solution would

consider "i" and "j" to be live in the loop body, whereas the smallest so-

lution will only consider "i" to be live in the loop).

Let us illustrate the determination of the live sets for a simple

flow graph with two variables o and R :

use(0) = ¢ clear(0) = ¢
use(1) = {8} clear(1) = {a, 8}
use(2) = ¢ clear(2) = {a, 8}
use(3) = ¢ clear(3) = {a, 8}
use(4) = {a} clear(4) = {a}
live(s) = ¢

25

Thus the variable o is defined in node O and used in node 4,

whereas variable B is defined in nodes 0 and 4 and used in node 1.

The ascending approximation sequence leads to the following

trace
live(b)
b
Steps 0 I 2 3 4 5
Initialization @ ¢ ¢ ¢ @ ¢
1 ¢ {8} {8} {g} {a} -
2 9 {8} {8} {o,8} {a} -
3 ¢ {g} {a, B} {a, 30 {a} -
4 1) {o,8} {a,B} {o0,B8} {o} -
5 9 {a,8} {o, B} {a,8} {a} -

And therefore 20 applications of equation 5.2.a are needed, plus 5
more applications which are required before no change to the sets is re-

cognized which then terminates the iteration process.

5.3 Optimal Approximation Sequence

Notice that the fixpoint equation :
X = F(X)
should be solved, according to the definition of the approximation sequence
(2.4.1) by Jacobi's method of successive approximations

o ey (r=0, 1, 2, ..

which can be detailled in :

26

In fact, we used the Gauss—-Seidel method on F :

r+] T r T
%1 = fi(x]s X, cennnn ceeeae xk)
r+l _ r+] r+l r r
X = fi(x1 RIS SR TEREE xk)
r+1 _ r+l r+l r
X, = fk(x1 s eeeeeann Xy _1» xk)

which consists in continually reinjecting in the computations the last
results of the computations themselves. This reduces the memory conges-—
tion and accelerates the convergence. However Robert[1976] shows that
Gauss-Seidel method is not algorithmicly more reliable than Jacobi's
successive approximation method. Without sufficient hypothesis on F
Jacobi's method may converge although the one of Gauss-Seidel cycles.
The contrary is also true, that is Gauss—Seidel's method may converge

although Jacobi's iterations diverge.

Fortunately the continuity hypothesis on F implies that any chaotic
iteration method converges to the right solution. Otherwise stated this
signifies that onme can randomly determine at each step which are the
components of the system of equations which will evolve (under the con-

dition to never forget one definitively).

Although the convergence to the least solution does not depend on
the order of computations the efficiency of the iteration process does.
Until now the interesting question of determining the optimal approxima-
tion sequence has received no general conceptual answer and is unlikely
to receive one (if we think to numerical analysis where the problem has

been extensively studied using very peculiar hypothesis).

However, experimental and theoretical results have been obtained for
particular applications. With regard to the problem of live variables the
optimal approximation sequence has been shown to exist ("node listing"
method of Kennedyl[19751, generalized by Tarjan[1976]), and may be algo-

rithmicly specified for particular abstract interpretations (on reducible

27

flow graphs, Aho and Ullmanl1975], although these results are expressed
in terms of order of search over a flow graph).
Example

Initializing live(b) by used(b) and applying the equation live(b)
in the order b =1, 2, 3, 4, 3, 2, 1, 0 ; we have :

live(b)

Steps 0 1 2 3 4 5

Initialization 1) {8} @) {a} @

1 {8}

3 {8}

4 {a}
5 {a, 8}

6 {a, 8}

7 {a,B}

Therefore 8 applications of the equation 5.2.a are strictly necessary (ins-
tead of 20) and no supplementary applications are needed to prove that the

iteration process has converged (instead of 5).

6. APPLICATION TO LOGICAL ANALYSIS OF PROGRAMS

The method introduced by Floyd[1967] and Naur[1966] for proving cor-
rectness of programs has been intensively studied, extended and even partly

automatized. Its presentation as an abstract interpretation of programs

28

permits to understand the effective originality and respective power

of various methods which are often stated to be new and different from

previous ones. Moreover, this permits to elucidate several mis—under-

stood problems.

6.1 Abstract Contexts

In this interpretation abstract contexts will be logical first order

predicates P(X, X) over the set X of program variables and the set X

of

initial values of these program variables. X and X are the free variables

in the predicate P.

The assertion Pi(X’ X) associated with a point i of the program
be thought of as describing the values X which the program variables
take at program point i during an execution starting with an initial

X of the program variables.

The set of predicates P(X, X) form a complete lattice (=, L, T, !

[0, II) by choosing respectively (==>, false, true, or, and, OR, AND).

6.2 System of Logical Forward Equations

can
will

state

We use the notation "{P(X, X)} S {Q(X, X)}" to mean that for every

X, X, if P(X, X) holds prior to execution of the statement S then 0(X, X)

is the strongest post—condition such that statement S faultless executes

and properly terminates leaving the program variables in a final state

satisfying Q.

According to the deductive semantics of programming languages

(Dijkstral 19761, Hoare[1969]) the following rules permit to associate a

system of equations with any flowchart program :

29

Program entry point :

N

{(Xi = Vi)’ i=1, ..., mf
The respective initial values of the variable x;, ..., X are the symbols

Vi eees Voo The v, may eventually be § denoting the uninitialized wvalue.

Assignment statements :

{P} i:=E {3i'|P(i <« i') and (i =E(i « i"))}
We note "o{x < y)" a copy of & in which each occurrence of the variable
x 1s replaced by the variable y. The above rule must be enriched if one

wants to take account of the fact that the evaluation of E may fail.

Test statements :

{p} if Q then {P and Q} <statement list> fi

Go to statements and labels :

L:{ OR Pi}
iepred (L)

where pred(L) denotes the set of program points going to L (sequentially

or by an unconditional jump "go to L" to the constant label L).

We will examplify the above rules on the very simple program (over

the integers W~ = W u {Q})

{r,}
1:= 13
{r,}
loop : {P,} .
if 1 < 1000 then
{p,} . _
1 = 1+]
p,)}
go to loop ;
{p}

fig 6.2.a

30

The corresponding system of forward equations is the following

(1)
(2)
(3)
(4)
(5)
(6)

= (1=

]

{3i' e m" | P,(i « i') and (i = 1)}

P, or P,

1 ==
P, and (i < 1000)
(3i' e W' [P (i « i) and (i

P, and (not(i < 1000))

i'+1)}

fig 6.2.b

6.3 Optimal Invariants

The system of equations has in general several solutions.

Example

Let us prove that the assertion :

P, =@ < 1001)

is an admissible invariant at program point {2}.

Replacing in the

Py
Py

system of equations we get

(i =Q)

{3i' e W' | Py(i < i') and (i = D}

{3i' e W | (4" = Q) and (i =)}

(i =1 (since 1' is not a program variable and there-
fore is uninitialized).

P, and (i < 1000)

(i < 1001) and (i < 1000)

(1 £ 1000)

{3 e ™" | P,(i « i') and (i = i'+D)}

{3i' e ™" | (i' < 1000) and (i = i'+1)}

(i £ 1001)

P, and not (i =< 1000)

(i < 1001) and not (i < 1000)

(i = 1001

A

31

It is now very easy to verify that the inductive invariant P, is cor-
rect since
P, = Py or P,
(i =1) or (i < 1001)
(i 1001)

N

The same way one can prove that P, = {1 < 1 < 1001} is another admis-

sible solution at program point {2}.

Yet according to Tarski's theorem (see 2.3) there exists a least so-

lution SO (least for ordering . that is ==>5). We call this least solu-

pt =5
tion the optimal invariants since they imply any other solution of the sys-

tem of equations.

Proof

Since SO is the infimum in the complete lattice of fixpoints of F

pt
(Tarski's theorem 2.3) we have

(¥p| P = F(P)), Sopt £ T

(¥p | P = F(P)), S, e =7

pt

Example

The optimal invariants for program of fig 6.2.a are the least solution

of the system of equations of fig 6.2.b that is

Py = (i =)
P, = (i=1)

P, = (1 < 1i< 1001)
P, = (1 < i < 1000)
P, = (2 < i< 1001)
Ps = (i = 1001)

6.4 Proof of Total Correctness

The system of equations is generated directly from the program text ac-—
cording to the rules of the deductive semantics of the language. Therefore

the optimal invariants are independant of any user provided input/output

32

specification and reflect what is actually happening during the computa-

tion, as opposed to what is supposed to be happening.

Suppose now that the intended behaviour of the program T is spe-
cified by means of an input specification ®(X) and an output specifica-
tion P(X, X). The intention is that for any initial values X of the pro-
gram variables satisfying the input specification ®(X), the program termi-

nates with final values Y of the variables satisfying ¥ (Y, X).

The verification of correctness of a program T for input/output spe-

cifications ® and ¥ then consists in

-~ Constructing the system of assertion equations P = F(P) of 7, and finding

its optimal solution S .
opt

- Proving that for every input X such that ®(X) is true, there exists a
haltpoint h, there exist output values Y of the variables such that

7 T ar SR o (T T
Sope (M (T, B and (5 ()T, © = (T, D)
which requires that the program terminates at some haltpoint h with a
state Y of the program variables satisfying the output specification V.
In formulas (adapted from Katz and Mannal[1976]) we must prove
{(¥X]2(X)), In, IY| sopt(w(*f, X) and ¥(¥, X)}
Where, from what preceded we have
SOpt = u(F).
Example

Consider the program segment

{p,}
while x > y do
{p,}
X 1= Xy
{r,}
od ;
{p,}

fig 6.4.a

&

33

Applying Hoare's rules we obtain the following system of equations
Py = (x = %¢) and (y = y,)

P, = (P, 92_93) and (x 2 y)

{3Ix" | P,(x') and x = x' -y}

U td
£ ow
1 i

= (P, or P,) and (x < y)

and the corresponding optimal invariants are

P, = (x = xp) and (y = y,)

- ,
]
P, = OR (AND (x4, —ky, 2y,) and (x=x,-]y,) and (y=y,))
1=0 k=0
@ i
Py = OR (AND(x, -ky, 2y,) and (x=x¢-(j+1)y,) and (y=7y,))
=0 %=0
o J—l)
P, = OR (Alﬂ(xo_kYOZYo) and (xy = jyy < ¥g) and (x=%, - jyy) and (y=1y,))
=0 k=0

fig 6.4.c

Suppose now that one wants to prove that for any input values (xo, Vo)
of (x, y) satisfying the input specification :

0Cx,, v,) = {(x, > 0) and (y, = 0)}
the program terminates with output specification :

U(x, ¥, Xg, ¥o) = {(x >0) and (y 2 0) and (x < y)}

We must prove

{(x, [x, 200, (Myg|yg 20) 3(x, ¥) | P (x,7,%,,7,) and Y(x,y.x .y)}.

After trivial simplifications this consists in proving that
(xozzO) and (yoz 0) implies

-1
{35= 0] AND(XO-kyOZ yo) and (xo-jy0< yo) and (on 0) and (yoz 0)}
k=0

We know from arithmetics that VXO > 0, Vyo > 0, 3q, 3r such that

Xy = qy, =r and 0 < r < y,. Choosing j = g in the above formula it remains
to prove :
q-1

AND (x, —ky, 2 y,)
k=0

34

But %y 2 qyo then for any k satisfying q > k 2 0 we have q 2 k+1 thus
qy, = (k+1)y0 and by transitivity x, > (k+1)y, we complete the proof

of termination and correctness when x, > 0, y, > O.

However in the remaining case x_ 2 = 0, Y, 0 the program is obviously

0

\2

incorrect since we cannot have (Xo < 0 and x, 0). For the same reason
P, (x, v, x4, 0) is always false when x, 2 0 hence the program must enter

an infinite loop for such input values.

6.5 Approximate Invariants, Systems of Inequations and Proofs of Partial

Correctness

Most program proving methods use inequations of the form :

Pi<= fi(Pl’ as ey Pk) (l=1, v ey k)

whereas we used the equations

P o= T R
P, = £.(P,, ..., P (i =1, ..., k)

i)
For example, instead of
{i>or i:=1ix1 {i> 1}
one can legally write a less precise assertion, such as
{i > 0} i = i+] {i>1/2}
since the strongest post-condition resulting from the pre-condition {i > 0}

is {i > 1} which implies {i > 1/2}.

Tarski's theorem (2.3) implies that

Sopt = H(F) = [(p] F(P) = P)
=> ¥p, (F(P) ¢ P) = (sOpt c P)
= ¥P, (F(P) ==> P)=> (sOpt => P)

Therefore in order to find a correct approximate invariant S hence such
that

=> P
sopt :

it suffices to find a solution S to the system of inequations

P <= F(P)

35

According to Katz and Mannal 1976] the reasoning for proving the par-

tial correctness of a program T is the following

the program 7 is partially correct with respect to ® and Y if and only if
(4P| P <= 7(P)), (¥X| (X)), ¥h, ¥Y
P(h) (Y, X) =y, X)

We can easily show that this reasoning is correct since under the

hypothesis that T terminates we have
I, T[S) F, D

and if the program is partially correct we have
P(h) (Y, X) => ¥, X)

but since P <= F(p) we have SODt => P hence

sopt<h)(Y, X) = yF, X)

Example

Suppose we want to prove the partial correctness of the simple pro-
gram of fig 6.2.a, for an input specification ®(i, i;,) = true and an out-
put specification Y(i, iy) = (i = 1001). The system of inequations corres-—
ponding to that program is easily derived from the equations 6.2.b. This
system of inequations admits an infinity of solutions. For example, we can
easily derive an infinity of approximation invariants from the inductive

invariants

P, = (a £ 1< 1001) for any a < |

replacing in the system of equations we get

P o= (i=2Q)
P, = (i =1)
P, = P, and (i < 1000)
= (a < 1 < 1000)
P, = {4i' ¢ W' | P,(i «1i') and (i = i'+1)}
= {3i'| (a < i' £ 1000) and (i = i'+1)}
1001)

IN

= (a+) < 1

36

It is now very easy to verify that the approximate inductive invariant
is correct since

Py <= Py or P,

P, <= (1 =1) or ((a+1)< 1 < 1001)

which is obvious since P, = (a £ 1i < 1001) and a < 1.

Now the output approximate invariant is :

P, = P, and not (i < 1001)
= (a < 1< 1091) and (1000 < i)
= (1 = 1001)

and obviously Pg => 1.

Discussion

The verification of program partial correctness has been shown to be
amenable to mechanization (see a.o. Deutsch[1973], Kingl1969], Waldinger
and Levitt[1974]). Since the automatic discovery of optimal invariants is
an unsolvable problem the programmer must provide inductive approximate
invariants which cut the loops in the program that is provide the invariants
which recursively denend on themselves in the equations. This in fact pro-
vides the entire solution of the inequations since a simple propagation in
the equations permits to deduce the remaining invariants. Thus program par-
tial correctness methods consists in verifying that a solution of the ine-
quations provided by the user is correct (see 4.1.1). and that this solu-
tion implies the output specification when assuming the input specifications

to hold.

The only criterion to choose the inductive approximate invariants among
the infinitely many ones is that they must be simple enough to be easily
proved by the theorem prover and yet vowerful enough for the theorem prover
to deduce the output specification. This criterion is certainly not a use-

ful guide for the user to discover the convenient inductive invariants.

6.6 Approxzimate Invariants, Systems of Inequations and Proofs of Termination

Let m be a program which corresponding system of equations is P = F(P).

The termination condition with respect to an input specification ® was given

37

at paragraph 6.4 as
(o), 3h, ¥]s ()E, D}

where SOpt = u(F).

Applying Tarski's theorem (see 2.3) we have

Sopt = AND {p] F(P) => P}

the termination condition becomes

{(¥x] (X)), 3n, 37| AND {P(W T, X) | F(P) =>P}}
={(¥p[P <= F(®)), (VK| oX)),3 h, 37| P, X}

which is the termination condition of Katz and Mannal1976].

However they observed that this last condition is not utilizable in
practice since it is expressed in terms of every possible set of approxi-
mate invariants satisfying the system of inequations P <= F(P) which
admits infinitely many solutions. This fact is not surprising at all since
this condition is based on Tarski's theorem which is not constructive.
Their repartee was to use other methods to prove termination such as Floyd
[1967]1's method based on well-founded sets with no infinitely descending

chains.

Yet our termination condition is utilizable provided that we may

find a constructive definition of the optimal invariants Soot' The ascen—

Iy

ding sequence of successive approximations is the key to that problem.

6.7 Discovery of Optimal Invariants

The optimal invariants SODt are the limit of the ascending approxi-

mation sequence starting from the infimum false. Let us use the system

of equations of fig 6.2.b as example

Initialization

Pi = false 1 =0..5

38

Iteration |

= (i=29)
= {3i' e N | P (i «i') and (i = 1)}
= {3i' ¢ W[(i' = Dand (i = 1)}
=(il=1)
P, =P or P,
= (i =1 or false
=(i=1)
P, = P, and (i < 1000)
= (i =1) and (i < 1000)

=(i=1)
P, = {31'" ¢ ™| Py(i«i') and @ = i'+1)}
=(i=2)

Py = P, and (i > 1000)
= (i =1) and (i > 1000)

= false

Fo = (i=Q)

Py =(i=1)

Pp =P orp
=(i=1)or (i =2)
=(l £1<2)

Py = (i=9)
Py = (i=1)
P, = (I < i< k)
P, = (1 £1<k)
P, = (2 1 < k+1)
' Py = false
Iteration 1001
Po = (i = Q)
Py = (i =1)
P, = (I £ 1< 1001)
Py = (1 5 i< 1000)
ﬁu = (2 <1 < 1001)

Py = (1 = 1001)

39

At iteration 1002 we find the same result, so that further ite-
rations are useless, the iterates have converged. In 1001+ 1 iterations,

the optimal invariants are generated directly from the system of equations.

It is a bit astonishing to discover that the approximation sequence
really describes the execution of the program. Yet in general it is a
means of computation which differs from usual execution since all nossible
program paths are followed parallelly, and the paths are initiated from

all program points (and not from program entry points only).

It is obvious that for some non-terminating programs the approxima-
tion sequence might be infinite, so that its limit cannot be automatically
computed. The repartee to that problem consists in using induction, i.e.

reasoning by recurrence on the length of the sequence (see 4.1.2).

Example

Suppose we want to prove that the optimal invariants of the program

of fig. 6.4.a are given at fig 6.4.c.

By computing the first terms of the approximation sequence and next
using some heuristics we must first discover the general term S(i) of the

approximation sequence. We have found

il

P, = (x = xp) and (7 = y)

i]

P, = QB(AND (xo—kyozyo) and (x=x0—jy0) and (y = yo))
1=0 k=0

5 (i) L] .

P, = OR (AND (xo-kyoz yo) and (x = XO'-(J +l)y0) and (y = yo))
1=0 k=0
i -1

P, = 950(131\118 (x,-ky,2y,) and (x,-jy,<y,) and (x=x%x,-jy,) and (y=y,))
3= =

We must first show that this is a correct expression of the

first terms of the ascending approximation sequence.

The initialization is :

Pi = false i=1..4
the first iteration is

P, = (x=x0) and (y=y0)
P, = (P, 9£‘P3) and (x =2 vy)

= (P, or false) and (x = y)

1 8o
=P, and (x 2 y)
= (x=x%;) and (y=y,) and (xoz Y,

p, = {Ix' | P,(x") and x =(x' -y)}

[\

= Gty 2 79) and (x'=x,) and (y=y,) and (x=x'-y)

%

= (x,zy,) and (x=x -y,) and (y=y,)
P, = (P, or P,;) and not (x 2 y)

= (x=xy) and (y=y,) and (x,<y,)

These iterates are clearly of the general form S(i) for i=0. For the
induction step, supposing S(i) to be correct and replacing in the equations

we must show that we obtain S(i+1).

L}
P

(x=%¢) and (y=1y,)
, = (P; or Py) and (x > y)

= (P1 and x> y) and (P3 and (x > v))

{((x42y9) and (x=x;) and(y=y,))

or
i]
OR (AND(x, —ky, 2 yg) and (x=x, - (j+D)y,) and (y=yy))}
=0 k=0
and {x > y}
= (x5 2 y,) and (x = x;3) and (y = y,))
or
i+1 3
OR (AND (xo—kyOZyo) and (x=x,-j'y;) and (y=y,))
1'=1 k=0
i+1 j

= OR (AND (x, -ky,2y,) and (x=%,-jy,) and (y=y,))
j=0 k=0

41

Py = {3x' | P,(x') and x=x'-y}

i+1
= OR {3x'| AnD (xq ~ky, 2y,) and (x' =x;-jy,) and (y=y,) and (x=x'-y)}
550 =0
i+l]
= OR (AND (x,-kyy2y,) and (x=x, = (j+1)yy) and (y=y,))
720 k=0

P, = (P, 9£_P3) EEQ'(X < y)
= (P; and (x<y)) or (P, and (x<y))
= ((x=x%¢) and (y=y,) and (x,<vy,))

or
i+1]
OR (AND (x4, -ky, >y,) and (x=x, - (j+)y,) and (v=y,) and (x<vy))
j=0 k=0
i+l 3-1

= OR (AND (x, -ky,>y,) and (xO - 3v,<¥,) and (x= %, = jyv,) and (y= yo))
j=0 k=0

. . .th
Since now we have proved the general form S(i) of the i— term of appro-
ximation sequence to be correct, the optimal invariants are obtained by :

S = 1im S(i
opt = Lin S(D)

which directly results in formulas of fig 6.4.c.

Discussion

It could be claimed that the users will have even more difficulties
to find optimal invariants than they have to find approximate invariants.
This may be true. Yet, discovery of invariants is necessary in both cases
and it might turn out that the discovery of optimal invariants presents
no more difficulties that the discovery of simply approximate invariants.

The key to that problem is certainly symbolic execution.

42

6.8 Symbolic Execution

Symbolic execution is a widely used program analysis technique.
(a.o., Burstalll1974], Cheatham and Townley[1976], Effigy[19757], Hantler and King
(19761, Hoarel 19761, King[19767, Select[1975], Sintzoff[1975], Yonezawa [1976]).

We will show that symbolic execution consists in solving a system

of equations by successive approximations.

6.8.1 Abstract Contexts

With each program point will be associated an abstract context which

is the set of different program paths

{pys wvenp}

which may lead to that program point. Each program path p of {pl, e, pm}

is of the form
p = <(m=24Q)), (xl =E1), Ceey (Xi =E.), ...,(xn=En)>

The path condition m is equal to an assertion Q stating the conditions

which had to be satisfied in order for that path to be executed.

The X, are the program variables whereas the Ei are formal expressions de-
pending on formal symbols Vis «ves Vn which renresent the arbitrary initial values

of the variables X 5 «++y X OD program entry.

In general, abstract contexts may have different representations, and
rules of equivalence must be defined. From now on we will consider that

abstract contexts are equal when formally equivalent.

In the following p(m) denotes 0, p(xi) denotes Ei and p(o « B) is a
copy of p modified so that the value of o becomes RB.
6.8.2 System of Equations

The dependance between abstract contexts associated to adjacent program

points is defined by the following forward rules

43

Entry points :

C, = {<(m = true), (xj = Vej), i=1, ..., o>}

where V,,, j =1, ..., n are different formal symbols wich represent the

symbolic input values of the variables.

Assignment statements :

{C}

x (= E

{p(x « E(Xi <« (p(xi)), i=1, ..., n)), ¥p ¢ C}.

The variables X in the right-hand-~side expression E are replaced by their
values p(xi), (parenthesized to maintain the proper scope of operator) and
the result is assigned to the left-hand-side variable x. (Algebraic simpli-

fications are usually performed but in theory superfluous).

If statements :

{c}

if B then
{p(m «<(p(m) and B(x; « (p(x;))),1 =1,...,n), ¥p e C}
<statement list>

fi

The path condition is updated for each possible pnath.

Labels and go to statements :
L:{ 1 c,}
iepred (L)
where pred(L) denotes the set of program points which may preceed L during

any program execution.

The operation || describes the union of two abstract contexts Cl = {pl,...,pw}

and C, = {ql, ceey qn}. c, uc, is the set {p,, ..., | qn} where
possible equivalent program paths are eliminated and replaced by the repre-

sentant of the equivalence class.

§.8.8 Symbolic Execution Tree

We illustrate the application of the above rules to the program

i

{0}
X 1= 13
{1}
loop : {2}
iﬁ x < a then
{3}
X 1= xX+b j
t4} goto loop ;
fi;
{51}

fig 6.8.3.a

The corresponding system of equations is

B)>}

o = {<(m = true), x =Q), (a =a), (b
p = {px « 1), ¥p e C,}
» =G UG,
, = {p(m < p(m and (p(x) < p(a))), ¥p e C,}
= {px « (px) +p(b)), ¥p e C,}
{p(m « p(m) and (p(x) > p(a))), ¥p e C,}

fig 6.8.3.b

aQ O O 0o O
=
[}

w

Symbolic execution consists in computing the increasing sequence of
successive approximations (2.4.1)
Initialization :

Ci = {<false, L, 1, L>}
(we use the notation <Q, o, B, Yy> to denote

<(m=0, (x=0), (@ =8), (b =1v)>)

Iteration |

@]
]

0 {<true, Q, a, B>}
, ={px « 1), ¥p e C}

{<true, 1, a, B>}

(@]
]

C, =C, ¢, ={<true, 1, a, 8>} vuifalse, 1, 1, 1>}

{<true, 1, o, B>}

since the path condition (M = false) describes an inaccessible

path which needs not be considered.

45

(@]
li

, = {p(m « p(m and (p(x) < p(a)), ¥p e C,}
{<(1 <), 1, o, B>}

C, = {px « (P& + (BN, ¥p e C,}
= {<(1 < a), 148, a, B>}
Cs = {p(m « p(m) and (p(x) > p(a)), ¥p ¢ C,}

= {<(1 >a), 1, a, B>}
fig 6.8.3.c
Iteration 2 :
¢, =C, uc,
= {<true, 1, a, B>, <(1 < a), 148, a, B>}
C, =1{<0 =), 1, a, B>, <(1 < a) and (1+B < a), 1+B, a, B>}
C, ={<(1 <), 148, a, B>, <(1 £) and (1+B<a), 1428, a, B>}

@]
il

¢ = {<(1 >), 1,a, B>, <(1 < a) and (1+8>a), 1+B, o, B>}

fig 6.8.3.d

So that at iteration 2 we have built the following symbolic execution

tree, (Hantler and King[197671)

<true, 2, a, B>

<(1<a), 1, a B <(1>aw), 1, a, B>

<(1 £ a), 148, o, B>
<(1 £ a), 1+8, o, B>
<(1 <a) and (148 < a), 1+8,0, €>

< a) and (1+8 > a),1+B,0,85

<(l < a) and (1+8 < a),1+28,q, B>

46

It is clear that we represented the abstract context Ci associated
to program point i by the set of paths associated to each of the nodes
labelled i in the above execution tree. Equivalently we could have repre-
sented the asbtract contextsassociated with program point i by the maximal
subtree (of the above symbolic execution tree) which leaves would have
been labelled by i. Then the union of abstract contexts performed at junc-

tion program points would be the merging of symbolic execution trees.

It is clear that the computation of the next terms in the approxima-
tion sequence would cause the symbolic execution tree to grow. Without par-

ticular hypothesis on o and B this process would be infinite.

Thus symbolic execution must cope with the problem of passage to the
limit in infinite sequences of successive approximations. In paragraph 4
we investigated the various mathematical techniques which permit to cope
with infinite approximation sequences. Not surprisingly each of these ma-

thematical techniques gave rise to program analysis techniques.

6.8.4 Verification of Properties of Optimal Symbolic Contexts

Scott's induction (4.3.3) consists in proving P(S) where S = u(F) by

the rule
{P(s,) and {({(¥ (PN} = {P(FE)H}} => {P(S)}
where S; is one of the first terms of the increasing sequence of successive

approximations.

This approach is implicitly used in the technique of "cut-trees" of
Hantler and Kingl1976].
Example

Let us prove the trivial fact that assertion (x-b < a) holds at pro-

gram point {4}, (see fig 6.8.3.a).

47

Base

After iteration 1 the abstract context Cu is (see fig 6.8.3.c)
C, = {<(1 =), 148, a, B>}

Therefore trivially, (C“(x) - Cq(b) < Cq(a)).

Induction Step

Suppose it is true of all paths in C, at iteration % :

CH(QJ) = {<Pi, Yi’ O‘i’ Bi>s i e D} with Yl - Bl < OLi

replacing in the right members of the equations we get

C,(2+1) =C, () U C (V)

= {<true, 1, a, B>, <Py Yi» 0B, ie D}
C,(0+1) = {<(1 £ &), 1, a, B>, <p; and (y; < @), v;, 0, B>, ic D}
C,(A+1) = {<(1 <), 1+B, a, B>, <p; and (v, < a.), Y.+B,, a., B>, ie D}

And now we have to prove (x-b £ a) for all paths of C»(2+]) that is both
(1 g 0) = (1+R-R<a)

(Yi—Bi < ag) and (v, < a;) = (y;+B.-B; < o)

induction path
hypothesis condition

Notes

Notice that the induction step consisted in reasoning on the cut tree

for {4}.

cut {4}

© o v o,

5 Bi>’ i e D}

e’ {<true, 1, a, B>, <p., Yy G Bi>, ie D}

1
{<(1 <), 1, a, B, (3)) & > wy, 1, aq, 8,
<p. and (YiSC@),Yi,ai,6i>, ie D} <p; and (v, > 0;), v;,0.,68.>, i€ D}

{<1 < a, 148, a, B>, (%)

<Pl and (Yig ai),yi+8i’ai,8i>’ 1¢€ D}

This approach is also that of Sintzoff[1975] although the joining
paths operation || does not juxtapose the different paths but rather merges
them using "alternative expressions'" instead of simple formal values. This
simplifies the description of the tree of considered alternatives since
common parts of the different alternatives are merged together. Moreover

the technique is applied to the verification of procedures.

6.8.5 Verification of the Correctness of Ovtimal Symbolic Contexts

According to 4.1.2 we can discover the limit S_ of the increasing

approximation sequence S;, ..., S . by using (asking to the programmer)

Q/’
the general form f(&) of Sg- This consists in proving the correctness of

S, = £(2) by showing that

3
- S, = £(0) (or equivalently S, = (1))
- £(2+1) = F(£())

and next passing to the limit by

S, = lim £(2)

Q-»00

This mathematical technique is essentially the one used by Burstall

[1974].

Example

In our example of fig 6.8.3.a, f(&) is entirely defined by :

=1
C,(2) = (<AND (1+iB<0), 1438, o, 8>, § = 0,..., &-1)
1i=0
with the convention that AND (e.) is true for an empty indexing set A = @,
iel
Replacing in the system of equations of fig 6.8.3.b we get
]
C,(2) = {<AND (1+iR<a),1+jB, a, B>, j =0, ...,% -1}
1=0
]
C,(2) = {<AND (1+iB<a),1+(j+1)8B, a, B>, j =0,..., 2-1}

i=0

49

C,(2+1)y =¢C, (1) iy ¢,) =¢C, () y {<true, 1, a, B>}

{<true, 1, g, 8>,

j'-l

<AND (1+ig<a), 1+3'B, a, B>, j' = 1,...,4}
1=0
j=1
= {<AND (1+ig<a), 1+j8, a, B>, j = 0,...,%}
i=0

which is of the form used as hypothesis of the induction step and therefore

is correct. It is obvious that in iteration 2 we discover C,(2) (see

fig 6.8.3.d).

Now the final result of the symbolic execution is obtained as

lim £(2)

Q-r00

and we get the result

c, = {<true, Q, a, B>}
C, = {<true, 1, a, B>}
i-1
C, = {<AND (1+iB < a), 1+jB8, a, B>, ¥j = 0}
i=0
]
C, = {<AND (1+iB < a), 1+jB8, a, B>, ¥j 2 0}
1=0
j
C, = {<AND (1+iB < o), 1+(j+1)8, o, B>, ¥j > 0}
1=0
i-1
C. = {<(AND (1+iB < @)) and (1+j8 > o), 1+jB, @, B>, ¥j =0}
1=0

fig 6.8.5.a

Note

Since we have the optimal solution to the equations we can prove or
disprovetermination (see 6.4). For example the program of fig 6.3.3.a does

not terminate over the input svecification ®(a, B) = (B =0, o = 1) since

(¥(a, 8) | @(a, B)), Jh| (¥p ¢ Cy> Ch(ﬁ) = false).

50

Taking h = {5}, and C, as defined at fig 6.8.5.a we have

1-1
Co = {<(AND (1+iB < a)) and (1+jB > @), ...>, ¥j = 0}
i=0
under the condition B = 0 and o = 1 the path conditions of all paths

of Cs are false, and therefore these paths are inaccessible. Hence

when {f = 0, a > 1}, the program cycles.

Note also that Burstall[1974] does not use induction on the length
of the approximation sequence but instead structural induction. Moreover
he does not require f(L) to correspond the least fixpoint of the symbolic

equations so that he cannot prove termination.

6.8.8 Discovery of the Optimal Symbolic Contexts

The last mathematical technique we will investigate to cope with
infinite symbolic execution trees is 4.2.3 since it permits the discovery
of the optimal symbolic contexts as opposed to simple verifications in
the previous paragraph. Recall that the recurrence relationship S, = ik
and S%+] = F(SR) between consecutive terms of the increasing approximation

sequence leads to a system of difference equations, which may be solved

to get Sy as a function £(2) of £, which gives the least solution S as
1im (£(2)).

00
This approach is implicitely used in Grief and Waldinger[19741, in
Cheatham and Townley[1976] and in the "algorithmic approach" of Katz and

Mannal 19761, etc.

Example
Let us apply this technique to the program given at fig 6.8.3.a.
Since all contexts in the system of equationsfig 6.8.3.b depend on C,»

we will try to discover the value of C, in the first place.

A first iteration of the ascending approximation sequence corresponding

to the equations fig 6.8.3.b leads to the basis for difference equations.

51

C,(1) = {<true, 1, a, B>} = C, which is constant. (See fig 6.8.3.c and

notice that a path with a path condition equal to false is inaccessible

and therefore needs not be considered).

Then we establish a recurrence relationship between C,(%+1) and

C, (%) using the equations fig 6.8.3.b :

C,(2) = >, i e D)}

bepyor Yi00 %4,00 Big
Co(2) = {ep; goand (v, o <0y o)y vy g5 8y g0 By p>s §e D(D)]

s

CoB) = {<py goand (vy p S0y gda ¥y ¢ + By g5 @y g5 By o> 1€ DIV

C,(+1) = C () LU C, ()

C, U C,(2) since C; is constant.

Notice that C, (L) = A(C,(2))

where Z{<pi It i ¢ D}

Yier %, Bio
= {A(<P 9° Yl I O('l Q° Bl Q,>)’ ie D}

1
and
APy g Yig0 %40 BiLe)
= <Py g 3nd vy g =0y 0)s Yy gt By s @y e By g7
thus
C,(a+1) = ¢, L A(C, (L))

Hence the recurrence relations defining C, are :

c,(1) = ¢,

C, (+1) = C, 11 ACC, (2N

which can be solved directly, using the property that A is distributive

over |1, this yields

C,(2) =

[
=
>
N
o
-
g

{A(<true, 1, a, B>), i =0,..., o-1}

52

. . . . i
It remains now to determine the multivalued function A™.

. . i. .
This is done using the fact that A" is defined by recurrence

and A is the identity function.

We have

A% (<true, 1, o, B>)

<true, 1, o, R>

= <p0’ YO’ d‘o! BO>

Let Al(<true, 1, a, B>)

be <p. ., O. >
Pis Yo O By

then Al+](<true, 1, o, B>)

M<pys Yis 0y B>

<pi and (Yl s Otl)’ Yl+81’ O('i’ 81>

Piapr Yiepr %40 B2

These recurrence relations may be solved directly, yielding

O, = 0 and 0. =, => 0. =@
0 Ralinaiiht PN i i

[
™w

Bp = Band B, = =B. => B.

— "1+l 1 1
Yo = 1 and Yi+l = Yi*-Bi
=Yi+8
===> Y=]+i8

(pO = true) and (pi+l

= Pl and (Yl = al))
== P.y =Py and (1 + iB £ o)
i-]
=> p. = AND (1 + 3B < a)
70
we have found

Al(<true, 1, o, B>)

i-1
= (<AND (1+ 3B < o), 1+iB, o, B>)
3=0

53

and therefore

C,(2) = {A"(<true, 1, @, 8>), i = 0,..., -1}
i-1
= {<AND (1+jB < a), 1+iB, o, B>, i =0,..., -1}
3=0

Thus the optimal solution to equations fig 6.8.3.b is found to be :

lim (CZ(Q))

oo

= {<AND (1+jR < a), 1+iB, a, B>, ¥i > 0}
3=0
The other symbolic contexts are straightforwardly obtained replacing C, ()
by its value in the equations. (One can verify that this corresponds to
the solution proved to be correct in fig 6.8.5.a but this is useless here

since the discovered result is guaranteed to be correct).

6.8.7 A Note On Loop Counters

Notice that in the previous paragraphs the basis for the recurrence
was the length of the ascending approximation sequence, whereas in the me-

thods cited in example one uses (eventually dummy) loop counters.

These dummy counters are used to denote relations among the number
of times various paths have been executed and to help express the values
assumed by the program variables. This is acceptable for simple nrograms
with simply nested loops for which there exists a trivial relationship
between the counters and the rank in the approximation sequence. Yet when
considering program with inextricably intermixed loops the rank in the ap-
proximation sequence is no longer a simple function of the loop counters,
hence the use of counters fails (see a.o. Greif and Waldinger[1974] vage 114,

Katz and Mannal 19761, p. 205).

The reasoning on the approximation sequence should be the parade to

these problems, and in fact should be used in all program analysis techniques.

54

6.9 Concluding Remarks

Program partial correctness proving methods are non-constructive
since they only permit to verify that an approximate solution Sof the
system of equations P = F(P) is correct. The criterion of validity for
is the optimal set of invariants defined

S is that S => S where § _
(o] (e}

pt pt
as the least fixpoint of F. This criterion has been shown to be equiva-

lent to S <= F(S).

Heuristic methods may be used to improve S. (Wegbreit[1974], Katz
and Mannal[1976]). They are based on the fact that if SODt => § then
Soptzs) F(S), and F(S) is generally better than S, (backward equations
are also widely used (see 7)). More generally heuristic methods consist
in finding an approximate solution of the system of equations by streng-

thening the iterates of the approximation sequence (see &4.4).

Symbolic execution is a constructive method to discover program pro-
perties since in fact it consists in computing the approximation sequence
which converges to the optimal solution of the equations. However the ge-
neral problem of finding an algorithm to generate optimal invariants for
any program is unsolvable. Otherwise stated approximation sequences may
be infinite. However some methods (see 4) permit to directly pass to the
limit and obtain the optimal invariants. Thus symbolic execution appears to
be a promising technique. Moreover it is the natural method usually chosen

by programmers to hand-prove their programs.

7. APPLICATION TO THE DENOTATIONAL SEMANTICS OF PROGRAMMING
LANGUAGES

The mathematical, denotational, fixpoint or topological semantics was
introduced by Scott and Strachey (Scott[1970],Scott and Strachey[1971]) and
further developped by several authors. A very helpful guide to the litera-

ture may be found is Scott[1976]. (This fundamental paper provides a close

55

and rigorous look at mathematical foundations which details have been

voluntarily omitted here).

7.1 Functions

Suppose that each program variable takes its values in a domain D

including some special value 2 which is the value of uninitialized variables.

. \ . n
If the program has n variables, we shall consider the state space D,

' Y
and denote D" =D" y {1, 7}. D" is made a complete lattice using the or-—
dering & , defined by :
n
D
Lo v L& X = ' X c At TE T ¥X ¢ D"
D D D D D
The semantics of a program P is the partial function F_ : p™ » D"

P
computed by that program. Therefore if the initial values of the program

variables are io, their final values will be FP(Xh) after execution of the

program.

As usual a partial function F : D" > D" is considered to be a total

1

function F : D" - D" such that F(X)

L whenever F(X) is undefined for
1

o' n . .
to D > D by defining F(1) =1

=51

= n
X ¢ D'. Moreover we naturally extend

and F(T) = T.

A 1

. . . . n n
Let us now define an ordering = among functions in D -+ D by

(Feg) <= (VW cD¥, F() c L6}
D

and let !j be the corresponding least upper bound operation.

. n
In order to visualize these operations, consider a "projection” of D
on the real open interval]0, 1[. Take L = 0 and T = 1. The ordering = o'
n' D
on D = [0, 1] is not the usual one (<) since any two distinct points of

n
D are not comparable.

56

An example of comparable functions F and G would be

7.2 Functional Equations

Let us now define the syntactic mechanism which permits to associate

a system of equations with any flowchart program.

Junction nodes :

57

We consider a parallel assignment of n values F(X) to the n variables

X. The semantics is given by functional composition denoted .

Test wnodes

Frf
i

(LIP)oF

T
i}

(1] not P) o F

F true false

—_ o —_ 1 1 1
We note 1 the identity function, that is 1(X)= X, ¥X ¢ p" . £ F : D" D"

1]
. . . ol
is a function and P a predicate (P : D~ {true, false}), we note (Fl P)
. . n' . .
the restriction of the function F to the subset of D satisfying the pre-

dicate P, therefore
_ '
VXeDn
(F‘ P)(X) = iﬁ_P(i} then F(X) else 1 £i

The semantics of a test is simply the restriction of the input function to

the domain satisfying the test.

Let us now quote some useful properties of the functional operations
o (composition), LI (union) and [(restriction).
We define 1 n' gt £ be the comnstant function which result is always the
D" ->D

. . A
infimum L of DT .

+
As before we note F° = 1 and Fn L. F an.
L v o F = Fol r =Ly '
Dn+Dn Dn+Dn Dn+Dn
L 1 'LJF-_-F[_]_L Y v = F
D" " p"p"

58

(G| P) o (F|Q = (GoF|P,F and Q)
G| P)oF = (GoF|PoF)
Go(F!Q) =(GQF1Q)
Fo(O G.) = 1 (FoG.)

ieh T iel t

7.3 Example of the Semantics of While Loops

A while loop such as

while P(X) do X <« F(X) od

over the set of variables X is a syntactic denotation of the flowchart

true |2

X<« F(X)

Its semantics is given by the least fixpoint of the system of equations

F0=1

F, = F, UF,

Fp = (1| P)oFy

F, =F,F,

F, = (1] not P) o Fy

The least fixpoint is the limit of the ascending approximation sequence
also called Kleene's sequence in that particular application (Kleene[1952],

first recursion theorem)

Initialization

F.(0) =1 , _, i=0..4
1 Dn_>Dn

59

Step 1
F, (1) =1
Fo(1) = Fp(D) UF(0) = vl =1

D

D
F,(1) = (PP (1) =(|P)or = (1]P)

F,(1) =F,F, (1) =Fo (1] P) = (F| P)

F, (1) = (1{not P)oF (1) = (1| not P)o1 = (1] not P)
Step 2 :
F (2) =1

F (2) =F,(2) UF, (1)
=1U (F| P

F,(2) = 1| P)oF (2)
=P, U E]P)
= (P U (] P o (®]P)
= (1|P)U (F|P and P,F)

F,(2) = FoF,(2)
=Fo ((1[P) U (F|Pand PoF))
= (F|P) U (F* | P and P,F)

F,(2) = (1] not P) o Fy(2)
= (1] not P) o (1 U (F| P))
= ((1 | not P) o 1) U ((1] not P)o (F| P))
= (1| not P) U (F| P and not P, F)

By finding these first few approximations we are led to the formulas :

Step j :
F o (3) =1
i-l kel :
F . (3) = II (F |AND P,F")

k=9 1=0

60

1-1 K k i
F,(j) = I (F | AND P, F7)
k=0 i=0
i-1 k .
PGy = 0 T am e Y
k=0 i=0
-t kel i K
F(3) = I (F | (AND P,F") and (not P, F))
k=0 i=0

These may then be proved to be correct using mathematical induction (4.1.2)

- It is first easy to verify that the above formulas are correct for j = 0,1

and 2 with the following usual conventions

O r. =5 , . when the indexing set A is empty
. i n' . n

leh D" ~D

AND Pi = true when the indexing set A is empty.
ieh

- Replacing the unknowns in the right hand side of the equations by the

hypothetical values of step j we get at step j+l

Fo(G+1) =1
FL(3+1) = F G+ U T, (9)
j-1 k .
=1y (o @ aw e, Eh)
k=0 i=0
3 k'l .
U (O @ | aw e, Fhy)
k'=1 1=0
(3+1)-1 k-1 .
= I (F°| AND P, Fh)
k=0 i=0
F,(G+1) = (1] B) o F, (j+1)
j k-1 .
=P, I (Fk] AND P, F)
k=0 <0
i k-1 .
=0 G| P) e (F]am P, F)
k=0 10
J k-1 .
=1 (eFY| (PoFX) and (AND P Fl))
k=0 i=0
(j+1)-1 K k

0 (F |AM P, rl
k=0 =0

61

Fy(j+1) = Fo F,(j+1)
] k .
=F, (] (Fkl AND P, F1))
k=0 i=0
i k .
= 11 (Fo (FX| AND P, FL))
k=0 =0
GG+1)-1 k .
-0 ' aw p.Fh
k=0 =0

F,(3+1) = (1] not P) o F, (j+1)

j o kel :
= (1] not P)o I1 (F |AND P, F")
k=0 1=0
] kel .
= 11 (1] not P)o (F |AND P, F")
k=0 1=0
] k-1)
= 0 (1oF5| (not PoFS) and (AND P, F))
k=0 1=0
. (3+1)-1 K k-1 ; K
= I (F] (AND PoF) and (not P, F))
k=0 1=0

The general term of the (Gauss-Seidel transformed of) Kleene's sequence
given at step j has been proved to be correct by recurrence on j. The limit
of Kleene's sequence is obtained when j -~ ©, so that the function computed
by the while-loop schema is
lim F_(3)
jroo

which is :
% k-1

O (5| (AND PoF') and (not Po FY))
=0 =0

52

7.4 Application to a Program for Computing |vVa

Before proceeding it seems wise to verify that our formal definition
of the semantics of the while schema indeed captures our intuitive under-—
standing of the schema. Let us consider an example of interpretation of

this schema which is taken from Manna and Vuillemin[1972]

The program is the following :

F,
={::> with a > 0

— <X, ¥,2> = <x+1, y+z+2, z+2>

it computes the integer square root LVal of a natural integer "a" using

the arithmetic property

¥n ¢ IV, 1 +3+ ...+ 2n-1 = n?

The semantics of this program is the function

R = while o, U
where

u(<x9y’z>) = <O,1’1>

Dk i k
while = [I (F | (AND P, F") and (not PoF))
T k=0 =0
P(<x,y,2>) = (y < a)

F(<x,v,2z>) <x+1, y+z+2, z+2>

63

We have :
R = while , U
@ k-1 .
_ k i k
= (II (F | (AND PoF") and (not PoF) ou
k=0 i=0 - T
o K, K i K
= 0 ((F"| (AND PoF") and (not Po FY)) o 1)
k=0 i=0 - T
> k k-1 i Kk
= I (Fou| (AND PoF ou) and (not PoF ou))
k=0 1=0

. n
Let us first compute F o U for n = 0.

Fooll=1ou =3y =<0,1,1>

induction hypothesis

oL

<3, (G+1)%,25+1>

1+
P

It

<j+l, (G2 +25+1+2, 25+ 1+ 2>

<j+l, ((GG+1) +1)2, 2(j+1) + 1>

1

by recurrence
F’ ol = <n, (n+1)?, 2n+1>, ¥n 2 0

and also

PoF ou = (n+1)? < a

Replacing in "R" we get

co k"‘]
R = I (<k, (k+1)%, 2k+1>| (AND(i+1)? < a) and not ((k+1)2 < a))
k=0 1=0
Simplifying using the arithmetic property :
k=1 k
(AND(i+1)? < a) <==> (AND i? < a) <=> (k? < a)
1=0 i=1

we obtain :

[ee]

R = II (<k, (k+1)%, 2k+1> | k? < a < (k+1)?)
k=0

Note that the predicate k% < a < (k+1)2? is true only for a unique value

|Va] of k, therefore R simplifies to

R= (01 (<k, (k+1)?, 2k+1> | false)) U (<LVal,(L/al+1)2,2[Val+1> | true)

k#lvVal

64

R= (1 L) U (klVal, (WWal+1)?, 21Y/al+1>)
k#lva D" D"

R = <lval, (LVal+1)?, 20/al+1>

Which is the expected result of the program.

7.5 Concluding Remarks

Remark 1 : (implicit or explicit semantics of commands).

There are two ways of expressing the semantics of the while command

while P(X) do X « F(X) od

a - "Static" or implicit definition :
The function computed by the while command is the term F,(®) of the

least solution <F1(w), F,(®)> of the functional equations

F, 11_|(F]P)0F1

F, = (1] not P) o F,

b - "Dynamic'" or explicit definition

The function computed by the while command is

S A i K
I (F | (AND PoF) and (not P, F "))
k=0 =0 T

The question of which of the two (equivalent) definitions is the most
useful for expressing the semantics of while commands is a polemical one
(Dijkstral 19761, Hehner[1976]). However both approaches are "dual" and
have their equivalent in mechanical sciences which express their laws in
two equivalent ways : a dynamic law expressing that a quantity is function
of the time (e.g. force F = m %%) and a static law expressing the conserva-

tion of some quantity (e.g. conservation of the quantity of movement mv).

65

Remark 2 : (forward and backward equatiomns).

The semantics of the while loop as proposed by Manna and Vuillemin

[1972] is the least fixpoint of the fonctional ¢ defined by the equation

¢(X) = if P(X) then ¢(F(X)) else null fi

in our formalism
¢= (¢, F|P) U (1] not P)
which solution

0 k-1

e =1 (Fk[(AND P, F") and (not P oFk))
k=0 i=0

is the same as ours.

However this equation is obtained by the backward rules of Mc Carthy[1963]

(see Mannal 19741, pp. 324-326), whereas we used forward equations.

These two alternative methods may be compared in the following table

Basic constructs Forward- rules Backward rules
Entry node
P R
Junction node
B, Fp ... F_ .
\ n 1
F = .
.H Fl
1=1 1 =1 n
F
Assignment node
|
r%f_ufj?ﬁ i
X <1 (® F, = FoF F =F, oF
v P
Test nodes
l"‘ Fo= (D)
e Lo t B
C PO F = (FJ P)U(Ff! rot P)
true alae Fe = 7y | ot P)
4 A
’ F }{
Ernil node
oo P e o = !

66

Applying the backward rules to the while loop schema we get

¢ =F,
Fy = F,
F,o= (F,|P) U(F, | not P)
F|3
F, =F oF
F, = 1

which simplifies in :

¢ = (¢.F|P) U (1] not P)

The uses of forward or backward equations are generally a matter of taste

(Dijkstral 19761, page 214).

8. APPLICATION TO COMPILER VERIFICATION OR DISCOVERY OF PROGRAM
PROPERTIES

The most familiar abstract interpretation performed by compilers is

static type checking.

When the number of types involved in a program is finite the compiler
can solve the system of type equations using a finite approximation se—
quence (4.2.1). However most languages permit to write programs using a po-
tentially infinitc number of types. The compiler must then cope with infinite

approximation sequences. The two most common alternatives are

- Type verification (4.1.1) : by means of declarations the programmer
provides a solution or a correct approximation of the exact solution of the
system of equations. The compiler simply verifies that the declarations of

the programmer are correct (Ledgard[1972], Algol 68[19761).

67

- Type discovery (4.4) : the programmer needs not declare the type
of the objects manipulatedbyits program (APL, SETL), or needs only declare
gross global type properties which are not always sufficient for local
type checking (PASCAL, see Cousot[1977b]). The compiler must then discover
a correct approximation of the exact solution of the system of type equa-

tions (Cousot[1976], Tenenbauml 197417]).

We now illustrate discovery of program properties using a finite and
then an infinite interpretation space. The general idea is to partition
the potential wvalues space of each variable in a finite or infinite number
of subsets, each being represented by an abstract value. At each program
point the problem is to determine to which subsets will belong the dynamic
values of each variable. This is done by solving a system of equations which
is obtained by interpreting the program basic operations and tests as acting
on the abstract values of their operands. This static analysis of program
properties resembles type discovery yet the space of abstract values may
introduce a partition of the values space which is thiner than the one in-
duced by conventional types. Accordingly the building of the system of equa-

tions may involve a deeper analysis of the semantics of primitive operations.

8.1 Finite Abstract Evaluation of Programs

Examples of finite abstract evaluation of programs may be found in
type checking (Naur[19661), checking of sufficient conditions for program
properties to be satisfied (Sintzoff{1972]), finite state program testing
(Henderson and Quarendon[1974], Henderson[1975]), elimination of unnecessary

copying operations (Schwartz[1975]), etc.

8.1.1 Example of an Abstract Interpretation of Integers, Stacks and Trees

In order to give an extremely simple example of finite abstract inter-
pretation, let us consider a programming language allowing the definition
of data types using the basic integer type and the stack and binary tree

constructors.

68

Let us partition the set of integer values as follows

T

|

e

\/
|

1

This partition of integers permits to distinguish positive from negative

integers setting aside their absolute values.

The set of trees will be partitionned into either nil trees or non-nil

trees

tree

T = nll non—nil
This partition of trees is exclusive of the nodes content, of the tree

shapes, etc.

The partition of the set of stacks will be thiner than the previous
ones. We will distinguish between empty and non-emnty stacks but a further dis-
tinction will be established between non-empnty stacks depending on the na-
ture of the stacked elements. This nature of stacked elements will be repre-
sented by the union of the abstract values of each of the stacked elements.
Therefore no distinction is introduced between individual elements of the
stack. A further radical simplification is introduced by considering only

stacks of trees and stacks of integers

69

N
stacl(T)
\\\\\\\\\\\\‘\\\\
_st_aci(i_:r_eg)/ stack (integer)
= stack(ré) >ack(non—nil) EE__CB_({ _s_t_a_c_k_(—)
/
stack (1)
!

With the above scheme an empty stack is represented by the abstract value
stack(L). A stack of positive or nul integers would be represented by
stack(+). A may be empty stack containing negative integers and non-nil

trees would be represented by stack(T), so that the content of this stack

is in fact not recorded.

Finally the space A of abstract values for each program variable is

chosen to be

A=I1+T4+x

where the plus operation between lattices is defined as follows (Scott

(19711)

The abstract context associated with each program point of a program

. . . n .
with n variables is a member of A . We will represent an abstract context

70

by a sequence of couple (variable identifier <« abstract value) such as

C, = <STACK « stack(y), COUNT <« O, TREE < tree>

As before C, (V) is the value of variable "V'" in context "C;" and "C, (V<«a)"

is a copy of "C," where the value of variable "V" is replaced by the abstract

value "a". For example

Cl(TREE) = tree

Cl(TREE < nil) = <STACK « stack(r), COUNT « 0, TREE <« nil>

e note |] the union of abstract values in the lattice A. The operation

Ly is the corresponding operation on abstract contexts

C1 = <STACK <« stack(+), TREE <« nil>
c, = <STACK <« stack(~), TREE <« non-nil>
C, U, €, = <STACK « stack(+) il stack(-), TREE < nil || non-nil>

<STACK < stack(integer), TREE <« tree>

Let us now perform the abstract evaluation of a sample program which
iteratively traverses a binary tree and counts its tips (Knuth[19687,

Burstall[1974])

c - STACK := empty; count := 0;
1
c, loop:
c. - if TREE # nil then
, == =1
c. - Push TREE onto STACK;
I3
c. - TREE <« left(TREE);
5
go to loop;
C, - else
COUNT := COUNT+];
C, -
c if STACK = empty then
g - == Len
go to finish;
Cq - £1;
c. Pop TREE from STACK;
10
c - TREE := right (TREE);
11
80 to loop;
£is
finish
Cp =

71

Before building the corresponding system of equations we must define

the abstract interpretation of primitive operations of the language.

Arithmetic operations are interpreted by the classical rules of

signs.

"right" are defined on non-nil trees and

The operations "left" and
deliver an eventually nil tree. Therefore the operations "left(TREE)"
and "right (TREE)" in a context "C" are interpreted as "son(C(TREE))"

which is defined by

Ly

son(tree) = tree

§Gn(non-nil) = tree

$on (L) =1

2 nonooe
son(a) =T for any other abstract value "a" in A.

The test "TREE # nil" is defined only for trees, so that it aborts
for other values. Therefore on the true path "TREE" must be a non-nil tree

whereas on the false path it must be a nil tree.

Finally we have to define the abstract interpretation of stack pri-

mitives.

The assignment '"STACK := empty" in context "C" delivers a context

"C(STACK <« stack(w))".
The operation "Push V onto STACK" is interpreted in context "C" by
the abstract operation
)
C(STACK <« Push(C(STACK), C(V))
which is defined by

Push(y, a) =1

Push(stack(a), a')

1

stack(a |} a')

since the properties of the stacked elements are represented by the union
of individual elements. A last rule expresses that "Push" is not defined

for non-stack values

i 9
Push(a, b) = T for other (a, b) ¢ A~

72

The operation'"Pop V onto STACK" is interpreted in a context C by
p p

the abstract operation :

(>] (U Y
C(V <« Top(C(STACK)), STACK < Pull(C(STACK)))

defined by :
C
fg;(l) = 1, Pull(y) =1
fg%(stack(a)) = a, Pull(stack(a)) = stack(a)

The properties of the top element in the stack are the ones of the union
of stacked elements since no distinction is made between individual ele-
ments. This interpretation does not take account of the length of the stack
so that underflow is ignored except when "a = 1" which permits to report

a possible program abortion. The remaining cases are covered by the rules
oy \—an
Top(a) = T , Pull(a) =71

which specify that stack operations cannot be correctly performed on mon-

stack arguments.

The above considerations permit to associate the following system of

equations to our example program {(fig 8.1.1.a)

C, = <STACK <« stack(1), COUNT « O, TREE <« tree>
C, = Cy Uy Cs Uy Gy

C3 = CZ(TREE <+ non-nil)

C, = C,(STACK <« Push(C,(STACK), C, (TREE))

Cs = C,(TREE <« son(C, (TREE))

Ce = C,(TREE < nil)

C;, = Cx(COUNT < (Cq(COUNT) & +))

Cy = C,(STACK <« stack(1))

Cy = C,

C,, = C, (TREE « Top(C_(STACK)), STACK <—m(C9(STACK)))
C, = C(TREE < s‘&’l(c10 (TREE))

C12 = C8

73

The least solution of the above system of equations is the limit of
the finite ascending sequence of successive approximations. The initial

step is given by
Ci = <STACK <« 1, COUNT <« 1, TREE <« 1> i=1..,12

The computations are then a bit tedious (but not difficult) so that we

directly give the final result :

STACK COUNT TREE
C, EEEEEKL) 0 tree
C, stack(non-nil) | + tree
Cys C, stack(non-nil) + non-nil
Cs stack(non-nil) + tree
Ces C, stack (non-nil) + nil
Cio stack(non-nil) + non-nil
Cy stack (non-nil) + tree
Cgs Cpp | stack(s) + nil

This very simple abstract evaluation of the program allows the compiler
to discover program properties which turn out to be essential for code ge-

neration

- COUNT is a positive integer
- TREE is not nil at lines 4 and 10 and therefore the operations "left"

"right" will not abort (provided that TREE is correctly initia-

and
lized by a tree value which has been assumed in this interpretation).
- STACK is a stack of non-nil trees (when not empty).
- Finally, if the program terminates clearly, the final values of STACK

and TREE will be respectively "empty" and "nil'".

8.1.2 Compilers Must Perform an Approximate Analysis of Programs

One can make the previous interpretation more accurate by considering

a set of abstract values which partition more precisely the snace of

74

concrete program data. For example we could have represented a non-nil
tree which nodes contain stacks of positive integers by the abstract
value

non-nil (stack(+))

Another refinement could be to take account of the maximal depth of

trees, or the maximal length of stacks.

However these refinements imply considering an infinite space of
abstract values and consequently some approximation sequences may be

infinite. For example, an erroneous sequence of instructions such as

...

STACK := empty ;
while ... do

Push STACK onto STACK;

would lead to the infinite abstract value

stack (stack(stack(... stack (1))

The way compilers can cope with infinite interpretations is by disco-
vering correct approximations of the exact properties, ((4.4), they can

also ask programmers for rescue (4.1.1) but this is not considered here).

8.2 Approximation of Infinite Abstract Evaluations of Programs

8.2.1 Structural Approximation Method

The first approximation technique we used consists in modelling the
concrete data space by abstract values which cannot work up infinite aporo-

ximation sequences.

Example

Suppose we want to staticly determine the set of values which each
integer variable may take at each program point, so that for the non ter-

minating program

75

i :=1;

C, -
while true do
C, - T
i 1= i+l
Cy ~
od ;
C, -

we would have

C, =<i <« {1}>

[\

C, = <i« {2k+1| k = 0}>

v

Cy = <i <« {2k+3| k = 0}>

C, = <1 <« >

This interpretation clearly involves infinite approximation sequences.

We proposed two abstractions

- Determination of the sign (see 1) which represents an empty set
by "1", a set of positive integers by "+", a set of negative integers by

""" and other sets by "i",

- Constant propagation (see 5.1) which represents an empty set by "L",

"

a set "{al" containing a single integer by "a", and other sets by "71'".

~ One can also imagine parity determination which represents an empty
set by "1", a set of odd integers by "odd", a set of even integers by "even"

1

and other sets by '"'T

8.2.2 Computational Approximation Method

A second approximation technique we will examplify now consists inmodel-
ling the concrete data space by infinitely many abstract values. Therefore
this might lead to infinite approximation sequences. Yet in such a case,
the 1imit of these sequences will be approximated in a finite number of

steps using simple heuristics.

76

Example

A set of integers may be abstracted by its minimal and maximal mem-
bers. For example the abstraction of the set {-1, 10, 5, 7} would be the

interval [-1, 101.

Let us examplify interval analysis for integer variables by the

trivial program :

1 =13
C1 -
loop
Cz-
if i £ 1000 then
c, - ’
i 1= i+l
C“ -
go to loop;
end;
Cy -
fig 8.2.2.a
We note C(i) = [a, b] the fact that a < 1 < b in context C. An obvious algo-

rithm (see Cousot[19761) permits to establish the following system of equa-

tions

@]
o
[

=<i<[1, 11>

C, =€y Ly Gy

@]
|

, = C,(i «C (i) M [=, 10001)

@]
=
|

= Cya(l <« Cy(1) + [, 1D)

@]
I

s = C, (i« C (i) M L1001, +=])
fig 8.2.2.b

These equations use the union Ll and intersection [1 of intervals, and

the operation + on intervals defined by :

fa, b1U[e, d]
La, blllLe, 4]
la, bl+[c, d]

[min(a, c¢), max(b, d)]

[max(a, c), min(b, d)]

[a+c, b+d]

77

The least solution of the above equations is given by

¢, = <i <« [, 1001])>

which permits to deduce the remaining unknowns

C, = Co(i < C,(i) 1 [-, 10007)
= C,(i « [1, 10017 M [-~, 10001)
= <i < [max(1, -«), min(1001, 1000)1>
=<1« [1, 10001>

C, = Cy(i « Cy(i) + 11, 11)
= C,(i < [1, 10001 + [1, 1])
= <i « [2, 1001]>

Csg =C,o(i <+ C,y(1) M L1001, +=])
= C,(i « [1, 1001] M [1001, +=])
= <i « [max(1, 1001), min(1001, +°)]>
= <i « [1001, 1001]>

and allows the verification of the equation defining C,

?
C,=¢, U, ¢

[1, 10011 = <i

A
e
1\
1~

1, 11> U, <i <« [2, 1001]>
<i <« [1, 17472, 1001]>

<i « [min(1, 2), max(1, 1001)1>
L1, 1001]>

s~ fl~ e

<i

+

The problem of discovering the above solution is more difficult than
a simple verification. Consider for example the approximation sequence for

solving the equations :

L1, 11
x U (y+[1, 11)

X

y

It is an infinite sequence which first terms are :
y = 1, [1’]]s []az]s [1’3]’ [13419

and which limit is [1, +=].

78

Since a compiler must not enter an endless cycle, it must approximate
the limits of potentially infinite approximation sequences. For that
purpose one can use heuristics which induce an approximation of the ex-
pected limit from the first few terms of the sequence. The most simple
heuristics which can be used with intervals is probably the following

if a bound of an interval is not constant take it to be infinite. Intui-
tively this heuristics is correct since it permits to discover at least
(but not at most) all the values which a program variable may take du-

ring execution.
Applying this heuristics to the example (fig 8.2.2.a) we get

Initialization :

Cj=<i<—J_>,j=l o 5
Step 1
C, =<i<«1[1, 1P
C, =<i<«[1, 1]
C, =<i<«I[1, 1]
C, =<i~<«1[2, 2P
Cg =1
Step 2 :
C, =<i<«[1, 1P
C, =<i<[1, 2P
C, =<i« [rh, 27
C, = <i<«[2, 3]
Cs = 1

Applying the simple heuristics to the equation associated to the loop

cutpoint that is C, we get

Induction Step 3

C2 =<i<—[1, +OO]>

79

from which we derive

C, = <i«[1, 1]>

Cy = Cyo(i « Cu(i) M1 [0, 10001)
= <i « [1, 40] [1[=o, 1000])>
= <i <« [1, 1000]>

C, = Ca(i « Cu(i) + 1, 1D
= <i <« [2, 1001]>

Cs = C,(i < C,(i) M [1001, +w])
= C,o(i <« [1, +=][1[1001, +«)
= <i « [1001, +«I>

Step 4 :

C, =<i<«11, 11>

C, =C, i C, =<i <« [1, 1001]>

Cy = <i <« [1, +2]1] [~o, 1000]) =

C, = <i <« 1[2, 1001]>

Cs = Co(i « C,(i) M [1001, +=])

= <i <« [1, 10011 1 [1001, +o]>
= <i <1001, 1001]>

A next iteration would prove stabilization

approximation sequence.

Note that by chance we have found the
is not aware of this fact. It simply knows

ded in the approximated one which has been

<i < [1, 10007>

and therefore terminates the

exact solution, but the compiler
that the exact solution is inclu-

automatically discovered. (The

inclusion of two contexts is defined as the conjunction of the inclusion of

the abstract values of each variable in these contexts. The inclusion of

two intervals [a, b] € [c, d] is defined by a < ¢ £ d <

It is important to note that because of the undecidable problems we are

faced with, the approximation of infinite evaluations is valid but funda-

mentally incomplete. However it should be clear that this incompleteness

is accepteble to compilers which never need full knowledge of the properties

of the compiled programs.

80

(A complete explanation of the approximation method and
a proof that it correctly approximates the exact solutions is beyond
the scope of this paper and may be found in Cousot[1977al. Complemen-—
tary details with a particular emphasis on interval analysis are gi-

ven in Cousot[1976]).

9. CONCLUSION

Abstract interpretation offers a model for static analysis of pro-
grams which exhibits a beautiful unity in the apparent diversity of ap-
proaches. The connection between the various interpretations can be made
very clear by observing that some interpretations are a refinement of
others (or dually their abstraction) so that the several interpretations

form a lattice which more refined element is the semantics (Cousot[1977a]l).

From a theoretical point of view we hope to have shown that the re-
sults of lattice theory originally used by Scott for defining the semantics
of programming languages (see references in Scott[1976]) have a wide do-
main of applicability which highly exceeds the study of semantics. However
the present development of the theory does not offer practical methods to
compute fixpoints. By comparison with mathematics and numerical analysis
it seems of the utmost interest to originate research on the problem of
effective generation of approximate solutions to fixpoint equations in

discrete domains.

From a practical point of view we hope that the model of abstract
interpretation of programs will provide a useful framework for formulating
the (eventuelly existing) algorithms for static analysis of programs. By
eliminating what is specific to each application one can hope to get ge-
neral methods for efficient resolution of fixpoint equations. This seems
to be particularily true for the numerous global data flow analysis tech-
niques which are often designed to tackle specific problems, and could be

usefully generalized. The same way the numerous methods for automatic

81

generation of invariants in programs do not always expose clearly
their underlying principles. An understanding as the generation of
approximate solution to fixpoint equations is certainly the abstrac-—

tion step which is necessary to make further progress.

It is of interest to compiler writers to design a catalogue
of abstract interpretations which could be used to extract those pro-
perties of programs which are commonly used by compilers. Yet it is
the intuitive feeling of the authors that there is no continuum bet-
ween the degree of refinement of the properties to be extracted and
the cost of extraction. Hence in practice the help of the programmer
seems indispensible to shunt indecidability problems. This implies de-
signing languages which permit the specification of abstract properties
of programs, in particular which allow the declaration of local indica-
tions about approximate solutions to the system of equations. The next
step is to offer the ability to describe new user-defined abstract in-
terpretations with the complementary problem of designing the compiler
so that it can really take account of the new informations gathered
about programs. This view is in fact a claim for enriched data type,

an area where there is much current activity.

Acknowledgements

We thank Mrs F. Blanc for her beautiful and careful typing of the manus-

cript.

10. REFERENCES

Abian and Brown[1961].
Abian, S., and Brown, A.B. A theorem on partially ordered sets, with
applications to fixed point theorems. Canad. J. Math. 13 (1961),

78~-82.

82

Aho and Ullman[1973].
Aho, A.V., and Ullman, J.D. The Theory of Parsing,Translation and
Compiling, Vol. II : Compiling. Prentice-Hall, Englewood Cliffs,N.J.,
1973.

Aho and Ullman[1975].
Aho, A.V., and Ullman, J.D. Node listings for reducible flow graphs.

Proc. 7th Annual ACM Symp. on Theory of Computing, May 1975, 177-185.

Algol 68[1976].
Van Wijngaarden, A., Mailloux, B.J., Peck, J.E.L., Koster, C.H.A.,
Sintzoff, M., Lindsey, C.H., Meertens, L.G.L.T., and Fisker, R.G.
Revised Report on the Algorithmic Language Algol 88. Springer-Verlag,

Berlin — Heidelberg ~ New-york, 1976.

Allen[1971].
Allen, F.E. A basis for program optimization. Proc. IFIP Cong. 71,

Vol. 1, North-Holland Pub. Co., Amsterdam, 1971, 385-390.

Allen and Cocke[1976].

-

Allen, F.E., and Cocke, J. A program data flow analysis procedure.

Comm. ACM 183, 3 (March 1976), 137-147,

Birkhof£[1973]
Birkhoff, G., Lattice Theory, AMS Coll. Pub., XXV, 3rd ed., Providence,
R.I., 1973.

Branquart et al.[1973].
Branquart, P., Cardinael, J.P., and Levi, J. Optimized translation
process : application to ALGOL 68. Proc. Int. Comp. Symp., A. Gunter
et al. (Eds), North-Holland, Amsterdam, 1974, 101-107.

Burstall[1974].
Burstall, R.M. Program proving as hand simulation with a little in-
duction. Proc. IFIP Cong. 74, Software, North-Holland, Pub. Co.,
Amsterdam, 1974, 308-312.

83

Cheatham and Townley [1976].
Cheatham, T.E., and Townley , J.A. Symbolic evaluation of programs
a look at loop analysis. Proc. of the 1976 ACM Symp. on Symbolic and

Algebraic Computation, Aug. 1976,

Cocke[1970].
Cocke, J. Global common subexpression elimination. SIGPLAN Notices &5,

7 (July 1970), 20-24.

Cocke and Kennedy[1974].
Cocke, J., and Kennedy, K. Profitability computations on program
flow graphs. IBM Research Report RC 5123, T.J. Watson Research Center,
Yorktown Heights, N.Y., Nov. 1974,

Cohen and Katcoff[1976].
Cohen, J., and Katcoff, J. Symbolic solution of finite difference

equations, R.R., Physics Dept., Brandeis U., Waltham, Mass., July 1976.

Courcelle and Nivat[1976].
Courcelle, B., and Nivat, M. Algebraic families of interpretations.

Proc. 17th Symp. on Foundations of Computer Sci., Houston, Oct. 1976,

Cousot[1976].
Cousot, P., and Cousot, R. Static determination of dynamic properties
of programs. Proc. 2nd Int. Symp. on Programming, B. Robinet (Ed.),
Dunod, Paris, April 1976. [Also in MOHL Bulletin, No. 5, P. Cousot (Ed.),
IRTA, Rocquencourt, France, (Sept. 1976), 27-52].

Cousot[1977a].
Cousot, P., and Cousot, R. Abstract interpretation : a unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. Conf. Reec. of the.4th ACM Symp. on Principles of Pro-

gramming Languages, Los Angeles, Calif., Jan. 1977, 238-252.

Cousot[1977b]
Cousot, P., and Cousot, R. Static determination of dynamic properties
of generalized type unions. ACM. Conf. on Language Design for Reliable

Software, Raleigh, North Carolina, March 1977.

84

De Bakker and Scott[1969].
De Bakker, J.W., and Scott, D. A theory of programs. Unpublished

Notes, IBM Seminar, Vienna, 1969.

Deutsch[1973].
Deutsch, L.P. An interactive program verifier. Ph.D. Th., Dept.

of Computer Sc., U. of California, Berkeley, June 1973,

Dijkstral1976].
Dijkstra, E.W. A4 Discipline of Programming. Prentice-Hall, Englewood

Cliffs, N.J., 1976.

Effigy[1975].
King, J.C. A new approach to program testing. Proc. Int. Conf. on

Reliable Software, Los Angeles, Calif., April 1975, 228-233,

Floyd[1967].
Floyd, R.W. Assigning meaning to programs. Proc. Symp. in Appl.
Math., Vol. 19, J.T. Schwartz (Ed.), Amer. Math. Soc., Providence,
R.T., 1967, 19-32,

Fong et al.[1975].
Fong, A., Kam, J., and Ullman, J.D. Application of lattice algebra
to loop optimization. Conf. Rec. of the 2nd ACM Symp. on Principles

of Programming Languages, Palo Alto, Calif., Jan. 1975, 1-9.

Goguen et al.[1977].
Goguen, J.A., Thatcher, J.W., Wagner, E.G., and Wright, J.B. 1Initial

algebra semantics and continuous algebras. JACM 24, 1 (Jan. 1977).

Graham[1972].
Graham, R.M. Performance prediction. Lecture Notes, Advanced Course

On Soft. Eng., Techn. U. of Munich, Germany, 1972.

Grief and Waldinger[1974].
Grief, I., and Waldinger, R.J. A more mechanical approach to program
verification. Proc. 1st Int. Symp. on Programming, B. Robinet (Ed.).

Lecture Notes in Computer Sci., Springer-Verlag, Berlin, April 1974,

109-118.

85

Hantler and King[1976].
Hantler, S.L., and King, J.C. An introduction to proving the cor-

rectness of programs. Computing Surveys 8, 3 (Sept. 1976), 331-353.

Hecht[1975].
Hecht, M.S. A theoretical Foundation for Global Program Improvement.

American Elsevier, 1975,

Hecht and Ullman[1973].
Hecht, M.S., and Ullman, J.D. Analysis of a simple algorithm for glo-
bal flow problems. Conf. Rec. of the ACM Symp. on Principles of Pro-

gramming languages, Boston, Mass., oct. 1973, 207-217.

Hehner[1976].
Hehner, E.C.R. do considered od : a contribution to the programming
calculus. Tech. Rep. CSRG-75, Computer Systems Research Group, U. of

Toronto, Nov. 1976.

Henderson[1975].
Henderson, P. Finite state modelling in program development. Proc.
Int. Conf. on Reliable Software, Los Angeles, Calif., April 1975,
221-227.

Henderson and Quarendon[1974].
Henderson, P., and Quarendon, P. Finite state testing of structured
programs. Proc. lst Int. Symp. on Programming, B. Robinet (Ed.), Lec-

ture Notes in Computer Sci., Springer-Verlag, April 1974, 72-80.

Hoare[1969].
Hoare, C.A.R. ‘An axiomatic basis of computer programming. Comm. ACM

12, 10 (Oct. 1969), 576-580.

Hoare[1976].
Hoare, C.A.R. An investigation into the structure of computations.

Dept. of Computer Sci., the Queen's U. of Belfast, April 1976.

Hoft[1976]
Hoft, H., and Hoft, M. Some fixed point theorems for partially ordered

sets. Canad. J. Math. 28, 5 (1976), 992-997.

86

Jensen[1965].
Jensen, J. Generation of machine code in ALGOL compilers. BIT 5,

(1965), 235-245,

Kam and Ullmanf[1976].

Kam, J.B., and Ullman, J.D. Global data flow analysis and iterative

algorithms. JACM 23, 1 (Jan. 1976), 158-171.

Karr[1976].
Karr, M. Affine relationships among variables of a program. Acta

Informatica 6, 1976, 133-151.

Katz and Mannal[l1976].

Katz, S., and Manna, Z. Logical analysis of programs. Comm. ACM 19,
4 (April 1976), 188-206.

Kennedy[1971].
Kennedy, K. A global flow analysis algorithm. Int. J. of Computer
Math., 3 (Déc. 1971), 5-15.

Kennedy[1975].
Kennedy, K. Node listings applied to data flow analysis. Conf. Rec.
of the 2nd ACM Symp. on Principles of Programming Languages, Palo Alto,
Calif., Jan. 1975, 10-21,

Kennedy[1976].
Kennedy, K. A comparison of two algorithms for global data flow ana-

lysis. STAM J. Computing 5, 1 (March 1976), 158-180.

Kennedy and Zucconi[1977].
Kennedy, K., and Zucconi, L. Applications of a graph grammar for pro-
gram control flow analysis. Conf. Record. of the 4th ACM Symp. on
Principles of Programming Languages, Los Angeles, Calif., Jan. 1977,
72-85.

Kildall[1973].
Kildall, G.A. A unified approach to global program optimization. Conf.

Rec. of the ACM Symp. on Principles of Programming Languages, Boston,

Mass., Oct. 1973, 194-206.

87

King[1969].
King, J. A program verifier. Ph.D. Th., Dept. of Computer Sc.,
Carnegie-Mellon U., Pittsburgh, Pa., 1969.

King[1976].
King, J.C. Symbolic execution and program testing. Comm. ACM 19,
7 (July 1976), 385-394,

Kleene[1952].
Kleene, S.C. Introduction to Metamathematics. North-Holland Pub. Co.,
Amsterdam, 1952, 348-348,

Knuth[1968].
Knuth, D.E. The Art of Computer Programming, Vol. 1, Fundamental

Algorithms. Addison-Wesley, Reading, Mass., 1968,

Ledgard[1972].
Ledgard, H.F. A model for type checking -- With an application to
Algol 60. Comm. ACM 15, 11 (Nov. 1972).

Mac Carthy[1963].
Mac Carthy, J. A basis for a mathematical theory of computation. Com-
puter Programming and Formal Systems, Braffort and Hirshberg (Eds.),

North Holland, Amsterdam, 1963, 33-69,.

Mac Neille[1937].
Mac Neille, H.M. Partially ordered sets. Trans. Amer. Math. Soc. 42,
(1937), 416-460.

Mannal[19747.
Manna, Z. Mathematical Theory of Computation. Mc Graw-Hill, New York,
1974,

Manna and Vuillemin[1972].
Manna, Z.,and Vuillemin, J. Fixpoint approach to the theory of compu-

tation. Comm. ACM 15, 7 (July 1972), 528-536.

Morel and Renvoise[1974].
Morel, E., and Renvoise, C. Etude et réalisation d'un optimiseur glo-

bal. Th. 3iéme cycle, Paris VI U., June 1974.

88

Morris[1971].
Morris, J.H. Another recursion induction principle. Comm. ACM 14,
(1971), 351-354,

Naur[1966].
Naur, P. Checking of operand types in ALGOL compilers. BIT &, (1966),
151-163.

Nivat[1974].
Nivat, M. On the interpretation of recursive program schemes. Symposia
Mathematica, Vol. XV, Instituto Nazionale di Alta Mathematica, Italy,
1975, 255-281.

Park[1969].
Park, D. Fixpoint induction and proofs of program properties. Machine
Intelligence 5, B. Meltzer and D. Michie (Eds.), Edinburgh U. Press,
1969, 59-78.

Robert[1976].
Robert, F. Sur la transformation de Gauss—Seidel. Séminaire d'analyse
numérique, No. 255, Mathématiques Appliquées, U.S.M.G., Grenoble,
Oct. 1976.

Schaefer[1973].
Schaefer, M. A Mathematical Theory of Global Program Optimization.
Prentice-Hall, Englewood Cliffs, N.J., 1973.

Schwartz[1975].
Schwartz, J.T. Automatic data structure choice in a language of very

high level. Comm. ACM 18, 12 (Dec. 1975), 722-728.

Scott[1970].
Scott, D. Outline of a mathematical theory of computation. Proc. of
the 4th Ann., Princeton Conf. on Information Sciences and Systems,

Princeton, 1970, 169-176,

Scott[1971].
Scott, D. The lattice of flow diagrams. In Semantics of Algorithmic
Languages. E. Engeler (Ed.), Lecture Notes in Math., Vol. 188, Sprin-
ger Verlag, 1971, 311-366,

89

Scott[1976].
Scott, D. Data types as lattices. SIAM J. Computing 5, 3 (Sept. 1976),
522-587.

Scott and Strachey[1971].
Scott, D., and Strachey, C. Towards a mathematical semantics for com-

puter languages. Proc. Symp. on Computers and Automata, Polytechnic

Inst. of Brooklyn, Vol. 21, 1971, 19-46.

Select[1975].
Boyer, R.S., Elspas, B., and Levitt, K.N. SELECT - A formal system
for testing and debugging programs by symbolic execution. Proc. Int.

Conf. on Reliable Software, Los Angeles, Calif., April 1975, 234-245,

Sintzoff[1972].
Sintzoff, M. Calculating properties of programs by valuations on spe-

cific models. Proc. ACM Conf. on Proving Assertions about Programs.

SIGPLAN Notices 7, 1 (1972), 203-207.

Sintzoff[1975].
Sintzoff, M. Verification d'assertions pour des fonctions utilisables
comme valeurs et affectant des variables extérieures. Proc. Int.

Symp. on Proving and Improving Programs, Arcs et Senans, France, July

1975, 11-27.

Sintzoff[1976].
Sintzoff, M. Iterative methods for the generation of successful pro-
grams. Unpublished notes. Presented at IFIP-WG 2.3 meeting, Saint-

Pierre~de—Chartreuse, Dec. 1976.

Tar jan[1976].
Tarjan, R.E. Iterative algorithms for global flow analysis. Tech.

Rep. CS 76-545, Comp. Sc. Dept., Stanford U., Feb. 1976.

Tarski[1955].
Tarski, A., A lattice-theoretical fixpoint theorem and its applications.

Pacific J. Math. &, (1955), 285-309.

90

Tennenbaum[1974].
Tennenbaum, A. Type determination for very high level languages.

NSO-3, Courant Inst. of Math. Sci., New-York U., Oct. 1974,

Ullman[1973].
Ullman, J.D. Fast algorithms for the elimination of common sub-

expregsions. deta Informatica 2, 3 (Dec. 1973), 191-213.

Urschler[1974].
Urschler, G. Complete redundant expression elimination in flow dia~
grams. IBM Research Report RC 4965, T.J. Watson Research Center,
Yorktown Heights, N.Y., Aug. 1974,

Waldinger and Levitt[1974],
Waldinger, R., and Levitt, K.N. Reasoning about programs. Artificial
Intelligence 5 (1974), 235-316.

Wegbreit[1974],
Wegbreit, B. The synthesis of loop predicates. Comm. ACM 17, 2 (Feb.
1974), 102-112.

Wegbreit[1975a].
Wegbreit, B. Mechanical program analysis. Comm. ACM 18, 9 (Sept. 1975),
528-539,

Wegbreit[1975b].
Wegbreit, B. Property extraction in well-founded property sets.

I.E.EE. Trans.on Soft. Eng., Vol. SE-1, No .3, (Sept. 1975), 270-285.

Yonezawa 1976 .
Yonezawa, A. Symbolic—evaluation as an aid to program synthesis.
Working paper 124, Artificial Intelligence Lab., Mass. Inst. of Techno-

logy, April 1976.

\

