France
.

2
BUM
)
X 2 o2 o, o oeate 3 °
o % ogeses: % ogog! 95008, o5eg0se, ogogee! 2
o%e"e 0 000 SO % 20000 % 200000000 2020 0000 2
20200000 S 200000 0en 202000 s 00000 0000 Ssla e 0z000s
02000, » op o0e0s! o 00800505 0g8,00 808 0, oge! o o 200
P , 1,00 8 0) 8.0 0 0 ! .I PO M .I.I.I. o)
20000 200 oSegene! o
2e00s00:
TS
)
. ER ATION OF DYNAM]
D DR D [J D ® X
OPEl O A AD RN
M
5 :
3 o
))
a (USOT and Radhia COUSO
RR ovembre 19
- Y

STATIC VERIFICATION OF DYNAMIC

TYPE PROPERTIES OF VARIABLES

Patrick COUSOT and Radhia COUSOT

ABSTRACT : For high level languages, compile time type verifications are
usualy incomplete, and dynamic coherence checks must be inserted in object
code. For example, in PASCAL one must dynamically verify that the values
assigned to subrange type variables, or index expressions lie between two
bounds, or that pointers are not nil, etc...

We present a general algorithm allowing most of these certifications to be
done at compile time. The static analysis of a program consists of an abstract
evaluation of the program (NAUR, SINTZOFF, KILDALL, WEGBREIT, KARR) which
computes, by successive approximations, an abstract context at every program
point. A context is a set of pairs (identifier, abstract value). An abstract
value denotes a set of execution values or properties of it, satisfying a
number of dynamic conditions. An abstract interpretor defines the sequencing
of abstract evaluation through the different paths of the program, and builds
a union of contexts resulting from the jonction of these paths. The elementary
interpretation of basic operations of the language and the choice of abstract
values are left unspecified. They depend upon the specific dynamic properties
of variables which have been chosen for being extracted from the program. The
correctness and termination of the abstract evaluation algorithm, rely only

on the algebraic structure of the abstract values set, and on some properties
of abstract basic operations. Several abstract evaluations can then be defined
for a program, in order to eliminate redundant tests, verify correct uses of
operations, choose types or organization of data structures in the case of

very high level languages or provide diagnostic information.

Authors' Address : Laboratoire d'Informatique (D. 319)
UNIVERSITE SCIENTIFIQUE ET MEDICALE DE GRENOBLE
Boite Postale n° 53
38041 GRENOBLE-Cédex - France -

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication elsewhere and
has been issued as a Research Report for early dissemination
of its contents. As a courtesy to the intended publisher, it
should not be widely distributed until after the date of

outside publication.

Copies may be requested from
Service des Polycopiés
Laboratoire d'Informatique
U.S.M.G.

BoIte Postale 53

38041 GRENOBLE Cédex France

STATIC VERIFICATION OF DYNAMIC TYPE
PROPERTIES OF VARIABLES

Patrick COUSOT and Radhia COUSOT™™

1 ~ INTRODUCTION -

In high level languages, compile time type verifications are usualy incomplete,
and dynamic coherence checks must be inserted in object code. For example, in
PASCAL one must dynamically verify that the values assigned to subrange type
variables, or index expressions lie between two bounds, or that pointers are
not nil, We present here a general algorithm allowing most of these
certifications to be done at compile time. The static analysis of programs
consists of an abstract evaluation of these programs, similar to those used
by NAUR for verifying the type of expressions in ALGOL 60 [6], by SINTZOFF
for verifying that a module corresponds to its logical specification [8 1], by
KILDALL for global program optimization [5 1, by WEGRREIT for extracting
properties of programs, [9], by KARR for finding affine relationships among
variables of a program [4], etc. We present an abstract interpretation of
programs, which permits the verification of most dynamic type properties at
compile time. We illustrate the technique by the determination of range
informations for integers in high level languages such as PASCAL [10] or

LIS [31].

2 - ABSTRACT VALUES -

The abstract evaluation of a program i1s a "symbolic" interpretation of this
program, using abstract values instead of concrete or execution values. An
abstract value denctes a set of concrete values, {defined in extension) or
properties of such a set (intensive definition), satisfying a number of dynamic
conditions. Let Vc be the set of concrete values and Va the set of abstract

values.

* Research Assistant - CNRS
** Contract IRIA-SESORI 75-035

In most examples given here, Vo will be the set of integers and Va the set
of intervals of integers. If VC = Z is the set of integers (between the
limits -o and +w) used in a programming language, the intervals of integers

will be denoted [2, b] where a ¢ Z, beZand a <b.

The correspondance between a set of concrete values and an abstract value,

is established by the "abstraction function'" @

\Y

2 © ¢ Y
——— a
Example :
SciZ, @(s) = | MIN (x), MAX(y)
X €8 y €S

Another function, vy, gives the concrete form of an abstract value

\Y

v Y o ©

a—-—o—b>

Example :

vy(la, bl) = {x | (x € Z) A (a €x <Db)}

The functions @ and y are defined such that they verify

v
(¥s € 2 C, s

In

y(@(s)))
@y (v))).

and (¥v ¢ Va , V

Corresponding to the union u of sets of concrete values, the union U of

abstract values must also be defined for every particular abstract evaluation
VxV — o oV
a a a

Example :

[al, bl] U [a2, b2] = [MIN(al, az), MAX(bl, b2)]

\
The abstraction function @ is assumed to be an homomorphism from (2 ©, u)

into (V_, U
into (2 u)

2
V(sl, 82) c VC

@(s, vs,) = @(s) U a(s,)

1

This implies that U has the associativity, commutativity and idempotency
properties, and that the zero element [J of U is also @(@) where ¢ is the

empty set. [0 is called the undefined abstract value.

Corresponding to the inclusion < of sets of concrete values, the abstract

evaluation uses the inclusion < of abstract values, which is defined by
2
V(vl, v2) € Va
< <= N =
{vl < V2} > {Vl U v, v2}

and {vl < v2} <=> {(vl < v2) A (vl Z v2)}

From this definition and the hypothesis on D, < can be showned to be a partial

ordering, and [0 is included in every abstract value.

Example

{fa;, b7 < [a,, b1} <> {(a, < a)) A (b, 2 b))}

1

Finally, for the abstract evaluation of loops, the problem arises of terminating
the computation of abstract values. For that purpose, an operation has been

defined, called widening, and noted V :

Example :

La;» b1 Via,, by

. . . .
Lif a, <a, then else a, fi,

Eﬁ.bg > bl then +« else bl fi]

For every particular abstract evaluation, V must be defined such that

2 -

- < N,
V(vl, V2) € Va, {(vl U v2) < (vl v v2)} and
- every_lnflnlte sequence SO: Sl’ - Sn’ «.. of the form So = [,
5, % 8, v Vis sees S, TS v AAEREEER {(where Vis Vos sees Voo .. are

arbitrary abstract values), is not strictly increasing. (ﬂ{so < g, <

_ _ 1
<s < ...h.
n

Example :

0 Vv [1, 10] = [1, 10]
[1, 101 ¥ [1, 11] = [1, +=]
[1, +] V [0, 12] = [~», 4]

so that, in that case, the length of the sequences S5 Sq» sers S

which are strictly increasing is less or equal to Uu.

3 - ABSTRACT CONTEXTS -

The abstract evaluation of a program computes by successive approximations an
abstract context at every program point. An abstract context is a set of pairs
(i, v) which expresses that the identifier i has the abstract value v at some
program peint. Then, in every actual execution of the program, the objects

accessed by i will be in the set y(v) at that program point.

If T denotes the set of identifiers (after the syntactical conflicts of
identifiers in the program have been resolved), the set {8 of abstract contexts
is such that
I x (Va - {0H
Ceco2

and the pairs in a given context differ from one another in their identifiers
. 2 2
e e &, ¥(i,) ¢ 17, ¥(v, u) « (Va - {O0H~,

i, eCcnr (G, w)ecCnr (i, v) (G, W= {i$]}}.

We note C(1) the value of an identifier 1 in a context C, it is defined by

C(i) = if (3v € (Va—{D}) | (i, v) € C) then v else [J fi.

Example :
¢ = {(x, [1, 101), (y, [-», 0]} ;

C(x) = [1, 101 ; C(z) =0 ;
In particular, we note & the empty abstract context.

The union C U C' of two contexts C and C', will be used for expressing., for
example, the context resulting from conditionnal statements. The widening
C V C' of contexts, will be used in loops. They are defined using the union

and widening of abstract values

c,uc, = {i, v) | (1eDA(ve (v_-10h) A (v = ¢ (1) U c,(iN}

Ve, =1, v) | (HeD a(ve (v -{0D) a(v=c (1) 7c (i)}

We can show, for every identifier i, that

(Cl U C2) (1) = Cl(i) U CQ(i)

and (C, 7 ¢,)(1) = ¢ (1) v ¢, (1)
Example :
c, = {(x, [1, 10D, (y, [-=, 01} ;
C2 = {(x, [0, 51), (z, [1, +=])};
C.uC. =¢C U ¢, = {(x, [0, 10D), (y, [-=, O1), (z, [1, +=])}

1 2 2
{(x, [-», 10]1),(y, [-», 01), (z, [1, +])}

(@]

<N

(@]
1

(@)

<N

(@]
1

{(x, [0, +=1),(y, [-©, 01), (z, [1, +=])}

As before, we define the inclusion £ of contexts by

1

IA1

{cl

and {Cl

c, = CQ}

) ~(C, $ o)

C

<&=>
02} {Cl

A
INY

c2} <=> Kcl

it can be shown that this is equivalent to

{cl 2 c2} <> {V¥i ¢ I, Cl(i) < Cz(i)}

From the algebraic structure (Va’ D, V, <) defined on abstract values, we
can show that the same algebraic structure holds for (tio v, V, £). In

particular, U is associative, commutative, idempotent and & is its zero

element, Zis a partial ordering on & , C 0 C2 < Cl 7 C, Tor every

1 2 -
(Cl’ 02), and there are no infinite strictly increasing sequence 8, < S, <
< Sn < ... of abstract contexts of the form
S = 0,8 =8 ¥V ... = v ... i
o Sl o V Cl’ . Sn Sn—l \Y Cn’ for arbitrary abstract contexts
Cl: LIS CD’
4 - PROGRAMS -

As a first approximation of programs, we will use finite flowcharts. They

are built from the following elementary program units

A single entry node : D.“.
exit nodes : -———————h{:>

assignment nodes : el 1 13 eXpTESSiOn [re—

test-nodes

We will assume that the evaluation of expressions in assignment and test

nodes have no side-effect.

simple junction nodes : y

loop junction nodes

Only connected flowcharts are considered and there is at least one path from
the unique entry node to every node of the flowchart. With these conditions,
every cycle in the flowchart contains at least one simple or loop junction
node. Additionally, a preliminary graph theoretic analysis of the flowchart
has been performed, choosing which of the junction nodes are loop junction
nodes, so that every cycle contains at least one loop Jjunction node, and

+hat the total number of loop junction nodes is minimal.

Example

5 - ELEMENTARY ABSTRACT INTERPRETATION OF BASIC PROGRAM UNITS -

For every particular application of the abstract evaluation algorithm, we
must provide a definition of the evaluation of basic program units. The
fonction J defines for any assignment or test program unit n and input
context C, an output context Q(ru C), (or two when n is a test node). The
application J must be a correct "abstraction" of the actual execution of

program unit n. It may be defined as follows
5.1 - ¥n ¢ Na (the set of assignment nodes), n is of the form :

n

_—] Vv := f(vl, cees vm) - >

where (v, Vi eees vm) e 771 ang f(vl, cens vm) is an expression of the

language depending on the variables Vis eees Voo Then

¢ e 8, ¥i eI, i4v=UY(n, C)(i) = (i)} and

¥C e €, 3(n, O(v) = @ [{f(vl, cees V)|
(Vs +ees Vm) € Y(C(vl)) X vve X y(C(vm))} }

The first condition expresses that the evaluation of the expression f(vl, e

vm) has no side effect, and the second one that the value of v in the output

context, is the abstraction of the set of values of the expression f(vl, ceny

+

vm) when the values (Vl, . vm) of (vl, cees vm) are chosen in the input
context C.
Examples :
c=29
v
n x := 10

J(n, ¢) = {(x, [10, 101D}

v

C = {(X, [l: lo])a (Vs ['25 3])}

n X 1= xXty+l

J(n,) = {(x, [0, 181), (y, [-2, 3]}

In the case of that specific application an interval arithmetic [7] is used

for defining gfn, C)

C(x) = [1, 10]

Cly) = [-2, 3]

C(x+y) = [1+(-2), 10 + 3] = [-1, 13]
c(1) = [1, 1]

Clx+y+1] = [-1, 13] + [1, 11 = [0, 14]

¢ = {(x, [1, 101), (z, [-1, +11)}

v

n X 1T Xty

¢Q(D, C) - {(Z’ [_la +l])}

We have C(y) = [, so that the expression x + y is undefined, therefore

J(n, C)(x) = [.

5.2 - The elementary abstract interpretation J(n, C) of a test node n, in
input context C results in two output contexts CT and CF associated with the

true and false edges respectively

¥n € NT (the set of test nodes), n is of the form :

C

n Qvl, cee s Vm)>

true false

where Q(vl, ey vm) is a boolean expression without side-effect depending
on the‘vapiablegvl, cens vm. Then we define gfn, C) = (CT, CV) such that,
¥i ¢ 1

Cp(i) = @{ | Crey(C(i))) A

(3(vys oees v) e y(Clv)) x vue y(C(Vm)) I vy -nes vm))})

11

c (1) = @({1] (rey(C(i))) A

(3vys wees vm) e Y(C(v)) x o xy(Cv) | 2Qvys wees vm))})

On the true edge for example, the abstract value of a variable i is the
abstraction of the set of values 1 chosen in the input context C, for which

the evaluation of the predicate Q in context C may yield the value "true'l.

L Examples: C = {(x, [10, +]), (y, [-1, +1])}

true

Cp = {(x, [10, +=1), (y, [-1, +11)} Cp =0

true/

CT = {(x, [0, +=])} CF = {(x, [-, -1}

Cp = {(x, [1, +=1), (v, [1, 10} C. = {(x, [-=, 91), (y, [1, 101}

lO

In the case of that specific application, the treatment of conditionnal
statements has to designate whether a given variable belongs to a certain

interval on the real line, our approach is similar ot that of [1 J.

5.3 - When the abstract interpretor follows an execution path until reaching

a test node, this may give rise to two execution paths. Each of the two paths
will be executed pseudo-parallely, until reachingan exit node, in which case
the execution of that path ends, or a junction node, in which case the pseudo-
parallel execution paths are synchronized. In order to compute the output
context of a junction node, we must have first computed the input contexts of
the input edges which may be reached by an execution path. The unreachable

input edges have their associated contexts initialized to the empty context o.

For a node n ¢ st (the set of simple junction nodes), we have

u C.
1
€

[1, m]

i

(the use of this generalized notation results from the commutativity and

associativity of 0).

Example :

c, = {(x, [1, 1]} C, = {(x, [2, 2]}

{(x, [1, 17 u [2, 2D}

{(x, [1, 2D}

5.4 - In order that the abstract interpretation terminate correctly, we need
something analogous to the induction step used in the automatic verification
of programs with loops. This is provided at the loop junction nodes by the

widening of contexts, as follows

If the jtzl pass on a junction node n ¢ N,. (loop junction nodes) has associated

23

the context Sj to the output arc o of that node (or SO has been initialized to

. ... th .
the empty context), then the context associated to O on the j+1 - pass, will

be :

:S' v(Dcis j+l)
ie[1,m]

Sj+l J

Example :

C, = {(x, [1, 1D} c, = {(x, [2, 2])}

S, = {(x, [1, 1}

w
1]
w
<1
~~
(@]
<
(@]
~—

{((x, [1, 11 v [2, 2]}

i
wn
<31

{(x, [1, 1D} ¥ {(x, [1, 21)}

i}

{(x, [1, 11 v [1, 2D}

{(x, [1, +=]}

Note that the widening at the loop junction nodes introduces a loss of
information. However it will be shown on examples that the tests behave as
filters. Furthermore, for a PASCAL like language, one can first use the

bounds given in the declaration of x, before widening to "infinite" limits.

6 - ABSTRACT INTERPRETOR -

The abstract interpretor starts with the empty context ® on all arcs. For each
of the different types of nodes, we have described a transformation which

specifies the context(s) for the output arc(s) of the node, in term of the

- 12 -

context(s) associated to input arc(s) to the node, and where relevant, the
contents of the node. The algorithm essentially performs applications of
these transformations until all contexts are stabilized, i1.e. the applicaticn
of a transformation at any node results in no change in the contexts of its
output arcs. The distinct execution paths are followed pseudo-parallely,

with synchronization on junction nodes.

During abstract evaluation, it should be noted that it is useless to go on
along one path when the output context C' of a node is included in the
context C already associated with the arc out of that node. This results from

the fact that the elementary interpretation ! is an increasing function for

< in CZ. It can be shown that

IAT

fct ¢} = {¥n, J(n, ') 2 J(n, O}

The proof of termination of the abstract evaluation comes from the fact that
on one hand the sequence of contexts associated with the output arc of each
loop junction node form a strictly ascending chain which cannot be infinite

and, on the other hand, that every loop contains a loop junction node.

The general abstract interpretor is now stated

procedure abstract interpretation (graph) ;

begin

for each arc of graph do local context (arc) := ¢ repeat ;

1"
=
we

execution paths := {entry-arc (entry-node (graph))} ; junctions

vhile (execution paths +¢) do
while (execution paths ¥ @) do
{chiooze an execution path}
input arc := choose (execution paths) ;
execution paths := execution paths - {input arc} ;
node := final-end (input'avc) 5
case node of
*_ assignment node

assign output context (exit-arc (node), gﬁnode,
local context (input arc))) ;
1 test node -

.(CT, CF) := J(node, local context (input arc)) ;

assign output context (true-exit-arc (node), CT) H

assign output context (false-exit-arc (node), CF) H

1 simple or loop junction node » junctions := junctions u{ node}

+ exit node »

end

repeat ;
for each junction node of junctions do
output context := D local context (input arc)

input arc € entry-arc (junction node)

if _(output context ; local context (exit-arc(junction node))) then
case junction node of

4+ simple junction node -+

assign output context (exit-arc(junction node),

output context) ;

4 loop junction node -
assign output context (exit-arc(junction node),

local context (exit-arc(junction node)) ¥

output context) ;

end ;

repeat
P N S ———

juncticns := @

repeat 3

L return

et Al

Ig}gfﬁure assign cutput context (cutput arc, output context)
if ~(output context 2 Jocal coentext (output arc)) then
loecal context(eutput are) = output context 3
execution paths := execution paths u {output arc} ;
fi

end 3

In [2] we have shown that the algorithm terminates, even when analyzing
non-terminating programs, and that it is correct : if C is the final abstract
context associated with an arc o, then for every identifier 1 of the program,
and every actual execution of that program

if ¢(i) = [, then i is never initialized on arc a, or o is on a dead

path.

. if C(i) is some abstract value v, then the concrete value of i on arc
a within every execution path p containing o belongs to Y(v), under

the condition that i has been correctly initialized on path p.

7 - EXAMPLES -

Our first example is very simple in order to illustrate the technique

The following table shows the analysis of this program graph, with the

specific abstract interpretation we have chosen as example in the paper

! input lccal context execution
stepinode| arc (input arc) output context paths junctions
a {1} [}
NI NNO)) {i, 1, 11} {2} ¢
3 c 2 {i, [1, 17} {3} {c}
L c 2 {i, [1, 11}
{i, {1, 11} {3} 2
6 2
S df 3 {i, (1, 11} {i, [1, 11} {5} 9
6 £ 5 {i, {1, 13} {i, [2, 21} {6} ¢
7 < 6 {i, [2, 21} - ’ ‘ {1} {c}
8| c| 2 {i, [1, 11} {i, {1, 11 V {1, 21}
6 {i, [2, 2]} = {1, (1, +1} {3} 9
s a| @ | 4, L, +=]) {i, [101, +=3} {s
{i, [1, 1001} 5}
1] e | (@ {i, o1 w1} , {5})
u s | (® | {01, 1000} {1, {2, 1011} {6})
122 ¢} & {i, [2, 1011} {1 {c}
1B ¢ (:) {i, [1, 11} {i, €1, +=3 7 ([1, 11 0 [2, 1011)}
® | {2, (2, 1017} 2 {i, [1, #1}. end. | |

After processing the flowchart, the final context on each arc is listed in the
table opposite the circled nodes. Note that the results are approximate, which
is a consequence of the undecidability of the problem of finding exact domains

for the variables at each program point.

The next example 1is the binary search of a given key K in a table R of 100
elements whose keys are in increasing order. The result of the program analysis

is the following : lwb := 1 ; upb :2 100 ;
{(lwb, [1, 11), (upb, [100, 1001)}

L : {(lwb, [1, +=]), (upb, [~%, 1061}, (m, [-=, +=1)}

if upb < 1lwb then
{(1wb, [L, +=1), (upb, [-®, 1601), (m, [-=, +=1)}
unsuccessfull search ;
i
{Ciwb, [1, 1001), (upb, [1, 100]), (m, [-=, +=])}
m := (upb + 1wb) + 2 3
{(1wb, [1, 1001), (upb, [1, 100D), (m, [1, 1001}

if K = R(m) then

successfull search ;

elsif K< R(m) then
upb = m - 13
{(1wb, [1, 1001), (upb, [0, 999), (m, [1, 1001}}

else

lwb = m + 1 3

{¢1wb, [2, 1611), (upb, {1, 1001),(m, [1, 1001)}
fi

{C1iwb, [1, 1011), (upb, [0, 1003}, (m, [1, 1001)}

goto L

In PASCAL or LIS like languages, where lwb, upb and m should have been
declared of type 1 .. 101, O .. 100 and 1 .. 100, dynamic tests for assignments

tc these variables or bounds tests for access to array R are statically shown

to be useless.

The last example is dedicated to detection of incorrect access to records

not-nil, dubious,

through nil pointers. There are four abstract values [], nil,

with the following ordering

dubiouq

RN
.

0

not-nil nil

In the case of a finite number of abstract values, the widening V is taken to
be u.

The problem consists in finding the Kth value of a linear linked list L

L —pl O » R > .. v
-+« -«
value next

The intended solution, with its analysis is the following

[t (== +21), (L, Zubious)}

if X £ 0 then stop fi
2L S 20P 3
cursor = L

B {(K, [1, +3), (curscr, dubious), (L, dubious)}

if K £ 1 then

{(K, [2, +=1), (cursor, dubious), ...}
Kz K=-1;
{(%, {1, +=], (cursor, dubious), ...}
if cursor = nil then-

SYOE

elce

{(x, [1, +=]), (cursor, not-nii), ...}
{al cursor := pext (cursor)
{..., (cursor, dubicus), ...}
£

{(K, [1, +=1), (cursor, dubious), (L, dubicus)}

to &

I"a

e

£i;

{(x, {1, 11), (cursor, dubious), (L, dubious) 3

{8) ... -value (cursor) ...

- 17 -

It is shown, at line [a] that "cursor" in "next(cursor)", is not a nil pointer,
and it has been taken account of the fact that the function next delivers a nil
or mot-nil pointer. On the other hand, "cursor" might be nil at line [B], and
from this diagnostic information, the programmer should be able to discover
that he has forgotten the case of the empty list, and that of a list of length
K-1.

8 - CONCLUSION -

Several analysis can be defined for a program, using the general abstract
interpretation algorithm briefly reported here [2]. One can quote as examples,
elimination of redundant tests, verification of correct uses of operations,
supplying of diagnostic informations, choice of types or organization of data

structures in the case of very high level languages, etc.

9 - BIBLIOGRAPHY -

[1] - W.W. BLEDSCE - R.S. BOYER

"Computer proofs of limit theorems"

Proceedings of the I.J.C.A.I. (1871), pp. 586-600

[2] - p. COUSOT - R. COUSOT
"Vérification statique de la cohérence dynamique des programmes"
Laboratoire d'Informatique, U.S.M.G., Grenocble.

Research Report of contract IRIA-SESORI 75-035 - 1975

[3] - J.D. TCHBIAH - J.P. RISSEN - J.C. HELIARD - P. COUSOT

"The system implementation language LIS"

CII - TR 4549 E/EN - Dec. 1974

[4] - M. KARR
"On affine relationships among variables of a program"
Massachusetts computer assoclates, inc.

CA - 7402 - 2811, 1974

[5] - G.A. KILDALL
"A unifed approach to global program optimization™
Conf. Record of ACM symposium on principles of programming languages

Boston - 1973 - pp. 184 - 206

- 18 -

[6] - P. NAUR
"Checking of operand types in ALGOL compilers"
BIT, 5 (1965), pp. 151 - 163

[7] - F.N. RIS
"Tools for the analysis of interval arithmetic"

RC 5305, IBM T.J. Watson Research Center, 1975

[8] - M. SINTZOFF
"Vérification d'assertions pour les fonctions utilisables comme valeurs
et affectant des variables extérieures"
proving and improving programs, Ed. G. HUET, G. KAHN
IRIA, 1975, pp. 11 - 27

[91 - B. WEGBREIT
"Property extraction in well-founded property sets"

Harvard University, Cambridge, Mass., Feb. 1973

[10] - N. WIRTH

"The programming language PASCAL"
Acta Informatica, 1, 1971, pp. 35 - 63

Authors' Address

P. COUSOT, R. COUSOT

Laboratoire d'Informatique (D 319)
Boite Postale 53

38041 GRENOBLE Cédex

France

