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Abstract. We discuss the use of abstract interpretation in the con-
text of automatic program verification requiring precise abstractions. We
compare entirely manual versus user-guided abstractions ranging from
program-specific abstractions including predicate abstraction to the sys-
tematic design of abstract domains and iteration strategies.

1 Abstract Interpretation Theory

Abstract interpretation theory [1,2,3,4,5,6] formalizes the notion of abstraction
for mathematical constructs involved in the specification of computer systems.
Applications range from static program analysis [2,3,4,6] (including data-flow
analysis [3], set-based analysis [7], etc), typing [8], model-checking [9], parsing
[10] to the design of semantics [11] and program transformations [12]. In this
invited tutorial we discuss applications to automatic program verification.

2 Requirements

When dealing with undecidable questions on program execution, the automatic
verification problem must conciliate correctness (which excludes non exhaustive
methods such as simulation or test), automation (as opposed to the manual pro-
duction of a program model for model-checking or to the human assistance for
provers in deductive methods), precision (which excludes rudimentary general-
purpose static program analyzers which would produce too many false alarms),
scaling up (for software of a few hundred thousand lines), and efficiency (with
minimal space and time requirements allowing for rapid verification during the
software production process which excludes a costly iterative refinement pro-
cess). Note that we consider automatic verification for proving the absence of
errors, not their presence that is verification is considered in the sense of proof,
not as debugging.
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3 Efficiency versus Precision

Among applications of abstract interpretation there have been many where some-
what imprecise answers to undecidable questions are tolerable provided all an-
swers are sound and the imprecision rate remains low (typically 5 to 15%). This
is the case for static program analysis when applied to program optimization
(such as static elimination of run-time array bound checks where imprecision
means delaying few array bound checks at run-time [13]), typing (where some
programs which cannot go wrong are not typable) [8] or to program transforma-
tion (such as partial evaluation where any static value can always be considered
dynamic, the transformed program being simply less efficient) [12], etc. In that
case the analysis must be more efficient than precise. So coarse abstractions can
be used which allow for the design of time and memory efficient static analyzers
scaling up for very large programs.

4 Precision versus Efficiency

In the context of automatic program verification where human interaction must
be reduced to a strict minimum, false alarms are undesirable. A 5% rate of false
alarms on a program of a few hundred thousand lines would require several
person-years effort to manually prove that no error is possible.

Fortunately, the abstract interpretation theory shows that for any program
(or finite set of programs), it is possible to achieve full precision and great effi-
ciency [14] by discovering an appropriate abstract domain. In the following we
discuss the user-guided design of such abstract domains leading to precise and
efficient analyzes.

5 Program-Specific Finite Abstraction

The use of a specific abstraction for a given hardware or software computer
system (often called a model [15]) explains the popularity of abstract model
checking [16]: it is always possible to provide an appropriate model of a given
computer system which will model-check for the given property to be verified.
The difficulty is how to get this appropriate model from a formal specification of
the computer system such as a program. Most fully automatic methods, such as
software model-checking [17,18], do not proceed directly on the software but on a
user-provided finite and small model, which is difficult to design when e.g. sharp
data properties must be taken into account. Moreover models for one program
are hardly reusable for another program so efforts to design different models for
different programs can hardly be cumulated.

6 Foundations of Predicate Abstraction

Predicate abstraction, which consists in specifying a boolean abstraction of soft-
ware by providing the atomic elements of the abstract domain in logical form
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[19], is certainly the most studied alternative [20,21,22]. Using a theorem prover,
it is possible to automatically generate the abstract model in boolean form from
the user-provided basic predicates and then to reuse existing model checkers.
Moreover most implementations incorporate an automatic refinement process
by success and failure [20,23] so that the abstraction can be partly automated.

We will first recall that predicate abstraction is an abstract interpretation
and show why.

7 Predicate Abstraction in the Large

Then we will discuss a number of difficulties which in light of a recent experience
in software verification [24] seem insurmountable to automate this design process
in the present state of the art of deductive methods:

Problems of Semantics: for C programs, the prover which is used to auto-
matically design abstract transfer functions has to take the machine-level
semantics into account (e.g. floating-point arithmetic with rounding errors
as opposed to real numbers). For example ESC is simply unsound with re-
spect to modulo arithmetics [25].

State Explosion Problem: for large programs, the number of needed basic
predicates can be huge. One difficulty is that model checking algorithms
have worst-case behavior that is exponential in the number of predicates in
the model which leads to state explosion. Another difficulty is to anticipate a
priori which set of predicates introduced in the abstraction will be ultimately
useful in the program analysis. The main successes seem to be when the full
program can be abstracted very roughly into a small skeleton [15].

Refinement Problem: predicate abstraction per se uses a finite domain and
is therefore of limited expressive power in comparison with the use of infinite
abstract domains [6]. Therefore predicate abstraction is often accompanied
by a refinement process to cope with false alarms [20,23]. Under specific
conditions, this refinement can be proved equivalent to the use of an infinite
abstract domain with widening [26]. This result is of limited scope since these
specific conditions (essentially that the widening is by constraint elimination)
are not satisfied e.g. by the staged widening with thresholds of [24]. Formally
this counterexample-based refinement is a fixpoint computation [14,27] at the
concrete semantics level, whence introduces new elements in the abstract
domain state by state. In general, this process is very costly so that the
needed predicates have to be provided by hand which introduces prohibitive
human and computational costs for end-users.

8 Generic Abstractions

Finally we discuss a more synthetic general point of view based on the use of
adequate parameterized abstract domains and iteration strategies with efficient
implementations. This can be used to generate abstractions for specific classes
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of programs and properties to get efficient generic analyzers producing few or
none false alarms [24].
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