
1

Abstract Interpretation:
Achievements and Perspectives

Patrick Cousot

Département d’informatique, École normale supérieure
45 rue d’Ulm, 75230 Paris cedex 05, France

Patrick.Cousot@ens.fr , http://www.di.ens.fr/˜cousot

Abstract—Computerized modern societies are highly frag
ile to software bugs. Traditional testing methods hardly
scale up for large safety critical systems as found in avionics,
automotive, healthcare, e-commerce and security industry.
As a viable alternative, static analysis consists in determin
ing and verifying statically dynamic properties of programs.
This is completely automatic (since programs are not actu
ally executed) and covers all possible cases (as opposed to
testing). This approach has had significant success stories
and its industrialization recently started. Since the program
total verification problem is undecidable, the key idea is that
of approximation, as formalized by the theory of abstract
interpretation. The scope of application of abstract inter
pretation ranges from the theoretical design of hierarchies
of the semantics of programming languages to the practical
design of generic program static analyzers.

Keywords— Abstract interpretation, semantics, verifica
tion, program static analysis.

I. Introduction

These 25 last years, the performances of the computer
hardware have been multiplied by 104 to 106. This is a
technical revolution. To illustrate this 106 order of mag
nitude, this is the factor between the working force of a
roman slave and the power of a nuclear plant unit or that
between the distance of Paris to Nice to that of Earth to
Mars. The immediate consequence is that the size of the
programs executed on these computers has grown in simi
lar proportions. For example a text editor for the general
public contains more than 1 700 000 lines of C organized in
20 000 procedures and 400 files. Unfortunately neither the
intellectual capacities of the programmers nor the sizes of
the design and maintenance teams can grow in similar pro
portions. The errors in software, whether anticipated and
corrected in time (like the Y2K bug) or unforeseen (like
the failure of the 5.01 Ariane launcher flight) are frequent.
They can have catastrophic consequences which are very
costly and sometimes inadmissible (which is the case of
transportation embedded software). The difficulty to pre
vent and find errors grows faster than the size of programs
which can now be really huge. Classical software verifi
cation methods (such as code reviews, simulations, tests,
etc.) do not scale up. The production of reliable software,
their maintenance and their evolution over long periods of
time (20 to 30 years) has become a fundamental concern to
computer scientists. Computer scientists must widen the
set of methods and tools used to strive against software
bugs. This is necessary to cope with their responsibilities,
satisfy to future regulations which will inevitably be estab

lished and to avoid that the failure of computerized systems
becomes an important societal problem,
The basic idea of static program analysis is to use the

computer to discover programming errors. The problem
of programming computers so as to analyze the work that
they will be given to do, as described by a program, before
executing effectively this program is extremely hard. This
follows from undecidability and complexity problems. One
must therefore resort to compromises which consists in con
sidering only an approximation of the possible run-time be
haviors of the program. For example, program debugging
consists in exploring a few examples of possible executions
which, hopefully are well-chosen enough to reveal bugs. An
other example is model-checking which can be fully applied
to finite models of programs only but are generally incom
plete for infinite state systems. Such coarse approximation
methods are particular cases of abstract interpretations of
program semantics. Abstract interpretation provides the
the right theory to develop, understand, relate, design and
automate formal methods to reason about programs.

II. Computation models and semantics

A computation or execution model is a formal mathemat
ical description of the operations executed in the course of
time by a computer running a program, including their in
ternal effects on the machine (mainly on the memory) and
external effects in interaction with the environment, in all
possible conditions.
A very simple computation model is that of maximal

execution sequences. To each discrete time i of the com
putation, a state σi memorizes the instantaneous values of
the characteristic components of the machine (variables,
memories, registers, etc.) and of the environment (clocks,
timers, captors, etc.). The program is therefore part of the
state σi which also indicates which execution is standing
in the program at time i. A possible computation of the
program is modelled by a trace representing the evolution
of the machine state as program execution progresses. A
finite execution is modelled by a finite trace that is a finite
sequence σ = σ0 . . . σn−1 of states (of length |σ| = n). An
execution which does not terminate is modelled by an infi
nite trace that is an infinite sequence σ = σ0σ1 . . . of states
(of length |σ| = ∞). In general, there are many possible
computations (corresponding for example to all possible
initial states or to all non-deterministic interactions with

Patrick.Cousot@ens.fr
http://www.di.ens.fr/~cousot

2

the environment such as input/output) so one must reason
on sets of traces. One can for example consider the set of
maximal traces (no finite trace being the prefix of a longer
one).
The semantics of a program P is a computation model

describing the effective executions �P � of the program in
all possible environments. The semantics of a language
is given for each syntactically correct program of this lan
guage. It follows that the semantics of a software is pro
vided by the semantics of the programming language in
which it is written. In particular this semantics specifies
conditions under which no run-time error can appear dur
ing execution. The absence of run-time errors is a mini
mal specification of the software which can be checked and
reveal programming errors (in general 10 to 40% of the
program bugs can be found in that way).
There exists a great number of possible methods to de

scribe programming language semantics (operational, de
notational, axiomatic, etc.) which are all equivalent or are
approximations of each other. They form a hierarchy [1] ,
organized according to the precision of the description of
the program behaviors during their execution, which can
be understood by abstract interpretation.
In general semantics can be defined by fixpoints. One

can give the underlying intuition for the maximal trace
semantics (and by abstraction for a great number of other
semantics) by observing that the set T of maximal traces
generated by a transition system, that is a relation t on a
set of states , is:
• the set of finite traces σ of length 1 reduced to a final
state σ0 , without possible transition (∀s : 〈σ0, s〉 �∈ t) ;
• the set of finite traces σ of length n > 1 starting by a
transition 〈σ0, σ1〉 ∈ t followed by a finite trace σ1 . . . σn−1
of T ;
• the set of infinite traces σ starting by a transition 〈σ0,
σ1〉 ∈ t followed by a infinite trace σ1σ2 . . . of T ;
Formally the fixpoint T = F (T) is :

T = {σ | |σ| = 1 ∧ ∀s : 〈σ0, s〉 �∈ t}
∪ {σ0 . . . σn−1 | 〈σ0, σ1〉 ∈ t ∧ σ1 . . . σn−1 ∈ T } (1)
∪ {σ0σ1σ2 . . . | 〈σ0, σ1〉 ∈ t ∧ σ1σ2 . . . ∈ T } .

In general there are many possible fixpoints (for example
by taking no infinite trace). Therefore we consider the
least fixpoint for the computational partial ordering X � Y
if and only if X has more finite traces and less infinite
traces than Y (so that in the �-least fixpoint solution of
(1) there are the less possible finite traces and the more
possible infinite traces for the equation T = F (T) to hold).
It follows that the trace semantics is the �-least fixpoint
of F and the approximation of semantics amounts to the
approximation of fixpoints.

III. Specification and verification

The specification of a software is a computation model
describing the desirable execution of this software in all
possible environments. The minimal specification is the
absence of runtime errors (arithmetic errors such as divi
sion by zero, bounded capacity overflows such as memory

x

y

{. . . , 〈5, 7〉, . . . ,
〈13, 21〉, . . .}

Fig. 1
Set of points

access by an array index outside of the array bounds, etc.).
more complex specifications can be given using specifica
tion languages such as temporal logics. They also have a
trace based semantics. For example ✷P states that prop
erty P is always true in the future. More formally ✷P
specifies the set of traces such that P holds at each instant
of time and so:

�✷P � = {σ | ∀i : 0 ≤ i < |σ| : σi . . . ∈ �P �} .

The verification of a software P consists in proving that
a semantics �P � of the software P satisfies a given specifi
cation S: �P � ⊆ �S�.
All interesting questions relative to the semantics of a

non trivial program, such as its verification, are undecid
able: no computer can always answer exactly these ques
tions in a finite time for all possible programs. This results
from the fact that the semantics of a program is not com
putable. For example, on can define mathematically the
semantics of a program as the fixpoint of an equation but
no computer can solve this equation (in particular because
the semantics must take into account the possible existence
of infinite program computations). A fundamental idea is
therefore to consider approximations.

IV. Abstract Interpretation

Abstract Interpretation [3], [4] is a theory of discrete
approximation which can be applied to the semantics of
(specification or programming) languages. Abstract Inter
pretation formalizes the idea that a semantics can be more
or less precise according to the considered observation level
[1].
For example an abstract model of the trace semantics

T is the transition semantics t (or small-step operational
semantics) which is the set of pairs 〈σi, σi+1〉 of states ap
pearing along at least one trace of the trace semantics:

t = αo(T)
= {〈σi, σi+1〉 | σ0 . . . σiσi+1 . . . ∈ T } .

The set γo(t) of maximal traces that can be rebuilt back
from the transitions is the set of sequences of states linked
by a transition and, in the case of finite sequences, termi
nated by a final state without possible transition:

γo(t) = {σ | ∀i : 0 < i+ 1 < |σ| : (〈σi, σi+1〉 ∈ t) ∧
(|σ| = n ∈ N =⇒ ∀s : 〈σn−1, s〉 �∈ t)} .

3

x

y {
x ≥ 0
y ≥ 0

Fig. 2
Signs

x

y {
x ∈ [3, 27]
y ∈ [4, 32]

Fig. 3
Intervals

Another abstraction underlying denotational semantics
consists in abstracting the finite traces by the pair of their
initial and final states:

αd(σ0σ1 . . . σn−1) = 〈σ0, σn−1〉 .

The infinite traces are abstracted by the initial state fol
lowed by ⊥ denoting non termination:

αd(σ0σ1 . . .) = 〈σ0,⊥〉 .

The abstraction of a set of traces is the set of abstractions
of the individual traces in the set:

αd(X) = {αd(σ) | σ ∈ X} .

The last example, natural semantics simply ignores the
infinite behaviors and so the extra abstraction is:

αn(X) = {〈s, s′〉 ∈ X | s′ �= ⊥} .

Let us remark (1) that the l’abstraction α is monotone
(T ⊆ T ′ ⇒ α(T) ⊆ α(T ′)) and (2) so is the concretization
γ. The abstract semantics t = α(T) is an approximation or
abstraction of the concrete semantics in that the concrete
semantics γ(t) that can be rebuilt from the abstract seman
tics t is in general larger than the initial concrete semantics
T : (3) T ⊆ (γ(α(T)). Finally the concrete semantics γ(t)
loose no information on the abstract semantics t in that
t = α(γ(t)) and more generally (4) α(γ(t)) ⊆ t. Proper
ties (1) to (4) characterize Galois connections which are
used in the theory of abstract interpretation initiated by
the seminal papers [3], [4], [5]. In practice one often use
weaker hypotheses [6] , in particular when there is no best
approximation (for example there is no smallest convex
polyhedron containing a disk).
The abstraction formalizes a loss of information, which

does not allow to answer all possible questions about the
program semantics hence its possible executions. All an
swers given by the abstract semantics are always correct for

x

y

3 ≤ x ≤ 27
x + y ≤ 88
4 ≤ y ≤ 32
x − y ≤ 61

Fig. 4
Octagons

x

y {
7x + 31y ≤ 325
21x + 7y ≥ 0

Fig. 5
Polyhedra

the concrete semantics. However, in general, some concrete
questions cannot be answered exactly when considering the
abstract semantics only.
For example the trace, denotational and natural seman

tics allow to answer question (1): “Can the program execu
tion starting from state x terminate in state y?”. Only the
trace and denotational semantics can answer the question
(2) “Does any execution starting from state x always termi
nate?”. The only valid answer with the natural semantics
is “I do not know” since all infinite behaviors are ignored.
Finally the trace semantics can answer the question (3)
“can state x be immediately followed by state y during a
program execution” while the denotational and natural se
mantics do not allow this question to be answered directly
since all intermediate states in the computation are forgot
ten. This shows that the more precise/concrete semantics
can answer more questions while the abstract/approximate
semantics are more simple. Two semantics may not be
comparable. This is the case of the natural semantics
(which can answer question (1) but not question (3)) and
of the transition semantics (which can answer question (3)
but not question (1)). More generally, the semantics can
be ordered in a complete lattice according to their relative
precision [5], [1]. In practice one must find in this infinite
lattice the interesting semantics.

V. Static Analysis

If the approximation is coarse enough, the abstraction
of a semantics provides a version of this semantics which is
less precise (and therefore less questions can be answered)
but which is computable (so that the questions can be an
swered by a computer). By effective computation of the
abstract semantics, the computer can analyze the behavior
of programs and software before executing them. This can
be used to discover programming errors before they lead
to catastrophes [7] , which is essential for computer-based
critical systems (for example: planes, launchers, nuclear

4

x

y {
x = 19 mod 88
y = 19 mod 99

Fig. 6
Simple congruences

x

y

3x + 5y = 8

mod 27
2x − 9y = 23

mod 53

Fig. 7
Relational congruences

plants, etc.).
To give the intuition of the approximations which are

used in practice, let us consider a safety analysis. Safety
properties (such as absence of run-time errors) specify that
something bad cannot happen or equivalently that pro
gram execution must remain in good or healthy states.
This notion can be formalized by the composition of ab
stractions as explained below. The first abstraction is that
of a trace by the set of states appearing along this trace:

αs(σ) = {σk | k ∈ [0, |σ|[} .

The approximation of a set X of traces is then the set of
states appearing at least once on at least one trace of the
set:

αs(X) =
⋃

σ∈X

αs(σ) .

αs(X) is an invariant which means that, understood as
a property, all states which are reachable from the initial
states during program execution must satisfy that prop
erty.
Assume that a state s consists of a control state desig

nating a program point � ∈ C and of variables X1, . . . , Xn
taking integer values 〈x1, . . ., xn〉 ∈ Z. The global invariant
αs(X) is isomorphic to the vector of local invariants associ
ating with each program point the set of tuples of possible
values of the variables at that point:

αl(Y) =
∏

∈C
{〈x1, . . ., xn〉 | 〈�, 〈x1, . . ., xn〉〉 ∈ Y } .

Intuitively the global invariant always holds during pro
gram execution while the local invariant attached to a pro
gram point holds whenever execution reaches that control
point.
In this way the computation of the program set of traces

is approximated by a set of points of Z
n which, in practice

x

y

3x + 7y ∈ [2, 31]

mod 10
2x − 5y ∈ [0, 9]

mod 11

Fig. 8
Trapezoidal congruences

is infinite or large enough not to be computable. So further
approximations must be applied. For n = 2, figures 2 to
8 provide examples of approximations of the set of vectors
of integers given in figure 1 which are frequently used in
static program analysis. The first group of approximations
in figures 1 to 5 consist in considering envelops of the points
[5], [8], [9], [10] while the second group of approximations
in figures 6 to 8 is based on the idea of congruence [11],
[12], [13].
The approximations involved in figures 2 , 3 and 6 are

non relational. Such non relational approximations ignore
the relationships between the values of the program vari
ables:

αr(X) =
n∏

i=1

{xi | ∃x1, . . . , xi−1, xi+1, . . . , xn :
〈x1, . . . , xi, . . ., xn〉 ∈ X} .

In the case of such non relational approximations, it re
mains to abstract a set of integers, for example by the
interval of its minimal and maximal values αi(Z) =
[minZ,maxZ]. Finally, the abstraction of a set of traces
by intervals of values of the integer variables attached to
each program control point is obtained by composition of
abstractions, α(T) = αi(αr(αl(αs(T)))).
The theory of abstract interpretation shows that the ab

straction α(T) is solution of a fixpoint equation designed
by abstraction of the equation (1) defining the trace seman
tics T . let us consider a very simple example [8]:

x := 1;1: while x < 10000 do2: x := x + 13:
od;4:

The corresponding fixpoint system of equations is the fol
lowing:

X1 = [1, 1] (2)
X2 = (X1 ∪X3) ∩ [−∞, 9999] (3)
X3 = X2 ⊕ [1, 1] (4)
X4 = (X1 ∪X3) ∩ [10000,+∞] (5)

Equation (4) expresses the fact that the set of values of
x at program point 3 is the set of values of x at program
point 2 augmented by the value 1. Equation (3) expresses
the fact that the set of values of x at program point 2 is
the set of values of x at program point 1 (entry in the loop)
or at program point 3 (following iterations) satisfying the
test x < 10000. Hence these equations are an abstract

5

0

X1 = ∅
X2 = ∅
X3 = ∅
X4 = ∅

1
[1, 1]
∅
∅
∅

2
[1, 1]
[1, 1]
∅
∅

3
[1, 1]
[1, 1]
[2, 2]
∅

4
[1, 1]
[1, 2]
[2, 2]
∅

5
[1, 1]
[1, 2]
[2, 3]
∅

6
[1, 1]
[1, 3]
[2, 3]
∅

7
[1, 1]
[1, 3]
[2, 4]
∅

8
[1, 1]
[1, 4]
[2, 4]
∅

. . .
. . .
. . .
. . .
∅

Fig. 9
Increasing iteration for equations [2]–[5]

or simplified version of the Floyd/Naur/Hoare invariance
proof method [14].
The most common method to solve these equations is

iterative, starting from the infimum and using any chaotic
or asynchronous iteration strategy [3]. The increasing iter
ation for equations (2)–(5) is given in figure 9.
Intuitively the chosen iteration strategy consists in fol

lowing simultaneously all possible execution paths, with
out omitting any one, replacing sets of concrete values by
interval abstract values. In general the increasing itera
tion will not be convergent. A widening operation must
be used to speed up convergence. For example the naïve
widening for intervals which is used in figure 10 consists in
extrapolating unstable bounds to infinity. One obtain an
over-approximation of the fixpoint, which can be improved
by a decreasing iteration (which finite convergence must,
in general, be enforced by a narrowing operation). The
iteration with convergence speed-up for equations (2)–(5)
is given in figure 10.
After extension to recursive procedures [15] , the interval

analysis can be used for imperative languages such as [16] ,
C or Java.
The minimal specification is that there should be no over

flows. This can be easily checked by the analysis:

x := 1;
1: {x = 1}

while x < 10000 do
2: {x ∈ [1, 9999]}

x := x + 1 ←− overflow is impossible
3: {x ∈ [2,+10000]}

od;
4: {x = 10000}

In general such run-time errors will be signaled as certain ,
impossible or potential (when the analysis is not precise
enough to conclude), but the cover of the specification is
always complete.

VI. Other Achievements and Perspectives

Most data structures manipulated by programs are not
numerical. This is the case of the control structures (call
graphs, recursion trees), of the data structures (such as
search tress), communication structures (programs dis
tributed on networks), information transfer structures (mo
bile code), etc. It is very difficult to find appropriate com
pact and precise computer representations of sets of such

objects (languages, automata, trees, graphs, etc.) such
that the various set theoretic operations which are used in
the abstract equations can be implemented efficiently, so
that memory size does not explode combinatorially and the
approximations remain precise for complex and irregular
sets. There is a lot of research done on this problem, see
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32] for a few solutions proposed in our
teams.
This type of analysis by abstract interpretation can be

extended to intermittent as well as invariant assertions [33]
whence the idea of abstract testing [16] which generalizes
model checking [34]. In practice such static analyzes have
been successfully used for the static analysis of the flight
software and the inertial central of the Ariane 5 launcher,
which was a success for flights 502, 503 et l’ARD [7].
Numerous languages have been considered such as logic

programming (see references in [35], [36]) and more re
cently mobile code [37], [38], [39], [40]. Some recent applica
tions of static analysis by abstract interpretation concerns
type inference (for undecidable systems) [41] , abstract in
finite state model checking [42], [34] , the transformation
and optimization of programs, automatic differentiation,
the analysis of cryptographic protocols [43] , the semantic
tattooing of software, etc.
A lot remains to be done on fundamental problems such

as:
• the analysis of complex control structures (such as
higher-order recursive, parallel, distributed or mobile pro
grams);
• the analysis of complex data structures (such as floating
point numbers, non-linear approximations of sets of inte
gers, dynamic allocation of data structures);
• the modularization and compositional design of analyz
ers;
• the analysis of complex properties of programs (such as
probabilistic analyses [44] , liveness properties with fairness
hypothesis);
• etc.
Abstract interpretation has been recently industrialized

by start-up enterprises (“AbsInt Angewandte Informatik
GmbH” http://www.absint.de (Germany) in 1998 and
“Polyspace Technologies” http://www.polyspace.com
(France) in 1999. These enterprises have developed effi
cient and powerful static analyzers which are commercially
available.

http://www.absint.de
http://www.polyspace.com

6

X1 =
X2 =
X3 =
X4 =

0
∅
∅
∅
∅

1
[1, 1]
∅
∅
∅

2
[1, 1]
[1, 1]
∅
∅

3
[1, 1]
[1, 1]
[2, 2]
∅

widening︷ ︸︸ ︷
4
[1, 1]
[1, 2]
[2, 2]
∅

5
[1, 1]
[1,+∞]
[2, 2]
∅︸ ︷︷ ︸

increasing iteration

6
[1, 1]
[1,+∞]
[2, 10000]
∅

7
[1, 1]
[1, 9999]
[2, 10000]

[10000, 10000]︸ ︷︷ ︸
decreasing iteration

Fig. 10
Iteration for equations [2]–[5] with widening/narrowing

References

[1] P. Cousot, “Constructive design of a hierarchy of semantics of a
transition system by abstract interpretation,” Theoret. Comput.
Sci. , To appear (preliminary version in [2]). II , IV, IV

[2] P. Cousot. Constructive design of a hierarchy of seman
tics of a transition system by abstract interpretation. Elec
tronic Notes in Theoretical Computer Science, 6, 1997.
URL: http://www.elsevier.nl/locate/entcs/volume6.html ,
25 pages. 1

[3] P. Cousot, Méthodes itératives de construction et d’approxima-
tion de points fixes d’opérateurs monotones sur un treillis, ana-
lyse sémantique de programmes. Thèse d’État ès sciences mathé-
matiques, Université scientifique et médicale de Grenoble, Gre-
noble, 21 Mar. 1978. IV , IV, V

[4] P. Cousot and R. Cousot, “Abstract interpretation: a uni
fied lattice model for static analysis of programs by construc
tion or approximation of fixpoints,” in 4th POPL , Los Angeles,
pp. 238–252, ACM Press, 1977. IV , IV

[5] P. Cousot and R. Cousot, “Systematic design of program analy
sis frameworks,” in 6th POPL , San Antonio, pp. 269–282, ACM
Press, 1979. IV, V

[6] P. Cousot and R. Cousot, “Abstract interpretation frameworks,”
J. Logic and Comp. , vol. 2, pp. 511–547, Aug. 1992. IV

[7] P. Lacan, J. Monfort, L. V. Q. Ribal, A. Deutsch, and
G. Gonthier, “The software reliability verification process: The
Ariane 5 example,” in Proceedings DASIA 98 – DAta Systems
IN Aerospace , Athens, ESA Publications, SP-422, 25–28 May
1998. V, VI

[8] P. Cousot and R. Cousot, “Static determination of dynamic prop
erties of programs,” in Proc. 2nd Int. Symp. on Programming,
pp. 106–130, Dunod, Paris, 1976. V

[9] V. Balasundaram and K. Kennedy, “A technique for summariz
ing data access and its use in parallelism enhancing transforma
tions,” in ACM SIGPLAN ’89 PLDI , Portland, pp. 41–53, 1989.
V

[10] P. Cousot and N. Halbwachs, “Automatic discovery of linear
restraints among variables of a program,” in 5th POPL , Tucson,
pp. 84–97, ACM Press, 1978. V

[11] P. Granger, “Static analysis of arithmetical congruences,” Int.
J. Comput. Math. , vol. 30, pp. 165–190, 1989. V

[12] P. Granger, “Static analysis of linear congruence equali
ties among variables of a program,” in Proc. Int. J. Conf.
TAPSOFT ’91, Volume 1 (CAAP ’91) (S. Abramsky and
T. Maibaum, eds.), Brighton, LNCS 493, pp. 169–192,
Springer-Verlag, 1991. V

[13] F. Masdupuy, “Array operations abstraction using semantic
analysis of trapezoid congruences,” in Proc. ACM Int. Conf. on
Supercomputing, ICS ’92 , Washington D.C. , pp. 226–235, 1992.
V

[14] P. Cousot, “Methods and logics for proving programs,” in Formal
Models and Semantics (J. van Leeuwen, ed.), vol. B of Handbook
of Theoretical Computer Science , ch. 15, pp. 843–993, Elsevier,
1990. V

[15] P. Cousot and R. Cousot, “Static determination of dynamic
properties of recursive procedures,” in IFIP Conf. on Formal
Description of Programming Concepts, St-Andrews, N.B., CA
(E. Neuhold, ed.), pp. 237–277, North-Holland, 1977. V

[16] F. Bourdoncle, “Abstract debugging of higher-order imperative
languages,” in Proc. PLDI , pp. 46–55, ACM Press, 1993. V, VI

[17] P. Cousot and R. Cousot, “Static determination of dynamic prop
erties of generalized type unions,” in ACM Symposium on Lan
guage Design for Reliable Software, Raleigh, ACM SIGPLAN
Not. 12(3):77–94), 1977. VI

[18] P. Cousot and R. Cousot, “Formal language, grammar and
set-constraint-based program analysis by abstract interpreta
tion,” in Proc. 7th FPCA , La Jolla, pp. 170–181, ACM Press,
25–28 June 1995. VI

[19] P. Cousot and R. Cousot, “Abstract interpretation of alge
braic polynomial systems,” in Proc. 6th Int. Conf. AMAST ’97
(M. Johnson, ed.), Sydney, LNCS 1349, pp. 138–154,
Springer-Verlag, 13–18 Dec. 1997. VI

[20] R. Cridlig and É. Goubault, “Semantics and analysis of
Linda-based languages,” in Proc. 3rd Int. Work. WSA ’93
(P. Cousot, M. Falaschi, G. Filé , and A. Rauzy, eds.), Padova,
LNCS 724, pp. 72–86, Springer-Verlag, 22–24 Sep. 1993. VI

[21] R. Cridlig, “Semantic analysis of shared-memory concurrent lan
guages using abstract model-checking,” in Proc. PEPM ’95 , La
Jolla, ACM Press, 21–23 June 1995. VI

[22] A. Deutsch, “On determining lifetime and aliasing of dynami
cally allocated data in higher-order functional specifications,” in
17th POPL , San Fransisco, pp. 157–168, ACM Press, Jan. 1990.
VI

[23] A. Deutsch, “A storeless model of aliasing and its abstraction us
ing finite representations of right-regular equivalence relations,”
in Proc. 1992 ICCL , Oakland, pp. 2–13, IEEE Comp. Soc. Press,
20–23 Apr. 1992. VI

[24] A. Deutsch, “Interprocedural may-alias analysis for pointers: Be
yond k-limiting,” in Proc. PLDI , Orlando, pp. 230–241, ACM
Press, June 1994. VI

[25] A. Deutsch, “Semantic models and abstract interpretation tech
niques for inductive data structures and pointers, invited paper,”
in Proc. PEPM ’95 , La Jolla, pp. 226–229, ACM Press, 21–23
June 1995. VI

[26] L. Mauborgne, “Abstract interpretation using TDGs,” in Proc.
1st Int. Symp. SAS ’94 (B. Le Charlier, ed.), Namur, 20–22 Sep.
1994, LNCS 864, pp. 363–379, Springer-Verlag, 1994. VI

[27] L. Mauborgne, “Abstract interpretation using typed decision
graphs,” Sci. Comput. Programming, vol. 31, pp. 91–112, May
1998. VI

[28] L. Mauborgne, “Binary decision graphs,” in Proc. 6th Int. Symp.
SAS ’99 (A. Cortesi and G. Filé, eds.), Venice, IT, 22–24 Sep.
1999, LNCS 1694, pp. 101–116, Springer-Verlag, 1999. VI

[29] N. Mercouroff, “An algorithm for analyzing communicating pro
cesses,” in Proc. 7th Int. Conf. on Mathematical Foundations
of Programming Semantics (S. Brookes, M. Main, A. Melton,
M. Mislove, and D. Schmidt, eds.), Pittsburgh, pp. 312–325,
Springer-Verlag, 25–28 Mar. 1991. VI

[30] J. Stransky, “A lattice for abstract interpretation of dy
namic (lisp-like) structures,” Inform. and Comput. , vol. 101,
pp. 70–102, 1992. VI

[31] F. Védrine, “Binding-time analysis and strictness analysis by ab
stract interpretation,” in Proc. 2nd Int. Symp. SAS ’95 (A. My

http://www.elsevier.nl/locate/entcs/volume6.html

7

croft, ed.), Glasgow, 25–27 Sep. 1995, LNCS 983, pp. 400–417,
Springer-Verlag, 1995. VI

[32] A. Venet, “Abstract cofibred domains: Application to the alias
analysis of untyped programs,” in Proc. 3rd Int. Symp. SAS ’96
(R. Cousot and D. Schmidt, eds.), Aachen, 20–22 Sep. 1996,
LNCS 1145, pp. 368–382, Springer-Verlag, 1996. VI

[33] P. Cousot, “Semantic foundations of program analysis,” in Pro
gram Flow Analysis: Theory and Applications (S. Muchnick and
N. Jones, eds.), ch. 10, pp. 303–342, Prentice-Hall, 1981. VI

[34] P. Cousot and R. Cousot, “Temporal abstract interpretation,”
in 27th POPL , Boston, pp. 12–25, ACM Press, Jan. 2000. VI

[35] P. Cousot and R. Cousot, “Abstract interpretation and applica
tion to logic programs” 1 , J. Logic Programming, vol. 13, no. 2–3,
pp. 103–179, 1992. VI

[36] S. Debray, “Formal bases for dataflow analysis of logic pro
grams,” in Advances in Logic Programming Theory (G. Levi,
ed.), Int. Schools for Computer Scientists, section 3, pp. 115–182,
Clarendon Press, 1994. VI

[37] J. Feret, “Confidentiality analysis for mobiles systems,” in Proc.
7th Int. Symp. SAS ’2000 (J. Palsberg, ed.), Santa Barbara,
LNCS, Springer-Verlag, 29 June – 1 Jul. 2000. To appear. VI

[38] A. Venet, “Abstract interpretation of the π-calculus,” in Anal
ysis and Verification of Multiple-Agent Languages, LOMAPS
Workshop (M. Dam, ed.), Stockhlom, 24–26 June 1996, LNCS
1192, pp. 51–75, Springer-Verlag, 1996. VI

[39] A. Venet, “Automatic determination of communication topolo
gies in mobile systems,” in Proc. 5th Int. Symp. SAS ’98
(G. Levi, ed.), Pisa, 14–16 Sep. 1998, LNCS 1503, pp. 152–167,
Springer-Verlag, 1998. VI

[40] A. Venet, “Automatic analysis of pointer aliasing for un
typed programs,” Sci. Comput. Programming, Special Issue on
SAS’96 , vol. 35, pp. 223–248, Sept. 1999. VI

[41] P. Cousot, “Types as abstract interpretations, invited paper,” in
24th POPL , Paris, pp. 316–331, ACM Press, Jan. 1997. VI

[42] P. Cousot and R. Cousot, “Refining model checking by abstract
interpretation,” Aut . Soft . Eng. , vol. 6, pp. 69–95, 1999. VI

[43] D. Monniaux, “Abstracting cryptographic protocols with tree
automata,” in Proc. 6th Int. Symp. SAS ’99 (A. Cortesi and
G. Filé, eds.), Venice, 22–24 Sep. 1999, LNCS 1694, pp. 149–163,
Springer-Verlag, 1999. VI

[44] D. Monniaux, “Abstract interpretation of probabilistic seman
tics,” in Proc. 7th Int. Symp. SAS ’2000 (J. Palsberg, ed.), Santa
Barbara, LNCS 1824, pp. 322–339, Springer-Verlag, 29 June –
1 Jul. 2000. VI

Published in the Proceedings of the SSGRR 2000 Computer & eBusi
ness International Conference, CD Rom paper 224, L’Aquila, Italy,
July 31 – August 6 2000. Scuola Superiore G. Reiss Romoli.

1The editor of J. Logic Programming has mistakenly published
the unreadable galley proof. For a correct version of this paper, see
http://www.di.ens.fr/˜cousot .

http://www.di.ens.fr/~cousot

	Introduction
	Computation models and semantics
	Specification and verification
	Abstract Interpretation
	Static Analysis
	Other Achievements and Perspectives

