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Abstract. It is shown that the class of asynchronous
iterative methods and asynchronous iterative methods
with memory can be used to solve a fixed point

system of monotone equations in a complete lattice.
The rather technical proofs use no additional hypo-
theses (such as continuity or chain conditions).
These iterative methods correspond to a parallel
algorithm for solving the system of equations on a
multiprocessor system with no synchronization between

cooperating processes.
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1. INTRODUCTION AND NOTATIONS

Let L(g,1,T,l1,l1) be a non-empty complete lat*ice with partial orde-

ring =, least upper bound ||, greatest lower bound I'l. The infimum L

of L is IL, the supremunm T of L is UL. Let F be a monotone operator
from LU(E,L,7,0,71) into itself (i.e. ¥X,YeLD, {xsY} = {F(X)sF(Y)}).
Tarskil 7]'s theorem states that the set of fixed points of F (solutions

to the equation X=F(X)) 1s a non-empty complete lattice with ordering =.

Let u be the smallest ordinal such that the class {8§:8e¢n} has a
cardinality greater than the cardinality of L". Cousot[3] defines
constructively the fixed points of [ by means of the following

p-termed transfinite sequences

. , . , n .
The Zteration sequence for T starting with D € L is the p-termed

9 . . .
sequence <B , Sep> of elements of 1" defined by transfinite recursion

in the following way :

- BY =D
8 §-1 . ,
- B° = F(B ) for every successor ordinal 8ey
pS =y p® for every limit ordinal §eu
a<é

We say that the sequence is stationary iff {Jecu : {¥Beyu,
{Bza}:>{B€:BB}}} in which case the limit of the sequence denoted by
7s(F)(D) is defined to be B. |

A sufficient condition for the iteration sequence for F starting with

D to be stationary is that D is a prefixed point of F (DeF(D)). In this
case <B6,66u> is an increasing chain, its limit IZs(F)(D) is the least
of the fixed points of F greater than D. It is also greater than any
fixed point of I less than D (if such fixed points exist), (Cousot(3]).
In practice we are often interested by the least fixed point of F which

is Tis(F)(1).

We now consider the case when the fixed point equation X=F(X) is

of the form :

1 n

S X; = P00 = Fo(Xp, e 0X)
{ 1=1..n

. . . . n .
where each Fi, izl..n is a fixed monotene function of L 1into L.
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(If Xel. then Xi denotes the i-th component of X. If X€(Ln

(X.)i denotes the i-th component of the j-th component of X. If

S . $ .
<X ,8¢u> is a u-termed sequence, X denotes 1ts §-th term. Therefore

Xi is the i-th component of the &-th term of the sequence <X6,6€u>).

The iteration sequence for [ starting with I' is then defined by

0
- X =D
) §-1 . .
- X Fi(X ) for every ic{1,...,n} and every successor
ordinal Seu
- X(S = 1 x> for every limit ordinal 8eyp.
a<B

This is nothing else than Jacobi's method of successive approximations

(where limit ordinals are also considered).

More generally, a chaotic iteration sequence for F starting with DeL”
and defined by the u-termed sequence <J6,6eu> of subsets of {1,...,n}
with maximal residue (that is {¥8ep, ¥ie{l,...,n}, doep : (a28) and
(icJ*)}) is the p-termed sequence <X6,6eu> defined by transfinite

recursion as follows

0
- X =D
§ _ 8-1 .
- X = Xi for every successor ordinal Seu and every
. 8
ie({1,...,n}=J07)
- Xi = Fi(Xé_l) for every successor ordinal Seu and every ieJ6
- xS =y x* for every limit ordinal Seu

0<§
(In numerical analysis a similar definition is given in Robert{ 67 for

finite sequences).

Jacobi's iteration method consists in choosing {¥8eu, JG:{l,...,n}}
whereas Gauss-Seidel's iteration method is equivalent to J6={l} if 6=1
or § is successor of a limit ordinal and J6={1+(j modulo n)} if § is a

. §-1_,.
successor ordinal and J  ={3j}.

It is known that without sufficient hypothesis on 1" and F all
chaotic iteration methods are not equivalent. For example one of the
Jacobi's and Gauss-Seidel's sequences may be stationary whereas the
other is not, (Robert[5}). However when F is monotone and L is a
complete lattice Cousotl2] proves that any chaotic iteration sequence

for T starting with a prefixed point D of F is stationary its limit



beeing [Zs(F)(D). Yet this proof was based on the additional assump-
tions that F is continuous (for any increasing chain <Cl,ieE> we have

. o ] 5
r( U cY) = 4 F(cY) and that the length of the periods of <J ,8cp> was
ik il

uniformly bounded {dmew : {¥8en, ¥ie{l,...,r}, Haeu : (8<a<d+m) and
(ieJa)}}. Also in the model of chaotic iterations all components

. . . §-1 .
Xi (ieJé) are evaluated in term of the previous iterate X and this
must be done by a single computation process or by several synchroni-

zed parallel processes.

The purpose of this paper is to eliminate the previous restrictions
and mainly to account for the parallel implementation of iterative
methods on a multiprocessor computer system without synchronization

between cooperating processes.

An important domain of possible application of the results
contained in this paper is the one of global program analysis and
optimization techniques. Most often these compiling techniques
consist in solving a fixed point system of monotone equations in a
complete lattice. Showing that such systems of equations can be solved
by asynchronous iterative methods implies that all classical program
analysis methods which are based on sequential iterative algorithms
are amenable to a parallel implementation on a multiprocessor system
without synchronization between cooperating processes. This enables the
compiler writters to follow the evolution of the hardware technology

without major revision of the known techniques.

2. ASYNCHRONOUS ITERATIONS
2.1 DEFINITION

- Let <J6,650rd> be an Ord-termed sequence of subsets of {1,...,n}

such that
(a) {¥8ecOrd,¥ic{l,...,n}, Fa2s : ieJ™}

- Let <86,660rd> be an Ord-termed sequence of elements of ord” such

that
(b) {vie{1,...,n}, ¥8eOrd, S§<6}

e I
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(k‘) {VGEOr‘d, Vié{l’,._,n}, HBZS . {VO.ZB, 5<S?"}}

(d) (¥8,8¢0rd, {B is a limit ordinal and 3<8} = {vie{1,...,n},
)
B<S 1}

-~ Let F be a monotone operator of the complete lattice L" into itself.
An asynchronous iteration sequence for YT starting with DeL" and
e 8 § .
de fined by <J ,8¢0rd> and <S ,8¢0rd> is the Ord-termed sequence

<X6,660rd> defined by transfinite recursion as follows

- x0 =0

§ §-1 .
- Xi = Xi for every successor ordinal § and

. 8
- -8 every ie({1,...,n}~J0")

§ ° - .

- Xi = Fi(Xl ,...,Xnn ) for every successor ordinal § and
every ieJ
- X(S = U x® for every limit ordinal §.
a<d

(In numerical analysis, a similar definition is given in Baudet[1] for
finite sequences).

For example, the choice SiZS—l for every successor ordinal § and every
index i=z1,...,n corresponds to the definition of a chaotic iteration

sequence given in paragraph 1.
2.2 INTUITIVE EXPLANATION OF THE DEFINITION

Intuitively, the above definition accounts for computations on an
asynchronous multiprocessor. A global memory X initialized with D is
available. Each processor can read or write any component Xi of the
global memory X. These operations are indivisible that is the reading
and writing operations of a component of X are mutually exclusive in
time. Therefore the reading and writing of any X, can be considered as

instantaneous operations.

Interpret <8,8¢0rd> as an increasing sequence of time instants
where reading or writing of some component of X take place. When idle
a processor is assigned to the evaluation of any component of the
system of equations. Then definition 2.1 states that at time § a
certain number of processors terminate the evaluation of all components
i of the system of equations for which ieJd. Therefore the corresponding

S . . . . . .
value X, is instantaneously written in the memory Xi’ This evaluation



$
3 51
of Xi consisted in reading the value X; of the memory Xj at time

$ \ . . . .
S15.-., in reading X at time Si, in applying the operator Fi to

n
$ R
Xp seeesX and writing the value Xi=Pi(X1 senes X ) at time 8 in X..

The components Xj of X for which j¢J are not modified at time 6.

8
S.
Notice that the reading of every value'Xj] used in the computation
) 8
J . s 51 Sn. .
of Xi necessarily takes place before the value Xi=Fi(X1 ,...,Xn ) is

written in X.. This justifies condition 2.1.(b).

According to definition 2.1 no synchronization between the coope-
rating processes is needed, and the scheduling policy (specifying
which processors evaluate which components) is left opened. However
the scheduling policy must be fair so that condition 2.1.(a) imposes

that no component can be abandoned forever. s s
S S
1

. n
We also assume that the evaluation of every Fi(xl D

n )
takes a finite (but not necessarily bounded) period of time and that
if a processor collapses the scheduling policy will be modified in

order to have its task performed by the remaining processors. Therefore
n
8. . .
for every §, max(é—Si) must be bound (but not necessarily uniformly).
i=1

Consequently condition 2.1.(c) states that for any 8 there exists B
such that after time B no processor can terminate a computation that

began at time §.

In practive we should also require that the sequence <X6,6€Ord>
is stationary after a finite time €. It is immediat from what follows
that for example this would be the case when L satisfies the ascending
chain condition. Since the possible hypotheses guaranteeing the
termination of the computations are not unique it is better from a
mathematical point of view to ignore this practical limitation and

consider limit ordinals.

The consideration of an infinite computation sequence does not
eliminate our plausible hypothesis that the elementary computations
(that is the evaluation of a component) must last a finite time. Hence

we state that condition 2.1.(d) is necessary to take account of this

e p—— e .
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fact. By reductio ad absurdum assume that +he computation of xS

i
D8
beginning at time a=min(Si) takes r units o time (where r is integer
1=1

since the duration of this computation can be arbitrarily long but fini-
te). We have a+r=§. Assume that B is a non zero limit ordinal and there
is j such that S§<B<6, then a<B<§. Since B is a limit number o+1<B

so that by finite induction a+r<f<8 in contradiction with a+r=¢.

2.3 CONVERGENCE THEOREM

THEOREM 2.3.1 An asynchronous iteration sequence corresponding to the
monotone operator F of the complete lattice L° into itself and starting

with a prefixed point D of F is stationary, its limit is 1Zs(F)(D).

Proof : The proof is similar to the one given in paragraph 3 for

theorem 3.3.10 when m=1 in definition 3.1. End of Proof.

3. ASYNCHRONOUS ITERATIONS WITH MEMORY

3.1 DEFINITION

- Let <J5,560Pd> be a transfinite sequence of subsets of {1,...,n}

such that :
(a) {¥8eOrd, Vie{1,...,n}, Fa=6 : ied™}

- Let <SG,GeOrd> be a transfinite sequence of elements of (Ord™)"
such that :

(b) {¥ie{1,...,n}, ¥je{1,...,m}, ¥8eOrd, (Sg)i<6}
(c) {¥8eOrd, ¥ie{l,...,n}, ¥je{1,...,m}, @8BS : {¥a28, ss(sg)i}}
(d) {¥8,8¢0rd, {B is a limit ordinal and B<§} => {¥ie{l,...,n},
. 8
¥ie{l,...,m}, ss(sj)i}

- Let L" be a complete lattice and F a monotone operator of (L™)™

into L". 4n asynchronous iteration sequence with memory eorresponding
to F, starting with D and defined by <J6,660rd> and <SG,6eOrd> is
the Ord-termed sequence <X6,560Pd> of elements of L" defined by

transfinite recursion as follows :



- X, = X, for every successor ordinal § and every

ie({l,...,n}—JG)

[
>
)

= Fi(Zl,...,Z ) for every successor ordinal § and every
ieJd

where 8
(Sj)i

{¥je{1,...,m}, ¥ie{1,...,n}, zjizxi }

1
>
|

U x* for every limit ordinal §

a<§

(In numerical analysis a similar definition is given in Baudet[1] for
finite sequences). When m equals one definition 2.2 is equivalent to

definition 2.1.

3.2 INTUITIVE EXPLANATION OF THE DEFINITION

¥ie{1l,...,m}, (o(X))i=X}. Let F be a monotone operator of (Lt™™ into
L". We define a fixed point of F to be an element of L® such that
X=F(X,...,X) that is X=F(o(X)). Since by definition ¢ is a monotone
function of L" into (L™)™ and by hypothesis T is a monotone function
of (L™™ into L” the composition Foog is a monotone operator of the
complete lattice L” into itself. Hence by Tarskil 7 1's theorem the
set of fixed points of F which is equal to the set of fixed points of

Fog is a non-empty complete lattice with the ordering € of L™,

Whenever D is a prefixed point of Foo (that is DeF(D,...,D)) the
iteration sequence for Foo is a stationary increasing chain, its limit
l78(Foo)(D) is the least of the fixed points of F greater than D.
12s(Foo)(D) is also greater than any fixed point of F less than D (if

such fixed points exist), (Cousotl 31).

We will show that whenever DEF(c(D)) any asynchronous iteration
sequence with memory corresponding to the function F and starting

with D is stationary, its limit being lZs(Foo )(D).

For a practical application of this result assume that we have

to compute 1Zs(£)(D) where feL"+L" and that we can find some m and

|
[
|
|
|
[
|
I
Let o be the function of 1" into (L™ such that {¥¥cL®, [
|
|
|
l
|
|
|
|
|
|
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Fe(L™)™>L" such that 7£s(£)(D)=12s(Foo)(D). Then we can use any asyn-
chrcnous iterative method with memory corresponding to F to compute
1is(£)(D).

For example suppose that {¥XeL", £(X)=g(X)UJh(X)}. Then
1128(£)(D)=17s(Fo0)(D) where F(X,Y)=g(X)Uh(Y). A possible iteration with

memory for F is

XX =y
x! =)
X<S+2 - F(X6+1,X6)

In turn this is equivalent to the two collateral iterations

0 0
=1 Y =1
§+1

o (xS yS v$* o nxdy

which is a natural décomposition of the computations not describable

o=
il

by definition 2.1.
3.3 CONVERGENCE THEOREM

In the following we consider an asynchronous iteration sequence
with memory <X6,660rd> for Fe(L™)™>1" starting with a prefixed point

D of F and defined by <J6,6eOrd> and <SG,GeOrd>.
LEMMA 3.3.1. {¥scOrd, pex’}

Proof :

. R . . 0
~ The lemma is obvious for 6§=0 since = is reflexive and X =D.

B

- Assume that for every R<8 we have DeX".

0
- if 8§ is a limit ordinal then we have D=X ¢ |} szx(S

a<§
- otherwise, § is a successor ordinal and then for every i=l,...,n

we have

§-1
i o

definition of an asynchronous iteration sequence with memory

-1
- if ie{J6 then Disxi by induction hypothesis and X§=X

so that by transitivity we prove DiEXi.
- if ieJ6 then DiEFi(o(D)) since D is a prefixed point of T
1 . .
and X§=Fi(Z yeosZ™. Wiell,...,m}, Vie{1,...,n},

s9H1 s
zi:xi 1 where by condition (b) (Sj)i<6 so that by induction
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hypothesis Digzg and ¥je{1l,...,m}, pezd. By monotony of Fi this
implies Fi(o(D))gFi(Zl,...,Zm) so that by transitivity we have

D.;X§.
i1

2y transfinite induction we conclude ¥8eOrd, DEXﬁ.
End of Proof.

LEMMA 3.3.2. {¥8eOrd, % c 128(Foo)(D)}

Proof :

- Let us recall (Cousotl3]) that since DeF(o(D)), 1is(Foo)(D) exists

and is a fixed point of Fog greater than D. Hence the lemma is true

for §=0 since X°=D.
- Assume that the lemma is true for all R<S.
- If § is a limit ordinal then by induction hypothesis {¥g<§,
XBEZis(Foo)(D)} so that by definition of the least upper bound

{ XBEZiS(Foo)(D). since x°= U %% we conclude by transitivity
B<d 5 B<s
that X €l7s(Foc)(D).

- Otherwise § is a successor ordinal and for every i=1l,...,n we

have

-1
- if ide then X.ZXg E(ZiS(Foo)(D))i

O

1
1 .
- if 1eJ® then xi:Fi(z yeeryZ™) where ¥5e{1...m},
§
(S.)i s
¥ie{1l,...,n}, z}:xi 31 and (Sj)i<é so that ¥je{l,...,m},

z3elis(Foo )(D) by induction hypothesis. By monotony we get

Xi:Fi(Zl,...,Zm) € F;(0(145(Foo)(D))) € (1is(Foa)(D));.

By transfinite induction we conclude {¥8eOrd, XSEZis(Foo)(D)}.
End of Proof.

DEFINITION 3.3.3. Condition 3.1.(a) implies that for every 8e¢Ord
there is an ordinal N(§) defined by :
B

}

a
m(8) = min {a: 8<a and {1,...,n}= v

B=§

(Intuitively between times § and N(§)+1, all components have been

evaluated at least once, so that :

{¥ie{1,...,n}, ¥seOrd, 38 : §<B<T(6) and ieI"))

[
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DEFINITION 3.3.4. Condition 3.1.(c) implies that for every 8e0Ord,
there is an ordinal A(§) defined by :
A(8) = min {B: ¥je{l,...,m}, ¥ie{1l,...,n}, ¥a2B, GS(Sg)i}

(Intuitively a computation which terminates at time X(§)+1 cannot
have read the necessary components before time § so that

{¥je{l,...,m}, ¥ie{l,...,n}, Ya2A(8), ss(s§)i}).

DEFINITION 3.3.5. <n5,660rd> is the Ord-termed sequence of ordinals

defined by transfinite recursion as follows :

- n0=o0
8 §-1 . . ) .
- n = Ix(n Y+1 1if 8§ is a successor ordinal
T if 8 is a limit ordinal
a<§

LEMMA 3.3.6. The sequence <n6,650rd> is normal (that is limiting and

strictly increasing).

Proof : The sequence is limiting (for every non-zero limit ordinal §

we have n6= u n%) and such that {Vd,n6<nd+1} therefore it is normal

a<§
(Monk[ 4], theorem 12.6) hence strictly increasing

{va, ¥B, (a<p = na<n8)}. End of Proof.
LEMMA 3.3.7. For every limit ordinal §, n(S is also a 1limit ordinal.
Proof : <n6,660rd> is normal and Monk{ 4 }, theorem 12.7. End of Proof.

DEFINITION 3.3.8. <BS,GeOrd> is the Ord-termed sequence defined by

transfinite recursion as follows :

- 8% =D

8 §-1 . . .
- B = F(o(B )) if 6 is a successor ordinal
- B(S = U g* if § is a limit ordinal

a<é

LEMMA 3.3.9. ¥B,8¢0rd, {ana} = {BSEXB}-

Proof : The proof is by transfinite induction on §.

Case 1. 1If 6=0 then ¥B2nU=0 we have by definition 3.3.8 and lemma 3.3.1

p0=pex?.



Case 2. Assume that 8§ is a successor ordinal and that the lemma 3.3.9
is true for every §'<§. We prove by transfinite induction on B that it

is also true for §.

Case 2.1. 1If B=n(S where § is a successor ordinal then by definition
3.3.5 B:HX(n6—1)+l. Then ¥ie{1,...,n} there is a greatest ordinal €

such that A(ns—l)sgsg and ieJ®. By definition 3.1 we have

-1
Xi = X§+1=...=X§ with X;zFi(Zl,...,Zm). Since eZA(n(S ) we have
. §-1 . .
¥ie{l,...,m}, ¥ke{l,...,n}, n S(Sg)k<e. Therefore by induction
N RGN
hypothesis Bk EXk ] and by definition 3.1 Zizxk . By

transitivity and definition of the’ ordering & of L" we know that

-1«
¥ie{l,...,m}, Bd €73 so that by definition 3.3.8 and monotony we

s _ §-1 1 m, _ € _ B
get B, = F;(e(B” 1)) = Fi(Z e ) =XKL o= XL

1
8
Finally Bex"

Case 2.2. Assume that B is a successor ordinal and that for every

n65a<6 we have BSEXG. We prove ¥i=l,...,n Bigxg. If i,éJB then

-1 1 -1 -1
Bisxi =X§ else ieJB and X?=Fi(2 ,...,Zm). Since B>n6>H)\(n6 )ZA(n(S )
-1
we know that ¥je{l,...,m}, ¥ke{l,...,n} we have n(S S(S§)k so that
(s%) !
] .

B ex 3 K by induction hypothesis when §'=6-1. Therefore

8-
k k 5-1
¥ije{l,...,m} we have B czJ so that by monotony
BG

i

_ §-1 1 m _ B
= Fi(O(Bi )) € Fi(Z yeresZ ) = X

Case 2.3. Assume that 8 is a limit ordinal and that for every

n8<0<g we have Bocx*. This implies 85 e U x%e U x* = X
n6$a<8 a<B

By transfinite induction on B (cases 2.1, 2.2, 2.3) we have proved

that if the lemma is true for every §'<§ and § is a successor ordinal

then it 1is also true for §.

Case 3. Assume that § is a limit ordinal and that the lemma is true

for every §'<§. We prove by transfinite induction on g that Vans,
S_.B
BeX .

Case 3.1. If an6 then by lemma 3.3.4 B8 is also a limit ordinal.

Y
By induction hypothesis on § we have ¥y<§, BYex" therefore

¥
B - ueYe ux. By lemma 3.3.3 the sequence <n’

v<6 Y<§

,yeOrd> is

pe— e p— p— p— p— p— e

&

- a
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strictly increasing {y<§ == n'<n }. Therefore [} X' & |[] X
<§ $
Y S Y nY<n
and U X" = U x*=x" so that by transitivity we conclude
Yy 6 8
n <n a<n
§_ B

B ex .

Case 3.2. Assume that B is a successor ordinal and that for every

nGSa<B we have BGEXQ. We prove ¥i=l,...,n BiEX?. If idJB then
-1
B?EX? =X? else ieJB and X?
i1 i i s
greater than the limit ordinal n  conditions 3.1(b)-(d) imply that
¥je{l,...,m}, ¥ke{l,...,n}, nGS(Sg)k<B. Therefore by induction

5 D .
hypothesis ¥je{1l,...,m}, B, =X so that B°cZ). Since the sequence
<Bd,5€OPd> is increasing (Cousot{3]) we get by monotony

S 8 1 m, _ B
Bi°Fi(°(B )) Fi(Z yeeesZ ) = Xi'

=Fi(Zl,...,Zm). Since B is strictly

Case 3.3. Assume that B is a limit ordinal and that for every

nGSa<B we have Bi;Xa. This implies BG = U x*e yx*= XB

nGSa<B a<B
so that by transitivity we conclude BSEXB.
By transfinite induction on B (cases 3.1, 3.2, 3.3) we have proved
that if lemma 3.3.9 is true for every §'<6 and § is a limit ordinal
then it is also true for §.
By transfinite induction on & (cases 1, 2, 3) we conclude ¥8,8e0rd,
820} = (8%xP}. mna of Proof.

CONVERGENCE THEOREM 3.3.10. An asynchronous iteration sequence with
memory corresponding to the operator Fe(L™)™ L and starting with a

prefixed point D of F is stationary, its limit is IZs(Foo)(D).

Proof : We know (Cousot[3]) that the iteration sequence <BG,GeOrd>
for Foo is stationary. Therefore there is an ordinal e such that
Vyze, 148(Foo)(D)=B'. Hence by lemma 3.3.9 we have Vszns,

1is(Foo)(D) = B® ¢ XB and by lemma 3.3.2 we have xB e 118(Foo)(D).
By antisymmetry we conclude that ¥a2n®, XB=Zis(Foo)(D). End of Proof.
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Addendum (November 10, 1977)

I want to express my gratitude to Frangois ROBERT for kindly
drawing my attention to J.C. MIELLOU's result (Algorithmes de relaxation :
vropriétés de convergence monotone, Séminaire d'Analyse Numérique n°278,
L.A.7, Université Scientifique et Médicale de Grenoble, Grenoble, France,
June 1977) which was unknown to me. My results can be regarded as a
generalization of those obtained by J.C. MIELLOU : in definition 2.1 (3.1)
I do not use the additinal hypothesis {¥ie{1,...n}, ¥§,8'¢ Ord, {8<8'} =
{Sissi'}. This extra assumption facilitates very much the proof of the
convergence theorem since it implies that the iteration sequence is an
increasing chain wheras my main difficulty was to face the case of
partially (but not totally) ordered iterates. By contrast this added
supposition introduces a limitation in the scheduling policy. Also in
order to prove that the iterates converge to a fixed point J.C. MIELLOU
uses the hypotheses that either L is a finite ordered space or that L
is a normal Banach lattice and I is semi-continuous. This last assumption
is comparable to the continuity hypothesis that I discuss in the
introduction and that I avoided since Tarski's theorem can be proved

constructively [3] with a monotony hypothesis only.



