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ABSTRACT :

We establish general mathematical techniques for analyzing the behaviour
of dynamic discrete systems defined by a transition relation on states. The
results are applied to the problem of analyzing semantic properties of programs.
In this first part determinist (functional) systems and sequential programs ars
considered.

RESUME :

Nous établissons des techniques mathématiques générales pour analyser le
comportement de systémes dynamiques discrets définis par une relation de tran-
sition sur des états. Les résultats sont appliqués au probléme de 1'analyse
sémantique des programmes. Dans cette premiére partie nous considérons le cas
des systémes déterministes (fonctionnels) et des programmes séquentiels,
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ANALYSIS OF THE BEHAVIOUR OF DYNAMIC DISCRETE SYSTEMS
PART I : DETERMINIST SYSTEMS

Patrick Cousot

Laboratoire I.M.A.G.
BP.53X, 38041 Grenoble cedex, France

1. INTRODUCTION

We establish general mathematical technigues for analyzing the behaviour
of determinist dynamic discrete systems. In order to illustrate a possible
application of these results, we consider the problem of analyzing semantic
properties of programs, that is, the particular case when the dynamic discrete
system is defined by a seguential program.

The term "analysis of the behaviour of a determinist dynamic discrete
system” will be given a precise meaning which is better introduced by the

following :

Example 1.0.1

Consider the program :

8 ukite 21000 do
(3} Xi=X+ys
{a} o4

where x and y are integer variables taking their values in the set I of integers
included between -b-1 and b where b is the greatest machine-representable integer.
By "analysis of the semantic properties” of that program we understand
the determination that:
- The execution of that program starting from the initial value xye¢l and
yoel of x and y terminates without run-time error if and only if
(% <1000} v (y, <0),




- The execution of that program never terminates if and only if
{1000<x¢sb)A (yy=0],

- The execution of that program leads to a run-time error (by overflow)

if and only if (x=1000) A (y¢>0J],

- During any execution of that program the following assertions Pi characterize
the only possible values that the variable x and y can possess at program
point i: '

Py = A<x,y>.[[-b-1sx<b)A (-b-1<ysb]]
Py, = A<x,y>.[(1000sxsb)A (-b=1sy<b)]
Py = A<x,y>.[(1000+ysx<min(b,b+y)) A (-b-1<y<hb)]
Py, = A<x,y>.[(-b-1<x<1000)A (-b=1 sysb])]
End of Examnle

2. SUMMARY

In section 3 we define what we understand by flowchart programs, that is,
we define their abstract syntax and operational semantics. A program defines
a dynamic discrete system (Keller[761,Pnuellil77]) that is a transition relation
on states. In section 4 we set up general mathematical techniqués useful in the
task of anmalyzing the behavior of a dynamic discrete system. In order to make
this mathematically demanding section self-contained, lattice theoretical
theorems on fixpoints of isotone or continuous maps are first introduced in a
separate subsection. The main result of section 4 shows that the predicates
characterizing the descendants of the entry states, the ascendants of the exit
states, the states which lead to an error and the states which cause the system
to diverge are the least or greatest solution to forward or backward fixpoint
equations. This result is complsted by the proof that whenever a forward equation
{corresponding to post-conditions) is needed, a backward equation {corresponding
to pre-conditions) can be used instead and vice versa. Finally we show that
when the set of states of the dynamic discrete system is partitionned the forward
or backward equation can be decomposed intoc a system of equations. Numerous

examples of application are given which provide for avery concise presentation



and justification of classical (Floyd[67],Naur[66], King[63], Hoare[83],
Dijkstra(78]) or innovative program proving methods. Section 5 tailors

the general mathematical techniques previously set up for analyzing the behavior
of @ dynamic determinist discrete system to suit the particular case when the
system is a program. Two main theorems explicit the syntactic construction rules
for obtaining the systems of semantic backward or forward equations from the

text of a program. The facts that the extreme fixpoints of these systems of
semantic eguations can lead to complete information about program behavior and
that the backward and forward approaches are equivalent are illustrated on the

simple introductory example.



3. ABSTRACT SYNTAX AND OPERATIONAL SEMANTICS OF PROGRAMS

3.1. ABSTRACT SYNTAX

Informally programs will be abstractly repressnted as single-entry,

single-exit directed graphs with edges labeled with instructions.

Example 3.1.0.1.

The program of example 1.0.1 will be represented as:

A<x, y>. (x>y)

A<k, y>. (x<y)

A<X,y> . (<x+1,vy>)
A<x,y>. (x<y)

A<x,y>. (x>y)

End of Example 3

A program graph 1is a triple <V,e,0,E> where V is a finite set of
vertices, EgVxV is a finite set of edges and eeV, 0eV are distinct entry
and exit vertices such that € is of in-degree 0, 0 is of out-degree 0 and every
vertex lies on a path from € to O.

Let v be a vector of variables taking their values in a wntverse U. The
set I(U) of instructions is partitionned intoc a subset Ia(U) of assignments and
a subset It(UJ of tests. An assignment z:=f(31 is represented as a partial map
from U into U. A test is represented as a partial mep from U into B={true,fals

A program is a triple <G,U,L> where the program graph G, the universe U
and the labeling Le (E+I(U)) are such that for every non-exit vertex n in G
either n is of out-degree 1 and the edge ieaving n is labeled with an assignment

-

or n is of out-degree 2 and the edges leaving n are labeled with tests p and

el.

P




3.2. (OPERATIONAL SEMANTICS

The operational semantics of a syntactically valid program m specifies

the sequence of successive states of the computation defined by .
3.2.1. States

The set S of states is the set of pairs <c,m> where C ¢ (Vu{E}) is the
control state and m:zU is the memory state. &£V 1is the error control state.

The entry, exit and erroneous states are respectively characterized by

vE=A<c,m>.[c=€], vc=k<c,m>.[c=dl and v€=k<c,m>.[c=5).

3.2.2. State Transition Function

A program w=(G,U,V) defines a state transition function Te(S+8) as follows:
- T(<E,m>)=<E,m> {no run-time error recovery is available)
- T(<o,m>)=<0,m>
- If ¢y eV 1is of out-degree 1, <c;,Cp> €k, L{<gy,co>)=f, f eIa(U) then
if medom(f) then T(<c,,m>)=<cz,f(m]> else T(<cy,m>)=<g,m>
- If ¢, eV is of out-degree 2, <cg,c> ek, <ci.c> e b L(<cy,c2>)=p, Li<cy,c3>)="p,
p EIt(U] then if m¢ dom(p) then T(<c;,m>}=<g,m> else if p(m) then

T{<C1,m>)=<c,,m> else T(<cy,m>)=<c3,m>.

The state transition relation T e ((§x8)~+B) defined by T is K<sl,sz>.(sz=;kslll

3.2.3. Transitive Closure of a Binary Relation

If a, Be (SxS+B) are two binary relations on S their product a8 is defined

as A<s,,s,>.[3s3 €S : alsy,53) A B(s3,s2)]1. For any natural number n, the

. n
n-extension & aof o is defined by recurrence as a’ = eq = A<si,s,>.[s1=s821,

+ . -
o™ tegoa”. The (reflexive) transitive closure of o is o = A<sy,s2>.0[4n20

an[sl,szl].



3.2.4. Execution and output of a Program

The execution of the syntactically valid program 7 starting from
i *
an initial state s; €S is said to lead to an error iff [3s2e8 : T [51.32]AV£(32]].
to terminate iff [ sz ¢S : T*[sl.szb\votszl]. Otherwise it is said to diverge.
The output of the execution of a syntactically valid program T starting from an
initial state <e,m;> eS8 is defined if and only if this execution terminates as

¥*
my € U such that T (<e,m;>,<0,my>]).

4. ANALYSIS OF THE BEHAVIOR OF A DYNAMIC DISCRETE SYSTEM

We now establish general mathematical technigques for analyzing the
behavior. of determinist dynamic discrete systems. The results are examplified

on the particular case of analyzing semantic propertiés of sequential programs.

4.1. DYNAMIC DISCRETE SYSTEMS

A dynamic discrete system is a triple <S,T.v€,vc,vg> such that 8§ is a
non-void set of states, T e ((SxS)~+B) where B = {true, false} is the transition
relation holding between a state and its possible successors, Ve € (S+B)
characterizes the entry states, Vv _e (S+B) characterizes the exit states and

g
Vv, € {§+B) characterizes the erroneous states. It is assumed that the entry,

g

exit and erronecus states are disjoint (¥i,je {e,0,E}, (izj) => (VseS,

"[vi(sJAvj[sDD Z
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The following study is devoted to total (¥s; €S, 3sp €S :Tlsy,s2)) and
determinist (¥sy,S2,53€S, (T{sy,8,)AT(s,,8,0) = (sp=s3)) dynamic discrete
systems.

A program as defined at paragraph 3 defines a total and determinist dynamic
discrete system. Moreover the entry states are exogenous {¥s1,82 €8,

T(sy,52) = (v (s,)), the exit states are stable (¥si,s2€ S,
[vo(sllAT[sl,sin => (8,=5,)) and the system is without error recovery (¥si,s: €S,
(vE(sl]AT(sl,sz)]=9 V,.(s,0) .

The Znverse of T e ({ Sx8) +B) s -1 = A<sj,s2>.[T(s2,51)]1. A system is

injective if T -1 is determinist, it is invertible if it is injective and T "l s

total. In general a program does not define an injective dynamic discrete system.

4.2. FIXPOINT THEOREMS FOR ISOTONE AND CONTINUOUS OPERATORS ON A COMPLETE LATTICE

This section recalls the lattice theoretical definitions (Birkhoff[671]]
and theorems which are needed afterwards.

A partially ordered set (poset) L(g) consists of a non void set L
and a binary relation £ on L which is reflexive (Yael, asal, entisymmetric
(Va,bel, (ach A bsa) => (a=b)) and transitive (Ya,b,cel, (agsbA bescl = (asc)
Given Hel, ael is an wpper bound of H if bca for all beH. a is called the
least upper bound of H, in symbols LU H, if a is an upper bound of H and if b is
any upper bound of H, then acb. The dualized notions {(that is all ¢ are replaced
by the inverse 2) are the ones of lower bound and greatest lower bound. L(E) is a
complete lattice if the least upper bound [H of H and the greatest lower bound
MH of H exist for all H, Hgl. A complete lattice L has an infimum 1=[1L
and a supremum T= UL.

An operator f on L is tsotone iff (Ya,bel, (acb) => (fla)sfb). ael
1s a fixpcent of £ iff fla)=a. Tarski[55]'s fixpoint theorem states that the
set of fixpoints of an isotone operator f on a complete lattice LS sninf]) is
a (non-void) complete lattice with partial ordering c. The least fixpoint of f,
in symbols Ifp(f) is M{xel : f(x) =x}. Dually the greatest fizpoint of f, in
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symbols gfp(f) is U {xel : xsf(x}}. An element a of L such that agf(a)
(respectively f(a) €a) is called a pre-fizpoint (post-fixpoint) of f.

Let f be an isotone operator on the complete lattice L. The recursion
induction principle follows from Tarski’s fixpoint theorem and states that
(Vx e L, (fFlx)Ex) => (Ifp(flex)) . The dual recursion induction principle 1is
{(¥xel, (xef(x)) == (xegfp(fl).

If L(=, 1,7,U,/7) is a complete lattice then the set (ML) of total maps
from the set M into L is a complete lattice (M->L)(g’,1',7',U'.[1') for the
poitntwise ordering fe'g iff (¥xel, f(x)=g(x)) . In the following the distinc-
tion between €, L, T,LLMN and €', 1',7',U0',[1" will be determined by the context.
The set L" of n-tuples of elements of L is a complete lattice for the component-
wise ordering <a1,...,an>'5<b,,...,bn> iff aiEbi for i=1,...,n. The set 2L of
subsets of L is a complete lattice 2%(c,?,L,u,n). A map fe (M>L) will be
extended to (M">L") as k<x1,.,,,xn>.[<F(x1)....,F(xn]>] and to (2M+ 2L] as
AS. {f(x)sx eS}. 1

A seguence Xg, Xy» sses X pees of elements of L(g) is an increasing chain
IFf XgEXp Eoes EX_Eeer o An operator f on L(g, L,T,U.M) is semi-{l-continuous
iff for any chain C={xiz ieA}, Cel, FLUCI=Lif(C). Kleeme[52]'s fixpoint
theorem states that the least fixpoint of a semi</-continuous operator f on
Li=, L, 7,1 L,MN} is equal to U{Fi(ll: i20} where Fiié defined by recurrence as
Faax.[xd, £ taax FeF(xD ]

A poset L(g) is said to satisfy the ascending chain condition if any

éL' 130,1,2..-, and XOEXIE"'EX E'--

increasing chain terminates, that is if x o

i

then for some m we have x = .+ o An operator ¥ on L(g, 1, 7,0, which is

X o=
semi-{|-continuous 1s nece[:san;iiy isotone but the reciprocal is not true in
general. However if f is an isotone operator on a complete lattice satisfying the
ascending chain condition then f is semi-ll-continuous. Alsc an operator f on

a complete lattice L whichis a complete-llmorvhism(i.e. ¥Hgl, f(LH) =f(H]

is obviously semi-|l-continucus.

Dual results hold for decreasing chains, semi-l\-continuous operators,

descending chain conditions and complete~+morphisms.
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. Suppose Llg, 1,7,U,M, L'(=’,1',7',U'.MN") are complete lattices and we have

the commuting diagram of isotone functions:

.F
L.—-——-—-————’L

" lh
L’ PUSSEESEEE———— 4 LI

where h is strict (h(1)=1') and semi-U-continuous. Then h(lfp(f)) = lfplgl.

. In a complete lattice L(g,1,T,U,M, a is a complement of b if allb=1 and
allb=T. A uniquely complemented complete lattice Llg, 1,7,LLM,T) is a complete
lattice in which every element a has a unigue complement ~a.

Park[69]'s theorem states that if f is an isctone operator on a uniguely
complemented complete lattice Lig, L, T,0,7) then Ax.[Tf(Tx])] is an isotone
operator on L, gfp(f) =" Ifp(Ax.[TF(Tx1]).

. Let L(g, 4,7,,M be a complete lattice, n=1 and F a semi-{/-continucus

operator on Ln. The system of equations:
X = F(X)

which can be detailled as:

J J

Xy = FolXgseeeaX)
j= 1,:--.”

has a least solution which is the least upper bound of the seguence {Xi : 120}

0_ i+ i :
where X =<1,...,.> and X =F{X~) which can be detailled as:

J

i+1 i i
Xy = XgaeesX0)
j‘= 1,---,”

One can also use a chaotic iteration strategy and arbitrarily determine
at each step which are the components of the system of equations which will

evolue and in what order (as long as no component is forgotten indefinitelyl.
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More precisely (Cousot & Cousot[77e], Cousot[771), Ifp(F) 1s the least

upper bound of any chaotic iteration sequence {Xi : 120} where X%=<i, ..., 1>

and
1+1 i i
X Fj(xl,,..,xnl 1f jed,
141 i
X =X 1f § &3
3 3 149

provided that (¥iz0, Jis [1,n] and (V¥je[1,n], 3k20 : J e.Ji+kn . A dual result
holds for gfp(FJ.

4.3. CHARACTERIZATION OF THE SET OF DESCENDANTS OF THE ENTRY STATES OF A
DYNAMIC DISCRETE SYSTEM AS A LEAST FIXPOINT

Given a discrete dynamic systsm (S,T.vs,vd,vgl the set of descendants
of the states satisfying a condition B € (S+B) is by definition the set

characterized by :
As,.[3s; €S : Bls;) AT (51,8217 = post(T’)(B)
using the notation

post ¢ (((SxS) +B) > ((S+B) -~ (S+B))
post = A8.[AB.[As,.[3s,€S : Bls;)A 8(sy,8,113]

Example 4.3.0.1.

Let Tbe a program defining a total and determinist system (S.T.ve.vc,vgl.
Assume that ¢, ¥ € (S+B) specify what it is that 7 is intended to do : the
execution of the program 7 starting with an entry state satisfying ¢ terminates
and the exit state satisfies ¥ on termination of 7. A partial correctness proof
consists in showing that:

voApost(T*](veA o) =Y
In words, every exit state which is descendant of an entry state satisfying ¢

must satisfy ¥. The question of termination is not involved.

End of Example.




A8

THEOREM 4.3.0.2.

[post(8)(8)]
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We now show that post(T*][B] is a solution to the equation a=8 Vpost(t](a)l,
more precisely it is the least one for the implication => considered as a partial

ordering on (S+Bl.

(1d - [(SxS]-*B](=$,k(sl,sz).f&lse,k[sl.sz).true,V,A.") and

(S+B)(=>,\s.false,As.true,V,A,”) are uniquely complemented complete lattices

(2) - ¥8 e ((SxS) +B), post(®) is a strict complete V-morphism. ¥8 € (S~+R1,
A6.[post(8)(B)] is a strict complete V-morphism.

(3) - ¥re ((SxS)+B), ¥Be (S+B),
post(t*)(B) = ¥, post(t"1(8) = Ifp(Aa.[B vpost(t)(a)])

Proof: The following diagram of isotone functions:

Aa.[eq vaet]
[ 3G ) -+*Hf) St > ((Sx$)~+B)

A6 .[post(A) (8]

(S+B) > (S+B)

Xo..[postleq) (B) vpost(T)(a)]

is commuting and A8.[post(8)(B)] is a strict complete v-morphism. Therefore
post(1fp(\a.LegvaeTt]) ) (B) = post(t™)(B) = Ifp(a.[postleq) (B) vpost(t)(all) =
1fp0a.[8 vpost(t) (@)1}, Also post(t )(B) = post( y,t")(B) = post (1" (8).
End of Proof.

v
n20

Example 4.3.0.3
Floyd[67]-Naur[66]'s method of inductive assertions for proving the partial
correctness of 7 with respect to ¢, ¥, consists in guessing an assertion 1 and

showing that (( (v€A¢]=>1.)A (post (T} (V}=>1) A ([ (v A 1)=> ¥1J.
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Using the recursion inductien principle, from (( [v€/\¢3==> 1A (post(t)(1)=>1))
we infer (pr[ka.[[v€A¢] vpost(t)(a)])=>1). It follows from theorem 4.3.0.2.(3)
that (voAApost(T*)(ve/\¢]) => (vgA 1) => ¥. The method is sound (Clarkel(771).

Reciprocally, if 7 is partially correct with respect to ¢, ¥ then this can
be proved using Floyd-Naur method. This completeness result follows from the
fact that one can choose 1 as pr(ka.[[vaja¢] vpost(t](al]).

End of Exzample.

4.4, CHARACTERIZATION OF THE SET OF ASCENDANTS OF THE EXIT STATES OF A
DETERMINIST DYNAMIC DISCRETE SYSTEM AS A LEAST FIXPOINT

In the case of a determinist dynamic discrete system, the set of ascendants
of the states satisfying a condition B e (S+B) 1s characterized by:
As,.[3s, €S : 17(s,,8,) A B(s,]] = pre(t”)(8)
using the notation :
pre € (((SxS)+B)~+ ((S~+B)~> (S+B))
pre = A8.[AB.[As,.[3s, €8 : 8(s,;,s,) AB(s,)1]]

Example 4.4.0.1.

Let 7 be a program defining a total and determinist system (S.T,VE,VG,VE)
and ¢, ¥ ¢ (S+B) be respectively an entry and exit specification. A total
correctness proof consists in showing:

VA d = pre(t™)(v_A¥)
In words, every entry state satisfying ¢ 1s the ascendant of an exit state
satisfying ¥. This is a proof of termination when ¥=As.[truel.
End of Example.

Once the mathematical properties of post have been studied similar anes
<1
can be easily derived for pre since pre(6)(B) = post(8 1(B) and post(8)(B) =
-1
pre(8 )(B). This point is illustrated by the proof of the following :

THEOREM 4.4.0.2.

(1) - ¥0 € ((SxS) »B), pre(8) is a strict complete v-morphism ; ¥8 e (S~B],

AB.pre(6)(B) is a strict complete v-morphism.
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(2) - YT e ((SxS)~+B), ¥Be (S+B),
pre[T*)(B) Lt 1 pre(Tn]EBJ = Ifp(ia.[B vpre(t)(a)])

-1 sl e = =
Proof :  WT,T,,... € ((SxS)>B), (1, 01,07 = (1,7 o7;') s ¥neN, (117 =(r i
- =i - K
(Xri) 1,= g[ri) , (T I Therefore it follows from theorem 4.3.0.2

.
2

that ¥8 € ((SxS) +RB), pre(8) = post(G-IJ is a strict complete v-morphism.

VY8 e (S+S), AB.pre(8)(B) = XG-post[G-I][BJ is a strict complete v-morphism.
& =1 S

Also pre(t*)(8) = post((t™) 11(B) = post((t” 1*)(B) = Y postllt SIICE

ngepost((‘rn]-l](sl - n;’_opre('rn)(sl IfpOa.[B vpostlt ()]} =

1fp(Aa.[Bvpre(t)(a)]). End of Proof.

4.5. CHARACTERIZATION OF THE STATES OF A TOTAL AND DETERMINIST SYSTEM WHICH
DO NOT LEAD TO AN ERROR AS A GREATEST FIXPOINT

The entry states which are the origih of correctly terminating or diverging
execution paths of a determinist program W(S,T,ve,vc,vg] are those which do not

lead to a run-time error. They are characterized by \)EA"pre (T*](\)E].

THEOREM 4.5.0.1.

Let T e ((SxS) ~B) be total and determinist. YBe (S+>RB),
"pre[T*J(BJ = gfp(a.[TBApre(t) (a)])

Proof: "pre(r*](B] = "Ifp(Aa.[BVvpre(t)(a)]) = “1fp(TAa.LTBA Tpre(t) (C(Ta)) ).
According to Park's fixpoint theorem this is equal to gfo(Aa.[78 A Tpre(t) (Talll.
Let T € (S+S) be such that (¥s,,s, €S, (t(sy,s,) <> (T(s,)=s,))). We have
“pre(t)(Ta) = As,.[Ta(T(s,)3] = Xs,.[alt(s ])] = pre(t)lal). End of Proof.
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4.6, ANALYSIS OF THE BEHAVIOR OF A TOTAL DETERMINIST DYNAMIC DISCRETE SYSTEM.

€
that the analysis of the behavior of this system can be carried out by solving

Given a total and determinist system w(S,t,v '”c’Vg] we have established

fixpoint equations as follows :

THEOREM 4.6.0.1.

(1) - The set of descendants of the entry states satisfying an entry condition
¢ ¢(S+B) is characterized by :
post(t)(v_A¢) = Ifp(Aa.L(v A ) vpost(t) ()])

{2} - The set of ascendants of the exit states satisfying an exit condition
¥Ye (S+B) is characterized by :
pre(‘r*] (g A ¥) = pr(?\a.[(vcl\ ¥) vprelt)(al])

(3) - The set of states leading to an error is characterized by :

bre(r*)(vgl = pr(ka.[vE‘Vpre(T](a]]]

{4) - The set of states which do not lead to an error (i.e. cause the system
either to properly terminate or to diverge) is characterized by :

“pre(t)(v,) = gfp(ha.[veA pre(t) (@)])

(5) - The set of states which cause the system to diverge is characterized by :

~pre(t”) (Vg VVg) = gfb e[V, A VA pre(T) (@) D)

Example 4.6.0.2

The proof that a program W[S,T,vs.vc,v ) does not terminate for the entry

g

states satisfying a condition § ¢ (S+B) consists in proving that VEA § =
"Pre(T*J[vc‘/vgl. It follows “from theorem 4.6.0.1.(5) and the dual recursion

induction principle that this can be done by guessing an assertion t e (S+B) and

proving that (f[VEA 8§ =>1) A (1= "VGA "vg Apre(t)(1))). End of Example.




18

4.7. RELATIONSHIPS BETWEEN pre AND post

THEOREM 4.7.0.1.

Let B ¢ ((SxS)+B). VB, ye (S+>B],

(1) - pre(8) (8) = post(8 ' J(B) , post(8)(B) = pre(8  )(B)

(2)

If 8§ is determinist then :
post(8) (pre(8) (B)) = (BApost(8) (true)) => B

{3) If § is total then :

B => pre(6) (post(6)(8])

{(4) - If 6 is total and determinist then :
. (B=>pre(8)(y)) iff (post(8)(B)=>Y])
post(8)(B) = A {ye (S>B) : B=>pre(8)(y)}
pre(8)(B) = v {ye (S+B) : post(8)(y)=> B8}

Proof: (1) pre(8)(8) = As;.[3s, ¢ 8(s;,8,) AB(s,)1= As;.[3s, : B(s,JA0  (s,,5,)]
post(8'1(8). post(8)(B) = post((8™'17')(8) = pres” )(B). (2) If 6 is
determinist then there exists 8 ¢ (S+S) such that 8(s;,s,) <> sz=5151]. Therefore
post(8) (pre(8) (8)) = As,.[3s, : (3s, : 5,=B(s,)A Bls,)) A 5,=B(s))] = Asyilds, ¢
B(B(s,;)) As,=8(s,)] = post(6) (true) AB. (3] If 6 is total then Vs, €8, B(s,) =
(B(s,) Alds, : B(sys,)) => (3s, : 8(s;.8,) A (3s; : 8(s;,8,) AB(s;))) =

pre(8) (post(8) (B} (s,). (4) If (B=>pre(8](Y]) then by isotony post(8)(B) =
post(8) (pre(8)(Y)) => y. If (post(8)(B)=>Y] then by isotany B => pre(8) (post(8) (B
=> pre(8)(y). post(8)(B) = aly : post(8)(B)=>Y} =aly : B=>pre(8)(Y)}.
pre(8)(B) = v{y : y = pre(8)(B)} = v{y : post(8)(B)=>B}. End of Proof.

Example 4.7.0.2.

According to theorem 4.7.0.1.4, Floyd-Naur's method for proving the partiel
correctness of T with respect to ¢, ¥ which consists in guessing an assertion 1
and showing that (([VeA ¢} =>1) A (post(t)(1)=>1] A [(VGA 1)= ¥)) is equivalent
to Hoare[69]'s method which consists in guessing an assertion 1 and showing that

(([\)EA¢J=>1] A (1=>pre(T)(1)) A (E\)UA 1)=>Y)). End of Example.
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We have seen that the analysis of a system consists in solving "forward”
fixpoint equations of the form o=8 xpost(t)(a) or "backward” fixpoint eguations
of the form a=B xpre(t)(a) (where Be (S+B) and w is either Vv or A). In fact
a forward equation is needed, a backward equation can be used instead and vice

versa :
THEOREM 4.7.0.3.

¥8 ¢ ((SxS)>B), ¥Be (S +B),
- post(8)(B) = As.[Js, €S : B(s;)A pre(8) (As.[s=31)(s )]
- pre(8)(B) = As.[3s, ¢S : post(8)(As.[s=s1)(s,) AB(s,)]

Proof: post(8)(B) = As.[3s €S : B(sllAefsl.-s'J] = As.[3s, €8 : Bls;) A (IseS :
(s=s) A 8(s ,s))] = As.[3s, S : B(s,) A pre(8)(As.[s=s1)(s,)]. End of Proof.

Example 4.7.0.4

A total correctness pyoof of a program 7T with respect to ¢, ¥ consists

in showing that ([vs AD) => pre(T*][ch‘PJJ that is to say ((v€;\¢) =
pr(ka.[(vo_AW] vpré(t)(a) ])).Equivalently, using post, one can show that:
¥s ¢ S, [v€(§) A$(s)) => (35, €S : v (s,]A ‘Y[sz]/\.lfp()\a.[)\s.[s;sﬁ vpost(t)(al1l(s,))
More generally we have : |

post(t )(B) = As.[Is; €S :B8(s ] A Ifp (halrsds=s) v pre(t] (@)1l (s )]

pre(t ) (B) = )\.s-.Hsz €S :B(s,1A Ifptialis {s=5) V post(t)(a)])(s,)]
End of Example.

4.8. PARTITIONNED DISCRETE DYNAMIC SYSTEM

A dynamic discrete system [S’T'vs'vc‘vgl is said to be partitiomned if there
exist n21, Ul, % KX Un, Lo eees 1 such that ¥ie[1,n], 1
one map from S onto Ui and {f;[Ui) : 1e[1,n]} is a partition of S, (therefore

is a partial one to

n

-1 =
S= 4 Yy (Ui] and every s €8 is an element of exactly one 1 (Ui]].
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when studying the behavior of a partitionned system the equations
a = Bwpost(tl)la) or o = R xpre(t)(a) can be replaced by systems of equations

defined as follows :

Let us define :
it £l 1
viel[1,n], g, € ((S>B) ~ (Ui - B)), O’i=)\6.[8oli % gy =)\_B.D\s.[seli (Lli] /\B(Ii(s]]_i

o ((S+B) > (0 (U, »B), 0= AB.(,],0,(8)) = AB.<T (B), . -.0, (B>

g is a strict isomorphism from (S-+B) onto iil(ui + B). Its inverse is

= =7 X< n -1 ]
o 81""’Bn>'[i¥loi [Bi Jc

For any isotone operator £ on (S~+B), the following diagram is commuting :

f
eedl:) s 5 > (S~B)
e b -1
ag a o} o
n (RO > N
AR . 1, Uy B

k<a1,...,an>.[cofoc (al,...,an]]

so that.the sets.of pre-fixpoints, fixpoints and post-fixpoints of f coincids

(up to the isomorphism o) with the pre-solutions, solutions and post-solutions
n .

to the direct decomposition of a=fla) on iEI(Ui-*B} which is the system of

equations:

-1
0.1 = 01 o'FuU [Cl;so--:an]

i =1
@ =0 ofc @ (B ,eees0 )
n n 1 n

In particular when f=Ac.[B xpost(t)(a)] or F=ha.[B xpre(t)(a)] we have :

Yiel1,n], oy ora.[B mpost[‘r](oL)].:CJ-1 is equal to :
v
k<a1,...,un>.[0i(81 xij epredT[iJPOSt[Tji)(aj]]]

whereas Gioka.LBﬂ;nwtflta)]oo-l is equal to :
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A<a1,.. .0 > [c (B) = (, ) pre(Tij)(aj])]

J esucc (1

where :

e ({U;xU)+B), Tij=K<sl.sz>.[T[1 (s ].1 [s 111

13 J
predT = Ai.{jel1,n] : tisletﬁ.iszslg.: Tji(s,.sz)J}

suce. = M.{jel1,n] : (Is; el ,3s) el : ‘rij(sl.szl)}
n -1
Proof: Ui[B xpost(T) (0~ (a seeesQ 1= o, (B) xo (post[r)(J ¥,9; [aj)J)=
n

-1 -1 -1 -1
o, (8) A [post(r)(dj (aJJJoti ). Moreover post(r)(cj (ajl)eti =

-1 “1
As,.[3s, ¢S : GJ (aj)[sl)A TFSl,li (sz))] = Asz‘[331€Lﬁ : aj(sllA T(IJ (s, 1,1 [s 113
=n As,.[3s euj : aj{E;] ATji[sl,SZ] o post(rj ](a.]. Therefore

-1 =3
jgl Epost[r][cj [ajlloli ) = 3 ep;edrti i1

¥s »8,, T (s;,s,). Also pretr]=postfr_1]. (t )-1=T and succT=pred 8

2 311 iJ Ji T-1

End of Proof.

Jpost (T )(a ) since (j &pred (1)) implies

5. SEMANTIC ANALYSIS OF PROGRAMS

The fixpoint approach to the analysis of the behavior of total determinist
dynamic discrete systems is now applied to the case of programs as defined at
paragraph 3.

A program <G,U,L> where G=<V,e,0,E> and V=(1,n]-{&} defines a partitionned
dynamic dlscrete system <7,8, Vg sV .v£> whereS=([1,nIxU), ¥ie[1,n], U =,

1 =A<c m>.m, li aam. <i,m>. Hence two states <c,,m;> ard <c,,m,> are in the same

1
block of the partition iff c,=c, that is iff both states correspond to the same

program point or are erroneous.
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5.1. SYSTEM OF FORWARD SEMANTIC EQUATIONS ASSOCIATED WITH A PROGRAM AND AN
ENTRY SPECIFICATION

The system of forward semantic equations p=F (¢](P] associated with a
program T and an entry specification ¢ ¢ (U~+g) is the direct decomposition of

a=(v_A o"tqm Vpost["t)(a] on (U~B)" that is :

post[rji)(Pj)J

§pi = 0, (v_A T, Yoy v evpdeciJ

1= 1,000

From the abstract syntax and operational semantics of programs we derive
a set of construction rules for obtaining this system of eguations from the

program text :

o If i is the program entry point, i=e and pred (e)=? therefare P = Getvsfxc (¢)]
UE(X<C.m>o((0=€]A ¢(m)}) = ¢. Otherwise 1e in which case o, (v, A(I (¢)] = \m.fals

and

P17 jepred (1)Po%t (T 4y
Am, .[3my e U+ Pylmy)a (T(<g,m>)=<1i,m,>]]

B
3 Jl

=3 epred (1)
when 1+e and i%g notice that pred (1) is the set of the origins of the edges
entering i that is the set predntl) of predecessors of the vertex i in the
program graph G of w. The expression Amz.[inu el Pj(mll A(T[<J,m1>) = <1,m2>]]

depends on the instruction L(<j,1i>) labelling the edge <j,i>

O If <j,i> is labelled with an assignment V=F(V) then
’ Am, .[3m; e U : P (m;) A (T(<j,mpE<i, my,>)}

= sz.tjmletl: Pj(m Jam e dom{f) A mw-f(m 111

O If <j,i> is labelled with a test p then :
Am, [3m el 3 Pylm, ) A (T(<],m >)=<i,m R
= lmz.[ﬂmlellz P (mllA (my edom(p])Ap(ml]A (my=my ) 1Pp
= }\mz.[Pj(mzl A (mz e dom(p)) A plm, 1]

o If i=€ then
PE e ep%ed [g]me‘[aml el : P-(mxlA (Tl<j,my>)=<g,my>)1]
AN eav Yer M2 LRy (m,) A (m, ¢ dom(expr(j)]]]

> >
where aqt(m) is the set of program points j preceding an assignment v=Ffl)

-
or a test p(v) and expr(j) is the corresponding f or p.
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The above analysis can be summarized by the following :

DEFINITION 5.1.0.1.

The system of forward semantic equations PaFn‘(qbl (P) agssociated with
a program T and an entry spectfication ¢ ¢ (U+B) is :

P24

Py = ; ep;edﬂ[i} post[L(<J.1>)]{Pj] 1e([1,n]-{c.,E}

P_ = ( v ]lm.[Pj[m]A m £ dom(expr(j})]) vP

3 Jeat(n g

V'FeIa(U), post(f)] = AP.[Am.[Im' €U : P(m’') Am’' e dom(f) A m=F(m']}]]
¥p e It(U], post(p) = AP.[Am.[P(m) Amedom(p)A p(m}]1] -

at(m) ié the set of program points j preceding an assignment v=Ff{v] or

where

]

-3
a test pl{v) and expr(j) is the corresponding f or p.

THEOREM 5.1.0.2.

The system of forward semantic equations F=wa¢]fP] associated with a
program m and an entry specification ¢ € {U+B) is the direct decomposition
-1
of @ = (\)eA o, (¢)) vpostit)(a) on wu-8)".

5.2. SYSTEM OF BACKWARD SEMANTIC EQUATIONS ASSOCIATED WITH A PROGRAM AND AN
EXIT SPECIFICATION

As above the abstract syntax and operational semantics of programs can be
used in order to derive sets of construction rules for associating with any
program m the systems of equations which are the direct decomposition of backward

equations of type a =B#pre(t)(a) on Ww-+B8" that is :

AT RS S
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Pi = ci(B] X Aml.[ﬂm2 el (T[<m1,i>] = <m2.j>] APj[mZ)]

. v .

j e suce_(1)
T

1 =1,cc0,n

The result of this study can be summarized by the following :

DEFINITION 5.2.0.1.
—

The system of backward semantic equations P = B“[w] (P) associated with

a program © and an exit specification Y e (U+B) is :

P, = v
i Je succn,t

P =Y

i]pre[L[<i,j>]]EPJ) ie([1,n]-{0,E}

where - ¥fe1_(U), pre(f] AP.[Am.[me dom(£f)A P(f(m))]]
- V¥pe It(U], pre(p) = AP.[Am.[me dom(f)A plm) AP(m)]]

= succﬂ_(i] is the set of successors of the vertex i in the program graph of w.

THEOREM 5.2.0.2.

(1) - The direct decomposition P=B(P) of a = (\)O_AO';II‘Y]] vpre(t)(al
on (U~+B)" is :

B_(¥),(P) verror(i) for ie¢ (C1,n1-{&,0})
PU = W\«PU
p_ =P
B 5
where error(i) = Ame U.[P;(m)A ieat(m)a mé domlexpr(i))]

- ¥ie ([1,n]-{€}), Ifp(B), = Ifp(B (¥)), and ZJ"p(B]g = Am.[falsel
(2) - The direct decomposition P=B(P) of a = —'\)EA pre(t)(a} on (U >B1" is :

P

Bwfkm.[me]]i[P) for 1 ¢ ([1,n]-{0.E})

i
P =P

o o
PE = Am.[false]

- ¥ie ([1,n]1-{ED), gfp(B), = gfp(B (Am.[truel)]; and gfp[B]E = Am.[falsel
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(3) - The direct decomposition P=B(P) of a=vg vV pre(t)(al) on fU-+B]n is :

Pi = Bwfkmn[fhlsellifP] verror(i)  for ie ([1,n]-{0,E})
P =p

o] a

Pg = Am.[true]

- The least solution to the above system of equations is equal to the

least solution to :

Py = B (Am.[false]), (Q) v Am.[m ¢ domlexpr(1))]  for 1ie ([1,n]-{g,E})
PU = Am.[false]
PE = Am.[true]

where Qi stands for Pi when i¢ ([1,n]-{0.,E}), QG stands for Am.[false]
and QE stands for Am.[true]

(4) - The direct decomposition of a=“voA “vg Apre(t)(a) on (U~B)" is :

Pl B"(Am.[false]]ifPJ for 1 e ([1,n]-{E}H
PE = Am.[false]

(5) - The direct decomposition of a=As.[s=s]vV pre(t)(a) on w-8" is

Pi = Am.[<i,m>=5] anEkm.[thse]]i(P] verror(i) for 1ie ([1,n]-{0,E})
PG = lm.[<0,m>=§j‘vpc

PE = Am.[<E,m>=5] VPE

5.3. ANALYSIS OF THE BEHAVIOR OF A PROGRAM

In order to illustrate the application of theorem 4.6.0.1. to the analysis

of the behavior of a program we choose the introductory example program T ;

E;i while x=1000 do

(3} X 1= X+y;
{a} 9d;




It is assumed that the domain of valuesof the variables x and y 1s
I={neZ : -b-1<n<b} where b is the greatest and -b-1 the lowest machine repre-

sentable integer.
5.3.1. Forward Semantic Analysis

2 2 5
The system P=Fﬂ[¢](P] (where F"[¢)e ((1>+B)° > (I +B))) of forward
semantic equations associated with the above program m and an entry specifi-
2

cation ¢ e (I +B) is the following:

P ¢

P1 = A<x,y>. [P, VP J(x,y) A (xeI)A (x21000)]

P, = A<x,y>.[3x’ €T 1 P(x',y}A ((x"+y) € I1A (x=x'+yl]

P, = A<x,y>.[(P, VP,)(x,y)A (xeI)A (x<1000)]

P = A<x,y>.[0(P, VP3)(x,y) A (x £ 13) v (Palx,y) A ((x+y) £ )]

5.3.1.1. The set of entry states which are ascendant of the exit states (i.e.

causes the program to terminate properly) is characterized by :

8 (v Apre['r )(\) 1N

O (As. [3s, eS v (Sz)l\pOStCT J(As.[s=s1) (s,) 1) {Th.4.7.0.3)

lm (3s, €S : v, (s ) Apost(t ) (As.[s= <€ m>1)(s,)1)

Am.[3s, €S : v (5] A LfpOa.L VA o ST vpost(t)(a)1)(s )]
(Th.4.3.0.2. [3)]

Am.[3s, €S : v (s,)A 0" (Lfp(F Om.[m=m1)))(s,)] (Th.5.1.0.2)

Am.[3s, €S : v ls,) A (Y, Ifp(F Om.Im=m1)], (1, (s,))]

]

— R - =
Am.[, Y, G, el = v (1] (m,)) A Lfp(F_Om.Cm=m1)), (m,))]

n

Am.[3m, e U+ Ifp(F_(Am.[m=m1)] (m,)]

The least fixpoint PY of Fﬁ(k<x,y>.[(x=§3A (y=y))is computed iteratively

using a chaotic iteration sequence as follows :
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o
(-]
]

l<x,y>-[false] i=1.l"‘l4l£

O
—
L]

A<x,y>.[(x5§)A (y=§5] where <§:§5 eI?

Pl = A<x,y>.[ (P} vpg)tx.yl A (xel) A (x21000)]
A<x,y>.[(xeT A 1000sX) A (x=x) A (y=y)]

Py = A<x,y>[3x" €T 1 PLix",y) A ((x"+y) €T} A (x=x’+y)]
= A<x,y>.[(xeT A (x+y) eI A1000sx) A (x=x+y) A (y=y)]
Py = A<, y>.[(PLvPlI(x,y) A (xeI) A (x21000)]

A<x,y>.[{(xel A 1000<x) A (x=x] A (y=y))
V((xel A (xtylel A 1000sx A 1000s(x+y)) A (x=x+y) A (y=y))]

Assume as induction hypothesis that :

k j ’

Py = A<Xoy>e[31 € [0,k-11 2 A ((x+iy) € T A 1000s(x+17)) A (x=x+3Y) A (y=3)]

then

PR = Acx,y>.T3x" €T 1 PRIx",y) A ((x'+y) € T) A (x=x"+y)]
J-v . _ . ol —
= Ax,y>.[33 e [1,k] A (lx+iy) €] A 1000s(x+1y]) A ((x+Jy) €I) A (x=x+jy] A

(y=y)]
P = Ao y> LPLVPRI GG y) A (xe T A (x21000)]

{;0[[x+iylefIA 10002 (x+1iy)) A (x=x+jy) A (y=y])]
K

proving by induction on k that P, is of the form aessumed in the induction

= A<x,y>.[3] e [O,K]

hypothesis. Then passing to the limit :

w o Kk
P2 k¥0P2

de wis = 123% > Ink @
=A<x,y>.[3j20 : ftot(x+iy] el A 1000s(x+iy)) A (x=x+jy) A (y=y)]

=A<x,y>.[3320 : (1000smin(X,x)) A (maz{x,x)sb) A (x=x+jy) A (y=y)]

(It is worthy to note that the use of the symbolic entry condition

A<x,y>.[ (x=x) A (y=y)l and of the above iteration strategy corresponds to a symbolic
execution of the program loop (Hantler & King[76]) with the difference that all
possible executien paths are considered simultaneously and the induction step

as well as the passage to the limit deal with infinite paths). The remaining

components of Zfb(FW(l<x,y>.[(x=;)A (y=y)]1) are :




P‘f = A<k, y> [ (x=xX) A (y=y)]

PY =A<k, y> [3x" e T ¢ PYIx",y) A (Ix"+y) € TI A (x=x"+y)]
=A<x,y>.[3421 ¢ (1000smin (X, x-y))A (max(x,x)<b) A (x=x+3iy)A (y=y)]

PUed<x,y> LYV P06, y)A (xeT)A (x<1000)]
wA<x, y>. [ ((x<1000) A" (x=x) A (x3y))
v((x21000)A (y<0) A (x=x+(((x-1000)dZv|y|1+1)¥)A (y=y))]

P‘g r)\<X:y>.[([P(fvP‘;’] (,y) A (x4 1)) v (Pf(x,y] A (Ix+y) §1))] vpg
=A<x,y>.[ (x21000) A (y>0)A (x=x+((b-X)d<v AT 771

The set of entry states which causes the program to properly terminate is

characterized by :

A Y>[3x,.y, €T ¢ FYlx,,y,)]
= A<x,y>.[(x<1000) v (y<0)]

5.3.1.2. The set of entry states leading to a run-time error is characterized
by :
*
O’E(\)al\ pre(t ) EVE))

= A‘E.[amzeug : Ifp(F_(m.[m=m]))_(m,)]

g
that is :

X<V [3x,.y, e T P‘g(xz.yzlj
= A<x,y>.[(x21000)A (y>0)]

5.3.1.3. The set of entry states which cause the program to diverge is
characterized by :
O (v

EA-'Pri(T*J[vGV\)E)J

= )\E-"[igl(ﬂmze 4 : (\)O_V\JE][<i.m2>] A pr(FW(Am.[m=HJNiCm2)]]

= Am.[ T(3m, el - Lfp (F (Am.[m=m1)) _(m,})
A T (3m, eUg : pr(Fﬂ(Xm.[m=E]))E{m23]]

that is :
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A<, y> [T (Ix,,y, €T PYIx, v, AT (3x,,y, € T Pg(xz,yzlll
= A<x,y>.[ (x=1000) A (y=0)]

5.3.1.4. The set of descendants of the entry states satisfying the entry
<

condition ¢ e(1* +B) is characterized by post(r*](vsA UE ()] that is

(Th.4.6.0.1 and Th.5.1.0.2) up to the isomorphism o by Qw=lfp[F“(¢)] :

o7 = ¢

@ = A<x,y>.[3320 : ¢x-Jy,y) A (1000<min(x-3y,x)) A (max(x-jy,x)<b)]

99 = A<x,y>.[3321 & ¢{x-Jy,y) A (1000<min(x-Jy,x-y)) A (max(x-jy,x)<b)]

Qf = X<x,y>.[{p(x,y) A (x<1000)) v ((y<0) A (3321 : d(x-Jy,y) A (x-jy<b) A
{x<1000<x-y1)))]

m‘g = A<x,y>.[(y>0)A (3320 : ¢(x-Jy,y) A (1000<x-jy<x<b<x+y)) ]

Equivalently Qw can be obtained from P* as follows :
oitposttr*](vEA o;1t¢])
= 0, (As, .[Ts + v_(5) A0 () (304 post(t*) (As.[s=531)(s,)])
= Am,.[3m : $(M) Apostlt™) (Xs.[s=<e,m>]) (<i,m,>)]
= Am, L3 2 ¢(MIA o7 (ZfD(F_(Am.Im=m113) (<1,mp>)]
= Am,.[3m : ¢(m)A pr(FTr()\m.[m--Ff})]i(mz)]
therefore at each program point 1 the set of descendants of the entry states
satisfying the entry condition ¢ € (I*+B) is characterized by :
0] = Aoy [TV e 12 1 (k) AP X, y)]

For example :

o‘g = M0G0V € T2 2 X, y) A (x21000) A (y>0)A (x=x+((b-X)div ¥Iy) A (y=y) ]
= Ax,y) [Ix el & (33 : dlx-Jy,y)A (x-3y21000) A (y>0) A (x=x+iy) A j=(b-x)div y)]
= Alx,y).LOy>0) A (3320 : dlx-Jy,y)A (1000<x-]y<x<b) A (j=3+(b-x)div y1]]
= Ax,y).[(y>0)A (3320 : ¢{x-Jy,y)A (1000sx-jy<xsb<x+yl)]

We now recommence the semantic analysis of this program but this time using

backward equations.



5.3.2. Backward Semantic Analysis

The system P= B (¥)(P) (where B (v) e((Iz-*B)“-+[IZ->B)“]] of backward
semantic equations associated with the example program m and an exit specification

ye (I2+B) is the following :

By > r<x,y> [((xeT)A (x21UOD)/\P2(x,y]]V ((xe I A (x<1000) A P“(x,y]il
Py A<x,y> [ ((x+y) € 1A P3[x+y.y]]
p
=

A<x,y> L ((xeTIA (x21000) A P, (x,y31V ((x e 1) A (x<1000] A P, (x,y11]
=Y
Y

5.3.2.1. The set of entry states which are ascendant of the exit states (i.e.

cause the program to terminate properly] is characterized by :

O v, hpre[r 1 g 1)
oetvsfxlfpfka Vg vpre (1) (2)1)) (Th.4.6.0.1.(2))
g [UEA(j {ljp(E (Am. [true])]]) {Th.5.2.0.2.{1)]

= oaii v ?\s.[\)E (s)asen, ) Apr(Bﬁ[km.[true]]]itli(s]]]]
e [1.n]

[pr(B (Xm. [true]]) o1, )
= pr(B (Am. [true]]l

The least fixpoint pW of the above system of equations where W=k<x.y>.[true] ig ¢

P = A<X, VY2 [ (x<1000) v (y<0)]

P‘;’ = A<x,y>-[l0x+y) e TIA ((x+y<1000) v (y<01]]
pY = a<x,y>.[(x<1000] ¥ (y<0)]

PY = A<x,y> [truel

5.3.2.2. The set of entry states which do not lead to a run—time error (i.e.

cause the program to properly terminate OT diverge) is characterized by :

9. (\) A "prelt ][vgll

h) Agfp[ka [“vE/\pre(r)(a]])) (Th.4.6.0.1.(3)]
c [VEA g (gfp (8 (Am.[true1)))) (Th.5.2.0.2.12)]
gfp (B, (Am. [true])]



31

The greatest fixpoint ¥ of the above system of equaticns where ¥Y=A<x,y>.[true]
can be computed iteratively starting from Q;=X<x,y>.[true], i=1..4, inventing the

general term of a chaotic iteration sequence and passing to the limit :

= A<x,y>.[(y<0) v (x<1000)]

= A<x,y> [ ((x+y<0) v (x+y<1000)) A ({x+y) e T)]
= A<x,y>.[(y<0) v (x<1000)]

Q7 = A<x,y>.[true]

5.3.2.3. The set of entry states leading to a run—time error is characterized
by A<x,y> gIz.["Q?(x,y]] = A<x,y> e 12.[ (y>0) A (x21000)].

Egquivalently the set of ascendants of the run-time error states is
characterized by pre(r*)(vE) which according to Th.4.8.0.1.(3) and Th.5.2.0.2.(3)
is equal (up to the isomorphism @) to the least solution RY to :

Py = A<x,y>.[(x21000) AP, (x,y])]

Py = A<, y> [0Ix+y) e VAP, (x+y,y)) v ((x+y) ¢ )]
Py = A<x,y>.[(x21000) A P, (x,y)]

A<x,y>.[falsel

£ A<x, y>.[true]

T O
&
] ]

that 1s R} = R} = A<x,y>.[(x21000) A (y>0)1, Ry = A<x,y>.[({x+y)204 (y>0)) v

{{x+y) &I]], R? = A<x,y>.[false], Rg = A<x,y>.[truel.

5.3.2.4. The set of entry states which cause the program to diverge is characte-
rized by X<x.y>-[0?[x,y)A "P?(x.y)] = A<x,y>.[(x21000)A (y=0)]

Equivalently the states which cause the program to diverge can be characterized
by fpre(T*)(vg‘va] = gfp[ka.["vUA “vEA pre(t)(al)]) which according to Theorem
5.2.0.2.(4) is equal (up to the isomorphism o) to D° = gfp(B“[R<x,y>.[thse]])

that 1s 0Y = 0% = DY = A<x,y>.[(x21000)4A (y=0]] and O® = Dg = A<x,y>.[false].
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5.3.2.5. The set of descendants of the imput states satisfying an entry

condition ¢ € (I >B) is characterized by :

post(t*) (v Ao (§))
= As.[3s, €8 : v (s, ]Ao [qb][s ) A Lfp (Aol As[s= s]Vpre('r)[a]})(s )]
= lEl[}mEe u ¢(m )A U {pr(cola [As.[s=s] VprefT][a]]°G "1 t<e, m.>11
= AE:EHWE.EU ¢[m JA Lfploeia.[As.[s= s1vpre(t)la)leo ] (m 1]

According to theorem 5.2.0.2.(5) the direct decomposition of ka.[ls.[s=§j‘vpre(fl(a31

is the following when T is defined by our example program :
e = A<x,y>. [ (<1,<x,y>>=s) Vv (x e TA x21000 A Py(x,y)) Vv [xeIA x<1000A P,(x,ylg

v (PE(X.YJ A x¢D)]
P, = l<x,y>.[(<2,<x,y>>¥§] V (xty eI A Pylx+y,yl) Vv [Pgtx.y] A X+y %IJ]

Py = A<x,y>.[[<3,<x,y>>=E) v {(xel A x=1000 A Pz(g,y]] v (xel A x<1000 A Pu[x,
v {Pg(x,w A x¢1)]

P, = A<x,y>.[(<4,<x,y>>=8) Vv P (x,y)]

Pg = A<x,y>. [ (<E,<x,y>>=s) V PE(x.yJ]

1f PY(S) denotes Ifploeda.[As.[s=5] v pre[T](d]]°O-1) we determine that:

PT(EJ = A<x,y>.[f<1.<x.y>>€§)
V(3520 : (viel[0,3],1000sx+iysb)A (<2,<x+jy,y>>=s))
v(3j21 : (vie[0,j-11,1000sx+iy<b) A (x+jyeI)a (<3,<x+jy,y>>=s))
v(3j20 : (viel0,j-11,1000sx+iys blA (x+jy e IJA (x+jy<1000)
A (<4,<x+]y,y>>=5))
v(3j=1 : (v¥ie[0,3-11,1000sx+jy<b] A (x+]Jy ETIA (<E,<x+(3-1)y,y>>=5f

At program point i, the set of descendants of the input states satisfying ¢
1s o, (As.[Im_elU_ : ¢(m)a P“’G) (m )]
= Am. [3m € ua ¢[m JA P (<i, m>](m 1]
For our example.
<x,v>.[I< >eI? Wreq <x,y>>) (<x ,y >
A<x,y>.[3<x .,y €I% 1 9x_,y ) A PUISL, <x,y>>) (<X, Y, 1]
when 1=2 this is equal to :
2, i s Wi i < iy <
A<x.y>.[3<x€,y€> el .¢(x€,y€)A (3520 : viel0,jl, 1DDD_x€+1y€_b)
: S
A (<2,<x_*Jy .y >> <2,<x,y>>))1]

= A<x,y>.03320 : ¢(x-jy,y)A 1000<min(x-jy,x}A (max(x-jy,x)<bl]
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5.3.3. FORWARD VERSUS BACKWARD SEMANTIC ANALYSIS OF PROGRAMS

In the literature on program verification, backward program analysis is
often preferred above forward analysis (e.g. Dijkstra[76]1). Theorem 4,6.0.1(1)~-(2)
clearly shows that the two approaches ars not strictly equivalent but this point
of view must be completed by theorem 4.7.0.3. and paragraph 5.3. which show that

using symbolic variables one approach can serve as a substitute for the other.

-

6. CONCLUSION

We have established general mathematical technigques for amalyzing the
behavior of dynamic discrete systems defined by a transition relation on states.
In this first part total and determinist systems have been considered. The
study is also applicable to partial determinist systems which up to an isomor-
phism are equivalent to total systems with some additional undefined state. The
more complicated case of non-determinist dynamic discrete systems is studied in
a forthcoming second part.

The methods for analyzing the behavior of determinist dynamic discrete
systems have been applied to the problem of analyzing semantic properties of
sequential programs (but the applications are not necessarily confined with
computer science). The advantage of using the model of discrete dynamic systems
for studying program analysis methods is that the reasoning on a set of states
and a state transition relation and fixpoints of isotone equations leads to very

concise notations, terse results and brief proofs.
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