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23 COMPUTATIONAL TOPOLOGY
OF GRAPHS ON SURFACES

Eric Colin de Verdiere

INTRODUCTION

This chapter surveys computational topology results in the special, low-dimensional case
where the ambient space is a surface. Surface topology is very well-understood and com-
parably simpler than the higher-dimensional counterparts; many computational problems
that are undecidable in general (e.g., homotopy questions) can be solved efficiently on
surfaces. This leads to a distinct flavor of computational topology and to dedicated tech-
niques for revisiting topological problems on surfaces from a computational viewpoint.

Topological surfaces and graphs drawn on them appear in various fields of mathe-
matics and computer science, and these aspects are not surveyed here:

e in topology of three-dimensional manifolds, also in connection to the recent reso-
lution of the Poincaré conjecture, combinatorial and algebraic structures defined
on surfaces are often relevant, e.g., via the study of mapping class groups and
Teichmiiller spaces [FM11];

e in topological graph theory, a branch of structural graph theory, graphs on surfaces
are studied from a combinatorial point of view, also in relation to the theory of
Robertson and Seymour on graph minors; for example, colorability questions of
graphs on surfaces, generalizing the four-color theorem for planar graphs, are well-
studied [MT01];

e in enumerative combinatorics, a natural problem is to count (exactly or asymp-
totically) maps with given properties in the plane or on surfaces, with the help
of generating series; moreover, typical properties of random maps are investi-
gated [Mie09, Bet12] [LZ04];

e various applications involve surface meshes, in particular in geometry process-
ing and computer graphics, for approximation [CDP04], topological simplifica-
tion [GWO1, WHDS04|, compression [AG05|, and parameterization |[GY03]. Tech-
niques for general surfaces apply also to subsets of the plane, and are thus relevant
in VLST design [LM85] and map simplification [BKS98].

This chapter is organized as follows. We first review the basic concepts and properties
of topological surfaces and graphs embedded on them (Sections and . Then we
consider three categories of topological problems, mostly from a computational perspec-
tive: drawing an abstract input graph on a surface (Section , homotopy questions
and variations (Section , and optimization of curves and graphs on surfaces, also
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from a homological point of view (Section|23.5)). Then we survey techniques that allow us
to solve general graph problems faster in the case where the input graph is embedded on a
fixed surface (Section [23.6)). Finally, we collect other miscellaneous results (Section [23.7)).

23.1 SURFACES

Surfaces are considered from a topological point of view: Two homeomorphic surfaces
are regarded as equivalent. Surfaces such as the sphere or the disk are topologically
uninteresting; our focus is on surfaces in which some closed curves are non-contractible
(they cannot be deformed to a point by a continuous motion on the surface).

GLOSSARY

Homeomorphism: Given two topological spaces X and X', a map h: X — X’
is a homeomorphism if h is bijective and both h and its inverse are continuous.

Surface (topological definition): In this chapter, a surface S is a compact
two-dimensional manifold possibly with boundary. Equivalently, S is a compact
topological space that is Hausdorff (any two distinct points have disjoint neighbor-
hoods) and such that every point has a neighborhood homeomorphic to the plane
or the closed half-plane. The set of points of a surface S that have no neighborhood
homeomorphic to the plane is the boundary of S.

Surface (combinatorial definition): Equivalently, a surface S is a topological
space obtained from finitely many disjoint triangles by identifying some pairs of
edges of the triangles (by the quotient topology). The boundary of S is the union
of the edges that are not identified with any other edge.

Path: A path on S is a continuous map p: [0,1] — S. Its two endpoints are
p(0) and p(1).

Connectedness: A surface is connected if any two points of the surface are the
endpoints of some path. The inclusionwise maximal connected subsets of a surface
form its connected components.

Orientability: A surface is non-orientable if some subset of it (with the in-
duced topology) is homeomorphic to the Mobius strip (defined in Figure [23.1)).
Otherwise, it is orientable.

PROPERTIES: CLASSIFICATION OF SURFACES

Every connected surface is homeomorphic to exactly one of the following surfaces:

e the orientable surface of genus g > 0 with b > 0 boundary components (or,
more concisely, boundaries), obtained from the sphere by removing g disjoint
open disks, attaching a handle (defined in Figure to each of the resulting
g circles, and finally removing b open disks with disjoint closures;
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disk (orientable, g = | sphere S*  (ori- | Mobius strip (non- | handle (orientable,
0,b=1) entable, g = 0, orientable, g = 1, g=1,b=1)
b=0) b=1)

Figure 23.1: Examples of surfaces. Each surface (top row) comes with a polygonal
schema (bottom row), a polygon with some labeled and directed edges; the surface can be
obtained by identifying the pairs of edges with the same labels, respecting their direction.
The genus g and number of boundary components b are specified, as well as whether the
surface is orientable.

e the non-orientable surface of genus g > 1 with b > 0 boundary components
(or boundaries), obtained from the sphere by removing g disjoint open disks,
attaching a Mobius strip (defined in Figure to each of the resulting g circles,
and finally removing b open disks with disjoint closures.

Every surface can be obtained by identifying pairs of edges of disjoint triangles. More
concisely, every surface can be defined by a polygonal schema, a polygon with labels and
directions on some of the edges specifying how they must be identified. In particular, one
can define a canonical polygonal schema for every connected surface without boundary:

e The canonical polygonal schema of the orientable surface of genus g > 1 is a 4g-gon
whose successive edges are labeled aq, b1, a1, b1, .. ., ag,by,ag, l_)g, and where edge x
is directed clockwise, edge T is directed counterclockwise. Identifying edge x with
Z, as indicated by their directions, gives the orientable surface of genus g. See

Figure 23.2]

e Similarly, the canonical polygonal schema of the non-orientable surface of genus
g > 11is a 2g-gon whose successive edges are labeled a1,az,...,a4,ay, and where
all edges are directed clockwise.

Figure 23.2: A double torus with a system of loops (left); the surface cut along the loops
(middle) is a disk, shown in the form of a (canonical) polygonal schema (right).
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Surface Orientable? Genus # of boundary components
Sphere Yes 0 0
Disk Yes 0 1
Annulus = cylinder Yes 0 2
Pair of pants Yes 0 3
Torus Yes 1 0
Handle Yes 1 1
Double torus Yes 2 0
Projective plane No 1 0
Moébius strip No 1 1
Klein bottle No 2 0

Table 23.1: Some common surfaces.

EXAMPLES
Table lists some common connected surfaces. See also Figures and

23.2 GRAPHS ON SURFACES

GLOSSARY

Let S be a surface.

Loop: A loop is a path whose two endpoints are equal to a single point, called
the basepoint of the loop.

Closed curve: A closed curve on S is a continuous map from the unit circle S*
to S. This is almost the same as a loop, except that a closed curve has no distin-
guished basepoint. A closed curve is sometimes called a cycle, although, contrary
to the standard terminology in graph theory, here a cycle may self-intersect.

Curve: A curve is either a path or a closed curve. For most purposes, the param-
eterization is unimportant; for example, a path p could be regarded as equivalent
to p o ¢, where ¢ : [0,1] — [0, 1] is bijective and increasing.

Simplicity: A path or a closed curve is simple if it is injective. A loop ¢: [0, 1] —
S is simple if its restriction to [0, 1) is injective.

Graph: In this chapter, unless specified otherwise, graphs are finite, undirected,
and may have loops and multiple edges.

Curve (in a graph): A curvein a graph G (also called walk in the terminology
of graph theory) is a sequence of directed edges ey, ...,e, of G where the target
of e; equals the source of e;;1. Repetitions of vertices and edges are allowed. The
endpoints of the curve are the source of e; and the target of e;. If they are equal,
the curve is closed.

Graph embedding (topological definition): A graph G naturally leads to a
topological space G, defined as follows: One considers a disjoint set of segments,
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one per edge of G, and identifies the endpoints that correspond to the same vertex
of G. This gives a topological space, from which G is obtained by adding one
isolated point per isolated vertex of G. (As a special case, if G has no loop and
no multiple edge, then G is a one-dimensional simplicial complex, and G is the
associated topological space.) An embedding of G is a continuous map from G
into S that is a homeomorphism from G onto its image.

Graph embedding (concrete definition): Equivalently, an embedding of G
on S is a “crossing-free” drawing of G: It maps the vertices of G to distinct points
of S, and its edges to paths of S whose endpoints are the images of their incident
vertices; the image of an edge can self-intersect, or intersect the image of another
edge or vertex, only at its endpoints. When no confusion arises, we identify G with
its embedding on S, or with the image of that embedding.

Face: The faces of an embedded graph G are the connected components of the
complement, of the image of G.

Degree: The degree of a vertex v is the number of edges incident to v, counted
with multiplicity (if an edge is a loop). The degree of a face f is the number of
edges incident to f, counted with multiplicity (if an edge has the same face on both
sides).

Cellular embedding: A graph embedding is cellular if its faces are homeo-
morphic to open disks.

Triangulation: A graph embedding is a triangulation if it is cellular and its faces
have degree three. The triangulation may fail to be a simplicial complex: A triangle
is not necessarily incident to three distinct vertices, or even to three distinct edges.

Cutting: Given an embedded graph G on S without isolated vertex, the operation
of cutting S along G results in a (possibly disconnected) surface with boundary,
denoted S\\G (or sometimes S#=<G or similar); each connected component of S\G
corresponds to a face of G on S, and by identifying pieces of the boundaries of
these components in the obvious way, one recovers the surface S. Similarly, one
can cut along a set of disjoint, simple closed curves. (Technically, if S has non-
empty boundary, an additional condition is needed: The intersection of an edge
with the boundary of S can be either the entire edge, its two endpoints, or one of
its endpoints.)

Planarity: A graph is planar if it has an embedding to the plane (or equivalently
the sphere).

Dual graph: A dual graph of a cellularly embedded graph G on S (assumed
without boundary) is a graph G* embedded on S with one vertex f* inside each
face f of S, and with an edge e* for each edge e of GG, such that e* crosses e and
no other edge of G. A dual graph is cellularly embedded. Its combinatorial map
(see below) is uniquely determined by the combinatorial map of G.

Euler genus: The Euler genus g of a connected surface S with genus g equals 2g
if S is orientable, and g if .S is non-orientable.

Euler characteristic: The Euler characteristic of a cellularly embedded graph G
equals x(G) :=v — e+ f, where v, e, and f are its number of vertices, edges, and
faces, respectively.
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PROPERTIES: EULER’S FORMULA AND CONSEQUENCES

1. Fuler’s formula: If G is cellularly embedded on a connected surface S of Euler
genus g with b boundary components, then x(G) = 2—g—>b. In particular, x(G) does
not depend on G, only on S, and is consequently called the Fuler characteristic
of S.

2. The number of vertices and faces of a graph G cellularly embedded on a connected
surface is at most linear in the number of its edges. In particular, the combinatorial
complexity of G is linear in its number of edges.

3. Conversely, let G be a (not necessarily cellular) graph embedding on a connected
surface with Euler genus g and b boundaries. Assume that G has no face of degree
one or two that is an open disk. Then the numbers e of edges and v of vertices
of G satisfy e = O(v + g+ b).

DATA STRUCTURES

In all the problems we shall consider, the exact embedding of a graph on a surface is
irrelevant; only the actual combinatorial data associated to the embedding is meaningful.
If G is a graph cellularly embedded on a surface S without boundary, we only need the
information of G together with the facial walks, namely, the closed walks in G encountered
when walking along the boundary of the faces of G. This information is called the
combinatorial map of G, and allows us to reconstruct the surface, by attaching disks to
every facial walk. (Some conditions on the walks are needed to ensure that the resulting
space is indeed a surface.) If S has boundaries, one can specify the corresponding faces
of G. If S is orientable and G has no loop edge, instead of the facial walks one could as
well specify the cyclic ordering of the edges incident to each vertex.

However, more complicated data structures are needed to perform basic operations
efficiently. For example, one should be able to compute the degree of a face in time linear
in the degree; to count the number of faces of G in linear time; to determine whether the
surface is orientable in linear time; etc. (The last two operations, together with counting
the number of vertices and edges, allow us to identify the topology of the surface in linear
time using Euler’s formula; this can also be done in logarithmic space [BEKT16].)

Figure 23.3: The graph-encoded map data structure. Each edge bears four flags, drawn
parallel to it. Three operations allow us to move from a flag to a nearby flag.
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One such data structure, the graph-encoded map or gem representation [Lin82], uses
flags (quarter-edges, or, equivalently, incidences between a vertex, an edge, and a face)
of G, see Figure three involutive operations can be applied to a flag to move to an
incident flag. Alternative data structures have been designed for more general situations
(e.g., to allow surfaces with boundaries) or to take advantage of special situations (e.g.,
in the case where G is a triangulation, or where S is orientable); see the survey [Ket99].
However, the choice of the data structure is irrelevant for the theoretical design and
asymptotic analysis of the algorithms.

CONVENTIONS FOR THIS CHAPTER

Henceforth, we assume all surfaces to be connected.

In several works mentioned in the following, only orientable surfaces are considered.
In some cases, non-orientable surfaces are just as easy to handle, but sometimes they lead
to additional difficulties. We refer to the original articles to determine whether
the results hold on non-orientable surfaces.

Also, in most problems studied in this chapter, surfaces with boundaries are no harder
to handle than surfaces without boundary: Any algorithm for surfaces without boundary
immediately implies an algorithm for surfaces with boundary (with the same running
time, or by replacing g by g + b in the complexity, where g and b are the genus and the
number of boundary components). For this reason, we mostly focus on computa-
tional problems for surfaces without boundary.

Finally, when we consider cellularly embedded graphs for algorithmic problems, we
implicitly assume that they are specified in the form of a data structure as
described above (e.g., a graph-encoded map).

23.3 EMBEDDING AND DRAWING GRAPHS ON SUR-
FACES

Being able to build embeddings of a graph on a surface with small genus is important;
almost all algorithms for graphs embeddable on a fixed surface require an embedding of
the input graph (there are a few exceptions [ES14] Kel06, MS12]). We discuss algorithmic
results related to the problem of embedding a graph on a surface, and then consider more
general drawings where crossings are allowed.

EMBEDDING GRAPHS ON SURFACES

Let G be an abstract graph (not embedded on any surface), given, e.g., by the (unordered)
list of the edges incident to every vertex. We assume that G is connected. Let n denote
the combinatorial complexity of GG, that is, the total number of vertices and edges of G.

1. General facts: An embedding on an orientable surface with minimum possible genus
is cellular. If G is embeddable on an orientable (resp., non-orientable) surface of
genus g, then it is embeddable on an orientable (resp., non-orientable) surface of
genus ¢, for every ¢’ > g.
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2. General bound: G can be cellularly embedded on some orientable surface with
genus O(n).

3. Planar case: There is an O(n)-time algorithm for deciding embeddability in the
sphere (equivalently, in the plane) [HT74]; also in O(n) time, the graph can be
embedded with straight-line segments in the plane [Sch90a] (see also [NR04, Ch. 4]),
if it has no loop or multiple edge. See Chapter 55 for more results on graph drawing.

4. Time complexity: Given a graph G and a surface S, specified by its Euler genus g
and by whether it is orientable, determining whether G embeds on S is NP-
hard [Tho89], but can be done in 2P°¥() ., time [KMROS, Moh99] (where poly(g)
is a polynomial in g), which is linear if g is fixed. Such an embedding can be
computed in the same amount of time if it exists.

5. Space complexity: For every fized g, determining whether an input graph G embeds
on some surface (orientable or not) of Euler genus at most g can be done in space
logarithmic in the input size [EK14].

6. Approximation: Given as input a graph G and an integer g, one can in polynomial
time either correctly report that G embeds on no surface of Euler genus g, or
compute an embedding on some surface of Euler genus g™ [KS15].

Except for the planar case, these algorithms are rather complicated, and implementing
them is a real challenge. For example, there seems to be no available implementation of a
polynomial-time algorithm for testing embeddability in the torus, and no publicly avail-
able implementation of any algorithm to decide whether a graph embeds on the double
torus; attempts of implementing some known embedding algorithms, even in the simplest
cases, have unveiled some difficulties [MK11]. On the other hand, a recent approach is
promising in practice for graphs of moderate size, using integer linear programming or
Boolean satisfiability reformulations [BCHK16].

In contrast, determining the maximum genus of an orientable surface without bound-
ary on which a graph can be cellularly embedded can be done in polynomial time [FGMSS].
There are also results on the embeddability of two-dimensional simplicial complexes on
surfaces [Moh97].

On a less algorithmic side, in the field of topological graph theory, a lot more is known
about the embeddability of some classes of graphs on some surfaces; see, e.g., [Arc96,
Sect. 4.2] and references therein.

GLOSSARY ON DRAWINGS

Let G be a graph and S be a surface.

Drawing: Drawings are more general than embeddings in that they allow a finite
set of crossing points, where exactly two pieces of edges intersect and actually cross.
Formally, recall that G has an associated topological space G. A (topological)
drawing of G on S is a continuous map from G into S such that the preimage
of every point in S has cardinality zero or one, except for a finite set of points
(“crossings” ), whose preimages have cardinality two; moreover, each such crossing
point has a disk neighborhood that contains exactly the images of two pieces of
edges of G‘, which form, up to homeomorphism, two crossing straight lines.
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Arrangement: Let D be a drawing of G on S. The arrangement of D on S is
the graph G’ embedded on S that has the same image as D and is obtained from D
by inserting a vertex of degree four at each crossing in D and subdividing the edges
of G accordingly. Similarly, one can consider the arrangement of a set of curves
drawn on S.

Crossing number: The crossing number of G with respect to S is the minimum
number of crossings that G has in any drawing of G on S.

Pair crossing number:  The pair crossing number of G with respect to S is
the minimum number of pairs of edges of GG that cross, over all drawings of G on S.

Odd crossing number: The odd crossing number of G with respect to .S is the
minimum number of pairs of edges of G that cross an odd number of times, over
all drawings of G on S.

DRAWING GRAPHS ON SURFACES WITH FEW CROSSINGS

1. Crossing numbers: Computing the planar crossing number of a graph is NP-hard
(even in very special cases, such as that of a planar graph with a single additional
edge [CM13]), and there exists no polynomial-time algorithm with approximation
guarantee better than a certain constant [Cabl3]. However, for every fixed k, one
can, in linear time, determine whether an input graph has planar crossing number
at most k [KROT7], although the problem admits no polynomial kernel [HD16]. Some
approximation algorithms for the planar crossing number are known in restricted
cases, such as bounded maximum degree [HCI10, [Chull].

2. Variations on crossing numbers: The relations between the various notions of cross-
ing numbers are not fully understood. Let ¢, p, and o denote the planar crossing
number, planar pair crossing number, and planar odd crossing number, respectively,
of some graph G. It is clear that o < p < ¢, and it is known that the left inequality
can be strict [PSS08]. Tt is widely believed that p = ¢, but the best bound known
so far is ¢ = O(p*/?1og? p) (this follows essentially from [T6t12]). See, e.g., [Mat14]
for more details, and [Sch13al for a wide survey on the various notions of crossing
numbers.

3. Hanani-Tutte theorem: The (weak) Hanani-Tutte theorem [Han34l [Tut70], how-
ever, states that if o = 0 then ¢ = 0. Furthermore it holds not only for the plane,
but for arbitrary surfaces [CNOQ, PSS09b]: If a graph G can be drawn on a sur-
face S in a way that every pair of edges crosses an even number of times, then
G can be embedded on S. In the planar case, it actually suffices to assume that
every pair of independent edges (which do not share any endpoints) crosses an even
number of times, but whether this generalizes to arbitrary surfaces is open, except
for the projective plane [PSS09al, [CVKT16]. We refer to surveys [Schi3bl [Schi4]
for more details.

23.4 HOMOTOPY AND ISOTOPY

Most works in computational topology for surfaces do not take as input a given abstract
graph, as in the previous section; instead, they consider an already embedded graph,
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given by its combinatorial map.

GLOSSARY

Let S be a surface.

Reversal: The reversal of a path p: [0,1] — S is the path p=!: [0,1] — S defined
by p~(t) = p(1 —1).

Concatenation: The concatenation of two paths p, ¢: [0,1] — S with p(1) = ¢(0)
is the path p - ¢ defined by (p-¢q)(t) = p(2t) if t <1/2 and (p- q)(t) = q(2t — 1) if
t>1/2.

Homotopy for paths: Given two paths p,q: [0,1] — S, a homotopy between p
and ¢ is a continuous deformation between p and g that keeps the endpoints fixed.
More formally, it is a continuous map h: [0,1] x [0,1] — S such that h(0,-) = p,
h(1,-) = g, and both h(-,0) and h(-,1) are constant maps (equal, respectively,
to p(0) = ¢(0) and to p(1) = ¢(1)). The paths p and ¢ are homotopic. Being
homotopic is an equivalence relation, partitioning the paths with given endpoints
into homotopy classes.

Fundamental group: The homotopy classes of loops with a given basepoint form
a group, where concatenation of loops accounts for the multiplication and reversal
accounts for the inverse operation: if [p] denotes the homotopy class of path p, then

we have [p-q] = [p] - [q] and [p~1] = [p] L.

Homotopy for closed curves (also called free homotopy): Given two closed
curves v,8: S' — S, a homotopy between v and 6 is a continuous deformation
between them, namely, a continuous map h: [0,1] x S! — S such that h(0,-) = v
and h(1,-) = 0.

Contractibility: A loop or closed curve is contractible if it is homotopic to a
constant loop or closed curve.

Isotopy: An isotopy between two simple paths, loops, or closed curves is a ho-
motopy h that does not create self-intersections: for each t, h(t,-) is a simple path,
loop, or closed curve. An isotopy of a graph G is a continuous family of embeddings
of G (the vertices and edges move continuously).

Ambient isotopy: An ambient isotopy of a surface S is a continuous map ¢ :
[0,1] x S — S such that for each t € [0, 1], i(¢, ) is a homeomorphism.

Minimally crossing: A family of closed curves I' = (v1,...,7k) is minimally
crossing if for every family of closed curves IV = (v{,...,7,) with 7; and ; homo-
topic for each ¢, the number of intersections and self-intersections in I' is no larger
than in I”.

Covering space: Let S be a possibly non-compact connected surface. A con-
tinuous map 7: S Sisa covering map if every point x € S has a connected
neighborhood U such that 7=1(U) is a disjoint union of open sets (U;);e; and
7|y, : Uy = U is a homeomorphism for each i. We say that (S, 7) is a covering
space of S. A lift of a path p is a path  on S such that 7o p = p. Finally, if each
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loop in S is contractible, then (5’ , ) is a universal covering space of S, which
is essentially unique (precisely: if (S~, ) and (S’, ') are universal covering spaces,
then there is a homeomorphism 7 : S — S’ such that 7 = 7/ o 7).

BASIC PROPERTIES

1.

Two paths p and ¢ are homotopic if and only if p- ¢~! is a (well-defined and)
contractible loop.

. Two loops p and ¢ with the same basepoint are freely homotopic (viewed as closed

curves without basepoint) if the homotopy classes of the loops p and ¢ are conjugates
in the fundamental group.

The fundamental group of a surface S without boundary of genus g is best under-
stood by looking at a canonical polygonal schema of the surface: If S is orientable,
it is the group generated by 2g generators aq,b1,...,a4,b,; and with a single re-
lation, alblal_lbl_l e agbgaglbgl, corresponding to the boundary of the polygonal
schema. Similarly, if S is non-orientable, it is the group generated by ¢ generators
ai,...,aqy and with a single relation, aia; ...ag4a4.

The fundamental group of a surface with at least one boundary component is a free
group (because such a surface has the homotopy type of a graph).

. Let (5' , ) be a covering space of S. Every path p on S admits lifts on S; moreover,

if  is a lift of p(0), then p has a unique lift p such that p(0) = . Two paths are
homotopic on S if and only if they have homotopic lifts on S. In particular, two
paths are homotopic if they admit lifts with the same endpoints in the universal
covering space.

DECIDING HOMOTOPY AND ISOTOPY

1.

Homotopy: One of the first and most studied problems regarding curves on surfaces
is concerned with homotopy tests: (1) The contractibility problem: Is a given closed
curve (or, equivalently here, loop) contractible? (2) The free homotopy problem:
Are two given closed curves (freely) homotopic? These problems translate to central
problems from group theory, in the special case of fundamental groups of surfaces:
Given a finitely generated group, presented in the form of generators and relations,
(1) does a given word in the generators represent the trivial element of the group
(the word problem)? Do two given words in the generators represent conjugate
elements in the group (the conjugacy problem)?

In computational geometry, these problems are studied in the following context:
The input is a cellularly embedded graph G and one or two closed curves in G,
represented as closed walks in G. There exist linear-time (and thus optimal) algo-
rithms for both the contractibility and the free homotopy problems [LRI12, EW13].
(An earlier article [DG99] claims the same results, but it is reported [LRI12|] that
the algorithm for free homotopy in that article has a subtle flaw.) The approaches
rely on the construction of a part of the universal covering space, or on results from
small cancellation theory in group theory |[GS90]. We remark that Dehn’s algo-
rithm [Deh12] can be implemented in linear time, but assuming that the surface is
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fixed and that the graph has a single face, which the other algorithms mentioned
above do not require.

2. Isotopy: Deciding whether two simple closed curves are isotopic can also be done in
linear time, because this equivalence relation is a simple refinement of homotopy for
simple closed curves [Eps66]. Deciding isotopy of graph embeddings is more com-
plicated, but can also be done efficiently, since it essentially reduces to homotopy
tests for closed curves [CVM14].

3. Minimum-cost homotopies: Often, when it is known that two curves are homo-
topic, one would like to compute a “reasonable” homotopy. Relevant questions in-
clude finding a homotopy that sweeps the minimum possible area (in a discretized
sense) [CW13|, or has the minimum possible number of “steps”; a homotopy in
which the maximum length of the intermediate curves is minimal (“height” of the
homotopy) |CL09]; a homotopy in which the maximum distance traveled by a point
from the first to the second curve is minimal (“width” of the homotopy—this is re-
lated to the homotopic Fréchet distance) [HPNT16]; etc. Several of these questions
have been studied only in the case of the plane, and extensions to surfaces are still
open.

ELEMENTARY MOVES AND UNCROSSING

Q - _— H\/ -
T O RN TN
Figure 23.4: The four Reidemeister moves, up to ambient isotopy. The pictures represent
the intersection of the union of the curves with a small disk on S; in particular, in these

pictures, the regions bounded by the curves are homeomorphic to disks, and no other
parts of curves intersect the parts of the curves shown.

1. Elementary moves: Every family of closed curves in general position can be made
minimally crossing by a finite sequence of Reidemeister moves, described in Fig-
ure If a closed curve has k self-crossings, (k%) Reidemeister moves can be
needed; this is tight if the curve is homotopic to a simple curve, but in general no
subexponential upper bound seems to be known [CE16]. Actually, one can deform a
family of curves continuously to make it minimally crossing without increasing the
total number of crossings at any step, and moreover, in a minimally crossing fam-
ily, each curve is itself minimally self-crossing, and each pair of curves is minimally
crossing [GS97] (see also [HS94a]). There are other characterizations of curves not
in minimally crossing position [HS85].

2. Making curves simple: Let G be a graph cellularly embedded on a surface S. One
can decide whether an input curve, represented by a closed walk in GG, is homotopic
to a simple closed curve in S in near-linear time. More generally, one can compute
the minimum number of self-intersections of a curve in S homotopic to an input
closed walk in GG, and the minimum number of intersections between two curves in S
respectively homotopic to two input closed walks in G, in quadratic time [DL17].



Chapter 23: Computational topology of graphs on surfaces 13

3. Untangling curves by a homeomorphism: Given two families of disjoint, simple
curves, one can try to minimize the number of crossings between them by changing
one of them by a homeomorphism of the surface; some bounds are known on the
number of crossings that one can achieve [MSTW16].

4. Simultaneous graph drawing: This also relates to the problem of embedding two
input graphs on the same surface in a way that the embeddings cross each other
few times. Here also some results are known [Neg01} [RS05, HKMT16]; one can also
require both combinatorial maps to be fixed.

5. Number of homotopy classes: How many simple closed curves in different homotopy
classes can one draw such that they pairwise cross at most k times, for a given
integer k7 On orientable surfaces of genus g > 2 without boundary and k& = 0, the
answer is 3g — 2 (a pants decomposition, see below, together with a contractible
closed curve). The problem is more interesting for larger values of k; it was recently
proved that, for fixed k, the number of curves one can draw is polynomial in the
genus [Przl5).

23.5 OPTIMIZATION: SHORTEST CURVES AND GRAPHS

The problem of computing shortest curves and graphs satisfying certain topological prop-
erties on surfaces has been widely considered. This leads to problems with a flavor of
combinatorial optimization.

For these problems to be meaningful, a metric must be provided. In computational
geometry, one could naturally consider piecewise linear surfaces in some Euclidean space
(perhaps R3); however, efficient algorithms for computing shortest paths in such sur-
faces [MMPS87, [CH96] need additional assumptions because distances involve square
roots, which leads to deep and unrelated questions on the complexity of comparing sums
of square roots [BI691]. Furthermore, in the context of graph problems in the specific
case of surface-embedded graphs (Section below), that model would be insufficient.
The notions of combinatorial and cross-metric surfaces, defined below, have been devel-
oped to avoid these technical distractions, and are suitable in various settings. On the
other hand, with an oracle for shortest path computations, several of the results in this
section extend to more geometric settings, for example piecewise linear surfaces in some
Euclidean space (see, e.g., [EW05, Sect. 3.6]).

GLOSSARY

Discrete metrics on surfaces

Combinatorial surface: A combinatorial surface is the data of a cellular graph
embedding G, with positive weights on the edges. The only allowed curves are walks
in G; the length of a curve is the sum of the weights of the edges of G traversed by
the curve, counted with multiplicity. Algorithmically, curves are stored as closed
walks in G. The complexity of the combinatorial surface is the complexity of the
embedding G (asymptotically, its number of edges).
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Cross-metric surface: A cross-metric surface [CVEILQ] is also the data of a
cellular graph embedding G on some surface S, with positive weights on the edges.
However, in contrast to the combinatorial surface model, here the curves are drawn
on the surface S in general position with respect to G; the length of a curve is the
sum of the weights of the edges of G crossed by the curve, counted with multiplicity.
Algorithmically, a family of curves (or a graph) on a cross-metric surface is stored
by the combinatorial map of the arrangement of that family of curves (or graph)
together with G. The complexity of the cross-metric surface is the complexity of
the embedding G (asymptotically, its number of edges).

Without loss of generality, one could draw the curves in a neighborhood of the dual
graph G* of G. Pushing them completely onto G* would transform them into curves
on the combinatorial surface defined by G*. However, the cross-metric surface
defined by G retains more information than the combinatorial surface defined by G*:
In the latter case, when curves share edges of G*, they automatically overlap; the
cross-metric model allows us to make them disjoint except at some well-defined
crossing points. (We should point out that it is still possible to define the notion of
crossing between two curves in a combinatorial surface, but this is still insufficient
for some of the algorithms described below.)

Figure 23.5: Left: Some closed curves on surfaces, (d) disk-bounding, (n) non-separating,
(s) splitting. Right: A pants decomposition of a surface.

Types of simple closed curves

Let « be a simple closed curve in the interior of a surface S. See Figure [23.5

Disk-bounding curve: -+ is disk-bounding if the surface S cut along ~ (denoted
by S\v) has two connected components, one of which is homeomorphic to the disk.

Separating curve: -+ is separating if S\\v has two connected components.
Splitting curve: -y is splitting if v is separating but not disk-bounding.

Essential curve: -y is essential if no component of S\« is a disk or an annulus.

Topological decompositions

Cut graph: A cut graph is a graph G embedded on a surface S such that S\G
is homeomorphic to a closed disk.

System of loops: A system of loops on a surface without boundary is a cut
graph with a single vertex. See Figure [23.2
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Canonical system of loops: A system of loops G on a surface without bound-
ary S is canonical if the edges of the polygon S\\G appear in the same order as in
a canonical polygonal schema (see Section [23.1))

Pants decomposition: A pants decomposition of an orientable surface S is a
family T' of simple, disjoint closed curves on S such that S\I is a disjoint union of
pairs of pants. See Figure [23.5

Octagonal decomposition: An octagonal decomposition of an orientable sur-
face S without boundary is a family I" of closed curves on S such that each (self-
)intersection point in I is a crossing between exactly two closed curves, and each
face of the arrangement of I on S is an octagon (a disk with eight sides).

Homology

In the context of graphs on surfaces, one-dimensional homology on surfaces over the field
7./27 is used; it can be described somewhat more concisely than more general homology
theories. Let S be a surface. Here we assume graph embeddings to be piecewise linear
(with respect to a fixed triangulation of 5).

Homological sum: By the previous assumption, the closure of the symmetric
difference of the images of two graph embeddings G' and G’ is the image of some
graph embedding G”, called the homological sum of G and G'. (G” is defined up to
subdivision of edges with degree-two vertices, insertion of isolated vertices, and the
reverse operations; here, graph embeddings are considered up to such operations.)

Homology cycle: A graph G embedded on S is a homology cycle if every vertex
of G has even degree. The set of homology cycles forms a vector space over the
field Z/27Z: The empty graph is the trivial element and addition is the homological
sum.

Homology boundary: A graph G embedded on S is a homology boundary if the
faces of G can be colored in two colors, say black and white, such that G is the
“boundary” between the two colors: Exactly one side of each edge of G is incident
to a black face. The set of homology boundaries forms a vector space over Z/27Z.
Every homology boundary is a homology cycle.

Homology group: 1t is the Z/27Z-vector space, denoted by H;(S), that is the
quotient of the homology cycles by the homology boundaries. A graph embedding
is homologically trivial if it is a homology boundary.

The homology of sets of loops or closed curves can be defined similarly, because these loops
and closed curves are the images of some graph embedding. Using the more advanced
theory of singular homology one can remove the restriction of dealing with piecewise-
linear graph embeddings.

BASIC PROPERTIES
1. A simple closed curve is disk-bounding if and only if it is contractible.

2. A simple closed curve is separating if and only if it is homologically trivial.
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3. The homology group of a surface S without boundary has dimension g, the Euler
genus of .S, and is generated by the loops appearing on the boundary of a canonical
polygonal schema.

SHORTEST CURVES

Deciding whether a simple closed curve in a cross-metric (or combinatorial) surface is
separating or disk-bounding can be done in time linear in the size of the data structure
used to store the cellular graph and the curve; this boils down to determining whether
some graph is connected, or whether some surface is a disk (which is easy using Euler’s
formula). Here we consider the optimization version, by looking for shortest curves with
a given topological type in a combinatorial or cross-metric surface. Non-disk-bounding
or non-separating curves are of particular interest, because cutting along such a curve
simplifies the topology of a surface. Below we use non-trivial as a shorthand for either
non-disk-bounding or non-separating.

UNDIRECTED DIRECTED
O(n?logn) [EHP04] O(n?logn) [CCVLI6)
Q O(g*?n3/?log n) non-sep [CMO7] 0O(g'/*n3/%logn) [CCVLI16
é@ g@9)n3/2 non-db 20(9)271 logn non-sep [EN11D]
€ O(g) O(g“nlogmn) non-sep .
& g 3nlogn [Kut06] O((g) 1 gn) o } [Exill]
Q O(g°nlogn) [CCOT] g“'9nlogn  non
O(g?nlogn) [CCEL]] O(g3nlogn) non-db [Fox13
g°@nloglogn [INST11]
200 n loglogn [Fox13]
O(gnlogn) for 2-approx. [EHP04]
&/@Q 3 2
C;z» O(n?) [Tho90] (see [MTO01]) O(n*) [CCVLI6
§} O(n?) [CCVLIi2| O(gnk) [CCVLIE]
Q% O(gnk) [CCVLI12
O(gn/e) for (1 + ¢)-approx. [CCVL12]

Table 23.2: Algorithms for shortest non-trivial closed curves on surfaces without bound-
ary, depending on whether the graph is weighted and whether it is directed. “Non-sep”
and “non-db” mean non-separating and non-disk-bounding, respectively; k is the size of
the output. The best complexities known to date are in bold (there can be several of
them in each category due to the tradeoff between g, n, and k). Of course, the undirected
case reduces to the directed case, and the unweighted case reduces to the weighted case;
in each cell, we do not repeat the algorithms that are available for more general scenarios.

1. Structural properties: In a combinatorial surface, a shortest noncontractible or non-
null-homologous loop based at a vertex x is made of two shortest paths from x and
of a single edge (this is the so-called 3-path condition [Tho90]). It follows that
the globally shortest non-contractible and non-null-homologous closed curves do
not repeat vertices and edges, and are also shortest non-disk-bounding and non-
separating closed curves. More generally, in the algorithms mentioned below, a
typical tool is to prove a bound on the number of crossings between the (unknown)
shortest curve and any shortest path.
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2. Different scenarios for shortest non-trivial curves: Table summarizes the run-
ning times of the known algorithms. In such problems, it is relevant to look for
more efficient algorithms in the case where the genus ¢ is smaller compared to the
complexity n of the graph defining the surface. The standard scenario, which is
the only one considered elsewhere in this chapter, is that of a combinatorial (or
equivalently, cross-metric) surface (the undirected, weighted case, in the upper left
corner in Table 23.5.1). One can also aim for faster algorithms in the unweighted
case (unit weights). Finally, one can extend the techniques to the case of directed
graphs, where the edges of the combinatorial surface are directed and can only be
used in a specified direction (equivalently, the edges of the cross-metric surface can
only be crossed in a specific direction).

3. Other topological types: Shortest simple closed curves of other topological types
have been investigated as well (in the following, n denotes the complexity of
the cross-metric surface): shortest splitting curves [CCVT08] (NP-hard, but com-
putable in O(n logn) time for fixed genus); shortest essential curves [EWT10] (O(n?logn)
time, or O(nlogn) for fixed genus and number of boundaries—in this case, surfaces
with boundary require more sophisticated techniques); and non-separating curves
which are shortest in their (unspecified) homotopy class [CDEMI10] (O(nlogn)).

4. Shortest homotopic curves: A slightly different problem is that of computing a
shortest curve homotopic to a given curve (either a path or a closed curve); this is
also doable in small polynomial time, using octagonal decompositions to build a part
of the universal covering space [CVE10] (earlier algorithms dealt with simple curves
only, with an iterated shortening process that leads to a global optimum [CVL05,
CVLOT).

5. Shortest paths: All these algorithms rely on shortest path computations on com-
binatorial (or cross-metric) surfaces, which can be done in O(nlogn) time using
Dijkstra’s algorithm [Dij59] classically speeded up with Fibonacci heaps [FT87] in
the primal (or dual) graph. This actually computes the shortest paths from a sin-
gle source to all other vertices of the combinatorial surface. Other algorithms are
available for computing multiple shortest paths quickly under some conditions on
the locations of the endpoints [CCE13].

SHORTEST DECOMPOSITIONS

Decompositions of surfaces are central in topology; for example, the standard proof of the
classification theorem transforms an arbitrary cut graph into a canonical system of loops.
Many algorithms described in the previous subsection rely on topological decompositions
and their properties.

1. Shortest cut graph: The problem of computing a shortest cut graph on a cross-
metric surface has been extensively studied. Computing the shortest cut graph is
NP-hard, but there is an O(log? g)-approximation algorithm that runs in O(g?nlogn)
time [EHPO04]. Moreover, for every € > 0 one can compute a (1 + &)-approximation
in f(e,g) - n® time, for some function f [CAMI5]. If one is looking for a short-
est cut graph with a specified vertex set P (for example, a shortest system of
loops with given basepoint [EW05]), then there is an algorithm with running time
O(nlogn + gn + |P|) [CV10]. At the root of several of these articles lies the tree-
cotree property [Epp03]: If G is a cellular graph embedding, there exists a partition
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(T, C, X) of the edges of G such that T is a spanning tree of G and the edges dual
to C form a spanning tree of the dual graph G*. Contracting T and deleting C
transforms G into a system of loops, each loop corresponding to an element of X.

2. Other topological decompositions: Some canonical system of loops (for orientable
surfaces without boundary) can be computed in O(gn) time [LPVVO0I]. An oc-
tagonal decomposition or a pants decomposition made of closed curves which are
as short as possible in their respective homotopy classes can be computed in
O(gnlogn) time [CVE1(Q]. But in general the complexity of computing shortest
such decompositions is open. On the other hand, there are bounds on the max-
imum length of some decompositions, assuming that the combinatorial surface is
an unweighted triangulation, or, dually, that the cross-metric surface is unweighted
and each vertex has degree three [CVHMI15].

3. Stretch: Let S be a cross-metric surface, and let G be the associated embedded
graph. The stretch of S is the minimum of the product of the lengths of v and 4§,
over all closed curves « and J crossing exactly once. This quantity is related to the
planar crossing number and the size of a largest toroidal grid minor of G* [HCI0],
and can be computed in small polynomial time [CCHI14].

HOMOLOGY AND ITS RELATION TO CUTS AND FLOWS

As hinted above, homology is useful because a simple closed curve is separating if and
only if it is null-homologous; the algorithms for computing shortest non-separating closed
curves actually compute shortest non-null-homologous closed curves, which turn out to
be simple.

Homology is a natural concept; in particular, it is interesting to look for a family
of closed curves, of minimum total length, the homology classes of which generate the
homology group. Some efficient algorithms have been given for this purpose [EW05], also
in connection with an algorithm to compute a minimum cycle basis of a surface-embedded
graph [BCEN16].

Another reason for the importance of homology is its relation to cuts: Given a graph G
cellularly embedded on a surface S without boundary, the (s,t)-cuts in G are dual to
the subgraphs of G* in some fixed homology class on the surface obtained from S by
removing the faces of G* containing s and ¢. Thus, computing minimum cuts amounts
to computing shortest homologous subgraphs. This property has been exploited to study
general graph problems, where better algorithms can be designed in the specific case of
graphs embedded on a fixed surface, to:

1. compute minimum (s, t)-cuts in near-linear time [CENO09, [EN11b]. The best algo-
rithm runs in 2°@nlogn time, where g is the genus [ENIID], and relies on the
homology cover, a particular type of covering space;

2. compute maximum (s,t)-flows faster, by exploiting further the duality between
flows and cuts [CENT2, BENT16];

3. count and sample minimum (s, ¢)-cuts efficiently [CENI4];

4. compute global minimum cuts efficiently (without fixing s and t) [EFN12];
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5. deal with other problems, e.g., to compute the edge expansion and other con-
nectivity measures [Patl3] or to bound the space complexity of bipartite match-
ing [DGKT12].

23.6 ALGORITHMS FOR GRAPHS EMBEDDED ON A
FIXED SURFACE

Some general graph problems can be solved faster in the special case of graphs embedded
on a fixed surface. Examples include cut and flow problems (see previous section), mul-
ticommodity problems, domination and independence problems, connectivity problems
(Steiner tree, traveling salesman problem, etc.), disjoint paths problems, shortest paths
problems, subgraph problems, and more.

Sometimes the problems are solvable in polynomial-time on arbitrary graphs, and the
goal is to obtain faster algorithms for surface-embedded graphs. But in many cases, the
problems considered are NP-hard on arbitrary graphs, and polynomial-time algorithms
are obtained for graphs embeddable on a fixed surface (occasionally by fixing some other
parameters of the problem). Typically, optimization problems are considered, in which
case it is relevant to look for approximation algorithms.

The methods involved usually combine topological aspects (as described above) with
techniques from structural and algorithmic graph theory.

GLOSSARY

Minor: A graph H is a minor of another graph G if H can be obtained from G
by removing edges and isolated vertices, and contracting edges.

Minor-closed family: A family .% of graphs is minor-closed if every minor of a
graph in . is also in .Z.

Tree decomposition: A tree decomposition of a graph G = (V, E) is a tree T' in
which each node is labeled by a subset of V', such that:

— for each v € V, the set of nodes in T" whose labels contain v induces a
non-empty connected subtree of T', and
— if G has an edge connecting vertices u and v, then the label of at least one

node of T contains both © and wv.

Width: The width of a tree decomposition is the maximum cardinality of the
labels minus one.

Treewidth: The treewidth of a graph G is the minimum width of a tree decom-
position of G.

SURVEY OF TECHNIQUES

Central to algorithmic and structural graph theory is the study of minor-closed families
of graphs; by a deep result of Robertson and Seymour [RS04|, for each such family .7,
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there is a finite set X # of graphs such that G € % if and only if no graph in X4 is a
minor of G. We refer to [KMO07] for a survey on these structural aspects.

The graphs embeddable on a fixed surface form a minor-closed family, and have the
benefit that they can be studied using topological techniques. Robertson and Seymour
provide a decomposition theorem for minor-closed families of graphs involving graphs
embeddable on a fixed surface [RS03]; efficient algorithms for surface-embedded graphs
are sometimes extended to minor-closed families of graphs (different from the family of
all graphs).

It is impossible to list all results in algorithms for surface-embedded graphs here, so
we focus on general methods. Several algorithms are based on topological techniques
described in the previous sections (in particular, shortest non-trivial curves or shortest
decompositions), in several cases with advanced algorithmic techniques [ENT1a, [KKSTT),
ES14, [PPSL14]. Sometimes the same techniques have led to new results for planar
graphs [Eril0, [ENT1d, [CV17b]. Methods applicable to several algorithmic problems have
also emerged, in many cases extending previous ones invented for planar graphs:

1. Graph separators and treewidth: Let G be a graph with n vertices embedded on
a surface with genus ¢g. In linear time, one can compute a balanced separator
of size O(/gn), namely, a set of O(,/gn) vertices whose removal leaves a graph
without connected component of more than 2n/3 vertices [GHT84, [Epp03]. Also,
the treewidth of G is O(/gn).

2. Dynamic programming: Small treewidth implies efficient algorithms using dynamic
programming in arbitrary graphs. When the graph is embedded, one can exploit
this fact to obtain algorithms with smaller dependence on the treewidth for some
problems [Bonl2, RST13], [RST14].

3. Irrelevant vertex technique: Several graph problems enjoy the following property [Thil2]:

If the input graph has large treewidth, there exists an irrelevant vertex, whose re-
moval creates an equivalent instance of the problem (e.g., a vertex at the center of
a large grid minor). This property is widely used in structural graph theory and
has been exploited several times in the context of algorithms for surface-embedded
graphs [KRO7, [KT12, [RS12].

4. Polynomial-time approzimation schemes (PTASs): Baker [Bak94] has introduced
a technique for designing approximation schemes for some optimization problems
with local constraints in planar graphs: She has showed that one can delete a small
part of the input graph without changing too much the value of the solution and
such that the resulting graph has small treewidth. The technique has been extended
to graphs embeddable on a fixed surface [Epp00], to graphs that can be drawn on
a fixed surface with a bounded number of crossings per edge [GBOT7], and to more
general contraction-closed problems where contraction instead of deletion must be
used [Kle05, DHMI0]. A crucial step in making the latter technique effective is
the construction of a spanner: In the case of a minimization problem, this is a
subgraph of the input graph containing a near-optimal solution and whose weight
is linear in that of the optimal solution. Brick decomposition is a technique that
builds spanners for some problems, originally in planar graphs, but also sometimes
in graphs on surfaces [BDT14].

5. Bidimensionality: This theory [Thil5, DFHTO05, DHTO06) [DHO8] applies to mini-
mization problems on unweighted graphs where contracting an edge of the graph
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does not increase the value of the solution, and where the value of the solution
in grid graphs (and generalizations) is large. It leads to output-sensitive algo-
rithms for graphs embeddable on a fixed surface with running time of the form
20(Vk) -nP%D) | where k is the value of the solution and n is the input size. This also
provides PTASs in some cases [DHO5]. For the problems where bidimensionality
applies, PTASs can sometimes also be obtained in weighted graphs using a different
framework [CACVT16].

6. Stochastic embeddings: Let G = (V,E) and G' = (V', E’) be positively edge-
weighted graphs. A non-contracting metric embedding f from G to G’ is a mapping
from V to V'’ such that d'(f(z), f(y)) > d(z,y) for each z,y € V, where d and d’
represent shortest path distances in G and G’, respectively. The distortion of f is
the maximum of d'(f(z), f(y))/d(z,y) over all z #y € V (see Chapter 8). Every
graph G embeddable on an orientable surface S of genus g admits a probability
distribution of non-contracting metric embeddings into planar graphs such that for
each z,y € V, one has E[d'(f(z), f(y))] < O(logg) - d(x,y), where the expectation
is over all f in the distribution [Sid10]. This reduces several optimization problems
on graphs on S to the same problem in planar graphs, up to the loss of an O(log g)
factor. Actually, such a distribution can be computed in polynomial time even if
no embedding of G on S is known [MS12].

23.7 OTHER MODELS

A rather large number of results relate to the concepts described in this chapter, and it
would be impossible to cover them all. Below, we provide a selection of miscellaneous
results that consider other models for representing graphs on surfaces.

COMPUTATIONAL TOPOLOGY IN THE PLANE WITH OBSTA-
CLES

The plane minus finitely many points or polygons (“obstacles”) forms a (non-compact)
surface S. Taking any cellular graph embedding on S makes S a combinatorial (or cross-
metric) surface, so most of the topological algorithms above apply. However, it is much
more natural to consider arbitrary piecewise-linear curves in S, whose length is defined
by the Euclidean metric. In this model, S is defined by the obstacles (a finite set of
disjoint simple polygons, for simplicity of exposition); curves are arbitrary polygonal
lines avoiding the interior of the obstacles. Some of the problems defined in the previous
sections and related problems have been studied in this model:

1. Homotopy and isotopy tests: There are efficient algorithms to test whether two
curves are (freely) homotopic [CLMS04], or whether two graphs are isotopic [CVM14].

2. Shortest homotopic paths can be computed efficiently as well [HS94bl, [Bes03, EKL06];
see also Section 31.2. A variant where several simple and disjoint paths must be
shortened while preserving their homotopy class and keeping their neighborhoods
simple and disjoint (i.e., the paths are “thick”) has also been investigated |[GJKT8S].

3. Shortest disjoint paths: Here the goal is to compute disjoint paths with minimum
total length (or, more precisely, non-crossing paths, since in the limit case, the
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solution may consist of overlapping paths). If the endpoints lie on the boundary of
a bounded number of obstacles, the problem is solvable in polynomial time [ENTIc].

4. Other results include a constant-factor approximation algorithm for the shortest
pants decomposition in the case where the obstacles are points [Epp09] and an
algorithm for computing the homotopic Fréchet distance, a measure of similar-
ity between curves that takes the obstacles into account topologically [CCV ™10,
HPN™16].

SIMPLE AND DISJOINT CURVES IN GRAPHS

In the cross-metric model, defined by a cellularly embedded graph G, one can think of
curves as being drawn in a neighborhood of G*. So, intuitively, curves are drawn in G*,
but they can share vertices and edges of G* while being simple and pairwise disjoint.

It is very natural, especially in topological graph theory, to forbid such overlaps:
A set of disjoint simple curves cannot repeat any vertex or edge of G*. Many of the
problems mentioned in the previous sections make sense in this setup, which turns out
to be generally more difficult to handle than the cross-metric model. In this model, the
following results are known (here by circuit we mean a closed curve in the graph without
repeated vertex, and containing at least one edge):

1. Determining whether there exists a separating (resp., splitting) circuit is NP-
complete [CCVL1I].

2. Determining some contractible (resp., non-contractible, resp., non-separating) cir-
cuit, if such a circuit exists, is possible in linear time, even if one requires the circuit
to pass through a given vertex [CCVLII].

3. Computing a shortest contractible circuit is possible in polynomial time, but if
one requires the circuit to pass through a given vertex, the problem becomes NP-
hard [Cabl10].

4. Computing a shortest separating circuit is NP-hard [Cabl10].

5. There is a combinatorial characterization on whether curves can be made simple and
disjoint in the graph by a homotopy on the surface [Sch91]. In the case of a planar
surface with boundaries, this leads to a polynomial-time algorithm [Sch90b, Th. 31],
which in turn has some algorithmic consequences on the problem of computing
vertex-disjoint paths in planar graphs [Sch90b, Th. 34]. See also [Sch03, Ch. 76].

NORMAL CURVES ON SURFACES

Let T" be a family of disjoint simple closed curves on a surface S in general position with
respect to a triangulation T" of S. A natural way to represent I', as described in the
previous sections, is by its arrangement with 1. Normal curves are a more economical
representation, at the price of a mild condition: For every triangle ¢ of T', the intersec-
tion of the image of I with ¢ must be a set of (disjoint simple) paths, called normal arcs,
connecting different sides of t. For such a I'; and for each triangle ¢ of T', one stores three
integers recording the number of normal arcs connecting each of the three pairs of sides



Chapter 23: Computational topology of graphs on surfaces 23

of t. Overall, I' is described by 3n non-negative integers, where n is the number of trian-
gles in T'. Conversely, given a vector of 3n non-negative integers, one can unambiguously
reconstruct I' up to mormal isotopy, that is, up to an ambient isotopy that leaves the
edges of T globally unchanged.

To store the vector of normal coordinates, O(nlog(X/n)) bits are needed, where X
is the number of crossing points of I' with T". In contrast, representing these curves on a
cross-metric surface requires at least to store a constant amount of information per vertex
of the arrangement, which is ©(n+X) in total. So the normal curve representation can be
exponentially compressed compared to the “naive” one. Despite this, in time polynomial
in the input size one can:

1. count the number of connected components of a normal curve (note that a “normal
curve” does not have to be connected), and partition these components according
to their (normal or not) isotopy classes, given by their multiplicities and the normal
coordinates of a representative [SSS02, ENT3];

2. decide whether two normal curves are isotopic [SSS02, ENT3];

3. compute the algebraic [SSS02, [ENT3] or the geometric [SSS08| intersection number
of two normal curves. (The algebraic intersection number of v and ¢ is the sum,
over all crossings between v and J, of the sign of the crossing, which is +1 if ~
crosses 0 from left to right at that crossing point and —1 otherwise; this is well-
defined if the surface is orientable, since it is invariant by isotopy. The geometric
intersection number of v and § is the minimum number of crossings between curves
7" and ¢’ isotopic to v and §.)

These problems have been initially studied using straight-line programs, a concise
encoding of words over a finite alphabet; many algorithms on words can be solved effi-
ciently using the straight-line program representation, in particular because straight-line
programs can represent exponentially long words; this leads to efficient algorithms for
normal curves [SSS02, ISSS08]. The same and other problems have been revisited using
more topological techniques [EN13|. Normal curves are the lower-dimensional analog of
normal surfaces, widely used in three-dimensional topology.

23.8 OTHER RESOURCES

Books. Graphs on surfaces from a combinatorial viewpoint are treated in detail in [MTOI];
see also |[GT87]. For basic surface topology, we recommend [Arm83| [Sti93, [Hen94].

Survey. [Eril2] surveys optimization problems for surface-embedded graphs, providing
more details on a large fraction of Section [23.5

Course notes and unpublished material. [Eril3] provides some notes in compu-
tational topology with a strong emphasis on graphs on surfaces. [CV12l [CV17a] survey
some algorithms for optimization of graphs and curves on surfaces. [DMST11] emphasizes
graph algorithms for surface-embedded graphs.
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