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Let G be a directed planar graph of complexity n, each arc having a nonnegative length. Let s

and t be two distinct faces of G; let s1, . . . , sk be vertices incident with s; let t1, . . . , tk be vertices
incident with t. We give an algorithm to compute k pairwise vertex-disjoint paths connecting the

pairs (si, ti) in G, with minimal total length, in O(kn logn) time.
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1. INTRODUCTION

The vertex-disjoint paths problem is described as follows: given any (directed or
undirected) graph and k pairs (s1, t1), . . . , (sk, tk) of vertices, find k pairwise vertex-
disjoint paths connecting the pairs (si, ti), if they exist. This problem is well-known
also because of its motivation by VLSI-design.
For a fixed number k of pairs of terminals, this problem is polynomial-time solv-

able in a directed planar graph, as shown by Schrijver [1994], and in any undirected
graph, as shown by Robertson and Seymour [1995]. However, Raghavan [1986] and
Kramer and van Leeuwen [1984] proved that it is NP-hard when k is not fixed,
even on a planar undirected graph; it belongs to the more general class of integer
multicommodity flow problems [Schrijver 2003, Chapter 70], many variants of which
are NP-hard.
If the graph is planar, two special cases are solvable in time linear in the com-

plexity of the graph, even if k is not fixed:
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Fig. 1. An instance of the problem and a solution (in bold lines).

(1) if all terminals lie on the outer face, as proved by Suzuki et al. [1990];

(2) if the terminals s1, . . . , sk are incident with a common face s, the terminals
t1, . . . , tk are incident with a common face t, and the faces s and t are distinct,
as proved by Ripphausen-Lipa et al. [1996].

In this paper, we consider a graph where each edge has a nonnegative length,
and we wish to solve the vertex-disjoint paths problem using paths with minimal
total length. Of course, this is harder than the vertex-disjoint paths problem. In
case (1), the problem is known to be solvable in polynomial time (even if k is not
fixed) if the cyclic order of the terminals is s1, . . . , sk, tk, . . . , t1 (by reduction to the
max-flow problem, after replacing each vertex by two vertices connected by an arc,
so that the problem is to find arc-disjoint paths in this new graph) [van der Holst
and de Pina 2002]. Our goal is to solve the vertex-disjoint paths problem with
minimal total length in case (2). We give an algorithm to do this in O(kn log n)
time (see Figure 1):

Theorem 1.1. Let G be a planar directed graph with n vertices and arcs, each
arc having a nonnegative length. Let s and t be two distinct faces of G; let s1, . . . , sk
be vertices incident with s; let t1, . . . , tk be vertices incident with t. Then we can
compute k pairwise vertex-disjoint paths connecting the pairs (si, ti) in G, with
minimal total length, in O(kn logn) time.

The value of k is not fixed in this result. Note that this theorem also holds if G
is an undirected graph: simply replace every edge of this graph by two oppositely
directed arcs and apply the previous result to this new graph. The same problem
for non-crossing shortest paths, that is, paths that are allowed to overlap along
vertices and edges but not to cross in the plane, is solvable in O(n log n) time, as
shown by Takahashi et al. [1996].
The high-level approach of our algorithm is the following. We first show that we

may assume without loss of generality that G satisfies some additional properties
and transform G into another planar directed graph D; in this graph, it suffices to
solve the same problem for arc-disjoint instead of vertex-disjoint paths (Section 2).
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Fig. 2. Construction of the graph D = (V,A) from the graph G. The thin arcs on the rings have
length zero.

Then we translate our problem in terms of (integer) flows in the graphD (Section 3).
In Section 4, we introduce the residual graph and state some of its properties that we
will use. In Section 5, we explain how to increase the value of a flow. By repeated
applications of this algorithm, we obtain vertex-disjoint paths in G between the
terminals, but they may fail to connect the pairs (si, ti). We show that it suffices
to “rotate” the flow a few times to change the connections between the terminals
(Section 6) and explain how to do that efficiently (Section 7). A generalization of
the notion of potential allows us to assume that all lengths in the residual graph
are nonnegative, which makes the algorithm efficient.

2. PRELIMINARIES

We assume that we are given an embedding of the directed graph G in the plane.
More precisely, only a combinatorial embedding of G is necessary, which means that
the cyclic order of the arcs around a vertex is known.
We can assume that G is connected and that t is the outer face of the embedding

of G. Up to re-indexing the pairs (si, ti), we may assume that s1, . . . , sk and
t1, . . . , tk are in clockwise order: indeed, if such a reordering does not exist, then
there cannot exist vertex-disjoint paths connecting the pairs (si, ti).
We may assume that each terminal vertex has degree one as follows: to each

terminal vertex si (resp. ti), attach an arc (of length zero, for example) (s′i, si)
(resp. (ti, t

′
i)) inside s (resp. t), where s′i (resp. t

′
i) is a new vertex; use the s′i and

the t′i as terminals, instead of the si and the ti. Clearly, any solution to the problem
in this augmented graph yields a solution in the original graph G.
We now transform G into a graph D of maximal degree three, and prove that

solving the shortest vertex-disjoint paths problem in D gives a solution of the same
problem in G. The graph D is obtained from G by replacing each vertex v of degree
at least four by a small clockwise “ring” of arcs; see Figure 2. In particular, the
number of vertices and arcs of D is O(n). Every arc a of D that is on no ring
corresponds to an arc of G and its length, λ(a), is the length of this arc in G; it is
thus nonnegative. The length λ(a) of an arc a on a ring is zero. The function λ is
fixed in this whole paper.
An (s, t)-path in D or G is a path from some vertex in {s1, . . . , sk} to some vertex
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Fig. 3. Illustration of the proof of Proposition 2.1: Every point of the dark shaded area of the
annulus is on the right of exactly one path, p1, and on the left of exactly one path, p2.

in {t1, . . . , tk}; an (si, ti)-path is a path connecting some pair of terminals (si, ti).

Proposition 2.1. Let P be a minimum-length set of k vertex-disjoint (si, ti)-
paths in D. Then P gives, in O(n) time, a minimum-length set of k vertex-disjoint
(si, ti)-paths in G. If no such set P exists, then the original problem in G has no
solution.

Proof. Consider such a set of (si, ti)-paths P in D. We claim that a given ring r

of D can be used by at most one path in P . Indeed, since s and t are distinct faces,
R

2 \ {s ∪ t} is an annulus. Since the paths in P are vertex-disjoint and connect
s to t, every point of the annulus that does not belong to a path in P is on the
left of exactly one path and on the right of exactly one path in P (Figure 3). In
particular, the center c of r is on the right of exactly one path in P . But every
path using r has c on its right, because the arcs of r are oriented clockwise. This
proves the claim.
Thus, P corresponds, in G, to k pairwise vertex-disjoint (si, ti)-walks. Removing

the loops from these walks in O(n) time does not increase the total length and gives
a set of k vertex-disjoint (si, ti)-paths in G.
Conversely, any solution of the original vertex-disjoint problem in G gives a set of

k vertex-disjoint paths in D, of the same length, connecting the appropriate pairs
of terminals. So the paths obtained in the previous paragraph have minimal total
length; furthermore, if no such set of paths P exists, then the problem in G admits
no solution.

So we reduced the problem in G to the same problem in the graph D. The point
now is that the vertices of D have degree three, except the terminals, which have
degree one; because of these degree conditions, a set of arc-disjoint (s, t)-paths or
circuits in D is actually a set of vertex -disjoint (s, t)-paths or circuits in D, so we
now have to solve a problem on arc-disjoint paths. This enables a flow approach
on D, which we will develop in the next section.
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Fig. 4. The path U in the dual graph D∗ and the corresponding value of u on the arcs of D. Only
the non-zero values of u are indicated, on the arcs in bold lines. Here m = ms −mt = 3− 1 = 2.

3. FLOWS AND WINDING NUMBERS

In this paper, a flow in D = (V,A) is an element x ∈ {0, 1}A such that, for each
non-terminal vertex v, the following flow conservation law holds:

∑

a | v=source(a)

x(a) =
∑

a | v=target(a)

x(a).

The value of a flow x equals the total flow leaving the vertices s1, . . . , sk: if ai is
the arc incident with si, then the value of x equals

∑k
i=1 x(ai). A circulation is a

flow of value zero. A length function (or cost function) on D is an element of RA;
λ is a length function. The length (or cost) of a flow x with respect to a length
function κ is κ⊤x.
Note that our definition requires flows in D to be in {0, 1}A. Hence, equivalently,

a flow is a set of arc-disjoint (s, t)-paths and circuits in D. Actually, by the degree
conditions on D, it is a set of vertex-disjoint (s, t)-paths and circuits.
Let A−1 be the set of arcs in A with reverse orientation. If κ ∈ R

A is a length
function, we define the length of an arc a−1 ∈ A−1 to be κ(a−1) = −κ(a).

Let X ∈ R
A∪A−1

; we define zX ∈ R
A by zX(a) = X(a)−X(a−1). If γ is a walk

in (V,A ∪ A−1), by a slight abuse of notation, we define zγ to be zX , where X(a)
(resp. X(a−1)) is the number of times γ travels through the arc a (resp. a−1). The
length of γ with respect to a length function κ is thus κ⊤zγ .
We now want to take into account how a flow “turns around” the inner face s

of G. This is done by recording the algebraic amount of flow crossing a fixed path U

connecting faces s and t. In more details, consider the (undirected) dual graph D∗

of D, that is, the planar graph that has one vertex f∗ inside each face f of D
and such that f∗

1 and f∗
2 are connected by an edge e∗ if and only if f1 and f2 are

separated by an arc e in D; in that case, e∗ crosses e but no other arc of D. Let U
be a path (fixed in this whole paper) from s∗ to t∗ in D∗ (Figure 4). For each arc a
in A, define u(a) to be 0 if a does not cross U , +1 if a crosses U from left to right,
and −1 if a crosses U from right to left. This defines an element u ∈ R

A. The
winding number of a flow x equals u⊤x, the value of the flow through u counted
algebraically. Also, for any X ∈ R

A∪A−1

, the winding number of X is u⊤zX .
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Let ms ∈ [1, k] be such that the first arc of U is, in the cyclic order around the
face s, between sms

and sms+1 (where sk+1 = s1). Similarly, let mt be such that
the last arc of U is between tmt

and tmt+1. Let m = ms −mt.
The following lemma will be used repeatedly.

Lemma 3.1. Let γ be any circuit in (V,A∪A−1). Then the winding number of γ
belongs to {−1, 0,+1}. If γ encloses s in the plane, then it has winding number +1
if it is clockwise and −1 if it is counter-clockwise. Otherwise, γ has winding number
0.

Proof. This is a consequence of the Jordan curve theorem. The winding number
of γ is the number of times the path U crosses γ from the right to the left, minus
the number of times U crosses γ from the left to the right. Assume γ is clockwise,
the other case being analogous. The winding number of γ is the number of times
U exits the region enclosed by γ minus the number of times it enters this region.
If γ does not enclose s, then both endpoints of U are outside γ, so the winding

number is zero. If γ encloses s, the source of U is inside the region enclosed by γ

while its target is outside, so the winding number is +1.

We can now reformulate our arc-disjoint paths problem in D in terms of flows
in D:

Proposition 3.2. Let x be a flow in D of value k with minimal cost subject to
the condition that its winding number, modulo k, equals m. Then x gives, in O(n)
time, k vertex-disjoint (si, ti)-paths in D of minimal total length. If there exists no
such flow, then there does not exist k vertex-disjoint (si, ti)-paths in D.

Proof. As noted above, the degree conditions on D imply that the flow x is a
set of vertex -disjoint (s, t)-paths or circuits in D. Let γ be a circuit in x. If γ has
non-zero winding number, then γ separates s and t, which implies that x has value
zero, a contradiction. If γ has winding number zero, then removing it from x yields
another flow with the same properties. Since we can remove such circuits in O(n)
time, we may assume that x contains only (s, t)-paths. By the assumption on the
winding number, these paths connect the pairs (si, ti), for i = 1, . . . , k.
Furthermore, any k vertex-disjoint (si, ti)-paths in D correspond to a flow in D

of value k and of winding number equal, modulo k, to m. It follows that the paths
obtained have minimal total length.

By Propositions 2.1 and 3.2, to prove Theorem 1.1, it suffices to show that we
can, in O(kn log n) time, find a flow in D of value k and with minimal cost subject
to the condition that its winding number, modulo k, equals m. This will be done
in two steps. We will first compute a minimum-cost flow in D of value k, without
any requirement on its winding number; this can be done by k flow augmentations
along a path (Section 5). It turns out that the winding numbers of this flow and
of the solution flow differ by less than k (Section 6); it thus suffices to perform at
most k “rotations” of the flow (changing its winding number by one) to get the
solution (Section 7).
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4. THE RESIDUAL GRAPH

In this section, we introduce the residual graph of D; it is a classical tool for dealing
with maximal flows and flows of minimal cost [Schrijver 2003, Chapters 10–12].
Let x be a flow on D = (V,A). Let Ax be the subset of A ∪ A−1 defined by

Ax = {a | x(a) = 0} ∪ {a−1 | x(a) = 1}.

The residual graph of D with respect to x is the directed graph Dx = (V,Ax); it
is thus the graph obtained from D by reversing the sign of the length and winding
number and the orientation of the arcs a such that x(a) = 1.
The following lemma explains the interest of the residual graph; the first two

assertions are well-known.

Lemma 4.1. Let x be a flow in D.

(1 ) Dx has no (s, t)-path if and only if x has maximal value in D among all flows.

(2 ) Assume that x has maximal value in D; let κ be a length function. Then Dx

has no negative-length directed circuit with respect to κ if and only if x has
minimal cost, with respect to κ, among all flows in D with the same value.

(3 ) Assume x has maximal value in D. Then Dx has no directed circuit with
winding number one if and only if x has maximal winding number among all
flows in D with the same value.

Proof. In these three assertions, the “if” part is easy: If Dx has an (s, t)-path
or circuit γ, then, by construction of Dx, y := x+ zγ is a flow in D; its cost equals
the cost of x in D plus the cost of γ in Dx; its winding number equals the winding
number of x plus the winding number of γ; and its value equals the value of x plus
one if γ is a path, or the value of x if γ is a circuit.
Conversely, let x and y be flows in D. Consider y − x in the graph D. By

construction of Dx, this is a flow in Dx, in the sense that the flow conservation law
holds at each vertex of D (except at the terminals) and that, for each arc a ∈ A,
we have (y − x)(a) ≥ 0 if a ∈ Ax and (y − x)(a) ≤ 0 if a−1 ∈ Ax. In particular,
y − x can be written as

∑
γ∈Z zγ , where Z is a set of (s, t)-paths, (t, s)-paths, and

circuits in Dx.
Now, to prove the “only if” part of (1), simply note that, if Dx has no (s, t)-path,

then there is no (s, t)-path in Z; thus, the value of y cannot be greater than the
value of x. To prove the “only if” part of (2) and (3), assume that x and y both
have maximal value in D. Then, by (1), Z contains no (s, t)-path, hence also no
(t, s)-path, hence only circuits. If Dx has no negative-length directed circuit, the
cost of y is at least the cost of x; this proves (2). If Dx has no directed circuit
with winding number one, then y cannot have winding number higher than x, for
otherwise y − x would contain at least one circuit with positive winding number,
hence with winding number one (Lemma 3.1). This proves (3).

A length function κ is nonnegative on Dx if κ is nonnegative on every arc in Ax;
that is, for each a ∈ A, κ(a) ≥ 0 if x(a) = 0 and κ(a) ≤ 0 if x(a) = 1.

5. INCREASING THE FLOW IN D

In this section, we explain how to compute a minimum-cost flow in D in O(kn log n)
time. The algorithm uses only very classical minimum-cost flow techniques, but we
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indicate it for completeness and because Section 7 will use some similar ideas.
Let p ∈ Z. A p-flow is a flow in D of value p. Let κ and κ′ be two length functions

on D; we write κ ≃ κ′ if κ⊤zγ = κ′⊤zγ for each closed walk γ in (V,A ∪ A−1).
(This notion is equivalent to the notion of potential.)

Lemma 5.1. Let κ ≃ κ′. Then any minimum-cost k-flow with respect to κ is
also a minimum-cost k-flow with respect to κ′.

Proof. By Lemma 4.1(2), a k-flow x has minimum cost with respect to κ if and
only if Dx has no negative-length circuit with respect to κ. Since κ ≃ κ′, circuits
in Dx have the same length with respect to κ and to κ′.

The following result follows from classical minimum-cost flow techniques.

Lemma 5.2. Let x be a p-flow in D and let κ be a length function that is non-
negative on Dx. Then, in O(n log n) time, we can find a (p+1)-flow x′ and a length
function κ′ ≃ κ that is nonnegative on Dx′ , unless x has maximal value.

Proof. We temporarily add to Dx two vertices s and t, and arcs (s, si) and
(ti, t) of length zero, for i = 1, . . . , k. Let D′

x be the resulting graph. We compute
a shortest path tree of D′

x with root s, with respect to κ, in O(n log n) time using
Dijkstra’s algorithm [Dijkstra 1959] speeded up with Fibonacci heaps [Fredman and
Tarjan 1987], because all lengths are nonnegative1. If there is no path from s to t

in D′
x, then Dx has no (s, t)-path, hence, by Lemma 4.1(1), x has maximal value.

Otherwise, for each vertex v of D′
x, let d(v) be the distance from s to v with

respect to κ, as computed by Dijkstra’s algorithm above. For each arc a = (u, v)
of Ax, we have d(v) ≤ d(u)+κ(a) by the triangle inequality, with equality if a is on
the shortest path tree. For each arc a = (u, v) of Ax, let κ

′(a) = κ(a)+d(u)−d(v);
clearly, κ′ ≃ κ. We have κ′(a) ≥ 0, and κ′(a) = 0 if a is on the shortest path tree.
Let γ be the (s, t)-path in Dx corresponding to the path from s to t in D′

x in the
shortest path tree. Now, let x′ = x + zγ ; this is a (p + 1)-flow in D because γ is
an (s, t)-path in Dx. Furthermore, since κ′ is nonnegative on the arcs of Dx and is
zero on the arcs of γ, it is nonnegative on Dx′ .

Starting with the zero flow x (for which Dx = D) and the length function κ = λ,
we repeatedly apply Lemma 5.2. We obtain a flow x0 with maximal value p and a
length function κ0 ≃ λ such that κ0 is nonnegative onDx0

. This takesO(pn logn) =
O(kn logn) time. If p < k, then the original problem has no solution, hence we
stop here. Otherwise, x0 is a minimum-cost k-flow with respect to κ0 (since κ0 is
nonnegative on Dx0

and by Lemma 4.1(1)), and also to λ (Lemma 5.1).
Let w0 be the winding number of x0. If w0 ≡ m (mod k), then we are done

(Propositions 2.1 and 3.2); so we henceforth assume w0 6≡ m (mod k).

6. FINDING THE WINDING NUMBER

A (k, w)-flow is a flow in D of value k and winding number w. Let w1 and w2 be the
integers equal, modulo k, to m that are the closest to w0 and satisfy w1 < w0 < w2.
The following proposition states that the problem boils down to finding minimum-
cost (k, w)-flows, for w = w1 and w = w2:

1We could do that in O(n) time using the algorithm by Henzinger et al. [1997], but that would
not change the asymptotic complexity of the entire algorithm.
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Proposition 6.1. There is a minimum-cost flow in D (with respect to λ) of
value k and winding number equal, modulo k, to m that is either a (k, w1)-flow or
a (k, w2)-flow.

Proof. For every integer w, let µw be the minimal cost of the (k, w)-flows. (It
is infinite if no (k, w)-flow exists.) By Lemma 4.1(3), the set {w | µw < ∞} is an
interval of integers.
We show that for every integer w such that µw−1, µw, and µw+1 are finite, we

have

2µw ≤ µw−1 + µw+1. (1)

Indeed, let x and x′ be minimum-cost (k, w− 1)- and (k, w+1)-flows, respectively.
Then x′ − x gives a nonnegative circulation in Dx (in the sense that it satisfies the
flow conservation law and that, for each a ∈ A, y(a) ≥ 0 if a ∈ Ax and y(a) ≤ 0
if a−1 ∈ Ax) of winding number 2. So the support of x′ − x contains a directed
circuit γ in Dx of positive winding number, hence 1. Then x+ zγ and x′ − zγ are
both (k, w)-flows. Thus

2µw ≤ λ⊤(x+ zγ) + λ⊤(x′ − zγ) = λ⊤x+ λ⊤x′ = µw−1 + µw+1,

which proves (1).
So µw is monotonically non-increasing for w ≤ w0 and monotonically non-

decreasing for w ≥ w0. Thus Proposition 6.1 holds.

7. ROTATING THE FLOW IN D

In this section, we explain how to derive, from a minimum-cost (k, w)-flow, a
minimum-cost (k, w + 1)-flow, and we conclude the proof.
Let κ and κ′ be two length functions on D; we write κ ∼ κ′ if κ⊤zγ = κ′⊤zγ

for each closed walk γ with winding number zero in (V,A ∪ A−1). Clearly, κ ≃ κ′

implies κ ∼ κ′.

Proposition 7.1. Let κ ∼ κ′. Then any minimum-cost (k, w)-flow with respect
to κ is also a minimum-cost (k, w)-flow with respect to κ′.

Proof. Let x and y be two (k, w)-flows in D. Then y − x is a circulation
in (V,A∪A−1), i.e., a sum of terms of the form zγ , where γ is a circuit in (V,A∪A−1).
Furthermore, there are as many circuits with winding number +1 as with winding
number −1 in this sum.
We have (κ′ − κ)⊤zγ = 0 for every such circuit with winding number zero.

Moreover, if γ has winding number +1 and γ′ has winding number −1, it follows
from the definition of “∼” that κ⊤(zγ + zγ

′

) = κ′⊤(zγ + zγ
′

). We thus have
κ⊤(y − x) = κ′⊤(y − x), implying the result.

We view D as an undirected planar graph H ; s and t are two faces of H . Let H∗

be its dual graph. If e is an oriented edge of H , then e∗ is the dual edge oriented
so that e∗ crosses e from right to left.
A cut of H∗ is a set X∗ of oriented edges of H∗ such that any directed path from

s∗ to t∗ uses at least one oriented edge of X∗. The following lemma is inspired by
Reif [1983, Propositions 1 and 2]. See Figure 5.
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s

t

Fig. 5. Illustration of Lemma 7.2: A minimal cut in H∗ corresponds to a circuit with winding
number one in H. The primal graph H is depicted in black lines, with thicker lines for the arcs of
the circuit. The dual graph H∗ is depicted in lighter color, with thicker lines for the arcs of the
cut.

Lemma 7.2. Let X be a set of oriented edges of H. Then X contains the oriented
edges of some circuit with winding number one in H if and only if X∗ is a cut of H∗.

Proof. If we have a directed circuit γ with winding number one, then its dual is
a cut. Indeed, consider an (s∗, t∗)-path π in H∗. The face s belongs to the interior
of γ, while the face t belongs to the exterior of γ; let e∗ be the first oriented edge
of π that crosses γ; its source is inside γ while its target is outside γ. By our choice
of orientation, e belongs to γ.
Conversely, let X∗ be a cut of H∗; we will prove that X contains a circuit with

winding number one. Without loss of generality, we may assume that X∗ is a cut
that is minimal with respect to inclusion.
First, label “S” a face f of H if there is, in H∗, a path from s∗ to f∗ that does

not use any oriented edge of X∗. Similarly, label “T” a face f of H if there is,
in H∗, a path from f∗ to t∗ that does not use any oriented edge of X∗. Since X∗

is a cut, no face of H is labeled both “S” and “T”. We claim that X is precisely
the set of oriented edges of H whose right face is labeled “S” and whose left face is
labeled “T”. Clearly, such edges must belong to X . Conversely, let e be an oriented
edge of X ; by minimality of X , there is an (s∗, t∗)-path in H∗ that avoids (X \ e)∗

and uses e∗ exactly once. Thus the source of e∗ is reachable from s∗ without using
any oriented edge of X∗, and t∗ is reachable from the target of e∗ without using
any oriented edge of X∗. This proves the claim. In particular, every face of H is
labeled either “S” or “T”.
Let S be the subset of the plane made of the faces labeled “S”, together with the

open edges whose both incident faces are labeled “S”. Similarly, let T be the union
of the faces labeled “T” together with the open edges whose both incident faces are
labeled “T”. By the previous paragraph, S and T are disjoint subsets of the plane,
and they are connected. Let v be a vertex of H . We claim that there cannot be
four faces incident with v, in this cyclic order around v, that belong respectively to
S, T , S, and T . This follows from the Jordan curve theorem: assume that we have
such faces. Then, by connectivity of S, there is a simple closed curve in S ∪ {v}
that goes through v and has faces of T on both sides of it at v. This curve does
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not intersect T and separates T , contradicting its connectivity.
The two previous paragraphs together imply that either X has no edge incident

with v, or X has exactly one oriented edge whose target is v and one oriented edge
whose source is v. Thus X is a union of vertex-disjoint circuits. Let γ be such a
circuit; since S and T are connected, and since the faces on the left (resp. right)
of γ are in T (resp. S), γ has winding number one. Hence X contains a circuit with
winding number one.

Proposition 7.3. Let x be a (k, w)-flow in D and let κ be a length function that
is nonnegative on Dx. Then, in O(n logn) time, we can find a (k, w+1)-flow x′ and
a length function κ′ ∼ κ that is nonnegative on Dx′ , unless there is no (k, w′)-flow
with w′ > w.

Proof. Let e be an oriented edge of H ; if e corresponds to an arc a of Ax, then
we define the length of e in H to be κ(a) ≥ 0; otherwise, we define the length of e
to be ∞. So a walk in Dx corresponds to a walk in H of the same length, and a
walk in H corresponds to a walk in Dx if and only if it has finite length. Define
the capacity c(e∗) of an oriented edge e∗ of H∗ to be the length of e.
We can detect in O(n) time whether the oriented edges of finite capacity consti-

tute a cut in H∗. If this is not the case, then every cut must use an oriented edge of
infinite capacity, hence, by Lemma 7.2, Dx has no circuit of winding number one.
It follows that x has maximal winding number among all k-flows, by Lemma 4.1(3).
Otherwise, we compute a minimal cut in H∗, which corresponds to a shortest circuit
with winding number one in Dx, as follows.
A flow in H∗ is a function ϕ that associates, to each oriented edge e∗ of H∗,

a real number that is nonnegative and no greater than c(e∗), such that the flow
conservation law holds at each vertex of H∗ except at s∗ and t∗. The value of ϕ is
the total flow leaving s∗.
In O(n logn) time, we compute a flow ϕ of maximal value in H∗ with respect

to these capacities, using the algorithm by Borradaile and Klein [2009]. It is well-
known, by the “max-flow min-cut” theorem [Schrijver 2003, Theorem 10.3], that ϕ
corresponds to a cut of minimal cost in H∗: the cut is the set of oriented edges that
leave the set of vertices reachable from s∗ by using only oriented edges e∗ of H∗

such that ϕ(e∗) < c(e∗) or ϕ(e∗−1) > 0.
Such a cut X∗ can be computed in O(n) time. Moreover, by replacing all the

zero capacities inH∗ by infinitesimally small capacities before applying the maximal
flow algorithm, we may assume that X∗ is a cut that is minimal with respect to
inclusion. By Lemma 7.2, we thus obtain a circuit γ of winding number one that
has minimal length in Dx.
For each arc a of A ∪ A−1, let κ′(a) = κ(a)− ϕ(a∗) + ϕ(a∗−1); we have κ′(a) =

−κ′(a−1), hence this defines a length function. If a ∈ Ax, we have ϕ(a
∗) ≤ κ(a), so

κ′(a) ≥ 0. If a belongs to γ, we have ϕ(a∗) = κ(a) and ϕ(a∗−1) = 0, so κ′(a) = 0.
We claim that κ′ ∼ κ. By the flow conservation law in H∗, κ′ − κ is a linear

combination of functions of the form zγ , where γ∗ is an (s∗, t∗)-path or a circuit
in H∗; so it suffices to prove that zγ⊤δ = 0 for each closed walk δ with winding
number zero. But zγ⊤δ equals the number of times δ crosses γ∗ from left to right
minus the number of times δ crosses γ∗ from right to left. This always equals zero
if γ is a circuit; if γ is an (s∗, t∗)-path, this equals zero because δ has winding
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number zero (as in the proof of Lemma 3.1). This proves κ′ ∼ κ.
Now, let x′ = x + zγ . The length function κ′ is nonnegative on the arcs of Dx

and is zero on the arcs of γ, so it is nonnegative on Dx′ .

To conclude, recall that the k-flow x0 and the length function κ0 have been
computed in Section 5; κ0 ∼ λ is nonnegative on Dx0

; the integer w0 is the winding
number of x0 and we have

w0 − k < w1 < w0 < w2 < w0 + k.

Applying iteratively Proposition 7.3, we can find a (k, w2)-flow x2 and a length
function κ2 ∼ λ that is nonnegative on Dx2

; thus, x2 is a (k, w2)-flow of minimal
cost with respect to λ, by Lemma 4.1(2) and Proposition 7.1; if no such flow exists,
we detect it during the course of the algorithm. Similarly, we can find a minimum-
cost (k, w1)-flow. This takes O(kn log n) time. By Propositions 6.1, 2.1, and 3.2,
the cheapest of these two flows corresponds to the solution. This concludes the
proof of Theorem 1.1.

Remark 7.4. Computing winding numbers, with the help of a path U in the dual
graph, is actually not necessary for the algorithm. After computing a minimum-cost
flow, the only requirement is to rotate the flow clockwise (and then counterclock-
wise) until we reach a flow with winding number equal, modulo k, to m. But a
k-flow satisfies this property if and only if it is an (si, ti)-flow, and that can be
tested in O(n) time.

8. CONCLUSION

We have given an algorithm to compute minimum-length vertex-disjoint paths con-
necting prescribed pairs (si, ti) of terminals in a planar graph, where the si and
the ti are incident, respectively, with given faces s and t. The running time is
O(kn logn), where k is the number of pairs of terminals and n is the complexity of
the graph.
We note that the techniques developed above allow to solve the same problem,

but fixing, in addition, the winding number of the set of paths (or, equivalently, the
homotopy classes of the paths in the annulus R

2 \ {s ∪ t}). This can be done by
computing a minimum-cost flow in the directed graph D and by rotating the flow
until achieving the correct winding number. Since the absolute value of the winding
number of a flow is at most n, the complexity of the algorithm is O(n2 logn).
Finally, the result of this paper suggests some open questions. How hard is

it to solve the minimum-length vertex-disjoint paths in case (1) of the introduc-
tion, namely, if all terminals lie on the outer face (not necessarily in the order
s1, . . . , sk, tk, . . . , t1)? And in the case where all the terminals lie on two faces, but
a path may have its two endpoints on the same face? The problem extends to
vertex-disjoint trees whose leaves are fixed on two faces of the graph (such trees,
not necessarily of minimal length, can be computed efficiently [Suzuki et al. 1990]).
Also, does our problem remain polynomial-time solvable if each of the terminals
has to be incident with one of p prescribed faces of the graph, if p is fixed? What
about the same problem for a graph embedded on a surface of fixed genus?
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