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Abstract. Spreadsheets are widely used, yet are error-prone. In partic-
ular, they use a weak type system, which allows certain operations that
will silently return unexpected results, like comparisons of integer val-
ues with string values. However, discovering these issues is hard, since
data and formulas can be dynamically set, read or modified. We pro-
pose a static analysis that detects all run-time type-unsafe operations
in spreadsheets. It is based on an abstract interpretation of spreadsheet
applications, including spreadsheet tables, global re-evaluation and asso-
ciated programs. Our implementation supports the features commonly
found in real-world spreadsheets. We ran our analyzer on the EUSES
Spreadsheet Corpus. This evaluation shows that our tool is able to auto-
matically verify a large number of real spreadsheets, runs in a reasonable
time and discovers complex bugs that are difficult to detect by code re-
view or by testing.

1 Introduction

Spreadsheet applications are ubiquitous in engineering, statistics, finance and
management. They combine a flexible tabular representation of data in two-
dimensional tables mixing formulas and values with associated programs (or
macros), written in specific languages. For instance, Microsoft Excel includes a
version of Visual Basic for Applications (VBA), whereas Google Spreadsheets
have Google Apps Script and LibreOffice Calc has LibreOffice Basic.

Unfortunately, spreadsheet applications are subject to numerous defects, and
often produce incorrect results that do not match user understanding as shown
in [21,22]. In 2013, the Task Force Report [1] quoted losses of billions of dollars
due to errors in spreadsheet applications used in JPMorgan’s Chief Investment
Office. More generally, spreadsheet defects may cause the release of wrong in-
formation, the loss of money or the taking of wrong decisions, therefore they
now attract increasing attention from users, IT professionals, and from the re-
search community. Approaches proposed so far include new languages [7] and
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enhancements to functional features of spreadsheets with better language de-
sign [19,27] and implementation [24,25], model-driven engineering environments
to allow only safe updates [14], and studies to detect code smells that indi-
cate weak points in spreadsheets [13,17]. Additionally, type systems could be
built [3,4,5,6,9] to capture value meanings such as physical units (e.g., apples,
oranges) or dimensions (e.g., meters, kilometers) and to verify the correctness
of formulas. Most existing works focus on the spreadsheet tables and ignore the
associated programs despite them being a very important component of spread-
sheet applications, which can have a significant impact on spreadsheet contents,
either through function calls from a spreadsheet formula or through an execution
of a subroutine launched by users. They are also massively present in industrial
spreadsheet applications.

Verification Objective. Spreadsheet languages supply basic operators and func-
tions to perform operations on values such as text, number, boolean, date and
time to use in formulas and programs. The type system of spreadsheet languages
is weak and rarely considers a type mismatch an error, even though that means
unexpected or incorrect results may be produced instead. For instance, Microsoft
Excel implicitly converts the empty value to true in expression AND(ε, true),
whereas it converts it to false in expression IF(ε, 1, 0). It will also evaluate com-
parison “” < n to false, yet the empty string does not have an obvious numeric
value. More generally, type mismatches are common and rarely block the execu-
tion with an explicit error message such as #VALUE!. Thus, users develop and
run spreadsheet applications in the environment where program defects can be
hidden. Verifying a spreadsheet application is exempt of any such defect requires
a strong type discipline, and precise typing information about formula operands
should be inferred.

Static Analysis of Spreadsheets with Macros. Existing works focus on the spread-
sheet contents, assume the data in the sheet are fully specified, and do not con-
sider spreadsheet instances with different input data. Yet, industrial spreadsheet
applications often handle non-deterministic or non-statically known input in the
following cases: (1) input data may be left blank when the application is devel-
oped and entered at a later stage (Excel features “Data Validation” for such
cases, which allows to specify restrictions on data before they are entered); (2)
data may be defined dynamically, e.g., using functions generating random val-
ues, inserting values found on the Web or in external databases; (3) formulas and
data edited in non-automatic calculation mode (i.e., when the spreadsheet envi-
ronment does not always recalculate cell depending on the modified zone) may
result in outdated values; (4) data and formulas may be set and manipulated by
associated programs.

Therefore, in this paper, we propose a complete vision of spreadsheet ap-
plications, that includes spreadsheets storing formulas and associated programs
(macros); they receive input data that is unknown at verification time (i.e., non-
deterministic or read at run-time); their execution consists in globally evaluating
spreadsheet formulas or running an associated program.
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We propose a fully automatic and sound analysis, that discovers all type
defects in spreadsheet applications. It features a strong type system, and an
abstract domain that ties properties (like contents types) to zones in spreadsheet
tables. It infers invariants by conservative abstract interpretation of spreadsheet
applications. It either proves type correctness or displays potential issues to
developers. Invariants also give a high-level view of program behaviors. The set
of type-unsafe operations is a parameter of the analysis, so that users can select
which behaviors are deemed unsafe and should be detected. Our analysis has
the following benefits: (1) it unearths errors that dynamic tests may miss, as it
computes an over-approximation of all the states executions can reach even in
the presence of inputs at run-time; (2) it is efficient enough to be run during the
development of a spreadsheet application. In this paper, we make the following
contributions:
– We set up a concrete model for reasoning about spreadsheet applications, to

be used as a basis for the definition and the proof of our analysis (Sect. 3);
– We propose an abstraction for spreadsheet applications, that takes the struc-

ture of formulas into account and is adapted to the type verification (Sect. 4);
– We define a static analysis, that takes into account both the contents of

spreadsheet and the associated programs (Sect. 5), and is able to cope with
global re-evaluation of spreadsheet contents (Sect. 5.2);

– We present our tool (Sect. 6) and report on results of verification of the
EUSES Spreadsheet Corpus by our tool (Sect. 7).

2 Overview

In this section, we consider a realistic application, which silently produces wrong
results that cannot be caught by the weak type system found in spreadsheet en-
vironments. This application is made up of a spreadsheet table shown in Fig. 1(a)
and an associated program displayed in Fig. 1(b). The table contains several
columns storing asset variations and values expressed in two currencies, and
computes the number of weekdays where the total value was greater than a
given amount. The area in the blue rectangle in Columns 1 and 2 is reserved for
input data, which are the day name and the value variation for each weekday (no
variation occurs on the weekend). The associated program shown in Fig. 1(b) and
the spreadsheet formulas in the green rectangle are pre-coded. The associated
program is run, upon user request, to eliminate meaningless empty weekend val-
ues of Column 2, and to populate the sequential list into Column 3. The formulas
in Column 4 convert the variations stored in Column 3 into another currency.
Last, the formulas in Column 5 compute the sequence of meaningful variations,
and the number of weekdays where the total asset value was greater than 150,
in the bottom right cell.
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= C[4, 3] ∗ 1.3

= C[9, 3] ∗ 1.3

= C[10, 3] ∗ 1.3

= C[33, 3] ∗ 1.3

= C[34, 3] ∗ 1.3

= C[43, 3] ∗ 1.3

Total

(cur 2)

100

= IF(ISBLANK(C[4, 3]), “”,C[4, 4] + C[3, 5])

= IF(ISBLANK(C[9, 3]), “”,C[9, 4] + C[8, 5])

= IF(ISBLANK(C[10, 3]), “”,C[10, 4] + C[9, 5])

= IF(ISBLANK(C[33, 3]), “”,C[33, 4] + C[32, 5])

= IF(ISBLANK(C[34, 3]), “”,C[34, 4] + C[33, 5])

= IF(ISBLANK(C[43, 3]), “”,C[43, 4] + C[42, 5])

Number of days where asset > 150

= SUM(N(C[4, 5] : C[43, 5] > 150))

(a) Spreadsheet contents

1 Sub Macro() 7 j = 4; 11 i = i+ 1
2 INITIATE; 8 While (j < 44) 12 End;
3 Dim i As Int; 9 If C[j, 1] <> “Sat” 13 j = j+ 1
4 Dim j As Int; And C[j, 1] <> “Sun” 14 End;
5 CLEAR ZONE(4, 3, 43, 3); Then 15 Eval
6 i = 4; 10 C[i, 3] = C[j, 2]; 16 End

(b) Associated program

Fig. 1. Erroneous behaviors in a spreadsheet application

In practice, data are filled either manually, or automatically (e.g., copying
from somewhere else, or using another associated program INITIATE). Then,
users launch the associated program to compute the values in Column 3, which,
in turn, forces the re-evaluation of the formulas stored in Columns 4 and 5 using
statement Eval in Line 15. The input data, their array size may be known only
at run-time, whereas the spreadsheet formulas and the associated program are
pre-coded.

The final result is computed in the bottom right cell. Its value is incor-
rect. We let C[i, j] denote the cell in row i and column j. In Fig. 1(a), the
cells in region C[34, 5] : C[43, 5] evaluate to the empty string, since the cells in
C[34, 3] : C[43, 3] are empty (Function ISBLANK checks whether a cell is empty).
Comparison operator “>” always returns true when applied to a string and
a numeric value, therefore, when cell C[i, 5] is an empty string, the condition
C[i, 5] > 150 evaluates to true. Then, built-in function N converts true into 1.
Therefore, the value produced when evaluating the formula in C[45, 5]
is off by 10.

This incorrect result is produced without a warning, as it passes through the
weak (and incorrect) spreadsheet type checking. Such issues are common in large
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Range of variables: j : [44, 44], i : [4, j]
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Fig. 2. Abstract state

applications, and hard to diagnose by non-expert users. In particular, testing is
likely to miss such problems. In this case, any run with a data sample with-
out empty cells in C[4, 3] : C[43, 3] will produce no incorrect result. Therefore,
checking the absence of defects by testing is not possible, especially when input
data are made available at run-time, and detecting all such issues will require a
conservative static analysis that raises a warning whenever an unsafe operation
(such as the comparison of a string with a numeric value) might be executed.
Different users may consider different sets of operations safe, thus the set of
unsafe operations should be a parameter of the analysis.

Analysis of the Example. The properties of the application of Fig. 1 are shown
in Fig. 2. After Line 14 of the associated program executes, j is always equal
to 44, whereas i may take any value in [4, 44] (as 4 ≤ i ≤ j). The diagrams
show properties that always hold for zones in the table: each rectangle accounts
for a set of cells, and is labeled by a property of these cells. Cell properties
consist either in abstract formulas or in types. Abstract formulas may use relative
indexes (e.g., C[+0,−1]) or absolute indexes (e.g., C[4, 5]). The analysis of Eval
at Line 15 will use abstract formulas to infer type Float for zone Zf0 (since the
multiplication of empty value ε and a float value produces float value 0.0 as does
the multiplication of two float values), and then split Zf1 into two sub-zones of
type Float and String. We call the latter Z ′

t. Finally the type of cell C[45, 5]
is inferred, which requires the types in Column 5 including zone Z ′

t, and thus
involves the unsafe comparison (reported by the analysis) of a value of type
String with a value of type Float.

Moreover, the analysis should not reject obviously correct applications. For
instance, a corrected version of the example application would replace formulas
in Column 5 with formulas of the form IF(ISBLANK(C[4, 3]), 0.0,C[4, 4]+C[3, 5]).
Then, all results in Column 5 would have a floating point type, and no unsafe
comparison of a string with a numeric value would occur. The same reasoning
based on zones will allow to establish this.
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x, y, . . . ∈ X v ∈ V

t ::= Bool | Float | Int | String | Empty | Currency | Date
e ::= v | x | C[e, e] | C[±e,±e]

| e⊕ e where ⊕ ∈ {+,−, �, . . .} | F(e, . . . , e) where F is a function symbol
s ::= x = e | C[e, e] = e | C[e, e] = “ = e”

| Eval | If e Then s Else s End | While(e) s End | s; s
a ::= Dim x As t; . . . ;Dim x As t; s

Fig. 3. Syntax: a core spreadsheet language

3 A Core Spreadsheet Language

In this section, we formalize a core language that incorporates both the spread-
sheet table and the runnable code (the analyzer shown in Sections 6 and 7 sup-
ports a much wider feature set). This language has several distinctive features.
First, a spreadsheet application comprises both the two-dimensional spreadsheet
table itself (called for short spreadsheet) and associated programs, which may be
run upon user request. Second, a spreadsheet cell contains both a formula and
a value. The value is usually displayed. Cell formulas can be re-evaluated upon
request. Automatic re-evaluation of the whole spreadsheet after cell modifica-
tion is often deactivated in industrial applications; then, re-evaluation can be
triggered by a specific command or instruction in the associated program (often
used at the end of its execution).

Syntax. A basic value is either an integer n ∈ Vint, a floating point f ∈ Vfloat

or a string s ∈ Vstring. We write V = Vint �Vfloat �Vstring � {ε, Ωe, Ωt}, where ε
stands for value “undefined”, and where Ωe (resp., Ωt) stands for an execution
error (resp., a typing error). We let X = {x, y, . . .} denote a finite set of variables.
A variable or a cell content has a type. We assume a set of pre-defined data-types
such as not only Bool, Float, String, but also Date or Currency (which exist
in real spreadsheet languages). Moreover, ε is the only value of type Empty. The
spreadsheet itself is a fixed size array of dimension two. Rows (resp., columns)
are labeled in a range R = {1, 2, . . . , nR} (resp., C = {1, 2, . . . , nC}). A cell
address is referred to in absolute terms, by a pair (i, j) where i ∈ R and j ∈ C.

An expression e ∈ E may be either a constant, the reading of a variable
or of a cell, or the result of the application of a binary operator or of a built-in
function (such as ISBLANK, IF, SUM, etc.). A statement s may be either a variable
declaration (together with its type), or an assignment, or an evaluation statement
or a control structure (sequence, condition test, loop). Assignments may modify
either the contents of a variable or the contents of a cell. Assignment to a cell
may store either an evaluated expression value as in C[e0, e1] = e2 or a formula
and its currently evaluated value as in C[e0, e1] = “ = e2”: unlike an expression,
a formula may be re-evaluated in the future. Cell reads in spreadsheet formulas
should correspond to constant indexes, but may be relative to the position of the
cell they appear in: for instance, formula C[−1,+0] in cell C[3, 4] corresponds
to cell C[2, 4]. Last, statement Eval causes a global re-evaluation of the all



32 T. Cheng and X. Rival

formulas in the spreadsheet (real spreadsheet software typically allows a finer-
grained control of re-evaluation, which we do not model here, as its behavior is
similar to our global Eval).

An Excel spreadsheet application comprises a spreadsheet and a set of associ-
ated programs, which may be run either immediately, or upon user request. In
the following, and without a loss in generality, we assume that an application
a is defined by a single program body s that includes the initialization of the
spreadsheet by a series of assignments (and is preceded by the declaration of
the variables used in the body of the program): the example of Sect. 2 would
be represented by a single program filling in the spreadsheet with values and
formulas prior to the body shown in Fig. 1(b). This allows us to describe many
real spreadsheet applications with the core language shown in Fig. 3. Moreover,
our implementation takes into account many additional features of spreadsheet
environments such as data validation or circular references, which will be covered
in Sect. 6.

Example 1 (Simple application). The application below declares one variable; it
then fills in 4 cells, and modifies one (a global re-evaluation takes place in the
middle of the process).

1 Dim x As Int;
2 x = −5;
3 C[1, 1] = 6;

4 C[2, 1] = “ = C[1, 1]”;
5 Eval;
6 C[1, 1] = 24;

7 C[2, 2] = “ = C[1, 1] + 8”;
8 C[3, 2] = “ = C[2, 1] +C[2, 2]”

States. At any time in the execution, the memory is defined by the values of
variables, and the formulas and values stored in the spreadsheet. Thus, a non-
error state consists of a 3-tuple (σX, σSE, σSV) where σX ∈ X → V maps each
variable to its value, σSE ∈ SE = (R × C → E) maps each cell to the formula it
contains and σSV ∈ SV = (R × C → V) maps each cell to the value it contains.
We write Σ for the set of such concrete states. For instance, the evaluation of
the application of Example 1 produces the state shown below as a graphical view
(we show only the results for cells in the first two columns and the first three
rows as the others are empty):

σX :

x �→ −5

21
1
2
3

σSE :

= 24

= C[1, 1] = C[1, 1] + 8

= C[2, 1] +C[2, 2]

σSV : 21
1
2
3

24

6

ε

ε

32

38

Semantics of Expressions. The evaluation of an expression e is defined by its
semantics �e�E : Σ → P(V) (note that an expression may evaluate to several
values in order to account for possible non-determinism and run-time inputs,
which may arise due to calls to RAND, DATE, or other functions reading real-
time data). We let �⊕� : (P(V))2 → P(V) denote the concrete mathematical
function corresponding to operator ⊕, and �F� : (P(V))n → P(V) denote the
mathematical function associated with built-in (n-ary) function F (note that
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their arguments may also be non-deterministic). Then, �e�E can be defined as
follows, by induction over the syntax:

�v�E(σ) = {v}
�x�E(σ) = {σX(x)}

�C[e0, e1]�E(σ) = {σSV(v0, v1) | ∀i, vi ∈ �ei�E(σ)}
�e0 ⊕ e1�E(σ) = �⊕�(�e0�E(σ), �e1�E(σ))

�F(e1, . . . , en)�E(σ) = �F�(�e0�E(σ), . . . , �en�E(σ))

We remark that this evaluation function uses the last evaluated value when-
ever it reads a cell. In particular, it does not evaluate the formulas of the cells it
reads the value of, nor their ancestors. Therefore, (1) an update of an ancestor of
a cell c will not cause the update of the value in c, which means the value in c may
become “outdated”; (2) when a cell value is outdated, any evaluation function
that uses its value returns a possibly outdated result. For instance, in Example 1,
after the global re-evaluation in Line 5, σSV(2, 1) = 6, since σSV(1, 1) = 6. In Line
6, the value of C[1, 1] changes, then its descendant C[2, 1] becomes outdated. In
Line 8, �C[2, 1] +C[2, 2]�E(σ) = {38} is calculated from the outdated value of
�C[2, 1]�E(σ) = {6}; thus, C[3, 2] is outdated too.

Errors. The evaluation of some expressions may fail to produce a value. A com-
mon case is division by 0, or a cell read with invalid (e.g., negative) row and col-
umn indexes. These errors, represented byΩe, are treated by other techniques and
are not studied in this paper. Instead, we are interested in typing errors that may
arise when applying an operator or a function to arguments whose types do not
match the convention or the expectation of that operator or function. We write
Ωt both for the value produced in case of a typing error and for the corresponding
error state. For instance, as the comparison between a floating point value and a
string is considered unsafe, we have ∀vf ∈ Vfloat, ∀vs ∈ Vstring, �>�(vf , vs) = Ωt.
Moreover, as a value, Ωt has no type.

Semantics of Program Statements. The concrete semantics of a statement, pro-
gram, or program fragment s is a function mapping an initial state to the set of
final states that can be reached after executing it: �s�P : Σ → P(Σ). It can also
be computed by induction over the syntax. For instance:
– �s0; s1�P(σ) =

⋃{�s1�P(σ0) | σ0 ∈ �s0�P(σ)};
– �If e Then s0 Else s1 End�P(σ) = S0 ∪ S1 where S0 = �s0�P(σ) if true ∈

�e�E(σ) and S0 = ∅ otherwise (and the same for S1, w.r.t. the second branch);
– as usual, the semantics of a loop involves a least-fixpoint computation.

Assignment statements (to a variable or to a cell) always trigger immediate
evaluation. The semantics of assignment to a variable is straightforward: �x =
e�P(σ) = {(σX[x ← v], σSE, σSV) | v ∈ �e�E(σ)}. The two forms of assignments to
a cell differ in the fact the formula is preserved only in the formula assignment:
– Assignment of a value to a cell: �C[e0, e1] = e2�P(σ) = {(σX, σSE[(v0, v1) ←

v2], σ
SV[(v0, v1) ← v2]) | ∀i ∈ {0, 1, 2}, vi ∈ �ei�E(σ)}

– Assignment of a formula: �C[e0, e1] = “ = e2”�P(σ) = {(σX, σSE[(v0, v1) ←
e2], σ

SV[(v0, v1) ← v2]) | ∀i ∈ {0, 1, 2}, vi ∈ �ei�E(σ)}
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Semantics of Global Spreadsheet Re-evaluation. The evaluation statement causes
all formulas in all the cells of the spreadsheet to be re-evaluated. Therefore, the
semantics of Eval involves a possibly large number of computation steps, and it
boils down to a fixpoint computation over the whole spreadsheet that recalculates
σSV.

In this section, we consider spreadsheet environments without circular refer-
ences (which will be covered in Sect. 6). Any such spreadsheet has an acyclic
cell dependency graph. By following a topological ordering of the cells, the for-
mulas contained in cells are evaluated one by one. For instance, if we consider
the state shown in Example 1, the dependencies are shown in the left figure
below. Therefore, if we only take into account non-empty cells, total orderings
(1, 1) ≺ (2, 1) ≺ (2, 2) ≺ (3, 2) and (1, 1) ≺ (2, 2) ≺ (2, 1) ≺ (3, 2) can be used for
the computation (a non-total ordering could also be considered). Re-evaluation
using any of these orders produces the state (σX, σSE, σSV

res) where σSV

res is on the
right:

21
1
2
3

�

� �

�

σSV

res : 21
1
2
3

24

24

ε

ε

32

56

As we intend to perform an abstract interpretation based static analysis of
programs, and since abstract interpretation relies on fixpoint transfer theorems
to derive sound analyses from the concrete semantics, we now formalize the
definition of the semantics of Eval as a least-fixpoint. Following the intuitive
calculation scheme defined above, we can define �Eval�P(σ) as a fixpoint where
each iterate computes exactly one cell.

In the following, we let ≺ denote a topological ordering over R×C. A computa-
tion step calculates the lowest cell in ordering ≺ that has not been evaluated yet,
and that can be evaluated. To distinguish cells whose value has been calculated
from cells that remain to be re-evaluated, we introduce an additional ⊥ value.
We formalize this notion of computation step with a binary relation�≺, which is
such that σSV

0 �≺ σSV

1 if and only if: σSV

1 (i, j) ∈ �σSE(i, j)�E(σ
X, σSE, σSV

0 ) when
σSV

0 (i, j) = ⊥ and ∀(i′, j′) ≺ (i, j), σSV

0 (i′, j′) = ⊥; otherwise σSV

1 (i, j) = σSV

0 (i, j).
We remark that σSV �≺ σSV, when σSV is fully computed (i.e., when no uneval-
uated formula remains). Then, the iteration function F≺ : P(SV) → P(SV) is
defined as F≺(S) = {σSV

1 ∈ SV | ∃σSV

0 ∈ S, σSV

0 �≺ σSV

1 }.
We now need to set up a lattice structure where the computation of the

least-fixpoint should take place. As the computation progresses by filling in
more cells, we need an order relation over spreadsheets which captures prop-
erty “σSV

1 has more evaluated cells than σSV

0 and they agree on common eval-
uated cells”, allowing for the value of a cell to move from ⊥ to any other
value. First, we let �V be the relation over the set of values extended by a
constant � (denoting the definition contradiction) defined by the lattice: ∀v ∈
{. . . ,−1, 0, 1, . . . , ε, true, false, . . .}, ⊥ �V v �V �. This relation extends to
sets of spreadsheets: ∀S0,S1 ∈ P(SV), S0 � S1 if and only if ∀σSV

0 ∈ S0, ∃σSV

1 ∈
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S1, ∀(i, j) ∈ R × C, σSV

0 (i, j) �V σSV

1 (i, j). Moreover, we let σSV

⊥ ∈ SV be de-
fined by ∀(i, j), σSV

⊥ (i, j) = ⊥. At this stage, we can define the semantics of the
re-evaluation as the fixpoint of F≺:
Theorem 1 (Definition of �Eval�P). For all pairs of topological orders ≺,≺′

compatible with the dependencies induced by formulas stored in cells (σSE), we
have: lfp{σSV

⊥ }F≺ = lfp{σSV

⊥ }F≺′ =
⊔{(F≺)n({σSV

⊥ }) | n ∈ N}. Thus, we define:

�Eval�P(σ) = {(σX, σSE, σSV

res) | σSV

res ∈ lfp{σSV

⊥ }F≺}
Another property that follows from the absence of circular dependencies is

the fact that value � never arises in the spreadsheets obtained in the set defined
by this fixpoint. Moreover, all values are defined (i.e., not equal to ⊥) and empty
cells (with no formula) contain value ε. We can also remark that the least fixpoint
is obtained after at most nR · nC iterations. Spreadsheet environments typically
use a total topological order, in order to obtain a sequential computation of
the fixpoint. This is not mandatory in Theorem 1, and this definition allows to
perform “parallel computation” (i.e., in the same iterate) of cells that can be
defined in the same time (but each cell is computed exactly once).

Semantics of a Spreadsheet Application. In order to reason about safety prop-
erties for a spreadsheet application a, we need to set up a semantics �a�A ⊆ Σ
which collects all the states (not only final states, as �s�P does) that can be
reached at any point in the execution of the application. The full definition of
�a�A follows from that of �s�P and is based on a trivial fixpoint, starting from
the initial state σi where all variables, formulas, and values are set to ε.

4 Abstraction

We now formalize the abstraction [10] used in our analysis (Sect. 5). It is based on
abstract formulas (Sect. 4.1) that summarize the behavior of formulas depending
on the type of their inputs and on abstract zones [8] that tie abstract predicates
to sets of spreadsheet cells (Sect. 4.2).

4.1 Formula Abstraction

The computation of type information over zones requires the propagation of infor-
mation not only through the associated program, but also through the formulas
contained in the spreadsheet itself, to be able to analyze re-evaluation. Thus, the
effect of formulas should be propagated through the analysis. However, dealing
with all formulas stored in the spreadsheet would be too costly. Therefore, we
propose an abstraction of the semantics of formulas, which expresses their effect
on types, and replaces, e.g., constants with their type:

Definition 1 (Abstract formulas). Abstract formulas are defined by:

e� (∈ E
�) ::= t | C[n, n] | e� ⊕ e� | F(e�, . . . , e�) where n ∈ Vint, t ∈ T

Example 2 (Abstract formulas). Int + Float, Float−C[3, 4], ISBLANK(C[5, 6])
are all abstract formulas. Moreover, we also allow relative indexes in abstract
formulas, as in C[+0,−1] � Float (Fig. 2).
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Semantics of Abstract Formulas. We now give a semantics to abstract formulas,
following a similar scheme as in Sect. 3, and where abstract formulas evaluate into
types. We let a type spreadsheet be a function σT ∈ ST = (R× C → T) mapping
each cell to a type. Spreadsheet contents σSV has type σT (noted σSV : σT) if and
only if ∀(i, j) ∈ R × C, σSV(i, j) : σT(i, j). To define the semantics of abstract
formulas, we let each operator ⊕ (resp., built-in function F) be abstracted by a
partial function �⊕�t : (P(T))2 → (P(T)) (resp., �F�t : (P(T))n → P(T)) that
over-approximates its effect on types. For instance, �+�t({Int}, {Int}) = {Int}
and �∗�t({Int}, {Float}) = {Float}. On the other hand, as noted in Sect. 2,
comparing a string with an integer is unsafe, so �<�t({String}, {Int}) leads
to Ωt, as for all unsafe operations. The semantics of abstract formula e� is a
function �e��T : ST → P(T) mapping spreadsheets into sets of types.

Abstraction of Formulas. A spreadsheet formula can be translated into an ab-
stract formula by replacing, e.g., all constants with types, this process is formal-
ized in the definition of the translation function φ below:

φ(C[i, j]) = C[i, j]
φ(e0 ⊕ e1) = φ(e0)⊕ φ(e1)

φ(v) = t where t is the type of v
φ(F(e1, . . . , en)) = F(φ(e1), . . . , φ(en))

Note that the translation applies only to formulas found in the spreadsheet (i.e.
not to general expressions found in associated programs), thus φ is not defined
for variables or cell accesses of the form C[e0, e1] where e0 or e1 is not a constant.

The intended effect on types is preserved by φ, and it satisfies the soundness
condition: if e ∈ E, σSV ∈ SV and σT ∈ ST are such that ∀(i, j), σSV(i, j) : σT(i, j),
then ∀v ∈ �e�E(σ), ∃t ∈ �φ(e)�T(σ

T), v : t.

Example 3 (Formulas abstraction). We have the abstractions φ(C[4, 4] ∗ 1.3) =
C[4, 3]∗Float, and with relative indexes, φ(C[+0,−1]∗1.3) = C[+0,−1]∗Float.
Simplification of Abstract Formulas. Some type formulas may be simplified,
while still carrying the same information. For instance, the addition of two
floating point values produces a new floating point value, thus type formula
Float + Float can be simplified into Float. The concrete semantics of func-
tions may allow for less trivial formula simplifications. For example, the function
ISERROR checks if a value is of type Error; it always returns a boolean value
whatever the argument is, then formula ISERROR(C[5, 6]) can be simplified into
Bool.

Therefore, we use a simplification function S : E� → E
�, defined by structural

induction over formulas, that applies a set of local rules. It is sound with respect
to the concrete semantics: ∀e� ∈ E

�, �S(e�)�T = �e��T. Potentially unsafe oper-
ations should not be simplified (e.g., simplification rule S(Float > String) =
Bool is not admissible), as they are exactly what our analysis aims at discover-
ing.

4.2 Spreadsheet Abstraction

Spreadsheet Zones Abstraction. To abstract spreadsheets, we need to tie abstract
properties such as types or abstract formulas to table zones. In the following, we
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use the zone abstraction of [8], where a zone describes a set of cells in a compact
manner. A zone abstraction is defined by a numeric abstract domain [10] D�

num

over X (where X contains two special variable names ī and j̄ that cannot be used
in the associated programs and that respectively denote the row and column of
a cell), with a concretization function γnum : D�

num → P(X → V). A set of cell
coordinates S in concrete state (σX, σSE, σSV) is abstracted by zone Z ∈ D

�
num

if and only if ∀(i, j) ∈ S, [σX, ī = i, j̄ = j] ∈ γnum(Z), i.e., the coordinates in
S together with σX satisfy Z. When not considering an associated program, no
other variable than ī, j̄ should appear in Z. In this paper, we employ a variant of
difference bound matrices (DBMs) which was used in [8], and inspired from the
octagon abstract domain [20]. For clarity, we write bounds on ī, j̄ using interval
notation and let the zone defined by ī ∈ [e0, e1] ∧ j̄ ∈ [e2, e3] be denoted by
[e0, e1] × [e2, e3] (where e0, . . . , e3 are linear expressions over the variables or
constants).

Example 4 (Abstract zones). We define a few zones relevant to the example of
Sect. 2. Zone Z0 : ī ∈ [4, 43] ∧ j̄ = 2 (or [4, 43] × [2, 2]) describes a block in
column 2, from row 4 till row 43. Similarly, zone Z1 : [4, i] × [3, 3] describes a
block in column 4, and spanning from row 4 till row ni, where ni denotes the
value of i in the current state. Last, zone Z2 : [4, 43]× [4, 4] describes a block in
column 4.

State Abstraction. An abstract state encloses (i) numerical abstract properties
of variables and (ii) a collection of abstract zone predicates, that is, abstract
predicates that hold true over all cells that can be characterized by an abstract
zone.

An abstract predicate is either a type or an abstract formula. This defines
an abstract domain D

�
c = {⊥,�} ∪ T ∪ E

�. To distinguish an abstract type
formula from a type, we insert “=” before the type (e.g., String ∈ T, whereas
“ = String” ∈ E

�). Concretization function γc : D
�
c → P(E× V) is defined by:

– ∀t ∈ T, γc(t) = {(e, v) ∈ E× V | v : t};
– ∀e� ∈ E

�, γc(e
�) = {(e, v) ∈ E× V | φ(e) = e�}.

We can now define abstract states as follows:

Definition 2 (Abstract zone predicate and abstract state). An abstract
zone predicate is a pair (Z,P) ∈ D

�
z, where D

�
z = D

�
num×D

�
c. The concretization

γz : D
�
z −→ P(Σ) is such that (σX, σSE, σSV) ∈ γz(Z,P) if and only if:

∀(i, j) ∈ R× C, [σX, ī = i, j̄ = j] ∈ γnum(Z) =⇒ (σSE(i, j), σSV(i, j)) ∈ γc(P)

An abstract state is a pair (N �, P �) ∈ D
�
Σ = D

�
num × Pfin(D

�
z). Moreover, con-

cretization function γΣ : D�
Σ → P(Σ) is defined by:

γΣ(N
�, P �) = {(σX, σSE, σSV) | σX ∈ γnum(N

�) ∧ (σX, σSE, σSV) ∈
⋂

p�∈P �

γz(p
�)}

We distinguish zone predicates attached to abstract formulas and zone predi-
cates attached to types: we let F � ∈ Pfin(D

�
z,form) denote the abstract zone pred-

icates for formulas and we let T � ∈ Pfin(D
�
z,type) denote those for types. Thus,



38 T. Cheng and X. Rival

P � = F � � T �, and (N �, P �) is equivalent to (N �, F � � T �). The construction of
Definition 2 utilizes the reduced product and reduced cardinal power of abstract
domains [11]. It also extends the domain shown in [8] with abstract formulas.

Example 5 (Example 4 continued: abstract predicates over zones). The following
abstract zone predicates are satisfied in the concrete state of Fig. 1(a):

– Zones Z0 and Z1 correspond to values of type Float, which are described
by the predicates (Z0,Float) and (Z1,Float);

– All cells in zone Z2 contain a formula abstracted by C[+0,−1]∗Float, thus
this zone can be described with abstract zone predicate (Z2,C[+0,−1]∗Float).
Likewise, Fig. 2 displays an abstract state made of ten zones bound to types and
three zones bound to abstract formulas.

5 Static Analysis Algorithms

Wenowsetupa fully automatic static analysis,which computes anover-approxima-
tion of the set �a�A or reachable states of an application a, expressed in the abstract
domain defined in Sect. 4. It proceeds by abstract interpretation [10] of the body of
a: the effect of each statement is over-approximated in a sound manner by some
adequate transfer functions, and a widening operator enforces the convergence of
abstract iterates whenever a concrete fixpoint needs to be approximated in the
abstract level. We design two sound abstract semantics. The abstract semantics
�s��

P
: D�

Σ → D
�
Σ of statement s is a function whichmaps an abstract pre-condition

into a conservative abstract post-condition (which is described by abstract states).

The abstract semantics �a��
A
⊆ D

�
Σ of application a is a finite set of abstract states.

We defer the analysis of global re-evaluation to Section 5.2 and handle the others
first in Section 5.1. Some abstract operations are common with [8] whereas others
are deeply different, especially those related to formulas.

5.1 Abstract Interpretation of Basic Statements

Straight Line Code. The core language of Sect. 3 features several, rather similar
forms of assignments (assignment to a variable, of an evaluated expression to a
cell, or of a formula to a cell). Thus, the analysis defines three transfer functions

assign�
X
, assign�

V
, assign�

E
that share the same principles, thus we focus on for-

mula assignment assign�
E
: E × E × E × D

�
Σ → D

�
Σ. Given e0, e1, e2, it should

satisfy:

∀σ� ∈ D
�
Σ , ∀(σX, σSE, σSV) ∈ γΣ(σ

�), ∀vi∈{0,1,2} ∈ �ei�E(σ),

(σX, σSE[(v0, v1) ← e2], σ
SV[(v0, v1) ← v2]) ∈ γΣ(assign

�
E
(e0, e1, e2, σ

�))

To achieve this, both the type and the formula properties of zones may need to
be updated. Information about the overwritten cell should be dropped from the
abstract state, either by removing existing zone predicates, or by splitting zones
into preserved / overwritten areas. Then, new type and formula information



Static Analysis of Spreadsheet Applications 39

should be synthesized and attached to a zone corresponding only to the cell
overwritten by the assignment. Type information is obtained by evaluating the
semantics of abstract formulas; when this evaluation fails, a typing error should
be reported.

Example 6 (Abstract assignment). Let us consider abstract state σ� = (i <
n, {([1, i−1]×[2, 2], e�), ([i, n]×[2, 2], “ = String”)}), where e� = Int+C[+0,−1].
Then, assignment C[i, 2] = “ = 24 +C[i, 1]” replaces the constant formula (of
type string) contained in cell C[i, 2] with a formula that can be abstracted by
Int + C[i, 1] (or equivalently Int + C[+0,−1]), and it evaluates that formula,
which returns a value of type Int. Thus, the string constant value that was
previously stored in the cell is replaced, so the topmost cell of zone [i, n]× [2, 2]

should be removed from that zone. Therefore, we obtain abstract state σ�
0 =

(i < n, {([1, i− 1]× [2, 2], e�), (i× [2, 2], e�), ([i+1, n]× [2, 2], “ = String”), (i×
[2, 2], Int)}).

This update operation creates new zones, yet, when several adjacent zones
have the same type and abstract formulas, they could be merged, with no loss
of information. This operation is performed by an operator reduce� : D�

Σ → D
�
Σ

introduced in [8], and that satisfies soundness condition ∀σ� ∈ D
�
Σ, γΣ(σ

�) ⊆
γΣ(reduce

�(σ�)).

Example 7 (Reduction). In abstract state σ�
0 of Example 6, ([1, i− 1]× [2, 2], e�)

and ([i, i]× [2, 2], e�) can be merged into ([1, i]× [2, 2], e�).
As ([4, 4]× [4, 4],C[4, 3]∗Float) is equivalent to ([4, 4]× [4, 4],C[+0,−1]∗Float),
and ([5, 5]×[4, 4],C[5, 3]∗Float) is equivalent to ([5, 5]×[4, 4],C[+0,−1]∗Float),
these two zones can be merged into ([4, 5]× [4, 4],C[+0,−1] ∗ Float).

We can now define the analysis of straight line code (sequences of assign-
ments):

– �s0; s1�
�
P
(σ�) = �s1�

�
P
(�s0�

�
P
(σ�));

– �x = e��
P
(σ�) = reduce�(assign�

X
(x, e, σ�));

– �C[e0, e1] = e2�
�
P
(σ�) = reduce�(assign�

V
(e0, e1, e2, σ

�));

– �C[e0, e1] = “ = e2”�
�
P
(σ�) = reduce�(assign�

E
(e0, e1, e2, σ

�)).

Control Structures. The analysis of control structures requires condition test,
join and widening operators. Condition tests refine information on variable ranges
(hence, refining zone bounds) and on cell types (due to operators testing the
type of cell values, such as ISBLANK). They are analyzed by an operator guard� :

E×D
�
Σ → D

�
Σ that satisfies soundness condition ∀σ ∈ γΣ(σ

�), true ∈ �e�E(σ) ⇒
σ ∈ γΣ(guard

�(e, σ�)). Control flow joins are analyzed by a join operator

�� : D�
Σ × D

�
Σ → D

�
Σ such that ∀σ�

0, σ
�
1 ∈ D

�
Σ , γΣ(σ

�
0) ∪ γΣ(σ

�
1) ⊆ γΣ(σ

�
0 �� σ�

1),
whereas loops require a widening operator ∇�, based on similar algorithms and
that ensures the termination of abstract iterates. These operators generalize
bounds on zones [8], hence play a critical role in the inference of non trivial zone
invariants, such as those shown in Fig. 2:



40 T. Cheng and X. Rival

Example 8 (Abstract join). Letus consider abstract statesσ�
0 = (x = 2, {(Z0, e

�)})
and σ�

1 = (x = 3, {(Z1, e
�)}), where Z0 = [1, 2]× [2, 2] and Z1 = [1, 3]× [2, 2]. In

both zones, the upper bound on ī is equal to x. Thus,Z0 (resp.,Z1) is semantically

equivalent to Z = [1, x]× [2, 2]. Therefore, σ�
1 �� σ�

0 returns (2 ≤ x ≤ 3, {(Z, e�)}.
We can now define the analysis of condition statements and loops:
– �If e Then s0 Else s1 End��

P
(σ�) = �s0�

�
P
(reduce�(guard�(e, σ�))) ��

�s1�
�
P
(reduce�(guard�(¬e, σ�)));

– �While(e) s End��
P
(σ�) = reduce�(guard�(¬e, lfp�

⊥F
�)) where F �(σ�

0) =

σ� �� �s��
P
(reduce�(guard�(e, σ�

0))) and lfp� computes abstract post-fixpoint,
using classical abstract iteration techniques, using widening operator ∇�.
We recall the abstract post-fixpoint operator is sound in the following sense: if
F : P(Σ) → P(Σ) is continuous and F � : D�

Σ → D
�
Σ , S ⊆ Σ and σ� ∈ D

�
Σ are

such that, F ◦ γΣ ⊆ γΣ ◦ F � and S ⊆ γΣ(σ
�), then lfpSF ⊆ γΣ(lfp

�
σ�F

�).

Applications. The analysis of an application a recursively computes the abstract
semantics of all statements in the body of a from its initial state, and produces
a finite set of abstract states �a��

A
. Our analysis is sound:

Theorem 2 (Soundness). For all statements s ∈ P, �s��
P
is sound: ∀σ� ∈

D
�
Σ , ∀σ ∈ γΣ(σ

�), �s�P(σ) ⊆ γΣ(�s�
�
P
(σ�)). Thus, for all a ∈ A, �a��

A
is sound,

i.e., �a�A ⊆ ⋃
γΣ(�a�

�
A
).

Therefore, the whole analysis catches all typing errors following the definition
given in Sect. 3, corresponding to the operations specified unsafe. In particular,
it catches the error of the example shown in Sect. 2, and proves the fixed version
safe.

5.2 Abstract Interpretation of Global Evaluation

The concrete semantics of Eval boils down to a fixpoint, that re-computes cell
values in the whole spreadsheet while preserving formulas and variables values
(Sect. 3). Thus, we assume σ� = (N �, F ��T �), and show the computation of T �

res

(by fixpoint approximation) so as to let �Eval��(σ�) = (N �, F � � T �
res). We first

show a very basic iteration strategy, and then discuss the analysis of Eval.

Cell-by-Cell Re-evaluation. The concrete semantics of Eval is based on function
F≺, defined by a cell ordering ≺ compatible with formula dependencies. In this
paragraph, we show an abstract counterpart for F≺ under the assumption that
each abstract zone is reduced to a single concrete cell, thus elements of T � (resp.,
F �) are equivalent to functions from R×C into T (resp., E�). Abstract formulas
follow the same dependencies as concrete formulas, thus the topological order ≺
can be retrieved from an abstract state, by topological sorting. Moreover, the
analysis should support “not yet re-evaluated” cells, which are denoted by ⊥:
– To extend type spreadsheets ST, we let ST⊥ = (R×C) → (T� {⊥}), and let

order relation � be defined by ∀t ∈ T, ⊥ � t. As each zone contains exactly
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one cell, an element T � ∈ Pfin(D
�
z,type) is now equivalent to an element of

ST⊥.
– We let T �

⊥ ∈ ST⊥ be defined by ∀(i, j), T �
⊥(i, j) = ⊥.

– Given an abstract formula e�, its abstract semantics �e��t can also be
extended to compute a type (possibly �) for an abstract element of

Pfin(D
�
z,form), using the type information available for each cell in the for-

mula; we still use notation �e��t to denote that extended semantics.

We can now define the abstract counterpart F �
≺ : Pfin(D

�
z,type) → Pfin(D

�
z,type)

of F≺. It is such that for all T �
0 ∈ ST⊥, and for all i, j, F �

≺(T
�
0)(i, j) =

�F �(i, j)�t(T
�
0) when T �

0(i, j) = ⊥ and ∀(i′, j′) ≺ (i, j), T �
0(i

′, j′) = ⊥ (otherwise

F �
≺(T

�
0)(i, j) = T �

0(i, j)). It is sound: for all σ�
0 = (N �, F � � T �

0) ∈ D
�
Σ , and for

all (σX, σSE, σSV

0 ) ∈ γΣ(σ
�
0), we have (σX, σSE,F≺(σSV

0 )) ⊆ γΣ(N
�, F � � F �

≺(T
�
0)).

Therefore, the existence of the fixpoint follows from the continuity of F �
≺ (it

is obtained after at most nR · nC iterations). Soundness is proved by fixpoint
transfer:

Theorem 3 (Abstract interpretation of re-evaluation). �Eval��
P
(N �, F ��

T �) = (N �, F � � T �
res) where T �

res = lfpT �
⊥
F �

≺ =
⊔{(F �

≺)n(T
�
⊥) | n ∈ N} defines a

sound post-condition: ∀σ� ∈ D
�
Σ , ∀σ ∈ γΣ(σ

�), �Eval�P(σ) ⊆ γΣ(�Eval��
P
(σ�).

Moreover, this process will also allow us to prove no typing error (in the sense
of Sect. 3) arises during re-evaluation.

Example 9 (Cell-by-cell re-evaluation). We illustrate this strategy with the ab-
straction of the spreadsheet studied in Sect. 3. The corresponding abstract for-
mulas over zones are shown below, in the left hand side. Then, cells are treated
following topological ordering (1, 1) ≺ (2, 1) ≺ (2, 2) ≺ (3, 2), and the type
obtained for each cell is Int:

21
1
2
3

= Int

= C[1, 1]

= Empty

= Empty

= C[1, 1] + Int

= C[2, 1] +C[2, 2]

21
1
2
3

Int

Int

(Empty)

(Empty)

Int

Int

Zone-by-Zone Strategy. The cell-by-cell strategy abstract interpretation of Eval
would not be efficient in practice, as abstract states usually contain zones which
are bounded, but possibly large and/or of variable size. However, since a whole
zone is attached to a single abstract formula, type information for a whole zone
can often be computed in a single step, which is much faster than cell-by-cell
evaluation.

A zone can be re-evaluated as soon as the two following conditions are satisfied:
(1) its abstract formulas induce no internal dependency, i.e., between its cells (in
the example of Sect. 2, this holds for all zones, except the last column, which
will be discussed in the next paragraph); (2) there exists a topological order
≺ compatible with formula dependencies, according to which all the cells lower
than the cells in that zone have already been evaluated.
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When a zone satisfies these two conditions, the analysis can re-evaluate its
type by applying the abstract formula it corresponds to, since its arguments
have already been re-evaluated. When an argument of the abstract formula may
belong to several zones, it will be necessary to split the zone being re-evaluated.
This will produce a set of zones with type information. The analysis will ap-
ply this efficient scheme whenever the topological ordering induced by abstract
formulas zones allows it:

Example 10 (Zone-by-zone strategy). We assume the following abstract state:

4321
1
i = Float = C[+0,−1] + Int = C[+0,−2] ∗ Float = C[+0,−2] < C[+0,−1]

Z0 Z1 Z2 Z3

Then according to the formula dependencies, the abstract iteration can follow
the order Z0 ≺ Z1 ≺ Z2 ≺ Z3. It terminates after four iterations, and produces
the type zones {(Z0,Float), (Z1,Float), (Z2,Float), (Z3,Bool)}.

Abstract Iteration over Zones, Using Widening. When a zone contains internal
dependencies (i.e., abstract formula using as arguments cell that belong to the
zone itself), the zone-by-zone strategy does not apply. Such a self-reference oc-
curs in the example of Sect. 2 since the evaluation of Column 5 requires types of
Columns 3, 4 and Column 5 itself. Inter-reference among zones may also occur,
e.g., when Z0 needs types of Z1, Z1 needs types of Z2, . . . , and Zn needs types
of Z0.

Zones containing such patterns can be re-evaluated in the abstract level by
simulating a cell-by-cell re-evaluation order, as part of an abstract fixpoint com-
putation. To do this, under the assumption that there is no cycle in formulas
(this case is discussed in Sect. 6), the analysis of Eval will consider a loop that
computes the cells in the zone one-by-one, following the steps below:
1. introducing loop variable k, denoting the number of cells in the abstract

formula zone that have been re-evaluated;
2. determining the first cell in the abstract formula zone dependency order;
3. splitting the abstract formula zones into two zones, respectively for cells that

can be immediately re-evaluated, and for cells that cannot be re-evaluated
yet;

4. iterating Steps 2 and 3 until the abstract formula zones are fully treated,
and applying widening at each step to ensure termination, thanks to lfp�;

5. synthesizing the final abstract state by restricting, when Step 4 produces
stable type zones.

This strategy provides a way to compute the effect of Eval over large zones or
zones of variable size. It does not need the full unrolling of the zone, thanks to
the use of the widening operation over the cells that are generally well structured.
Indeed, it effectively amounts to analyzing a loop with counter k that iterates
over the zone in order to compute abstract types:
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Example 11 (Abstract iteration over a zone). We consider the abstract formula
zones below (which correspond to an excerpt of the example of Sect. 2), which
define the dependencies shown in the right-hand side:

= Int

= Float

= C[+0,−1] +C[−1,+0]

Z0

Z1

Z2

�

�

�

�

�

�

�

...

The first two iterations of the strategy described above produce the results below:

Int

Float

Float

1

2

n

1st abs. iter.

Int

Float

Float

1

2
3

n

2nd abs. iter., before ∇�

Int

Float

Float

1

2

k+ 1

n

2nd abs. iter., after ∇�

On the third iteration, abstract states are stable. Moreover, the analysis proves
all the formulas evaluate without a typing error and produce a result of type
Float.

Combined Strategies. In general, abstract states require the use of a combination
of the strategies shown above. The zone-by-zone strategy is given priority in our
analysis: it will always try to detect and to re-compute first the zones that can
be evaluated as a whole. This strategy is the most efficient and turns out to be
the most frequently used in practice. Remaining cases are dealt with by widening
based and cell-by-cell strategies. After adding Eval statement to the set of the
statements, the global soundness theorem (Theorem 2) still holds.

6 Implementation of an Excel VBA Analyzer

We have implemented our analysis. Our analyzer handles a large subset of Mi-
crosoft Excel functions and VBA, following the VBA specification [2]. Our tool
consists of a frontend written in VBA, that parses Microsoft Excel spreadsheet
tables (e.g., number formats, types, formulas, buttons) and VBA macros, and
exports them to the static analyzer itself, which undertakes the verification (and
includes 19000 lines of OCaml code). The verification of a spreadsheet applica-
tion proceeds through two steps: (1) the verification of global re-evaluation; (2)
the verification of the execution of any macro it contains, given the initial spread-
sheet abstract state. The verification gradually infers invariants; finally, it either
proves the correctness with regard to our typing system, or raises alarms by point-
ing out the location (e.g., the zone in spreadsheets and/or the line in macros)
and the unsafe typing rule in question. The analyzer can also be launched over a
set of Excel files and return a summary report for the whole set. We will present
the analysis results for the EUSES Spreadsheet Corpus in Sect. 7.
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Supported Features. In the previous sections, we formalized the analysis of the
core spreadsheet language, but our analyzer supports many additional spread-
sheet features, to be able to cope with real-world applications, including the
following:
– A workbook may contain several worksheets, and formulas may refer to cells

in another sheet or another workbook.
– Macros may contain interprocedural calls, other user-defined subroutine or

function, with or without arguments.
– Number formats are options that Excel provides for displaying values such

as percentages, currencies, dates, which impact value types in some cases.
Therefore, we also abstract this information (using zones as well) and take
it into account while typing.

Circular References. The spreadsheet environment we have formalized does not
feature circular references among cells, yet Microsoft Excel allows circular refer-
ences under certain circumstances. In particular, a number of iterations can be
set so that a circular computation could terminate. In this case, both the start-
ing cell and the ending cell of the evaluation can be identified. Following this
order, the analyzer iterates the abstract evaluation until it reaches a fixpoint.

Data Validation. Excel users may define constraints on data to be entered in
some areas, such as “empty or only date”, “empty or only time”, “only text of a
certain length”, etc. Such information constrains data to be written in some ar-
eas at run-time; thus, this information can be used in the analysis. Therefore, our
analyzer parses areas with data validation constraints and uses the type informa-
tion they provide in the initial abstract state. This allows a precise verification of
spreadsheets that utilize data unknown at verification time / non-deterministic
data.

Over-approximation of Empty Input Cells. Spreadsheet formulas may refer to
empty cells where values will be entered by users later. If “Data Validation” is
not available for these cells, we can still derive their “expected” type from the
function that is applied to them. For instance, function SUM expects Numeric
arguments, function AND expects Bool arguments, etc. To account for this, the
analyzer will either treat these cells as empty or store a value of that type. This
over-approximation helps better verify formulas / macros using those cells.

7 Experiments and Analysis Results

We evaluated the efficiency of our tool, and focused on the three following ques-
tions: (1) Does the analysis find real defects in spreadsheets & macros ? (2) How
long does the analysis take ? (3) Is the analysis report precise enough ? Is it easy
enough for users to diagnose analysis warnings, and adopt the analysis ?
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Experimental Setup. We chose the EUSES Spreadsheet Corpus [15] as an ex-
perimental subject for two reasons. First, to the best of our knowledge, it is the
largest publicly available sample of real-world spreadsheets. Secondly, it includes
many macros that offer good candidates for evaluating our associated program
analysis. The sizes of the files of the corpus range from several KB to dozens
of MB. In general, the spreadsheets are no longer under development and are
already operational.

A spreadsheet may contain zero, one or several macros. It may also not con-
tain any formula. The following table presents the classification of the EUSES
Spreadsheet Corpus. Category D corresponds to pure data-sheets without any
formulas or macros: they are not meaningful for our analysis, as their analysis
is trivial. Therefore, our sample was the 2120 spreadsheets of Categories A + B
+ C and the 1053 macros inside them.

A # spreadsheets with ≥ 1 formulas & 0 macro 1959
B # spreadsheets with ≥ 1 formulas & ≥ 1 macros 111
C # spreadsheets with 0 formula & ≥ 1 macros 50
D # spreadsheets with 0 formula & 0 macro 2532

We performed the experiments as follows. First, our tool parsed all the spread-
sheets and the macros, and detected 27 macros and 59 spreadsheet tables that
have syntactic bugs or are incomplete (e.g., users put evident annotations such
as “not-available” in their spreadsheet where an analysis would not be relevant).
Next, we launched the analyzer on the rest of the items, and it was able to an-
alyze Eval for 1854 spreadsheets and 858 macros (the reason why 7.8% of the
spreadsheet tables and 16.4% of the macros were not analyzed is due to the fact
our tool currently does not handle all Excel & VBA features and built-in func-
tions, which are quite complex and numerous). Last, we filtered out the items
whose bugs are not type-related (e.g., calls to undefined macros). Our tool de-
tected 15 such spreadsheets and 21 such macros, which is useful but orthogonal
to our purpose. The rest of the analyzed items are either type-related safe or
erroneous, we classify them by Category TypeRSE in the following table, which
summaries the analyses of Eval of spreadsheets in Categories A + B and macros
in spreadsheets of Categories B + C. From now on we shall focus on Category
TypeRSE and discuss the core of the analysis.

Total
Syntactically Syntactically Correct
Erroneous Non- Analyzed

or Incomplete Analyzed Type-Unrelated Erroneous TypeRSE
Eval 59 157 15 1839
Macro 27 168 21 837

Real Defects. The analyzer was set up in such a way that, when an unsafe typing
rule is applied, it raises an alarm and stops the analysis. Therefore, the number of
alarms raised corresponds to the number of spreadsheets / macros in the USES
Corpus that were considered potentially erroneous by our analysis. In total, the
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analyzer raised 69 type-related alarms for Eval and 73 for macros. For each
alarm, the report specified its location (e.g., the zone in spreadsheets and/or
the line in macros), the unsafe typing rule (bug pattern) it encountered, and an
estimate rating of how severe the defect would be. We manually inspected the
spreadsheet / macro for which an alarm was raised, to diagnose its cause and
the consequence of the revealed problem.

The alarms of type-unsafe operations effectively led us to identify real defects
in programs, part of which defects silently produce wrong results. We show some
of them as examples:

Example 1. In “homework\processed\Finalgradebook.xls”, an application
of Function AVERAGE to an Empty zone was detected, whereas all of its other
arguments were Double. We found formula “=AVERAGE(D4;F4;H4;J4;L40)”, was
referring to “L40” although it was an empty cell. This was probably due to a
user’s erroneous typing of “L40” instead of “L4” (which was a Double and should
have been an argument of AVERAGE), whereas Excel considered the formula valid.
This mistake will indeed result in the computation of an incorrect average grade.

Example 2. In “modeling\processed\2-26.xls”, subroutine “do assign” uses
a two-level loop to copy a table of basic parameters into another sheet where
biological simulations are performed. Our tool detected that the whole zone of
the table was Double except the first line, which was Empty. However, this zone
had been assigned to a Double zone in another sheet. Upon investigation, we
noticed a one-line shift between the source table and the target table, because the
range of the loop was wrong. This will result in the target table being incorrectly
filled in (its first line filled in with 0s, the copy result of empty cells), and the
simulations (run 100 times!) based on these parameters will generate incorrect
results.

Example 3. In “homework\processed\pl student2002.xls”, the analyzer de-
tected an application of Function SUM to a String value, whereas all of its other
arguments were Double. Examining the spreadsheet, we observed that the String
value was actually “I”, whereas the other arguments were either 0 or 1. Clearly
users had mistaken “I” and “1”, which are visibly similar. As a result, Excel
considers “I” as 0 by SUM, which leads to a different number from that originally
intended.

As shown by these examples, our tool discovered defects that would be hard
for users to spot. In total, among all the alarms raised by the analyzer, we
identified 25 real defects for Eval and 20 for macros, corresponding to serious
and harmful issues in spreadsheet applications.

Among patterns contributing to spreadsheet defects, we can cite: (1) binary op-
eration on Numeric data and Non-Numeric data (e.g., String) (2) Non-Numeric
data (e.g., String, Empty) among the arguments of SUM or AVERAGE.

Furthermore, the defects found in the programs can be classified into sev-
eral major categories: (1) Formulas or statements are applied to a wrong sheet
area, and consequently take unexpected arguments. In Example 1, it is the ref-
erence of an argument of the formula that is incorrect; in Example 2, the area
of the copied table is wrongly set. This kind of defect typically occurs due to an



Static Analysis of Spreadsheet Applications 47

inappropriate manipulation (e.g., mistyping, improper copy-paste). In total, we
found 13 bugs of this category. (2) Formulas or statements have a certain as-
sumption for the types or the values of input data, yet the assumption is not
specified or will not always hold at run-time. For instance, in a macro of “home-
work\processed\RT EvaluationWorkbook.xls”, an addition of a String value and
an Empty cell is involved, and the analyzer realized that the Empty cell (repre-
senting reference of products) could well be set to a number at run-time, which
would block the execution of the macro. We detected 8 defects of this class.

Moreover, we observe that many real defects were found thanks to the ab-
straction of the initial state of the spreadsheets, since this abstraction takes
into account data that will be entered at run-time (Data-Validation areas, func-
tions reading external values, etc.). It is, for instance, the case of the error in
“RT EvaluationWorkbook.xls”, where the over-approximation of an empty cell
covers numeric data at run-time, which is not the current value of the given
spreadsheet. This kind of error would not be discovered by verification tech-
niques that rely on a single spreadsheet state, like testing.

Analysis Time. The analyzer succeeded in verifying 858 macros in 161 spread-
sheets (Categories B + C in Table 7). The size of each macro ranges from a few
LOCs to several hundred LOCs. As one LOC could well involve a complex ab-
stract operation by executing a complex statement or calling another macro, the
size of a macro is just one of the factors that have an impact on its analysis time.
We can list other important factors such as the complexity of the abstract state
(e.g., # formula zones, # type zones, # variables) and the number of complex
abstract operations (e.g., join, widening, reduction, eval). By summarizing all of
the 858 successfully analyzed macros, we observe that the analysis for macros is
fast enough: only 2% of them lasted more than 3 seconds (the longest analysis
takes 10.45 seconds), and 88% of them took less than 0.2 second. We note that
all analyses with fewer than 100 abstract zones and no loop of nesting depth
greater than 2 lasted less than 1.75 seconds.

Figure 4(a) indicates the analysis time for Eval against the number of cells
for non-constant values in initial spreadsheets. We remark that the analyses
were performed in a reasonable time frame: 99% of the analyses took less than 1
second. Thus, the analysis time is acceptable in practice, and the analysis would
integrate in a seamless manner in development.

Additionally, Figure 4(b) shows the analysis time of Eval, against the number
of abstract formula zones for non-constant values in initial spreadsheets. By
comparing it with Fig. 4(a), we remark that the principal attribute for analysis
time is the number of abstract zones, rather than the number of cells. This
observation is consistent with our abstraction mechanism, which is based on a
cardinal power of zone abstractions. Going further, we remark that, on average,
the number of zones we have made is 0.1x as many as the number of cells for a
spreadsheet. The larger a spreadsheet is, the lower this ratio is: for certain large
spreadsheets, this ratio can be less than 0.01. This guarantees that our analysis
based on zones is scalable and especially efficient for large spreadsheets.
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(a) vs. # cells for non-constant
values

(b) vs. # abstract formula
zones for non-constant values

Fig. 4. Analysis time for Eval in seconds

Precision and Diagnostics. With regard to our current typing system, the ana-
lyzer proved that global re-evaluations of 1770 spreadsheet tables in Categories
A + B of Table 7 were correct and that 764 macros were correct.

When it raises an alarm, the analyzer issues a report including the context
information (zone, macro line) and the category of the potential defect. In addi-
tion, Excel & Visual Studio provide an interactive debugging environment where
the states of spreadsheets and program variables are highly visible. Thus, users
can assess the alarm reports interactively with the help of this environment.

Besides the categories of real defects we presented previously, we can list sev-
eral major categories of false alarms: (1) The first category is due to imprecisions
in the analysis: the over-approximation causes the alarms corresponding to un-
safe concrete states that will never be reached. We notice that the majority of
the false alarms in this category come from the imprecisions in the analysis of
certain VBA and Excel built-in functions. Few of the false alarms for Eval are
due to the over-approximation of the initial state of the spreadsheet. This implies
that a technique that relies on the given state of the spreadsheet would not re-
duce these false alarms. (2) The second category of false alarms is indeed related
to type-unsafe operations, that are intended as such by the users. For example,
sometimes users apply Function SUM to a column containing not only data, but
also several titles. In this case, Function SUM will omit the titles and will thus
still produce the correct result, summing the numeric data only. Yet, this pat-
tern will result in false alarms due to Non-Numeric data among the arguments
of SUM.

Therefore, diagnosing an alarm and triaging it as a false alarm or a real defect
is fairly straightforward and typically takes a couple of minutes. We spent no
more than 10 minutes on the most complex alarms. In total, we identified 44
false alarms for Eval and 53 for macros. The following table summarizes the
core analyses.
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TypeRSE (Type-Related Safe or Erroneous)
alarm free raise alarm

real defect false alarm
Eval (1839) 1770 25 44
Macro (837) 764 20 53

Overall, the tool raised 142 alarms from 2676 analyses (Eval + macros), 45
of which alarms (i.e., approximately 30 %) were identified as real defects, which
makes the false alarm number quite acceptable, considering that the defects
found would be hard to spot by simple testing.

Summary. The experiments on the EUSES Corpus show that our analysis suc-
ceeds in detecting type-unsafe operations and can effectively be used to improve
the quality of spreadsheets. It discovers defects that will cause unexpected re-
sults and that will not likely be found by testing. The diagnosis of alarms is not
a tedious process with the guidance of the tool, and the false alarm number is
reasonable. While the zone abstractions of a spreadsheet allows for the verifica-
tion of type properties, it makes the analysis scalable for spreadsheets having a
large number of cells. The analysis is efficient enough to be integrated within a
development environment, as it could either be scheduled as a background task
(e.g., scan systematically before saving), using reasonable resources, or launched
upon user request in an interactive way.

8 Related Work

Unit Verification. The existing projects [3,9,4,5,6] resolve concrete units or di-
mensions with labels, headers and / or other annotations, build typing systems
and reason about the correctness of formulas. We cannot find their experimen-
tal data or precision reports on comparable sets of benchmarks for a practical
comparison with our results. Nevertheless, theoretically, our work is different
from theirs in several ways: (1) we consider classical types in the programming
language point of view, whereas their types refer to the concrete meaning of ob-
jects; thus, the built-in rules or bugs discovered by the two analyses are different;
(2) we verify both the interface level and associated programs that the existing
projects do not consider; (3) we evaluate formulas according to their order of
precedence and thus support spreadsheets where data may be outdated; (4) our
system covers a larger library of spreadsheet functions; (5) our classical types
can always be retrieved from spreadsheets. By contrast, given a spreadsheet,
the concrete meaning of objects are not always clear, and the retrieval of these
meanings relies on annotation, though the analysis can be finer-grained if the
retrieval is successful (e.g., they detect “adding apples and oranges”, which our
analysis does not regard as an error). Actually, combining our work with that of
the existing projects would be a good direction for future work. By substituting
other lattices with the type lattice and merging typing systems, we would be
able to perform finer-grained analyses with various units and types.
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Array Analysis and Zone Domain. Array analyses such as [23,12] also tie ab-
stract properties to array regions; a notion of dependent types has been used to
specify array properties such as array size [28]. One difference of our work is that
we treat bi-dimensional arrays, whereas the existing works study uni-dimensional
arrays.

Cheng and Rival [8] introduce an abstract domain to describe zones in two-
dimensional arrays and apply it to analyze programs in a limited language, with-
out formulas that can be re-evaluated after their inputs change. We aim at verify-
ing real-world spreadsheets, which consist of associated programs and formulas.
To this end, we formalize a larger spreadsheet language which includes formulas,
and propose an abstraction that ties not only types but also abstract formulas to
zones. Therefore, unlike [8], our analysis can cope with the re-evaluation of for-
mulas (in automatic mode, upon user-request or from the associated programs),
which is critical to handle real-world spreadsheets. Last, we evaluate the analysis
and the implementation by analyzing a large set of real-world spreadsheets.

JavaScript, and Languages with Dynamic Evaluation. Thiemann [26] defines a
type system that flags suspicious type conversions in JavaScript programs, which
is a similar verification target to ours, albeit for a different language. Jensen et
al. [18] address the eval function in JavaScript, which dynamically constructs
code from text strings and executes it as if it were regular code in ways that
obstruct existing static analyses. However, spreadsheet languages distinguish
themselves from other scripting and dynamic languages by the way dynamicity
is implemented: formulas are structured and organized in a two-dimensional ar-
ray, whereas the eval function in JavaScript applies to strings and has a very
different semantics. This led us to a very different abstraction based on zone
and abstract formulas, than that of [18]. Moreover, Hammer et al. [16] propose a
demand-driven incremental computation semantics of eval to provide speedups
in spreadsheets, whereas our abstraction is based on the original concrete seman-
tics of Eval in spreadsheets.

9 Conclusion

We have proposed a static analysis which is able to detect a significant class of
subtle spreadsheet defects. It discovers inappropriate applications of operators
and functions to arguments, which may produce unexpected results. To the best
of our knowledge, our analysis is the first that can handle spreadsheet formulas,
global re-evaluation and associated programs. Our evaluation on the EUSES
Corpus has demonstrated that our analysis can effectively run on real-world
spreadsheet applications and can verify a large number of them. It is able to
discover defects that would be beyond the reach of both testing techniques and
static analyses that would ignore the dynamic aspects of spreadsheets.
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20. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation
(2006)

21. Panko, R.R.: What we know about spreadsheet errors. Journal of End User Com-
puting (1998)



52 T. Cheng and X. Rival

22. Rajalingham, K., Chadwick, D.R., Knight, B.: Classification of spreadsheet errors.
In: EuSpRIG Symposium (2001)

23. Reps, T., Gopan, D., Sagiv, M.: A framework for numeric analysis of array opera-
tions. In: Principles of Programming Languages. ACM (2005)

24. Sestoft, P.: Online partial evaluation of sheet-defined functions. EPTCS (2013)
25. Sestoft, P.: Spreadsheet Implementation Technology. Basics and Extensions. MIT

Press (2014)
26. Thiemann, P.: Towards a type system for analyzing javascript programs. In:

Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 408–422. Springer, Heidelberg
(2005)

27. Wakeling, D.: Spreadsheet functional programming. Journal of Functional Pro-
gramming (2007)

28. Xi, H., Pfenning, F.: Eliminating array bound checking hrough dependent types.
In: Programming Language Design and Implementation. ACM (1998)


	Static Analysis of Spreadsheet Applicationsfor Type-Unsafe Operations Detection
	1 Introduction
	2 Overview
	3 A Core Spreadsheet Language
	4 Abstraction
	4.1 Formula Abstraction
	4.2 Spreadsheet Abstraction

	5 Static Analysis Algorithms
	5.1 Abstract Interpretation of Basic Statements
	5.2 Abstract Interpretation of Global Evaluation

	6 Implementation of an Excel VBA Analyzer
	7 Experiments and Analysis Results
	8 Related Work
	9 Conclusion
	References




