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Abstract. The verification of asynchronous fault-tolerant distributed
systems is challenging due to unboundedly many interleavings and net-
work failures (e.g., processes crash or message loss). We propose a method
that reduces the verification of asynchronous fault-tolerant protocols to
the verification of round-based synchronous ones. Synchronous protocols
are easier to verify due to fewer interleavings, bounded message buffers
etc. We implemented our reduction method and applied it to several state
machine replication and consensus algorithms. The resulting synchronous
protocols are verified using existing deductive verification methods.

1 Introduction

Fault tolerance protocols provide dependable services on top of unreliable com-
puters and networks. One distinguishes asynchronous vs. synchronous protocols
based on the semantics of parallel composition. Asynchronous protocols are cru-
cial parts of many distributed systems for their better performance when com-
pared against the synchronous ones. However, their correctness is very hard to
obtain, due to the challenges of concurrency, faults, buffered message queues, and
message loss and re-ordering at the network [5,35,21,31,19,26,42,37]. In contrast,
reasoning about synchronous round-based semantics is simpler, as one only has
to consider specific global states at round boundaries [17,10,32,29,40,1,8,11,13].

The question we address is how to connect both worlds, in order to exploit
the advantage of verification in synchronous semantics when reasoning about
asynchronous protocols. We consider asynchronous protocols that work in unre-
liable networks, which may lose and reorder messages, and where processes may
crash. We focus on a class of protocols that solve state machine replication.

Due to the absence of a global clock, fault tolerance protocols implement an
abstract notion of time to coordinate. The local state of a process maintains
the value of the abstract time (potentially implicit), and a process timestamps
the messages it sends accordingly. Synchronous algorithms do not need to im-
plement an abstract notion of time: it is embedded in the definition of any
synchronous computational model [15,28,18,9], and it is called the round num-
ber. The key insight of our results is the existence of a correspondence between
? Supported by: Austrian Science Fund (FWF) via NFN RiSE (S11405) and project
PRAVDA (P27722); WWTF grant APALACHE (ICT15-103); French National Re-
search Agency ANR project SAFTA (12744-ANR-17-CE25-0008-01).
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Fig. 1: Asynchronous executions without jumps
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Fig. 2: Asynchronous executions with jumps

values of the abstract clock in the asynchronous systems and round numbers in
the synchronous ones. Using this correspondence, we make explicit the “hidden”
round-based synchronous structure of an asynchronous algorithm.

We discuss our approach using a leader election algorithm. We consider n
of processes, which periodically elect collectively a new leader. These periods
are called ballots, and in each ballot at most one leader should be elected. The
protocol in Fig. 3 solves leader election. In a ballot, a process that wants to
become leader proposes itself by sending a message containing its identifier me
to all, and it is elected if (1) a majority of processes receive its message, (2) these
receivers send a message of leadership acknowledgment to the entire network,
and (3) at least one processes receives leadership acknowledgments for its leader
estimate from a majority of processes. Fig. 1(b) sketches an execution where
process P3 fails to be elected in ballot 1 because the network drops all the
messages sent by P3 marked with a cross. All processes timeout and there is
no leader elected in ballot 1. In the second ballot, P2 tries to become leader,
the network delivers all messages between P1 and P2 in time, the two processes
form a majority, and P2 is elected leader of ballot 2.

The protocol is defined by the asynchronous parallel composition of n copies
of the code in Fig. 3. Each process executes a loop, where each iteration defines
the executors behavior in a ballot. The variable ballot encodes the ballot num-
ber. The function coord() provides a local estimate whether a process should
try to become leader. Multiple processes may be selected by coord() as leader
candidates, resulting in a race which is won by a process that is acknowledged
by a majority (more than n/2 processes). Depending on the result of coord(),
a process may take the leader branch on the left or the follower branch on the
right. On the leader branch, a message is prepared and sent, at line 7. The mes-
sage contains the ballot number, the label NewBallot, the leaders identity. On
the other branch, a follower waits for a message from a process, which proposes
itself for the current ballot number of the follower. This waiting is implemented
by a loop, which terminates either on timeout or when a message is received.
Next, the followers, which received a message, and the leader candidates send
their leader estimate to all at lines 12 and 41, where the message contains the
ballots number, the label AckBallot, and the leaders identity. If a processes re-
ceives more than n/2 messages labeled with AckBallot and its current ballot,
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1 log = NULL; mbox = NULL; ballot = 0;
2 while(true)

3 if(coord() == me)

4 ballot++; label = NewBallot;
5 msg* m = new msg(ballot,label,me);
6 //@assert m->bal==ballot && m->lab==label
7 send(m,*);
8 leader = me;
9

10 label= AckBallot;
11 msg* m = new msg(ballot,label,leader);
12 send(m,*);
13 while(true){
14 m = recv(eq(ballot,label));
15 //@ assert m->bal >= ballot
16 // && m->lab >= label
17 add(mbox, m);
18 if((mbox!=0 && mbox->size>n/2)
19 || timeout()) break;
20 }
21 if(mbox!=0 && mbox->size>n/2
22 && all_same(mbox, leader)){
23 //@assert(equal(mbox, ballot,label));
24 add(log, new(ballot, leader));
25 out(ballot,leader); }
26 mbox = NULL;

27 ballot++; label = NewBallot;
28 while(true){
29 msg* m=recv(geq(ballot,label));
30 add(mbox,m)
31 if(mbox!=0 && mbox->size==1
32 || timeout()) break;
33 }
34 if(mbox!=0 && mbox->size==1){
35 ballot = mbox->message->bal;
36 leader = mbox->message->sender;
37 mbox = NULL;
38

39 label = AckBallot;
40 msg* m = new msg(ballot,label,leader);
41 send(m,*);
42 while(true){
43 m = recv(eq(ballot,label));
44 add(mbox, m);
45 if((mbox!=0 && mbox->size>n/2)
46 || timeout()) break;
47 }
48 if(mbox!=0 && mbox->size>n/2
49 &&all_same(mbox, leader)){
50 add(log, new(ballot, leader));
51 out(ballot,leader);}
52 mbox = NULL; }

struct msg {
int bal;
enum St lab;
Pid sender;}

msg* eq(int b, enum St l){
msg* m = recv();
if (m->bal == b && m->lab == l)

return m;
else return NULL;}

Fig. 3: Control flow graph of asynchronous leader election.

it checks using all_same(mbox, leader) in lines 22 and 49, whether a majority
of processes acknowledges the leadership of its estimate. In this case, it adds
this information to the array log (which stores the locally elected leader of each
ballot, if any) and outputs it, before it empties its mailbox and continues with
the next iteration.

Fig. 1(a) shows another execution of this protocol. Again, P3 sends NewBallot
messages for ballot 1 to all processes. P3’s NewBallot messages are delayed, and
P2 times out in ballot 1, moving to ballot 2 where it is a leader candidate. The
messages sent in ballot 2 are exchanged like in Fig. 1(b). Contrary to Fig. 1(b),
while exchanging ballot 2 messages, the network delivers to P2, P3’s NewBallot
message from ballot 1. However, P2 ignores it, because of the receive statement
in line 14 that only accepts messages for greater or equal (ballot, label) pairs.
The message from ballot 1 arrived too “late” because P2 already is in ballot 2.
Thus, the messages from ballot 1 have the same effect as if they were dropped,
as in Fig. 1(b). The executions are equivalent from the local perspective of the
processes: By applying a “rubber band transformation” [30], one can reorder tran-
sitions, while maintaining the local control flow and the send/receive causality.

Another case of equivalent executions is given in Fig. 2. While P1 and P2
made progress, P3 was disconnected. In Fig. 2(a), while P3 is waiting for ballot 1
messages, the networks delivers a message for ballot 20. P3 receives this message
in line 29 and updates ballot in line 35. P3 thus “jumps forward in time”,
acknowledging P2’s leadership in ballot 20. In Fig. 2(b), P3’s timeout expires in
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all ballots from 1 to 19, without P3 receiving any messages. Thus, it does not
change its local state (except the ballot number) in these ballots. For P3, these
two executions are stutter equivalent. Reducing verification to verification of
executions as the ones to the right— i.e., synchronous executions—reduces the
number of interleavings and drastically simplifies verification. In the following
we discuss conditions on the code that allow such a reduction.

Communication Closure. In our example, the variables ballot and label encode
abstract time: Let b and ` be their assigned values. Then abstract time ranges
over T = {(b, `) : b ∈ N, ` ∈ {NewBallot, AckBallot}}. We fix NewBallot to
be less than AckBallot, and consider the lexicographical order over T . The se-
quence of (b, `) induced by an execution at a process is monotonically increasing;
thus (b, `) encodes a notion of time. A protocol is communication-closed if (i)
each process sends only messages timestamped with the current time, and (ii)
each process receives only messages timestamped with the current or a higher
time value. For such protocols we show in Sec. 5 that for each asynchronous ex-
ecution, there is an equivalent (processes go through the same sequence of local
states) synchronous one. We use ideas from [17], but we allow reacting to future
messages, which is a more permissive form of communication closure. This is
essential for jumping forward, and thus for liveness in fault tolerance protocols.

The challenge is to check communication closure at the code level. For this,
we rely on user-provided “tag” annotations that specify the variables and the
message fields representing local time and timestamps. A system of assertions
formalizes that the user-provided annotations encode time and that the protocol
is communication-closed w.r.t. this definition of time. In the example, the user
provides (ballot, label) for local time and msg->bal and msg->lab for times-
tamps. In Fig. 3, we give example assertions that we add for the send and receive
conditions (i) and (ii). These assertions only consider the local state, i.e., we do
not need to capture the states of other processes or the message pool. We check
the assertions with the static verifier Verifast [22].

Synchronous semantics. Central to our approach is re-writing communication-
closed asynchronous protocol into synchronous ones. To formalize synchronous
semantics we introduce multi Heard-Of protocols, mHO for short. An mHO com-
putation is structured into a sequence of mHO-rounds that execute synchronously.
Figure 4 is an example of an mHO protocol. It has two mHO-rounds: NewBallot
and AckBallot. Within a round, SEND functions, resp. UPDATE functions, are
executed synchronously across all processes. The round number r is initially 0
and it is incremented after each execution of an mHO-round. The interesting
feature, which models faults and timeouts, are the heard-of sets HO [9]. For
each round r and each process p, the set HO(p, r) contains the set of processes
from which p hears of in round r, i.e., whose messages are in the mailbox set
taken as parameter by UPDATE (mbox). If the message from q to p is lost in
round r, then q 6∈ HO(p, r). Fig. 1(b) and 2(b) are examples of executions of
the protocol in Fig. 4. We extend the HO model [9] by allowing composition
of multiple protocols. Verification in synchronous semantics, and thus in mHO,
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log = NULL; ballot = 0;

NewBallot Round:
SEND(){
if(coord() == me){

msg m = new msg(me);
send(m,*);}}

UPDATE(mbox: list(msg)){
old_mbox1 = mbox;
if(coord() != me){

if(mbox!=0 && mbox->size==1)
leader = mbox->message->sender;}}

else leader = me;

AckBallot Round:
SEND(){

if((old_mbox1!=0 && old_mbox1->size==1
&& leader!=me) || leader == me){

msg m = new msg(leader);
send(m,*);}}

UPDATE(mbox: list(msg)){
if((old_mbox1!=0 && old_mbox1->size==1

&& leader!=me) || leader == me)
if(mbox!=0 && mbox->size>n/2

&& all_same(mbox, leader)){
add(log, new(phase, leader));
out(phase,leader);}}

Fig. 4: Control flow graph of synchronous leader election.

is simpler due to the round structure, which entails (i) no interleavings, (ii) no
message buffers, and (iii) simpler invariants at the round boundaries.
Rewriting to mHO. We introduce a procedure that takes as input the asyn-
chronous protocol together with tag annotations that have been checked, and
produces the protocol rewritten in mHO, e.g., Fig. 3 is rewritten into Fig. 4. The
rewriting is based on the idea of matching abstract time (ballot, label) to mHO
round numbers r. Roughly, mHO-round NewBallot is obtained by combining the
code of the first box on each path in Fig. 3 (the red boxes) and AckBallot is
obtained my combining the second box on each path (the blue ones) as follows.
The three message reception loops (the code in the boxes with highlighted back-
ground) are removed, because receptions are implicit in mHO; they correspond
to a non-deterministic parameter of the UPDATE function. For each round, we
record the context in which it is executed, e.g., the lower box for the follower is
executed only if a NewBallot message was received (more details in Sec. 6).
Verification. The specification of the running example is that if two processes
find the leader election for a ballot b successful (i.e., there is log entry for b), then
they agree on the leader. In general, to prove the specification, we need invariants
that quantify over the ballot number b. As processes decide asynchronously, the
proof of ballot 1, for some process p, must refer to the first entry of log of
processes that might already be in ballot 400. As discussed in [38], in general
invariants need to capture the complete message history and the complete local
state of processes. The proof of the same property for the synchronous protocol
requires no such invariant. Due to communication closure, no messages need to
be maintained after a round terminated, that is, there is no message pool. The
rewritten synchronous code has a simpler correctness proof, independent of the
chosen verification method. One could use model checking [29,40,1,39], theorem
prover approaches [8,11], or deductive verification [14] for synchronous systems.

For several protocols, we formalize their specification in Consensus Logic [13],
we have computed the equivalent mHO protocol, and proved it correct using the
existing deductive verification engine from [13].
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e := c constant
| x variable
| f( #»e ) operation

types := Pid process Id
M payload type
p : Pid, m : M
Mbox: set of M

P := Πp:P [S]p protocol
P is the set of process identities

S := x := e assignment
| reset_timeout(e) reset a timeout
| send(m,p) | send(m, ?) send message
| m := recv(∗cond) receive message
| S ; S sequence
| if e then S else S
| while true S
| break | continue
| x = in() client entry
| out(e) client output

Fig. 5: Syntax of asynchronous protocols.

2 Asynchronous protocols

All processes execute the same code, written in the core language in Fig 5. The
communication between processes is done via typed messages. Message payloads,
denoted M, are wrappers of primitive or composite type. We denote byM the set
of message types. Wrappers are used to distinguish payload types. Send instruc-
tions take as input an object of some payload type and the receivers identity
or ? corresponding to a send to all. Receives statements are non-blocking, and
return an object of payload type or NULL. Receive statements are parameterized
by conditions (i.e., pointers to function) on the values in the received messages
(e.g., timestamp). At most one message is received at a time. If no message has
been delivered or satisfies the condition, receive returns NULL. In Fig. 3, we give
the definition of the function eq, used to filter messages acknowledging the lead-
ership of a process. The followers use also geq that checks if the received message
is timestamped with a value higher or equal to the local time. We assume that
each loop contains at least one send or receive statement. The iterative sequen-
tial computations are done in local functions, i.e., f( #»e ). The instructions in()
and out() are used to communicate with an external environment.

The semantics of a protocol P is the asynchronous parallel composition of n
copies of the same code, one copy per process , where n is a parameter. Formally,
the state of a protocol P is a tuple 〈s,msg〉 where: s ∈ [P → (Vars∪{pc})→ D]
is a valuation in some data domain D of the variables in P, where pc is represents
the current control location, where Loc is the set of all protocol locations, and
msg ⊆

⋃
M∈M(P ×D(M)×P ) is the multiset of messages in transit (the network

may lose and reorder messages). Given a process p ∈ P , s(p) is the local state
of p, which is a valuation of p’s local variables, i.e., s(p) ∈ Varsp ∪ {pcp} → D.
The state of a crashed process is a wildcard state that matches any state. The
messages sent by a process are added to the global pool of messages msg, and
a receive statement removes a messages from the pool. The interface operations
in and out do not modify the local state of a process. An execution is an infinite
sequence s0 A0 s1 A1 . . . such that ∀i ≥ 0, si is a protocol state, Ai ∈ A is a
local statement, whose execution creates a transition of the form 〈s,msg〉 I,O−→
〈s′,msg′〉 where {I,O} are the observable events generated by the Ai (if any).
We denote by [[P]] the set of executions of the protocol P.
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3 Round-based model: mHO

Intra-procedural. mHO captures round-based distributed algorithms and is a re-
formulation of the model in [9]. All processes execute the same code and the
computation is structured in rounds. We denote by P the set of processes and
n = |P | is a parameter. The central concept is the HO-set, where HO(p, r) con-
tains the processes from which process p has heard of —has received messages
from— in round r; this models faults and timeouts.

protocol ::= interface var_decl∗ init phase
interface ::= in: () → type | out: type → ()

init ::= init: () → [P → Vars→ D]
phase ::= round+

roundM ::= SEND: [P → Vars] → [P ⇀ T]
UPDATE: [P ⇀ T]× [P → Vars]
→ [P → Vars]

Fig. 6: mHO syntax.

Syntax. An mHO protocol consists of
variable declarations, Vars is the set
of variables, an initialization method
init, and a non-empty sequence of
rounds, called phase; cf. Fig. 6. A
phase is a fixed-size array of rounds.
Each round has a send and update
method, parameterized by a type M

(denoted by roundM) which represents
the message payload. The method SEND has no side effects and returns the mes-
sages to be sent based on the local state of each sender; it returns a partial map
from receivers to payloads. The method UPDATE takes as input the received mes-
sages and updates the local state of a process. It may communicate with an exter-
nal client via in and out. For data computations, UPDATE uses iterative control
structures only indirectly via sequential functions, e.g., all_same(mbox, leader)
in Fig. 3, which checks whether the payloads of all messages in mbox are equal
to the local leader estimate.
Semantics. The set of executions of a mHO protocol is defined by the execution in
a loop, of SEND followed by UPDATE for each round in the phase array. The initial
configuration is defined by init. There are three predefined execution counters:
the phase number, which is increased after a phase has been executed, the step
number which tracks which mHO-round is executed in the current phase, and
the round number which counts the total number of rounds executed so far and
is defined by the phase times the length of the phase array, plus the step.

A protocol state is a tuple 〈SU, s, r,msg, P,HO〉 where: P is the set of pro-
cesses, SU ∈ {Send,Update} indicates the next transition, s ∈ [P → Vars →
D] stores the process local states, r ∈ N is the round number, msg ⊆ 2(P,D(M),P )

stores the in-transit messages, where M is the type of the message payload,
HO ∈ [P → 2P ] evaluates the HO-sets for the current round. After the ini-
tialization, an execution alternates Send and Update transitions. In the Send
transition, all processes send messages, which are added to a pool of messages
msg, without modifying the local states. The values of the HO sets are updated
non-deterministically to be a subset of P . A message is lost if the sender’s iden-
tity does not belong to the HO set of the receiver. In an Update transition,
UPDATE is applied at each process, taking as input the set of received messages
by that process in that round. If the processes communicate with an external
process, then UPDATE might produce observable events op. These events corre-
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spond to calls to in, which returns an input value, and out that sends the value
given as parameter to the client. At the end of the round, msg is purged and r
is incremented. Fig. 1(b) shows an execution of the mHO algorithm in Fig. 4.
Inter-procedural. The model introduced so far allows to express one protocol,
e.g., a leader election protocol (e.g., Fig. 4). However, realistic systems typically
combine several protocols, e.g., we can transform Fig. 4 into a replicated state
machine protocol, by allowing processes to enter an atomic broadcast protocol
in every ballot where a leader is elected successfully. Fig. 7 sketches such an
execution, where in the update of round AckBallot, a subprotocol is called; its
execution is sketched with thicker edges. In the subprotocol, the leader broad-
casts client requests in a loop until it loses its quorum. When a follower does
not receive a message from the leader, it considers the leader crashed, and the
control returns to the leader election protocol.

call protocol return from protocol

Ballot 2
Prepare 

 PrepareOK

Commit

 AckBallot 

NewBallot

Ballot 1

Fig. 7: Inter-procedural execution

An inter-procedural mHO protocol dif-
fers from an intra-procedural one only in
the UPDATE function: It may call another
protocol and block until the call returns.
An UPDATE may call at most one protocol
on each path in its control flow (a sequence
of calls can be implemented using multi-
ple rounds). Thus, an inter-procedural mHO
protocol is a collection of non-recursive mHO protocols, with a main protocol as
entry point. Different protocols exchange messages of different types.

4 Formalizing Communication Closure using Tags

We introduce synchronization tags which are program annotations that define
communication-closed rounds within an asynchronous protocol.

Definition 1 (Tag annotation). For a protocol P, a tag annotation is a tuple
(SyncV, tags, tagm,�,D) where:

– D = (D1, D2, . . . , D2m−1, D2m), with (Di,�i,⊥i) an ordered domain with
a minimal element, denoted ⊥i, for 1 ≤ i ≤ 2m. The cardinality of D2i is
bounded and all D2i are pairwise disjoint, for i ∈ [1,m].

– relation � is the lexicographical order: the ith component is ordered by �i,
– SyncV = (v1, v2, . . . , v2m−1, v2m) is a tuple of fresh variables,
– tags : Loc → [SyncV

inj
⇀ Vars] annotates each control location with a par-

tially defined injective function, that maps SyncV over protocol variables,
– tagm :M→ [SyncV

inj
⇀ Fields(M)] annotates each message type M ∈ M with

a partially defined injective function, that maps SyncV over the fields of M.

The evaluation of a tag over P’s semantics is denoted ([[tags]], [[tagm]]), where

– [[tags]] : Σ → [SyncV → D] is defined over the set of local process states
Σ =

⋃
s∈[[P]]

⋃
p∈P s(p), such that [[tags]]s = (d1, . . . , d|SyncV|) with di = [[x]]s
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if x = tags([[pc]]s)(vi) ∈ Vars otherwise di = ⊥i, where s ∈ Σ, x ∈ Vars, vi
is the ith component in SyncV, and pc is the program counter;

– [[tagm]] :
⋃

M∈MD(M)→ [SyncV→ D ∪⊥] is a function that for any message
value m = (m1, . . . ,mt), in the domain of some message type M, associates a
tuple [[tagm]]m:M = (d1, . . . , d|SyncV|) with di = mj if j = tagm(M)(vi) otherwise
di = ⊥i, where vi is the ith element in SyncV.

For every 1 ≤ i ≤ m, v2i−1 is called a phase tag and v2i is called step tag.
Given an execution π ∈ [[P]], a transition sAs′ in π is tagged by [[tagm]]m if

A is send(m) or m = recv(∗cond), or A is tagged by [[tags]]′s otherwise.

For Fig. 3, SyncV = (v1, v2), and tags matches v1 and v2 with ballot
and label, resp., at all control locations, i.e., a process is in step NewBallot

of phase 3, when ballot = 3 and label = NewBallot. For the type msg,
tagm matches the field ballot and lab with v1 and v2, resp., i.e., a message
(3, NewBallot, 5) is a phase 3 step NewBallot message. To capture that mes-
sages of type A are sent locally before messages of type B, the tagging function
tagm(B) should be defined on the same synchronization variables as tagm(A).

Definition 2 (Synchronization tag). Given a protocol P, an annotation tag
(SyncV, tags, tagm,D,�) is called synchronization tag iff:

(I.) for any local execution π = s0A0s1A1 . . . ∈ [[P]]p of a process p, the sequence
[[tags]]s0 [[tags]]s1 [[tags]]s2 . . . is a monotonically increasing w.r.t. �.
Moreover ∀j, j′ ∈ [1..m], j < j′. if [[tags]]

(2j−1,2j)
si 6= [[tags]]

(2j−1,2j)
si+1 and

[[tags]]
(2j′−1,2j′)
si 6= [[tags]]

(2j′−1,2j′)
si+1 then [[tags]]

(2j′−1,2j′)
si+1 = (⊥2j′−1,⊥2j′)

where [[tags]]
(2j−1,2j)
si is the projection of the tuple [[tags]]si on the 2j − 1

and 2j components,
(II.) for any local execution π ∈ [[P]]p, if s

send(m,_)
−→ s′ is a transition of π, with

m a message value, then [[tags]]s = [[tagm]]m and [[tags]]s = [[tags]]s′ ,
(III.) for any local execution π ∈ [[P]]p, if s

m=recv(cond)−−−−−−−−−→ sr is a transition of π,
with m a value of some message type, then
– if m 6= NULL then [[tags]]s � [[tagm]]m, [[tags]]s = [[tags]]sr, and
– if m = NULL then s = sr,

(IV.) for any local execution π ∈ [[P]]p, if s
stm−−→ s′ is a transition of π such that

– s 6= s′ and s |M,SyncV= s′ |M,SyncV, that is, s and s’ differ on the variables
that are neither of some message type nor in the image of tags,

– or stm is a send, break, continue, or out(),
then for all message type variables m in the protocol, [[tags]]s = [[tagm]]m,
where m is the value in the state s of m, and for any Mbox variables of type
set of messages, [[tags]]s = [[tagm]]m with m ∈ [[Mbox]]s,

(V.) for any local execution π ∈ [[P]]p, if s1
send(m,_)
−−−−−−−→ s2

stm+

→ s3
send(m′,_)
−−−−−−−→ s4

or s1
m=recv(∗cond)−−−−−−−−−−→ s2

stm+

→ s3
send(m′,_)
−−−−−−−→ s4 are sequences of transitions

in π, then [[tagm]]m ≺ [[tagm]]m′ , where stm is any statement except send or

recv. Moreover, if s1
m=recv(∗cond)−−−−−−−−−−→ s2

stm+

→ s3
m′=recv(∗cond′)−−−−−−−−−−−→ s4 in π, then

s2 |Vars\(M∪SyncV)= s3 |Vars\(M∪SyncV) or [[tags]]s2 ≺ [[tags]]s3 .
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A protocol P is communication-closed, if there exists a synchronization tag for P.

Condition (I.) states that SyncV is not decreased by any local statement (it is
a notion of time). Further, one synchronization pair is modified at a time, except
a reset (i.e., a pair is set to its minimal value) when the value of a preceding
pair is updated. Checking this, translates into checking a transition invariant,
stating that the value of the synchronization tuple SyncV is increased by any
assignment. To state this invariant we introduce “old synchronization variables”
that maintain the value of the synchronization variables before the update.

Condition (II.) states that any message sent is tagged with a timestamp that
equals the current local time. Checking it, reduces to an assert statement that
expresses that for every v ∈ SyncV, tagm(M)(v) = tags(pc)(v), where M is the
type of the message m which is sent, and pc is the program location of the send.

Condition (III.) states that any message received is tagged with a timestamp
greater than or equal to the current time of the process. To check it, we need
to consider the implementation of the functions passed as argument to a recv
statement. These functions (e.g., eq and geq in Fig. 3) implement the filtering
of the messages delivered by the network. We inline their code and prove Condi-
tion (III.) by comparing the tagged fields of message variables with the phase and
step variables. In Fig. 3, assert m→ bal == ballot && m→ lab == label

after recv(eq(ballot, label)) checks this condition on the leader’s branch.
Condition (IV.) states that if the local state of a process changes (except

changes of message type variables and synchronization variables), then all locally
stored messages are timestamped with the current local time. That is, future
messages cannot be “used” (no variable can be written, except message type
variables) before the phase and step tags are updated to match the highest
timestamp. To check it, we need to prove a stronger property than the one
for (III.). At each control location that writes to either variables of primitive or
composite type or mailbox variables, the values of the phase (and step) variables
must be equal to the phase (and step) tagged fields of all allocated message type
objects. In Fig. 3, the statement assert(equal(mbox, ballot, label)) checks
this condition on the leader’s branch. It is a separation logic formula that uses
the inductive list definition of mbox which includes the content of the mbox.

The first four conditions imply that there is a global notion of time in the
asynchronous protocol. However, this does not restrict the number of the mes-
sages exchanged between two processes with the same timestamp. mHO restricts
the message exchange: for every time value (corresponding to a mHO-round),
processes first send, then they receive messages, and then they perform a com-
putation without receiving or sending more messages before time is increased.
Condition (V.) ensures that the asynchronous protocol has this structure. We
do a syntactic check of the code to ensure the code meets these restrictions.

Intuitively, each pair of synchronization variables identifies uniquely a mHO-
protocol. To rewrite an asynchronous protocol into nested (inter-procedural)
mHO-protocols, the tag of the inner protocol should include the tag of the outer
one. The asynchronous code advances the time of one protocol at a time, that is,
modifies one synchronization pair at a time. The only exception is when inner
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protocols terminate: in this case, the time of the outer protocol is advanced,
while the time of the inner one is reset. Moreover, different protocols exchange
different message types. To be able to order the messages exchanged by an inner
protocol w.r.t. the messages exchanged by an outer protocol, the inner protocol
messages should be tagged also with the synchronization variables identifying the
outer one. This is actually happening in state machine replication algorithms,
where the ballot (or view number), which is the tag of the outer leader election
algorithm, tags also all the messages broadcast by the leader in the inner one.

5 Reducing asynchronous executions

We show that any execution of an asynchronous protocol that has a synchro-
nization tag can be reduced to an indistinguishable mHO execution.

Definition 3 (Indistinguishability). Given two executions π and π′ of a pro-
tocol P, we say a process p cannot distinguish locally between π and π′ w.r.t. a
set of variables W , denoted π 'W

p π′, if the projection of both executions on
the sequence of states of p, restricted to the variables in W , agree up to finite
stuttering, denoted, π�p,W≡ π′�p,W .

Two executions π and π′ are indistinguishable w.r.t. a set of variables W ,
denoted π 'W π′, iff no process can distinguish between them, i.e., ∀p. π 'W

p π′.

The reduction preserves so-called local properties [7], among which are con-
sensus and state machine replication.

Definition 4 (Local properties). A property φ is local if for any two execu-
tions a and b that are indistinguishable a |= φ iff b |= φ.

Theorem 1. If there exists a synchronization tag (SyncV, tags, tagm,D,�) for
P, then ∀ae ∈ [[P]] there exists an mHO-execution se that is indistinguishable
w.r.t. all variables except for M or Set(M) variables, therefore ae and se satisfy
the same local properties.

Proof sketch. There are two cases to consider. Case (1): every receive transition

s
m=recv(∗cond)−−−−−−−−−−→ sr in ae satisfies that [[tags]]sr = [[tagm]]m, i.e., all messages

received are timestamped with the current local tag of the receiver. We use
commutativity arguments to reorder transitions so that we obtain an indistin-
guishable asynchronous execution in which the transition tags are globally non-
decreasing: The interesting case is if a send comes before a lower tagged receive
in ae. Then the tags of the two transitions imply that the transitions concern
different messages so that swapping them cannot violate send/receive causality.

We exploit that in the protocols we consider, no correct process locally keeps
the tags unchanged forever (e.g., stays in a ballot forever) to arrive at an ex-
ecution where the subsequence of transitions with the same tag is finite. Still,
the resulting execution is not an mHO execution; e.g., for the same tag a re-
ceive may happen before a send on a different process. Condition (V.) ensures
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that mHO send-receive-update order is respected locally at each process. From
this, together with the observation that sends are left movers, and updates are
right movers, we obtain a global send-receive-update order which implies that
the resulting execution is a mHO execution.
Case (2): there is a transition s

m=recv(∗cond)−−−−−−−−−−→ sr in ae such that [[tags]]sr ≺
[[tagm]]m, that is, a process receives a message with tag k′, higher than its state
tag k. In mHO, a process only receives for its current round. To bring the asyn-
chronous execution in such a form, we use Condition (IV.) and mHO semantics,
where each process goes through all rounds. First, Condition (IV.) ensures that
the process must update the tag variables to k′ at some point t after receiving it,
if it wants to use the content of the message. It ensures that the process stutters
during the time instance between k and k′, w.r.t. the values of the variables
which are not of message type. That is, for the intermediate values of abstract
time, between k and k′, no messages are sent, received, and no computation is
performed. We split ae at point t and add empty send instructions, receive in-
structions, and instructions that increment the synchronization variables, until
the tag reaches k′. If we do this for each jump in ae, we arrive at an indistin-
guishable asynchronous execution that falls into the Case (1). �

6 Rewriting of Asynchronous to mHO

We introduce a rewriting algorithm that takes as input an asynchronous protocol
P annotated with a synchronization tag and produces a mHO protocol whose
executions are indistinguishable from the executions of P.
Message reception. mHO receives all messages of a round at once, while in the
asynchronous code, messages are received one by one. By Condition (V.), receive
steps that belong to the same round are separated only by instructions that store
the messages in the mailbox. We consider that message reception is implemented
in a simple while(true) loop (the most inner one); cf. filled boxes in Fig. 3.
Conditions (III.) and (IV.) ensure that all messages received in a loop belong to
one round (the current one or the one the code will jump to after exiting the
reception loop). Thus, we replace a reception loop by havoc and assume state-
ments that subsume the possible effects of the loop, satisfying all the conditions
regarding synchronization tags found in the original receive statements.
Rewriting to an intra-procedural mHO. When the synchronization tag is defined
over a pair of variables, the rewriting will produce an intra-procedural mHO
protocol. Recall that the values of synchronization variables incarnate the round
number, so that each update to a pair of synchronization variables marks the
beginning of a new mHO round. The difficulty is that different execution prefixes
may lead to the same values of the synchronization variables. To compute mHO-
rounds, the algorithm exploits the position of the updates to the synchronization
variables in the control flow graph (CFG). We consider different CFG patterns,
from the simplest to the most complicated one.
Case 1: If the CFG is like in Fig. 8(a), i.e., it consists of one loop, where the
phase tag ph is incremented once at the beginning of each loop iteration, and for
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ph++
st:=A

st:=B

(a)

ph++
st:=A

if(b)

st:=B st:=B

(b)

ph++

m=havoc()
ph:=m->ph
stm

(c)

ph++
if(jump==Start)

havoc(m)
stm

jump :=
Start

F

havoc(m)
stm

jump:=
End

T

(d)

Fig. 8: Control Flow graphs for rewriting.

every value of the step tag st there is exactly one assignment in the loop body
(the same on all paths). In this case, the phase tag takes the same values as the
loop iteration counter (maybe shifted with some initial value). Therefore, the
loop body defines the code of an mHO-phase. It is easy to structure it into two
mHO-rounds: the code of round A is the part of the CFG from the beginning of
the loop’s body up to the second assignment of the st variable, and round B is
the rest of the code up to the end of the loop body.

Case 2: The CFG is like in Fig. 8(b). It differs from Case 1 in that the same
value is assigned to st in different branches. Each of this assignments marks the
beginning of a mHO round B, which thus has multiple entry points. In mHO, a
round only has one entry point. To simulate the multiple entry points in mHO,
we store in auxiliary variables the values of the conditions along the paths that
led to the entry point. In the figure, the code of round A is given by the red box,
and the code of round B by the condition in the first blue box, expressed on the
auxiliary variable, followed by the respective branches in the blue box.

In our example in Fig. 3, the assignment label = AckBallot appears in the
leader and the follower branch. Followers send and receive AckBallot messages
only if they have received a NewBallot. The rewrite introduces old_mbox1 in the
mHO protocol in Fig. 4 to store this information. Also, we eliminate the variables
ballot and label; they are subsumed by the phase and round number of mHO.

Case 3: Let us assume that the CFG is like in Fig. 8(c). It differs from Case 1
because the phase tag ph is assigned twice. We rewrite it into asynchronous code
that falls into Case 1 or 2. The resulting CFG is sketched in Figure 8(d), with
only one assignment to ph at the beginning of the loop.

If the second assignment changes the value of ph, then there is a jump. In
case of a jump, the beginning of a new phase does not coincide with the first
instruction of the loop. Thus there might be multiple entry points for a phase. We
introduce (non-deterministic) branching in the control flow to capture different
entry points: In case there is no jump, the green followed by the purple edge are
executed within the same phase. In case of a jump, the rewritten code allows the
green and the purple paths to be executed in different phases; first the green,
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and then the purple in a later phase. We add empty loops to simulate the phases
that are jumped over. As a pure non-deterministic choice at the top of the loop
would be too imprecise, we use the variable jump to make sure that the purple
edge is executed only once prior to green edge. In case of multiple assignments,
we perform this transformation iteratively for each assignment.

The protocol in Fig. 4 is obtained using two optimizations of the previous
construction: First we do not need empty loops. They are subsumed by the mHO
semantics as all local state changes are caused by some message reception. Thus,
an empty loop is simulated by the execution of a phase with empty HO sets.
Second, instead of adding jump variables, we reuse the non-deterministic value of
mbox. This is possible as the jump is preconditioned by a cardinality constraint
on the mbox, and the green edge is empty (assignments to ballot and label

correspond to ph++ and reception loops have been reduced to havoc statements).
Nesting. Cases 1–3 capture loops without nesting. Nested loops are rewritten
into inter-procedural mHO protocols, using the structure of the tag annotations
from Sect. 4. Each loop is rewritten into one protocol, starting with the most
inner loop using the procedure above. For each outer loop, it first replaces the
nested loop with a call to the computed mHO protocol, and then applies the same
rewriting procedure. Interpreting each loop as a protocol is pessimistic, and our
rewriting may generate deeper nesting than necessary. Inner loops appearing on
different branches may belong to the same sub-protocol, so that these different
loops exchange messages. If tags associates different synchronization variables
to different loops then the rewriting builds one (sub-)protocol for each loop.
Otherwise, the rewriting merges the loops into one mHO protocol. To soundly
merge several loops into the same mHO protocol, the rewrite algorithm identifies
the context in which the inner loop is executed.

Theorem 2. Given an asynchronous protocol P annotated with a synchroniza-
tion tag (SyncV, tags, tagm,D,�), the rewriting returns an inter-procedural mHO
protocol PmHO whose executions are indistinguishable from the executions of P.

7 Experimental results

We implemented the rewriting procedure in a prototype tool ATHOS (https:
//github.com/alexandrumc/async-to-sync-translation).We applied it to
several fault-tolerant distributed protocols. Fig. 9 summarizes our results.
Verification of synchronization tags. The tool takes protocols in a C embedding
of the language from Sec. 2 as input. We use a C embedding to be able to
use Verifast [22] for checking the conditions in Sec. 4, i.e., the communication
closure of an asynchronous protocol. Verifast is a deductive verification tool
based on separation logic for sequential programs. Therefore, communication
closure is specified in separation logic in our tool. To reason about sending and
receiving messages, we inline every recv(∗cond) and use predefined specifications
for send and recv. We consider only the prototype and the specification of these
functions.

https://github.com/alexandrumc/async-to-sync-translation
https://github.com/alexandrumc/async-to-sync-translation
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Protocol Tags Async +CC Sync
Consensus
[6, Fig.6]

ph = rp
st= {Phase1, Phase2, Phase3, Phase4} 332 661 251

Two phase commit ph = i,
st= {Query, Vote, Commit, Ack} 342 596 242

Figure 3∗,V ph = ballot,
st = {NewBallot, AckBallot} 255 576 110

ViewChange∗ [34]
ph1 = view,
st1 = {StartViewChange,

DoViewChange, StartView}
352 720 172

Normal-OpV [34] ph = op_number
st = {Prepare, PrepareOK, Commit} 266 628 182

Multi-Paxos∗,V [25]

ph1 = ballot,
st1 = {NewBallot, AckBallot, NewLog}
ph2 = op_number,
st2 = {Prepare, PrepareOK, Commit}

1646 621 405

Fig. 9: Benchmarks. The superscript * identifies protocols that jump over phases.
The superscript V marks protocols whose synchronous counterpart we verified.

The user specifies in a configuration file the synchronization tag by (i) defin-
ing the number of (nested) protocols, (ii) for each protocol, the phase and step
variables, and (iii) for each messages type the fields that encode the timestamp,
i.e., the phase and step number. Fig. 9 gives the names of phase and step vari-
ables of our benchmarks. For now, we manually insert the specification to be
proven, i.e., the assert statements that capture Conditions (I.) to (V.) in Sec-
tion 4. In Fig. 9, column Async gives the size in LoC of the input asynchronous
protocol, +CC gives the size in LoC of the input annotated with the checks for
communication closure (Conditions (I.) to (V.)) and their proofs.

Benchmarks. Our tool has rewritten several challenging benchmarks: the algo-
rithm from [6, Fig. 6] solves consensus using a failure detector. The algorithm
jumps to a specific decision round, if a special decision message is received. Multi-
Paxos is the Paxos algorithm from [25] over sequences, without fast paths, where
the classic path is repeated as long as the leader is stable. Roughly, it does a
leader election similar to our running example (NewBallot is Phase1a), except
that the last all-to-all round is replaced by one back-and-forth communication
between the leader and its quorum: the leader receives n/2 acknowledgments that
contain also the log of its followers (Phase1b). The leader computes the maximal
log and sends it to all (Phase1aStart). In a subprotocol, a stable leader accepts
client requests, and broadcasts them one by one to its followers. The broadcast
is implemented by three rounds, Phase2aClassic, Phase2bClassic, Learn, and is
repeated as long as the leader is stable. ViewChange is a leader election algo-
rithm similar to the one in ViewStamped [34]. Normal-Op is the subprotocol
used in ViewStamped to implement the broadcasting of new commands by a
stable leader. The last column of Fig. 9 gives the size of the mHO protocol com-



16 A. Damian, et al.

puted by the rewriting. The implementation uses pycparser [3], to obtain the
abstract syntax tree of the input protocol.
Verification.We verified the safety specification (agreement) of the mHO counter-
parts of the running example (Fig. 3), Normal-Op, and Multi-Paxos, by deduc-
tive verification: We encoded the specification of these algorithms, i.e., atomic
broadcast, consensus, leader election, and the transition relation in Consensus
Logic CL [13]. CL is a specification logic that allows us to express global prop-
erties of synchronous systems, and it contains expressions for processes, val-
ues, sets, cardinalities, and set comprehension. The verification conditions are
soundly discarded by using an SMT solver. We used Z3 [33] in our experiments.

For Multi-Paxos we did a modular proof. First we prove the correctness
of the sub-protocol Normal-Op which implements a loop of atomic broadcasts
(executed in case of a stable leader). Then we prove the leader election outer
loop correct, by replacing the subprotocol Normal-Op with its specification.

8 Related Work and Conclusions

Verification of asynchronous protocols received a lot of attention in the past
years. Mechanized verification techniques like IronFleet [21] and Verdi [41] were
the first to address verification of state machine replication. Later, Disel [38]
proposes a logic to make the reasoning less protocol-specific, with the tradeoff
of proofs that use the entire message history. At the other end of the spectrum,
model checking based techniques [23,4,24,2,20] are fully automated but more
restricted regarding the protocols they apply to. In between, semi-automated
verification techniques based on deductive verification like natural proofs [12],
Ivy [36], and PSync [14] try to minimize the user input for similar benchmarks.

We propose a technique that reduces the verification of an asynchronous pro-
tocol to a synchronous one, which simplifies the verification task no matter which
method is chosen. We verified the resulting synchronous protocols with deduc-
tive verification based on [14]. Our technique uses the notion of communication
closure [17], which we believe is the essence of any explicit or implicit synchrony
in the system. We formalized a more general notion of communication closure
that allows jumping over rounds, which is a catch-up mechanism essential to re-
synchronize and ensure liveness. Previous reduction techniques focus on shared
memory systems [27,16], in contrast we focus on message passing concurrency.

The closest approaches are the results in [4], [24] and [2,20], which also explore
the synchrony of the system. Compared to these approaches, our technique allows
more general behaviors, e.g., reasoning about stable leaders is possible because
communication closure includes (for the first time) unbounded jumps. Also, we
reduce to a stronger synchronous model, a round-based one instead of a peer to
peer one, where interleavings w.r.t. actions of other rounds are removed.

As future work, we will address the relation between communication closure
and specific network assumptions, e.g., FIFO channels, and a current limita-
tion of communication closure which is reacting on messages from the past. For
instance, recovery protocols react to such messages.
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