
Robust Sparsification for Matroid Intersection with
Applications

Chien-Chung Huang
CNRS, DI ENS, École normale supérieure, Université PSL, Paris, France

François Sellier
DI ENS, École normale supérieure, Université PSL, Paris, France

Université Paris Cité, CNRS, IRIF, Paris, France
Mines Paris, Université PSL, Paris, France

Abstract

Matroid intersection is a classical optimization problem where, given two matroids over the same
ground set, the goal is to find the largest common independent set. In this paper, we show that
there exists a certain “sparsifer”: a subset of elements, of size O(|Sopt| · 1/ε), where Sopt denotes the
optimal solution, that is guaranteed to contain a 3/2 + ε approximation, while guaranteeing certain
robustness properties. We call such a small subset a Density Constrained Subset (DCS), which is
inspired by the Edge-Degree Constrained Subgraph (EDCS) [Bernstein and Stein, 2015], originally
designed for the maximum cardinality matching problem in a graph. Our proof is constructive and
hinges on a greedy decomposition of matroids, which we call the density-based decomposition. We
show that this sparsifier has certain robustness properties that can be used in one-way communication
and random-order streaming models.

Specifically, we use the DCS to design a one-way communication protocol for matroid intersection
and obtain a 3/2 + ε approximation, using a message of size O(|Sopt| · 1/ε). This matches the best
achievable ratio for the one-way communication bipartite matching [Goel, Kapralov, and Khanna,
2012].

Moreover, the DCS can be used to design a streaming algorithm in the random-order streaming
model requiring the space of O(|Sopt| · poly(log(n), 1/ε)), where n is the size of the stream (the ground
set of the matroids). Our algorithm guarantees a 3/2+ε approximation in expectation and, when the
size of Sopt is not too small, with high probability. Prior to our work, the best approximation ratio
of a streaming algorithm in the random-order streaming model was an expected 2− δ for some small
constant δ > 0 [Guruganesh and Singla, 2017].

1 Introduction
The matroid intersection problem is a fundamental problem in combinatorial optimization. In this prob-
lem we are given two matroids M1 = (V, I1) and M2 = (V, I2), and the goal is to find the largest
common independent set in both matroids, i.e., argmaxS∈I1∩I2

|S|. This problem was introduced and
solved by Edmonds [Edm70, Edm71, Edm79] in the 70s. The importance of matroid intersection stems
from the large variety of combinatorial optimization problems it captures; well-known examples in com-
puter science include bipartite matching and packing of spanning trees/arborescences.

In this paper we introduce a “sparsifer” for the matroid intersection problem and use it to design
algorithms for two problems closely related to streaming: a one-way communication protocol and a
streaming algorithm in the random-order streaming model.

Structural Result for a Matroid Intersection Sparsifier Our starting point is the maximum
matching problem. To deal with massive graphs, a common tool is sparsification, i.e., the extraction

1

of a subgraph having fewer edges but preserving some desired property. Various graph sparsifiers have
been introduced to maintain a large matching, e.g., see [BS15, BHI18, RSW22, GP13] and the references
therein. The particular sparsifier that has inspired our work is the Edge-Degree Constrained Subgraph
(EDCS) introduced by Bernstein and Stein [BS15].

Definition 1 (from [BS15]). Let G = (V,E) be a graph, and H a subgraph of G. Given any integer
parameters β ≥ 2 and β− ≤ β − 1, we say that a subgraph H = (V,EH) is a (β, β−)-EDCS of G if H
satisfies the following properties (for v ∈ V , degH(v) denotes the degree of v in H):

(i) For any edge (u, v) ∈ H, degH(u) + degH(v) ≤ β;

(ii) For any edge (u, v) ∈ G\H, degH(u) + degH(v) ≥ β−.

The size of an EDCS is easily controlled by the parameter β as it is O(β · |MG|), where MG is
the maximum matching. The key property of EDCSes is that, by choosing some β and β− in the
order of O(poly(1/ε)), an EDCS is guaranteed to contain a 3/2 + ε approximation of the maximum
matching [AB19, BS16]. As a result, EDCSes have been used to approximate maximum matching in
the dynamic, random-order streaming, communication, and sublinear settings with success, for instance
see [AB23, BK22, BKS23, BRR23, Ber20, BS15, BS16, GSSU22, Kis22].

As bipartite graph matching is a special case of matroid intersection, the special case when both
matroids are partition matroids, one is naturally prompted to ask: is there an analogue of EDCS for
general matroid intersection? However, even very slight generalizations of partition matroids, such as
laminar matroids (i.e., adding nested cardinality constraints on groups of vertices on each side of the
bipartite graph), it is already unclear how to properly define the equivalent of EDCSes. In fact, to the
best of our knowledge, in this setting of laminar matroids, nothing is known about getting approxima-
tion ratios comparable to those for simple matching in random streams [Ber20] or in communication
complexity [AB19].

To properly generalize EDCS, the first question would be: what could be the equivalent of a vertex
degree in a graph, in the context of a matroid? To answer this question, we make use of the notion
of density of a subset in a matroid and introduce the density-based decomposition.1 In the following
discussion, we assume that readers are familiar with matroids. All the formal definitions can be found in
Section 2.

Definition 2. Let M = (V, I) be a matroid. The density of a subset U ⊆ V in M is defined as

ρM(U) =
|U |

rankM(U)
.

By convention, the density of an empty set is 0, and the density of a non-empty set of rank 0 is +∞.

We now explain, at a high level, how densities are used. Let V ′ ⊆ V be a subset of elements (V ′ is
meant to be our “sparsifier”) and consider the matroidM′, which is the original matroidM restricted to
V ′. Then we apply the following greedy procedure: find the densest set U1 ⊆ V ′ and then contract M′

by U1; next find the densest set U2 ⊆ V ′\U1 in the contracted matroidM′/U1 and again contractM′/U1

by U2, and so on (for more details about this method and the contraction of a matroid, we refer the
reader to Section 2). This greedy procedure induces a density-based decomposition of V ′ = U1 ∪ · · · ∪Uk,
where k is the rank of the original matroidM (note that some of the last Uis could be empty; to give a
better intuition about this decomposition an example is provided in Figure 2). As a result, each element
of V ′ can be assigned a density based on this decomposition, namely, the density of the set Ui where it
appears in, computed with respect to the contracted matroid that was used for the construction of that
Ui. Each element v ∈ V \V ′ can also be assigned a density, namely, the density of the elements in the
first set Ui such that v is spanned by U1 ∪ · · · ∪ Ui in the matroidM.

Therefore using this notion of density-based decomposition of V ′ in the restricted matroidM′ we can
define for every element v ∈ V an associated density ρ̃M(v) with respect to V ′ (a formal definition is

1This decomposition is closely related to the notion of principal sequence [Fuj08]; this aspect will be discussed later.

2

provided in Definition 19). This associated density plays the role analogous to the vertex degree in a
graph. With the associated densities of the elements, we can define a Density-Constrained Subset (DCS)
for matroid intersection:

Definition 3. LetM1 = (V, I1) andM2 = (V, I2) be two matroids. Let β, β− be two integers such that
β ≥ β− + 7. A subset V ′ ⊆ V is called a (β, β−)-DCS if it satisfies the following properties:

(i) For any v ∈ V ′, ρ̃M1
(v) + ρ̃M2

(v) ≤ β;

(ii) For any v ∈ V \V ′, ρ̃M1(v) + ρ̃M2(v) ≥ β−.

By a constructive proof, we show that such (β, β−)-DCSes always exist (Theorem 23). This proof is
based on a local search argument similar to that of [AB19] but here it requires to understand how the
density-based decomposition of V ′ is affected when an element is added or removed from V ′ — hence
we need the two important “modification lemmas”, namely, Lemmas 20 and 21. We also prove that
DCSes are compact, in the sense that their size is up to β times the cardinality of the optimal solution
(Proposition 22). Moreover, DCSes always contain a good approximation of the optimal solution:

Theorem 4. Let ε > 0. For integers β, β− such that β ≥ β− + 7 and (β− − 4) · (1 + ε) ≥ β, any
(β, β−)-DCS V ′ contains a 3/2 + ε approximation of the maximum cardinality common independent set.

Theorem 4 can be compared to the result for EDCSes in bipartite graphs:

Theorem 5 (from [AB19]). Let ε > 0. For integers β, β− such that β ≥ β− +1 and β− ≥ β · (1− ε/4),
any (β, β−)-EDCS H of a bipartite graph G contains a 3/2+ε approximation of the maximum matching.

The proof of Theorem 4 is the most crucial part of our work. In the following we briefly discuss our
methodology and highlight the important ideas in our proof.

Many algorithms for optimization problems are analyzed based on primal-duality of linear programs.
Even though the convex hull of common independent sets can be described by a linear program [Sch03], we
choose not to use its dual program. Instead we use the simpler mini-max theorem of Edmonds [Edm70].

Theorem 6 (Matroid intersection theorem [Edm70]). Given two matroids M1 = (V, I1) and M2 =
(V, I2), the maximum size of a set in I1 ∩ I2 is

min
U⊆V

(rankM1
(U) + rankM2

(V \U)).

The minimizers U and V \U in the formula will serve as the “dual” to bound the size of the optimal
solution. In particular, in our proof, we consider the two matroids M′

1 and M′
2 derived from original

matroids M1 and M2 restricted to V ′. Edmonds’ theorem states that we can find C1 and C2 such that
C1 ∪C2 = V ′, C1 ∩C2 = ∅, and rankM′

1
(C1)+ rankM′

2
(C2) is equal to the size of the maximum common

independent set in V ′, denoted as µ(V ′). The question then boils down to compare the size of an optimal
solution with rankM′

1
(C1) + rankM′

2
(C2).

To achieve this, we will use a certain greedy procedure to choose a subset S of the optimal solution so
that in the contracted matroidsM1/S andM2/S, all the remaining elements of the optimal solution not
in S are spanned in at least one of these contracted matroids (either by C1 inM1/S or by C2 inM2/S).
As these elements are of size at most rankM1/S(C1)+rankM2/S(C2) ≤ rankM′

1
(C1)+rankM′

2
(C2) = µ(V ′)

(by Edmonds’ theorem), we just need to bound the size of S. We will use a strategy to bound the size of S
by (1/2+ε) · (rankM′

1
(C1)+rankM′

2
(C2)). That part of the proof hinges on the construction of well-chosen

subsets of C1 and C2 (see Lemmas 24 and 25), and on the properties of the density-based decomposition.
In fact, in the case of graph matching (two partition matroids), the proof for EDCSes can be done by
an edge counting argument [AB19], whereas here we need a more sophisticated proof strategy— how the
density decomposition is useful and exploited is fully displayed in the proofs of Lemmas 24 and 25.

Remark 7. When the two matroids are partition matroids of the same rank, the definition of associated
density for an element matches the notion of degree for the endpoint of an edge: hence in that case our
DCS definition corresponds to that of EDCS in a bipartite graph.

3

Application to One-Way Communication We consider the following one-way communication prob-
lem [Kus97]: Alice is given some part VA of the common ground set V , while Bob holds the other part
VB . The goal for Alice is to send a single message to Bob so that Bob outputs an approximate maximum
common independent set. If Alice sends her whole ground set VA to Bob, then the latter will be able to
recover the exact solution. However in this game, we assume that communication is costly, so we would
like to do as best as possible while restricting ourselves to use a message of size O(µ(V)), where µ(V)
denotes the size of the optimal solution. For instance, if Alice sends only a maximum intersection in VA

then Bob is able to complete it to make it a maximal set (a set such as no element can be added to it
without creating a circuit in one of the two matroids), and we then obtain a 2 approximation protocol.
The interest in studying one-way communication problems lies in their connection with the single-pass
streaming model [GKK12] and other computational models, as they, in a certain way, capture the essence
of trade-offs regarding message sizes.

Our problem is a natural generalization of the one-way communication problem for matchings, which
has been studied in [AB19, GKK12]: the edges of the graph are splitted by some adversary between
Alice and Bob, and Alice has to send a small message to Bob so he can recover some good matching.
In particular, when both matroids are partition matroids, our problem is equivalent to the one-way
communication in a bipartite graph. Protocols have been provided for the one-way communication
matching problem to get a 3/2 approximation, see [AB19, GKK12]. Moreover, we know that for bipartite
graphs with k vertices on each side, any protocol providing an approximation guarantee better than 3/2
requires a message of size at least k1+Ω(1/ log log k) [GKK12]. Therefore in our general case of matroid
intersection one cannot expect to beat the 3/2 approximation ratio using a message of size O(µ(V)).

Assadi and Bernstein [AB19] used the EDCS sparsifier to get the optimal 3/2 approximation ratio. In
Section 4 we show that our DCS sparsifier has the same robustness property: if Alice builds some DCS
and sends it to Bob, Bob will be able to get an approximate solution with a ratio close to 3/2. Proving
this requires only a slight adaptation of the proof of Theorem 4.

Theorem 8. There exists a one-way communication protocol that, given any ε > 0, computes a 3/2 + ε
approximation to maximum matroid intersection using a message of size O(µ(V)/ε) from Alice to Bob,
where µ(V) denotes the size of the optimal solution of the matroid intersection problem.

Hence our result closes the gap between matching and matroid intersection, and matches the 3/2
bound for bipartite matching. It shows that matroid intersection and matching problems have similar
one-way communication limitations, despite the more complex structure of matroids.

Application to Random-Order Streams The streaming model of computation [FKM+05] has been
motivated by the recent rise of massive datasets, where we cannot afford to store the entire input in
memory. Given that the ground set is made of |V | = n elements, in the streaming model V is presented
to the algorithm as a stream of elements v1, . . . , vn. The algorithm is allowed to make a single pass over
that stream and, ideally, uses a memory roughly proportional to the output size (up to a poly-logarithmic
factor): therefore the main challenge in this model is that we have to discard many elements through the
execution of the algorithm.

We note that, in the most general model where an adversary decides the order of the elements, it has
been a long-standing open question whether the maximum matching in bipartite graphs (a very simple
case of matroid intersection) can be approximated within a factor better than 2, i.e., the ratio achievable
by the simple greedy algorithm.

Our focus here is on the random-order streaming model, where the permutation of the elements of V
in the stream is chosen uniformly at random. This is a natural assumption as real-world data has little
reason of being ordered in an adversarial way (even though the distribution may not be entirely random
either). In fact, as mentioned in [KMM12], the random-order streaming model might better explain why
certain algorithms perform better in practice than their theoretical bounds under an adversary model.
It is noteworthy that under the random-order streaming model, for the maximum matching, quite a few
recent papers have shown that the approximation factor of 2 can be beaten [KMM12, GKMS19, Kon18,
FHM+20, Ber20, HS22]. In addition, in the adversary model, Kapralov [Kap21] shows that to get an
approximation factor better than 1+ln 2 ≈ 1.69, one needs k1+Ω(1/ log log k) space, even in bipartite graphs

4

(here k denotes the number of vertices on each side). The paper of Bernstein [Ber20] proves that it is
possible to beat this adversarial-order lower bound in the random-order model, by achieving a 3/2 + ε
approximation while using only O(k · poly(log(k), 1/ε)) space, thus demonstrating a separation between
the adversary model and the random-order model.

For our main topic, matroid intersection, a simple greedy algorithm gives again an approximation
ratio of 2. Guruganesh and Singla [GS17] have shown that it is possible to obtain the factor of 2− δ in
expectation, for some small δ > 0.2 We show that this factor can be significantly improved. In fact, in
Section 5, we use our DCS construction in the context of random-order streams to design an algorithm.
The framework developed in Section 5 is a slight modification of that of [Ber20, HS22].

Theorem 9. Let 1/4 > ε > 0. One can extract from a randomly-ordered stream of elements a com-
mon independent subset in two matroids with an approximation ratio of 3/2 + ε in expectation, using
O(µ(V) · log(n) · log(k) · (1/ε)3) memory, where µ(V) denotes the size of the optimal solution, and k is
the smaller rank of the two given matroids. Moreover the approximation ratio is worse than 3/2+ ε only
with probability at most exp(−1/32 · ε2 ·µ(V)) + n−3.

Thus, not only do we improve upon the factor 2−δ [GS17], but also we demonstrate that it is possible
to beat the adversarial-order lower bound of 1+ln 2 ≈ 1.69 of [Kap21] for the matroid intersection problem
as well in the random order model (assuming that n is polynomial in k).

Remark 10. When the size the the optimal solution µ(V) is Ω(log(n)/ε2), we obtain a good approxima-
tion ratio with high probability, as the probability of failure will be n−O(1) (and n is assumed to be very big
as we are in the streaming setting). Unlike in [Ber20, HS22], we cannot guarantee with high probability
a good approximation ratio when the solution is small: in fact, when a matching is relatively small we
can prove that the graph has a limited number of edges (so we can afford to store all of them), but for
the matroid intersection problem, a small maximum intersection of two matroids does not imply that the
ground set is small as well.

Density-Based Decomposition and Principal Partitions The notion of densest subsets and
density-based decompositions is closely related to the theory of principal partitions. The latter indeed
comes from a long line of research in various domains, ranging from graphs, matrices, matroids, to
submodular systems. We refer to readers to a survey of Fujishige [Fuj08]. Below we give a quick outline.

Let V ′ be the ground set of a matroid M. By the theory of principal partitions, there exist a
sequence of nested sets, called principal sequence, F1 ⊂ F2 ⊂ · · · ⊂ Fk = V ′, and a sequence of critical
values λ1 > λ2 > · · · > λk, so that the matroid obtained by contracting Fi−1 and restricted to Fi, is
“uniformly dense” (i.e, no set has a larger density than the ground set itself), with density λi. In our
context, recall that V ′ is decomposed into U1, U2, . . . , Uk by a greedy procedure. Then it can be seen that
F1 = U1, F2 = U1 ∪ U2, . . . , Fk = U1 ∪ · · · ∪ Uk. In this sense, our density-based decomposition can be
regarded as a rewriting of the principal sequence, and some basic results stated in Section 2 are already
known in the context of principal partitions. However, we adopt this term and this way of decomposing
the elements to better emphasize the “greedy” nature of our approach and to facilitate our presentation.

The most important consequence of the theory of principal partitions for us is that the densest sets
U1, . . . , Uk in our greedy procedure can be computed in polynomial time by using submodular function
minimization [Fuj08]. We briefly explain how it can be done. For any density ρ, we can find in polynomial
time the largest set Uρ minimizing the submodular function fρ(U) = ρ · rankM(U)−|U | (e.g., see [Sch03]).
Hence we can find the largest density ρ∗ and the associated largest densest subset in polynomial time
using binary search: for some value ρ, if Uρ = ∅ then it means that ρ∗ < ρ, and if Uρ ̸= ∅ it means that
ρ∗ ≥ ρ. The exact value of ρ∗ can be found as densities can only be rational numbers with denominators
bounded by the rank k of the matroid. For the largest densest subset Uρ∗ , we have fρ∗(Uρ∗) = 0, and
when ρ < ρ∗ we have fρ(Uρ) ≤ fρ(Uρ∗) < 0.

Although the above procedure can be costly in running time, for some simple matroids that may be of
more practical importance, such as laminar or transversal matroids, it should be possible to compute the

2It should be emphasized that Guruganesh and Singla consider the more stringent “online” model.

5

density-based decomposition faster, because of their particular structures. Moreover, in our algorithms,
as we frequently update the ground set on which we compute the decomposition by adding or removing
one element, there may be room to improve our time complexity: we leave as an open question whether
updating a density-based decomposition when performing these kinds of operations can be done more
efficiently, without re-computing the whole decomposition each time.

Analysing more carefully how the density-based decomposition and the DCS could be updated effi-
ciently may also lead to an application of DCSes to dynamic matroid intersection (note that the EDCS
was originally proposed for dynamic graph matching [BS15]). In that setting, elements are added into
or removed from the ground set and the objective is to maintain an approximate maximum matroid
intersection, while guaranteeing a small update time.

Related Work Matroid intersection is an ubiquitous subject in theoretical computer science. We refer
the reader to the comprehensive book of Schrijver [Sch03]. Although in the traditional offline setting
we know since the 70s that the problem can be solved in polynomial time [Edm70, Edm71, Edm79],
improving the running time of matroid intersection is still a very active area [BMNT23, Bli21, CLS+19].

The importance of matroid intersection comes from the large variety of combinatorial optimization
problems it captures, the most well-known being bipartite matching and packing of spanning trees/ar-
borescences. Moreover, other applications can be found in electric circuit theory [Mur99, Rec89], rigidity
theory [Rec89], and network coding [DFZ11]. In general, matroids generalize numerous combinatorial
constraints; as a result matroid intersection can appear in very diverse contexts. For instance, a recent
trend in machine learning is the “fairness” constraints (e.g., see [CKLV19] and references therein), which
can be encoded by partition or laminar matroids (for nested constraints). Machine scheduling constraints
is another example of matroid application, in that case using transversal matroids, see [GT84, XG94].

For the one-way communication problem [Kus97], the case of maximum matching has been studied
in [AB19, GKK12], for which a 3/2 + ε approximation is obtained. We are not aware of any previous
result for the matroid intersection problem in that model. In general, one-way communication is often
used to get a better understanding of streaming problems, see [FNSZ20, GKK12].

In the adversarial streaming, the trivial greedy algorithm building a maximal independent set (an
independent set that cannot be extended) achieves a 2 approximation [CCPV07, Mes06]. Improving that
approximation ratio is a major open question in the field of streaming algorithms, even for the simple
case of bipartite matching (an intersection of two partition matroids). On the hardness side, we know
that an approximation ratio better than 1 + ln 2 ≈ 1.69 cannot be achieved [Kap21] (previously, an
inapproximability of 1 + 1/(e − 1) ≈ 1.58 had been established in [Kap13]) for the maximum bipartite
matching — hence for the matroid intersection as well. Note that matroid intersection has been studied
in the streaming setting under the adversarial model (in the more general case of weighted/submodular
optimisation), for instance see [CGQ15, FKK18, GJS21].

In comparison with the adversarial model, for the random-order streaming, Guruganesh and Singla
have obtained a 2 − δ approximation ratio (for some small δ > 0) for matroid intersection [GS17]. To
our knowledge, it is the only result beating the factor of 2 for the general matroid intersection problem.
In the maximum matching problem (not necessarily in bipartite graphs), a pioneering result was first
obtained by Konrad, Magniez, and Mathieu [KMM12] with an approximation ratio strictly below 2 for
simple matchings. The approximation ratio was later improved in a sequence of papers [GKMS19, Kon18,
FHM+20, Ber20]. Currently the best result for matchings is due to Assadi and Behnezhad [AB21], who
obtained the ratio of 3/2− δ for some small constant δ ∼ 10−14.

2 Density-Based Decomposition
Let M = (V, I) be a matroid on the ground set V . Recall that a pair M = (V, I) is a matroid if the
following three conditions hold: (1) ∅ ∈ I, (2) if X ⊆ Y ∈ I, then X ∈ I, and (3) if X,Y ∈ I, |Y | > |X|,
there exists an element e ∈ Y \X such that X ∪ {e} ∈ I. The sets in I ⊆ P(V) are the independent sets.
The rank of a subset X ⊆ V is rankM(X) = maxY⊆X,Y ∈I |Y |. The rank of a matroid is rankM(V).
Observe that this notion generalizes that of linear independence in vector spaces.

6

A subset C ⊆ V is a circuit if C is a minimal non-independent set, i.e., for every v ∈ C, C\{v} ∈ I. We
will assume that no element in V is a circuit by itself (called “loop” in the literature) throughout the paper.
The span of a subset X ⊆ V in the matroid M is defined as spanM(X) = {x ∈ V, rankM(X ∪ {x}) =
rankM(X)}, these elements are called spanned by X in M. For more details about matroids, we refer
the reader to [Sch03].

The restriction and contraction of a matroid results in another matroid.

Definition 11 (Restriction). Let M = (V, I) be a matroid, and let V ′ ⊆ V be a subset. Then we define
the restriction of M to V ′ as M′ =M|V ′ = (V ′, I ′) where I ′ = {S ⊆ V ′ : S ∈ I}.

Definition 12 (Contraction). Let M = (V, I) be a matroid, and let U ⊆ V . Then we define the
contracted matroid M/U = (V \U, IU) taking an arbitrary base BU of U and setting IU = {S ⊆ V \U :
S ∪ BU ∈ I}.

It is well-known that any choice of BU produces the same IU , as a result the definition of contraction
is unambiguous. The following proposition comes directly from the definition.

Proposition 13. Let M = (V, I) be a matroid and let A ⊆ B ⊆ V . Then we have rankM/A(B\A) =
rankM(B)− rankM(A).

Here we recall the definition of density that we will use in the following.

Definition 2. Let M = (V, I) be a matroid. The density of a subset U ⊆ V in M is defined as

ρM(U) =
|U |

rankM(U)
.

By convention, the density of an empty set is 0, and the density of a non-empty set of rank 0 is +∞.

The following proposition, which we will use frequently, states how the density is changed after a
matroid is contracted.

Proposition 14. Let M = (V, I) be a matroid. If A ⊆ B ⊆ V and U ⊆ V \B we have the following
inequality:

ρM/A(U) ≤ ρM/B(U),

assuming that ρM/A(U) < +∞.

Proof. In fact, rankM/A(U) ≥ rankM/B(U), while the cardinality |U | remains obviously the same.

The notions of density and matroid contraction allow to define the density-based decomposition
U1, . . . , Uk of a subset V ′ ⊆ V as follows. First, consider the matroidM′ defined as matroidM = (V, I)
restricted to the subset V ′ ⊆ V . Then select from V ′ the set U1 of largest density inM′ (in case several
sets have the same largest density, choose the one with the largest cardinality). Then again choose the
set U2 of largest density (again choose the one with the largest cardinality) in M′/U1 and so on (see a
formal description in Algorithm 1). As the rank of the matroid is k, after at most k steps in the loop the
set
⋃k

i=1 Ui is equal to V ′. Observe that some latter sets of the decomposition may be empty. Moreover,
this decomposition is unique as the choice of maximum cardinality densest subset at each step is unique
(see Proposition 16). We note that as we assume that no element is a circuit by itself, our construction
guarantees that no set Ui has infinite density.

Algorithm 1 Algorithm for building a density-based decomposition of a set V ′ in M′ = (V ′, I ′)
1: ∀ 1 ≤ i ≤ k, Ui ← ∅
2: for j = 1 . . . k do
3: Uj ← the densest subset of largest cardinality in M′/(

⋃j−1
i=1 Ui)

To give some intuition about this decomposition, we provide an example for a laminar matroid, that
is represented in Figure 1 and decomposed in Figure 2.

7

v1 · · · v10 v11 · · · v14 v15 v16 v17

≤ 2

≤ 3 ≤ 1

≤ 4

Figure 1: Representation of a laminar matroid M = (V, I) on a ground set V = {v1, . . . , v17}. The
leaves represent elements of the ground set, and the inner nodes represent cardinality constraints on the
elements in their associated subtree (e.g., if S ∈ I, then |S ∩ {v1, . . . , v14}| ≤ 3).

v1 · · · v10 v11 · · · v14 v15 v16 v17

≤ 2

≤ 1 ≤ 1

≤ 1

Figure 2: Density-based decomposition of the laminar matroid M represented in Figure 1. We have
the densest subset U1 = {v1, . . . , v10}, then the second densest subset U2 = {v11, . . . , v14} and finally
U3 = {v15, v16, v17}. Their densities are respectively 5, 4, and 3. Note that here k = 4 so we have an
additional set U4 = ∅ of density zero.

Proposition 15. LetM = (V, I) be a matroid and let B be the subset that reaches the maximum density
ρ∗ < +∞. Then given any A ⊊ B, ρM/A(B\A) ≥ ρ∗.

Proof. If rankM/A(B\A) = 0 then ρM/A(B\A) = +∞ and we are done; otherwise, by Proposition 13:

ρM(B) =
rankM(A) · ρM(A) + rankM/A(B\A) · ρM/A(B\A)

rankM(A) + rankM/A(B\A)
,

hence ρM(B) is a weighted average of ρM(A) and ρM/A(B\A). As ρM(A) ≤ ρ∗ (by definition of ρ∗), it
implies that ρM/A(B\A) ≥ ρ∗.

The following proposition states that the densest sets are closed under union, hence we have the
uniqueness of the maximum cardinality densest subset.

Proposition 16. Let M = (V, I) be a matroid. Let ρ∗ = maxU⊆V ρM(U) < +∞. Then given any two
sets W1, W2 of density ρ∗, ρM(W1 ∪W2) = ρ∗.

Proof. If W1 ⊆ W2, then the proposition is trivially true. So assume that W1\W2 ̸= ∅, and we can
observe that

ρ∗ ≤ ρM/(W1∩W2)(W1\(W1 ∩W2)) ≤ ρM/W2
(W1\(W1 ∩W2)),

where the first inequality uses Proposition 15 and the second uses Proposition 14. As a result, by the
facts that ρM(W2) = ρ∗ and that ρM/W2

(W1\(W1 ∩W2)) ≥ ρ∗, we obtain ρM(W1 ∪W2) ≥ ρ∗. Hence
we have ρM(W1 ∪W2) = ρ∗.

Here is a first proposition about density-based decompositions, stating that the densities decrease (as
we could observe in the example of Figure 2).

8

Proposition 17. For all 1 ≤ j ≤ k − 1, ρM′/(
⋃j−1

i=1 Ui)
(Uj) ≥ ρM′/(

⋃j
i=1 Ui)

(Uj+1). Moreover, if we have
ρM′/(

⋃j−1
i=1 Ui)

(Uj) > 0, then ρM′/(
⋃j−1

i=1 Ui)
(Uj) > ρM′/(

⋃j
i=1 Ui)

(Uj+1).

Proof. We proceed by contradiction. Suppose that ρM′/(
⋃j−1

i=1 Ui)
(Uj) < ρM′/(

⋃j
i=1 Ui)

(Uj+1). Then it im-
plies that ρM′/(

⋃j−1
i=1 Ui)

(Uj ∪Uj+1) > ρM′/(
⋃j−1

i=1 Ui)
(Uj). Specifically, denoting kj = rankM′/(

⋃j−1
i=1 Ui)

(Uj)

and kj+1 = rankM′/(
⋃j

i=1 Ui)
(Uj+1), we have ρM′/(

⋃j−1
i=1 Ui)

(Uj ∪ Uj+1) = ρM′/(
⋃j−1

i=1 Ui)
(Uj) · kj

kj+kj+1
+

ρM′/(
⋃j

i=1 Ui)
(Uj+1) · kj+1

kj+kj+1
> ρM′/(

⋃j−1
i=1 Ui)

(Uj), contradicting the hypothesis that Uj was the densest

set in M′/(
⋃j−1

i=1 Ui).
For the second part of the proposition, suppose that ρM′/(

⋃j−1
i=1 Ui)

(Uj) > 0 and ρM′/(
⋃j−1

i=1 Ui)
(Uj) =

ρM′/(
⋃j

i=1 Ui)
(Uj+1). Then it implies that ρM′/(

⋃j−1
i=1 Ui)

(Uj ∪ Uj+1) = ρM′/(
⋃j−1

i=1 Ui)
(Uj), contradicting

the supposition that Uj was the maximum cardinality densest set.

The following proposition comes straightforwardly from the definition of the densities:

Proposition 18. We always have
∑k

j=1 rankM′/(
⋃j−1

i=1 Ui)
(Uj) · ρM′/(

⋃j−1
i=1 Ui)

(Uj) = |V ′|.

Now we define the associated density of a given element v ∈ V with respect to the decomposition of
V ′.

Definition 19. Let U1, . . . , Uk to the density-based decomposition of V ′. Then, given an element v ∈ V ,
its associated density with respect to the decomposition of V ′ is defined as

ρ̃M(v) =

{
ρM′/(

⋃j−1
i=1 Ui)

(Uj) for j = min{j ∈ J1, kK : v ∈ spanM(
⋃j

i=1 Ui)} if v ∈ spanM(V ′)

0 otherwise

We emphasize that the associated density ρ̃M is defined for all elements in V , not just the elements
of V ′ (this is why we use the subscript M instead of M′). We also emphasize that here the associated
density is dependent on V ′, even though that dependence is not displayed in our notation: we will just
write ρ̃M, instead of the more cumbersome ρ̃M,V ′ . For elements v ∈ V ′, note that if v ∈ Uj then we
have necessarily ρ̃M(v) = ρM′/(

⋃j−1
i=1 Ui)

(Uj); in fact, if v is spanned by
⋃j0

i=1 Ui for some j0 < j, then we
could have increased the density of Uj0 by adding v into Uj0 , contradicting the assumption that Uj0 was
the densest subset when it was selected.

We now explain how such a decomposition behaves when an element is added to or deleted from the
set V ′. These two following lemmas are crucial in the existence proof of DCSes. Their statements are
quite natural (for instance, stating that adding an element does not cause a diminution of the density
associated with any other element, and cannot increase the density of that new element by more than
one), however their proofs are rather technical and in fact proving these lemmas is the most difficult step
to show the existence of DCSes. From now on, we will use the exponents old and new to denote the states
before and after the insertion/deletion operation.

The proofs of the following lemmas can be found in Appendix A.

Lemma 20. Suppose a new element unew ∈ V \V ′ is added to V ′. Then we have the following properties:

(i) For all j ∈ J1, kK, for all v ∈ Uold
j , ρ̃new

M (v) ≥ ρM′old/(
⋃j−1

i=1 Uold
i)(U

old
j).

(ii) For all v ∈ V , ρ̃new
M (v) ≥ ρ̃old

M (v).

(iii) We have the inequality ρ̃old
M (unew) ≤ ρ̃new

M (unew) ≤ ρ̃old
M (unew) + 1.

(iv) For all v ∈ V ′ such that ρ̃old
M (v) < ρ̃old

M (unew) or ρ̃old
M (v) > ρ̃old

M (unew) + 1, we have the equality
ρ̃old
M (v) = ρ̃new

M (v).

Lemma 21. Suppose an old element uold ∈ V ′ is deleted from V ′. Then we have the following properties:

(i) For all j ∈ J1, kK, for all v ∈ Uold
j , ρ̃new

M (v) ≤ ρM′old/(
⋃j−1

i=1 Uold
i)(U

old
j).

9

(ii) For all v ∈ V , ρ̃new
M (v) ≤ ρ̃old

M (v).

(iii) We have the inequality ρ̃old
M (uold) ≥ ρ̃new

M (uold) ≥ ρ̃old
M (uold)− 1.

(iv) For all v ∈ V ′ such that ρ̃old
M (v) > ρ̃old

M (uold) or ρ̃old
M (v) < ρ̃old

M (uold) − 1, we have the equality
ρ̃old
M (v) = ρ̃new

M (v).

3 Density-Constrained Subsets for Matroid Intersection
Consider two matroids M1 = (V, I1) and M2 = (V, I2), both of rank k (if the matroids have different
ranks, we can truncate the rank of the matroid of larger rank without changing the solution of the matroid
intersection problem). We recall the definition of a Density-Constrained Subset (DCS).

Definition 3. LetM1 = (V, I1) andM2 = (V, I2) be two matroids. Let β, β− be two integers such that
β ≥ β− + 7. A subset V ′ ⊆ V is called a (β, β−)-DCS if it satisfies the following properties:

(i) For any v ∈ V ′, ρ̃M1
(v) + ρ̃M2

(v) ≤ β;

(ii) For any v ∈ V \V ′, ρ̃M1(v) + ρ̃M2(v) ≥ β−.

Here is a simple bound on the size of a DCS.

Proposition 22. For any set V ′ ⊆ V satisfying Property (i) of Definition 3, |V ′| ≤ β ·µ(V), where µ(V)
denotes the maximum cardinality common independent subset in V .

Proof. We proceed by contradiction. By Theorem 6, we know that there exists a set S ⊆ V such that
rankM1

(S)+rankM2
(V \S) = µ(V). If |V ′| > β ·µ(V), then it means that either |V ′∩S| > β · rankM1

(S)
or that |V ′ ∩ (V \S)| > β · rankM2

(V \S). In both cases, we have a densest subset, either in M′
1 or M′

2,
that has a density larger than β, contradicting Property (i) of Definition 3.

We show the existence of (β, β−)-DCSes by construction, using a local search algorithm inspired by
the one used in [AB19]. In our proof we introduce a new potential function and we use Lemmas 20 and 21
to generalize their procedure; details of the proof can be found in Appendix A.

Theorem 23. For any two matroids M1 = (V, I1) and M2 = (V, I2) of rank k, and for any integer
parameters β ≥ β− + 7, a (β, β−)-DCS can be computed using at most 2 ·β2 ·µ(V) local improvement
steps.

The main interest of DCS is that they always contain a relatively good approximation of the maximum
cardinality matroid intersection.

Theorem 4. Let ε > 0. For integers β, β− such that β ≥ β− + 7 and (β− − 4) · (1 + ε) ≥ β, any
(β, β−)-DCS V ′ contains a 3/2 + ε approximation of the maximum cardinality common independent set.

Proof. Let V ′ be a (β, β−)-DCS, and let C1 and C2 be sets such that C1 ∪ C2 = V ′, C1 ∩ C2 = ∅ and
minimizing the sum rankM′

1
(C1) + rankM′

2
(C2) = rankM1

(C1) + rankM2
(C2); by Theorem 6 we know

that rankM′
1
(C1) + rankM′

2
(C2) = µ(V ′), the size of the maximum common independent set in V ′.

Now consider the optimal common independent set O in V . Our objective is to bound both |O\S| and
|S| for some well-chosen subset S ⊆ O to get an upper bound of |O|. We will build that auxiliary set S as
follows, starting with S = ∅. If there exists an element o1 ∈ O such that o1 /∈ spanM1

(C1)∪ spanM2
(C2),

then we add o1 into S and we now consider the contracted matroids M1/S and M2/S. We keep the
same sets C1 and C2 and we try again to find an element o2 ∈ O\S such that o2 /∈ spanM1/S(C1) ∪
spanM2/S(C2), and we add o2 to S. We repeat this operation until it is no longer possible to add into S
any other element of O. The idea behind this greedy procedure to build S is that, if we instead define S
naively as the set of elements in O that are not in spanM1

(C1)∪ spanM2
(C2) (which would be a simpler

way to get a set S satisfying inequality (1) below), then this may yield a much bigger set S for which we

10

could not get a proper bound, whereas here the greedy procedure gives us a tool to bound |S| as it will
allow us to prove the crucial inequality (2) later.

By the above greedy procedure, O\S is a common independent subset inM1/S andM2/S restricted
to V ′ ∪O\S, and spanM1/S(C1) ∪ spanM2/S(C2) ⊇ V ′ ∪O\S. We now observe that

|O\S| ≤ min
U⊆V ′∪O\S

(rankM1/S(U) + rankM2/S((V
′ ∪O\S)\U))

≤ rankM1/S(spanM1/S(C1)) + rankM2/S((V
′ ∪O\S)\(spanM1/S(C1)))

≤ rankM1/S(spanM1/S(C1)) + rankM2/S(spanM2/S(C2))

= rankM1/S(C1) + rankM2/S(C2)

≤ rankM1
(C1) + rankM2

(C2)

= µ(V ′),

where in the first inequality we use Theorem 6, in the second inequality we consider U = spanM1/S(C1),
in the third inequality we use that (V ′∪O\S)\(spanM1/S(C1)) ⊆ spanM2/S(C2) and in the last inequality
we use that the rank function in a contracted matroid is always smaller than the rank function in the
original matroid. Therefore we obtain

|O\S| ≤ µ(V ′). (1)

Hence we need to upper-bound the value of |S|. Some carefully chosen subsets Rl,i and Ql,i will allow
us to get that upper-bound, and their construction is displayed in the following lemmas — it is in the
proof of these lemmas that the DCS structure is fully exploited. Observing that β− · |S| is bounded by
the sum of the ρ̃Ml

(oi) (as for each oi ∈ S, we have β− ≤ ρ̃M1
(oi) + ρ̃M2

(oi), because of Property (ii)
of the DCS), we will build disjoint subsets Rl,i of V ′ (Lemma 24) to bound each ρ̃Ml

(oj) with |Rl,j | (in
particular, see Lemma 24 (iv)). We will then use an auxiliary partition Ql,j of the union of the Rl,js
(Lemma 25) to bound the total size of the Rl,js, using the properties of the DCS and the properties of
those sets. By wrapping-up everything in the end, we will be able to get an upper bound on the size of
S, in a way somehow similar to [AB19].

We recall that the sets Ul,i refer to the density-based decomposition of V ′ in the matroidMl.

Lemma 24. For l ∈ {1, 2}, we can build sets Rl,1, . . . , Rl,|S| satisfying the following properties:

(i) the Rl,i are disjoint;

(ii) for all j ∈ J1, |S|K we have Rl,j ⊆ V ′\Cl;

(iii) for all j ∈ J1, |S|K, for all v ∈ Rl,j, |Rl,j | = ⌊ρ̃Ml
(v)⌋ − 1;

(iv) for all j ∈ J1, |S|K, |Rl,j | ≥ ⌊ρ̃Ml
(oj)⌋ − 1.

Proof. Fix an l. We divide S into two groups: those that are spanned by
⋃k

i=1 Ul,i and those that are
not. Precisely, SU = S ∩ spanMl

(
⋃k

i=1 Ul,i) and SU = S\SU .
We will extract from Ul,1, . . . , Ul,k subsets Rl,x for each ox ∈ SU . For the other elements oy ∈ SU , we

create Rl,y = ∅ and associate oy with Rl,y. It is easy to verify that Properties (ii)-(iv) hold in the latter
case (for Property (iv), recall that by Definition 19, ρ̃M(oy) = 0). We next explain how to construct Rl,x

for ox ∈ SU .
For j = 1 to k, we split a subset of Ul,j\Cl into

rl,j = max
(
0, rankM′

l/(
⋃j−1

i=1 Ul,i)
(Ul,j)− rankM′

l/(
⋃j−1

i=1 Ul,i∩Cl)
(Ul,j ∩ Cl)

)
sets of size ⌊ρM′

l/(
⋃j−1

i=1 Ul,i)
(Ul,j)⌋ − 1. It is always possible as we have, when rl,j > 0,

⌊
|Ul,j\Cl|

rl,j

⌋
=

⌊
|Ul,j\Cl|

rankM′
l/(

⋃j−1
i=1 Ul,i)

(Ul,j)− rankM′
l/(

⋃j−1
i=1 Ul,i∩Cl)

(Ul,j ∩ Cl)

⌋

11

≥

⌊
|Ul,j\Cl|

rankM′
l/(

⋃j−1
i=1 Ul,i)

(Ul,j)− rankM′
l/(

⋃j−1
i=1 Ul,i)

(Ul,j ∩ Cl)

⌋
= ⌊ρM′

l/(
⋃j−1

i=1 Ul,i∪(Cl∩Ul,j))
(Ul,j\Cl)⌋ by Proposition 13

≥ ⌊ρM′
l/(

⋃j−1
i=1 Ul,i)

(Ul,j)⌋. by Proposition 15

where in the first inequality we use that rankM′
l/(

⋃j−1
i=1 Ul,i)

(Ul,j ∩ Cl) ≤ rankM′
l/(

⋃j−1
i=1 Ul,i∩Cl)

(Ul,j ∩ Cl).
Then the Rl,xs, for ox ∈ SU are decided by a greedy procedure. Let x1, . . . , x|SU | be the indices of

the elements of SU , ordered so that ρ̃Ml
(ox1

) ≥ · · · ≥ ρ̃Ml
(ox|Su|). The first rl,1 subsets drawn from

Ul,1\Cl are assigned to be Rl,x1
, . . . Rl,xrl,1

; the following rl,2 subsets drawn from Ul,2\C2 are assigned to
be Rl,xrl,1+1

, . . . , Rl,xrl,1+rl,2
, and so on.

Notice that by this procedure, properties (ii) and (iii) hold easily for Rl,x, ox ∈ SU . To prove property
(iv), we will prove the following inequality for all j:

j∑
i=1

rl,i ≥

∣∣∣∣∣S ∩ spanMl

(
j⋃

i=1

Ul,i

)∣∣∣∣∣ . (2)

To see why inequality (2) implies (iv), for j = 1 to k, let us define the set Sj of elements with “density
level” j, i.e., Sj = S ∩ (spanMl

(
⋃j

i=1 Ul,i)\spanMl
(
⋃j−1

i=1 Ul,i)). If oxt
∈ Sj , by Definition 19, we need to

associate oxt
with a set Rl,xt

drawn from one of Ul,1, . . . , Ul,j , as such a set Rl,xt
will have a size larger

than or equal to ⌊ρM′
l/(

⋃j−1
i=1 Ul,i)

(Ul,j)⌋ − 1 = ⌊ρ̃Ml
(oxt

)⌋ − 1. The majorization in (2) shows that our
greedy procedure will guarantee that a large enough set is assigned to oxt , as the inequality (2) implies
that t ≤

∑j
i=1 rl,i, hence Property (iv) would follow.

To prove (2), we begin by observing that our greedy procedure in constructing S ensures that

rankMl
(Cl ∪ S) = rankMl

(Cl) + |S|,

implying that no circuit inMl involves a non-empty subset of S and a non-empty subset of a base in Cl.
Therefore, given any Ĉl ⊆ Cl and Ŝ ⊆ S,

rankMl
(Ĉl ∪ Ŝ) = rankMl

(Ĉl) + |Ŝ|.

With this observation, we can derive

rankMl

(
j⋃

i=1

Ul,i

)
= rankMl

(
spanMl

(
j⋃

i=1

Ul,i

))

≥ rankMl

(
(Cl ∪ S) ∩ spanMl

(
j⋃

i=1

Ul,i

))

= rankMl

(
Cl ∩ spanMl

(
j⋃

i=1

Ul,i

))
+

∣∣∣∣∣S ∩ spanMl

(
j⋃

i=1

Ul,i

)∣∣∣∣∣
≥ rankMl

(
Cl ∩

j⋃
i=1

Ul,i

)
+

∣∣∣∣∣S ∩ spanMl

(
j⋃

i=1

Ul,i

)∣∣∣∣∣ ,
where the last inequality is actually an equality, as we have Cl ∩

⋃j
i=1 Ul,i = Cl ∩ spanMl

(⋃j
i=1 Ul,i

)
here.3

We now finish the proof of inequality (2) by observing that

3However, for Lemmas 27 and 31 in the next two sections, this will be in fact an inequality, as in the proof of those two
lemmas, Cl may contain elements not in V ′.

12

rankMl

(
j⋃

i=1

Ul,i

)
− rankMl

(
Cl ∩

j⋃
i=1

Ul,i

)

=

j∑
i=1

(
rankM′

l/(
⋃j−1

i=1 Ul,i)
(Ul,j)− rankM′

l/(
⋃j−1

i=1 Ul,i∩Cl)
(Ul,j ∩ Cl)

)
≤

j∑
i=1

rl,i,

where the equality comes from applying Proposition 13 recursively.
We have by now shown that Properties (ii)-(iv) hold in general. Property (i) holds trivially by our

construction. Thus the proof is complete.

We denote Rl =
⋃|S|

i=1 Rl,i and R =
⋃

l∈{1,2} Rl. Note that Rl ⊆ V ′\Cl and R ⊆ V ′.

Lemma 25. For l ∈ {1, 2}, we can build sets Ql,1, . . . , Ql,rankMl
(R3−l) satisfying the following properties:

(i) the Ql,j are disjoint;

(ii)
⋃rankM′

l
(R3−l)

i=1 Ql,i = R3−l;

(iii) for all v ∈ Ql,i, |Ql,i| ≤ ρ̃Ml
(v) + 1.

Proof. Fix an l. For j = 1 to k, we split the set Ul,j ∩R3−l into rankM′
l/(

⋃j−1
i=1 Ul,i∩R3−l)

(Ul,j ∩R3−l) sets
of size at most⌈

|Ul,j ∩R3−l|
rankM′

l/(
⋃j−1

i=1 Ul,i∩R3−l)
(Ul,j ∩R3−l)

⌉
≤ ρM′

l/(
⋃j−1

i=1 Ul,i∩R3−l)
(Ul,j ∩R3−l) + 1

≤ ρM′
l/(

⋃j−1
i=1 Ul,i)

(Ul,j ∩R3−l) + 1 by Proposition 14

≤ ρM′
l/(

⋃j−1
i=1 Ul,i)

(Ul,j) + 1. by construction of Ul,j

These are the aforementioned sets Ql,x. It is clear that those Ql,x will be disjoint, and that for all
v ∈ Ql,x ⊆ Ul,j , we have

ρ̃Ml
(v) + 1 = ρM′

l/(
⋃j−1

i=1 Ul,i)
(Ul,j) + 1 ≥ |Ql,x|.

Observe that by induction, for any 1 ≤ r ≤ k, we have
∑r

j=1 rankM′
l/(

⋃j−1
i=1 Ul,i∩R3−l)

(Ul,j ∩ R3−l) =

rankM′
l
(R3−l ∩ (

⋃r
i=1 Ul,i)) (using Proposition 13) and hence for r = k we get

k∑
j=1

rankM′
l/(

⋃j−1
i=1 Ul,i∩R3−l)

(Ul,j ∩R3−l) = rankM′
l
(R3−l),

therefore the number of sets Ql,x built that way is exactly rankM′
l
(R3−l), as desired.

We now continue the proof of Theorem 4. For all v ∈ R ⊆ V ′, we know by Property (i) of Definition 3
that:

ρ̃M1
(v) + ρ̃M2

(v) ≤ β.

Hence summing over all the elements of R:

β · |R| ≥
∑
v∈R

ρ̃M1
(v) + ρ̃M2

(v)

=
∑

l∈{1,2}
i∈{1,...|S|}

∑
v∈Rl,i

ρ̃Ml
(v) +

∑
l∈{1,2}

i∈{1,...rankMl
(R3−l)}

∑
v∈Ql,i

ρ̃Ml
(v)

≥
∑

l∈{1,2}
i∈{1,...|S|}

|Rl,i| · (|Rl,i|+ 1) +
∑

l∈{1,2}
i∈{1,...rankMl

(R3−l)}

|Ql,i| · (|Ql,i| − 1)

13

=
∑

l∈{1,2}
i∈{1,...|S|}

|Rl,i|2 +
∑

l∈{1,2}
i∈{1,...rankMl

(R3−l)}

|Ql,i|2

≥ |R|
2

2 · |S|
+

|R|2

rankM1(R2) + rankM2(R1)
.

The first equality holds because of Lemma 25 (ii). The second inequality uses Lemmas 24 (iii)
and 25 (iii). The second last inequality holds because

∑
l,i |Rl,i| =

∑
l,i |Ql,i| = |R|. Finally, the last

inequality comes from the minimization of the function under the constraint
∑

l,i |Rl,i| =
∑

l,i |Ql,i| = |R|.
Hence we get

β ≥ |R|
2 · |S|

+
|R|

rankM1(R2) + rankM2(R1)
.

As the elements of S satisfy Property (ii) of Definition 3, and because of Property (iv) in Lemma 24,
we know that for all oi ∈ S,

β− ≤ ρ̃M1
(oi) + ρ̃M2

(oi) ≤ |R1,i|+ |R2,i|+ 4,

so by averaging over all the elements of S we get

β− ≤ |R|
|S|

+ 4.

Therefore we finally obtain(
β − β− − 4

2

)
· (rankM1

(R2) + rankM2
(R1)) ≥ |R|.

Then, as (β− − 4) · |S| ≤ |R| and rankM1
(R2) + rankM2

(R1) ≤ rankM1
(C1) + rankM2

(C2) = µ(V ′)

(because R3−l ⊆ Cl) we finally have
(
β − β−−4

2

)
·µ(V ′) ≥ (β− − 4) · |S|. Now using (1), we obtain:

µ(V) = |O\S|+ |S| ≤
(
1 +

β

β− − 4
− 1

2

)
·µ(V ′) =

(
1

2
+

β

β− − 4

)
·µ(V ′) ≤

(
3

2
+ ε

)
·µ(V ′),

as (β− − 4) · (1 + ε) ≥ β. This concludes the proof.

Remark 26. We can observe that β and β− can be of order O(1/ε) to satisfy the constraints of Theorem 6.
From now on we will suppose that β, β− are O(1/ε).

4 Application to One-Way Communication
Given two matroids M1 = (V, I1) and M2 = (V, I2), in the one-way communication model, Alice and
Bob are given VA and VB = V \VA respectively, and the goal is for Alice to send a small message to Bob
so that Bob can output a large intersection of matroids M1 and M2. Here we will show that if Alice
communicates an appropriate Density-Constrained Subset of VA, with parameters β, β− of order O(1/ε),
then Bob is able to get a 3/2 + ε approximation of the optimal intersection.

Theorem 8. There exists a one-way communication protocol that, given any ε > 0, computes a 3/2 + ε
approximation to maximum matroid intersection using a message of size O(µ(V)/ε) from Alice to Bob,
where µ(V) denotes the size of the optimal solution of the matroid intersection problem.

By Theorem 23 we know that a DCS in the two restricted matroidsM1|VA andM2|VA always exists,
and by Proposition 22 we know that the number of elements sent by Alice is at most O(µ(V)/ε). Hence
we only need to prove the following lemma.

14

Lemma 27. Let ε > 0, β and β− be parameters such that β ≥ β− + 7 and (β− − 4) · (1 + ε) ≥ β, if V ′

is a (β, β−)-DCS of the two matroids M1|VA and M2|VA, then (3/2 + ε) ·µ(V ′ ∪ VB) ≥ µ(V).

Remark 28. In [AB19] the proof is done by showing that the combination of the subgraphs built in the first
and second phase of the algorithm contains a subgraph which is an EDCS with respect to some subgraph
containing the optimal solution. Here we are unable to imitate this approach because adding several
elements to the matroids can change significantly the density decompositions. Therefore our approach is
to directly adapt the proof of Theorem 4. This remark also applies to Lemma 31 in the next section.

Proof. Let O be an optimal solution in V . Let OA = O ∩ VA and OB = O ∩ VB . Let C1 and C2 be
sets such that C1 ∪ C2 = V ′ ∪OB , C1 ∩ C2 = ∅ and they minimize the sum rankM1

(C1) + rankM2
(C2).

By Theorem 6 we know that rankM1
(C1) + rankM2

(C2) = µ(V ′ ∪OB), the maximum size of a common
independent set in V ′ ∪OB .

As in the proof of Theorem 4, we will build an auxiliary set S, starting with S = ∅. If there exists an
element o1 ∈ O such that o1 /∈ spanM1

(C1) ∪ spanM2
(C2), then we add o1 into S and we next consider

the contracted matroids M1/S and M2/S. We keep the same sets C1 and C2 and we try again to find
an element o2 ∈ O\S such that o2 /∈ spanM1/S(C1)∪ spanM2/S(C2), and we add o2 to S. We repeat that
operation until it is no longer possible to add into S another element of O satisfying the aforementioned
constraint. Note that here all the elements oi added to S come necessarily from OA.

As a result, as O\S is a common independent subset inM1/S andM2/S, and because of Theorem 6,
the size of O\S is upper-bounded by rankM1/S(C1) + rankM2/S(C2) ≤ rankM1(C1) + rankM2(C2) =
µ(V ′ ∪OB), as in the proof of Theorem 4.

Now we need to upper-bound the value of |S|. We will use the same construction as that of the proof
of Theorem 4, as there is no difference in the algorithms that construct the sets Rl,i and Ql,i (those
remain subsets of V ′, we can just follow the same procedures described in Lemmas 24 and 25).

After similar computations, we get the inequality:

β ≥ |R|
2 · |S|

+
|R|

rankM1
(R2) + rankM2

(R1)
.

As the elements of S are from OA ⊂ VA, and because of Property (ii) of Definition 3, we know that
for all oi ∈ S,

β− ≤ ρ̃M1
(oi) + ρ̃M2

(oi) ≤ |R1,i|+ |R2,i|+ 4,

so by averaging over all the elements of S we get

β− ≤ |R|
|S|

+ 4.

Therefore we derive (
β − β− − 4

2

)
· (rankM1

(R2) + rankM2
(R1)) ≥ |R|.

Then, as (β−− 4) · |S| ≤ |R| and rankM1
(R2)+ rankM2

(R1) ≤ rankM1
(C1)+ rankM2

(C2) = µ(V ′ ∪OB)

we finally have
(
β − β−−4

2

)
·µ(V ′ ∪OB) ≥ (β− − 4) · |S|, and therefore:

µ(V) = |O\S|+ |S| ≤
(
1

2
+

β

β− − 4

)
·µ(V ′ ∪OB) ≤

(
3

2
+ ε

)
·µ(V ′ ∪OB) ≤

(
3

2
+ ε

)
·µ(V ′ ∪ VB),

as (β− − 4) · (1 + ε) ≥ β.

5 Application to Random-Order Streams
Now we consider our problem in the random-order streaming model. As our algorithm builds on that
of Bernstein [Ber20] for the unweighted simple matching, let us briefly summarize his approach. In

15

the first phase of the streaming, he constructs a subgraph that satisfies only a weaker definition of
EDCS in Definition 1 (only Property (i) holds). In the second phase of the streaming, he collects the
“underfull” edges, which are those edges that violate Property (ii). He shows that in the end, the union
of the subgraph built in the first phrase and the underfull edges collected in the second phase, with
high probability, contains a 3/2 + ε approximation and that the total memory used is in the order of
O(k · poly(log(k), 1/ε)) (there k refers to the number of vertices in the graph). As we will show below,
this approach can be adapted to our context of matroid intersection.

Definition 29. We say that a subset V ′ has bounded density β if for every element v ∈ V ′, ρ̃M1
(v) +

ρ̃M2
(v) ≤ β.

Definition 30. Let V ′ be a subset of V with bounded density β. For any parameter β−, we say that an
element v ∈ V \V ′ is (V ′, β, β−)-underfull if ρ̃M1(v) + ρ̃M2(v) < β−.

As in [Ber20], we can get a good approximation by combining a subset V ′ of bounded density β and
the set of (V ′, β, β−)-underfull elements in V \V ′. The proof of the following lemma is quite similar to
that of Theorem 4, so we will only highlight the points where the proofs differ.

Lemma 31. Let ε > 0, β and β− be parameters such that β ≥ β−+7 and (β−−4) · (1+ε) ≥ β. Given a
subset V ′ ⊆ V with bounded density β, if X contains all elements in V \V ′ that are (V ′, β, β−)-underfull,
then (3/2 + ε) ·µ(V ′ ∪X) ≥ µ(V).

Proof. Let O be an optimal solution in V . Let Xopt = X ∩ O. Let C1 and C2 be sets such that
C1∪C2 = V ′∪Xopt, C1∩C2 = ∅, and they minimize the sum rankM1

(C1)+rankM2
(C2). By Theorem 6

we know that rankM1
(C1) + rankM2

(C2) = µ(V ′ ∪Xopt), the maximum size of a common independent
set in V ′ ∪Xopt.

As in the proof of Theorem 4, we will build an auxiliary set S, starting with S = ∅. If there exists an
element o1 ∈ O such that o1 /∈ spanM1

(C1) ∪ spanM2
(C2), then we add o1 into S and we now consider

the contracted matroids M1/S and M2/S. We keep the same sets C1 and C2 and we try again to find
an element o2 ∈ O\S such that o2 /∈ spanM1/S(C1) ∪ spanM2/S(C2), and we add o2 to S. We repeat
that operation until it is no longer possible to add another element to S satisfying the aforementioned
constraints.

As a result, as O\S is a common independent subset inM1/S andM2/S, and because of Theorem 6,
the size of O\S is upper-bounded by rankM1/S(C1) + rankM2/S(C2) ≤ rankM1(C1) + rankM2(C2) =
µ(V ′ ∪Xopt), as in the proof of Theorem 4.

Now we need to upper-bound the value of |S|. We will use the same construction as that of the proof
of Theorem 4, as there is no difference in the algorithms construct the sets Rl,i and Ql,i (those remain
subsets of V ′, we can just follow the same procedures described in Lemmas 24 and 25).

Then after similar computations, we get the inequality:

β ≥ |R|
2 · |S|

+
|R|

rankM1(R2) + rankM2(R1)
.

As the elements of S are not underfull (observe that here we use this fact, instead of using Property (ii)
of Definition 3 as we have done in the proof of Theorem 4), we know that for all oi ∈ S,

β− ≤ ρ̃M1(oi) + ρ̃M2(oi) ≤ |R1,i|+ |R2,i|+ 4,

so by averaging over all the elements of S we get

β− ≤ |R|
|S|

+ 4.

Therefore we obtain (
β − β− − 4

2

)
· (rankM1(R2) + rankM2(R1)) ≥ |R|.

16

Then, as (β−−4) · |S| ≤ |R| and rankM1(R2)+rankM2(R1) ≤ rankM1(C1)+rankM2(C2) = µ(V ′∪Xopt)

we finally have
(
β − β−−4

2

)
·µ(V ′ ∪Xopt) ≥ (β− − 4) · |S|, and therefore:

µ(V) = |O\S|+ |S| ≤
(
1

2
+

β

β− − 4

)
·µ(V ′ ∪Xopt) ≤

(
3

2
+ ε

)
·µ(V ′ ∪Xopt),

as (β− − 4) · (1 + ε) ≥ β.

Here we recall a classic probabilistic tool that we will use in the analysis of our algorithm.

Proposition 32 (Hoeffding’s inequality). Let X1, . . . , Xt be t negatively associated random variables that
take values in [0, 1]. Let X :=

∑t
i=1 Xi. Then, for all λ > 0 we have:

P(X − E[X] ≥ λ) ≤ exp

(
−2λ2

t

)
.

The following ideas for the streaming algorithm come from a recent paper originally intended for
b-matchings [HS22]. For sake of completeness, we reproduce the details in the following, with some slight
adaptations to our more general case of matroid intersection.

Algorithm 2 Algorithm for computing an intersection of two matroids in a random-order stream

1: V ′ ← ∅
2: ∀ 0 ≤ i ≤ log2 k, αi ←

⌊
ε ·n

log2(k) · (2i+2β2+1)

⌋
3: for i = 0 . . . log2 k do
4: ProcessStopped← False
5: for 2i+2β2 + 1 iterations do
6: FoundUnderfull← False
7: for αi iterations do
8: let v be the next element in the stream
9: if ρ̃M1(v) + ρ̃M2(v) < β− then

10: add v to V ′

11: FoundUnderfull← True
12: while there exists v′ ∈ V ′ : ρ̃M1

(v′) + ρ̃M2
(v′) > β do

13: remove v′ from V ′

14: if FoundUnderfull = False then
15: ProcessStopped← True
16: break from the loop
17: if ProcessStopped = True then
18: break from the loop
19: X ← ∅
20: for each v remaining element in the stream do
21: if ρ̃M1

(v) + ρ̃M1
(v) < β− then

22: add v to X
23: return the maximum common independent set in V ′ ∪X

The algorithm, formally described in Algorithm 2, consists of two phases. The first phase, correspond-
ing to Lines 3-18, constructs a subset V ′ of bounded density β using only an ε fraction of the stream
V early. In the second phase, the algorithm collects the underfull elements in the remaining part of the
stream V late. As in [Ber20] we use the idea that if no underfull element was found in an interval of size
α (see Lines 6-13), then with high probability the number of underfull elements remaining in the stream
is bounded by some value γ = 4 log(n)nα . The issue is therefore how to choose the right size of interval α,
because we ignore the order of magnitude of µ(V) the optimal solution: if we do as in [Ber20] by choosing
only one fixed size of intervals α, then if α is too small, the value of γ will be too big compared to µ(V),

17

whereas if the value of α is too large we will be unable to terminate the first phase of the algorithm
within the early fraction of size εm. Therefore, the idea in the first phase of the algorithm is to “guess”
the value of log2 µ(V) by trying successively larger and larger values of i (see Line 3). In fact, by setting
i0 = ⌈log2 µ(V)⌉, we know that the number of insertion/deletion operations that can be performed on a
(β, β−)-DSC is bounded by 2i0+2β2 (see the proof of Theorem 23). As a result we know that the first
phase should always stop at a time where i is smaller than or equal to i0, and therefore at a time when
αi ≥ αi0 . Then we can prove that with high probability the number of remaining underfull elements in
the stream is at most γi = 4 log(n) n

αi
.

Claim 33. With probability at least 1 − exp(−2 · ε2 ·µ(V)) the late part of the stream V late contains at
least a (1−2ε) fraction of the optimal solution. Moreover, in expectation V late contains a (1−ε) fraction
of the optimal solution.

Proof. Consider an optimal solution O = {o1, . . . , oµ(V)}. We define the random variables Xi = 1oi∈V early .
Hence we have E[

∑
Xi] = ε · |O|. Moreover, the random variables Xi are negatively associated, so we

can use Hoeffding’s inequality (see Proposition 32) to get

P

µ(V)∑
i=1

Xi ≥ 2ε ·µ(V)

 ≤ exp

(
−2 · ε2 ·µ(V)2

µ(V)

)
= exp

(
−2 · ε2 ·µ(V)

)
.

Recall that we defined i0 = ⌈log2 µ(V)⌉. Algorithm 2 works when µ(V) is not too big (otherwise we
may use intervals of size αi0 = ⌊ ε ·n

log2(k) · (2i0+2β2+1)
⌋ = 0). Here we will first argue that this case can be

handled anyway.

Claim 34. We can assume that ε ·n
log2(k) · (2i0+2β2+1)

≥ 1.

Proof. If this is not the case, then we can just store all the elements of V as the number of elements
n is bounded by log2(k) · (2i0+2β2+1)

ε = O(µ(V) · log(k) · (1/ε)3) (as β is O(1/ε), see Remark 26). As a
result, if at some point of the first phase we have not stopped and we have αi = 0, then we store all
the remaining elements of V late and we will be able to get a (1− ε) approximation in expectation and a
(1 − 2ε) approximation with high probability (more precisely, at least 1 − exp(−2 · c · ε5 ·n/ log(k)), for
some constant c > 0, see Claim 33), using O(µ(V) · log(k) · (1/ε)3) memory.

From now on we will assume that ε ·n
log2(k) · (2i0+2β2+1)

≥ 1. Then we can move on to our main algorithm.
The following lemma is very similar to the one used in [Ber20].

Lemma 35. The first phase of Algorithm 2 uses O(β ·µ(V)) memory and constructs a subset V ′ ⊆ V ,
satisfying the following properties:

1. The first phase terminates within the first ε ·n elements of the stream.

2. When the first phase terminates after processing some element, we have:

(a) V ′ has bounded density β, and contains at most O(β ·µ(V)) elements.

(b) With probability at least 1 − n−3, the total number of (V ′, β, β−)-underfull elements in the
remaining part of the stream is at most γ = O(µ(V) · log(n) · log(k) ·β2 · 1/ε).

Proof. First, in each interval of size αi processed until the first phase terminates (except the last interval),
at least one insertion/deletion operation that is performed (as described in the proof of Theorem 23),
and therefore the total number of such processed intervals is bounded by 2β2 ·µ(V) + 1. As a result, the
first phase ends with some i ≤ i0 = ⌈log2 µ(V)⌉, and the total number of elements processed in the first
phase is therefore bounded by ε ·n · i0

log2(k)
≤ ε ·n. For Property 2.a, as the subset V ′ built always keeps

a bounded density β, Proposition 22 implies that V ′ uses O(β ·µ(V)) = O(µ(V) · 1/ε) memory.

18

Now we turn to the last property. As mentioned previously, the intuition is simple: the algorithm
only exits the first phase if it fails to find a single underfull element in an entire interval (Line 14-16),
and since the stream is random, such an event implies that there are most likely few underfull elements
left in the stream.

To formalize this, we call the j-th time that Lines 7-13 are processed the epoch j. Let Aj be the event
that FoundUnderfull is set to False in epoch j. Let Bj be the event that the number of (V ′, β, β−)-
underfull elements in the remaining part of the stream is larger than some γ. Note that the last property
fails to hold if and only if we have Aj ∧ Bj for some j, so we want to upper bound P[Aj ∧ Bj]. Let V r

j

contains all elements in V that have not yet appeared in the stream at the beginning of epoch j (r for
remaining). Let V e

j be the elements that appear in epoch j (e for epoch), and note that Ee
j is a subset

of size αi ≥ αi0 = α⌈log2 µ(V)⌉ = α chosen uniformly at random from V r
j . Define V ′

j to be the subset
V ′ at the beginning of epoch j, and define V u

j ⊆ Er
j to be the set of remaining underfull elements with

respect to V ′
j , β, and β−. Observe that because of event Aj , the subset V ′ remains the same throughout

epoch j, so an element that is underfull at any point during the epoch will be underfull at the end as
well. Thus, Aj ∧ Bj is equivalent to the event that |V u

j | > γ and V u
j ∩ V e

j = ∅.
Let Ak

j be the event that the k-th element of epoch j is not in V u
j . We have that P[Bj ∧ Aj] ≤

P[Aj | Bj] ≤ P[A1
j | Bj]

∏α
k=2 P[Ak

j | Bj ,A1
j , . . . ,A

k−1
j], where the second inequality comes from that V e

j is
of size larger or equal to α = α⌈log2 µ(V)⌉.

Now, observe that P[A1
j | Bj] < 1 − γ

n because the first element of the epoch is chosen uniformly at
random from the set of ≤ n remaining elements, and the event fails if the chosen element is in V u

j , where
|V u

j | > γ by definition of Bj . Similarly, for any k, P[Ak
j | Bj ,A1

j , . . . ,A
k−1
j] < 1− γ

m because conditioning
on the previous events At

j implies that no element from V u
j has yet appeared in this epoch, so there

remain still at least γ element from V u
j left in the stream.

We now set

γ = 4 log(n) ·
n

α
= 4 log(n) ·n ·

⌊
ε ·n

log2(k) · (2i0+2β2 + 1)

⌋−1

,

and as we assumed that ε ·n
log2(n) · (2i0+2β2+1)

≥ 1 (and as a factor of at most 2 separates ⌊x⌋ and x when
x ≥ 1) we have γ = O(µ(V) · log(n) · log(k) · (1/ε)3).

Combining the above equations yields that P[Bj ∧ Aj] ≤ (1 − γ
n)

α = (1 − 4 log(n)
α)α ≤ n−4. There

are clearly at most n epochs, so union bounding over all of them shows that the last property fails with
probability at most n−3, as desired.

Then we can combine the previous results to obtain the following theorem.

Theorem 9. Let 1/4 > ε > 0. One can extract from a randomly-ordered stream of elements a com-
mon independent subset in two matroids with an approximation ratio of 3/2 + ε in expectation, using
O(µ(V) · log(n) · log(k) · (1/ε)3) memory, where µ(V) denotes the size of the optimal solution, and k is
the smaller rank of the two given matroids. Moreover the approximation ratio is worse than 3/2+ ε only
with probability at most exp(−1/32 · ε2 ·µ(V)) + n−3.

Proof. Using Lemma 31 on the graph V ′ ∪ V late we get (3/2 + ε) ·µ(V ′ ∪X) ≥ µ(V ′ ∪ V late). Applying
Claim 33, we know that in expectation (1 − ε)−1 ·µ(V ′ ∪ V late) ≥ µ(V). Hence in expectation we also
have

(3/2 + ε) · (1− ε)−1 ·µ(V ′ ∪X) ≥ µ(V).

Moreover, by Lemma 35, the memory consumption is bounded by O(µ(V) · log(n) · log(k) · (1/ε)3) with
probability at least 1− n−3. Hence we can decide that, if during the execution of the algorithm at some
point the memory consumption reaches the bound defined in Lemma 35 (recall that this bound can be
computed as it depends only on the epoch when the first phase stopped), then we discard the remaining
elements. As this event happens only with probability 1−n−3, this is not harmful for the expectation of
the approximation ratio.

Moreover, using Claim 33, we know that a (1−2ε)−1 · (3/2+ε) approximation of the optimal common
independent subset is contained in µ(V ∪ X) with probability at least 1 − exp(−2 · ε2 ·µ(V)). As the

19

memory consumption of O(µ(V) · log(n) · log(k) · (1/ε)3) is guaranteed with probability at least 1− n−3

(see Lemma 35), then with probability at least 1− (exp(−2 · ε2 ·µ(V)) + n−3) (by union bound), we can
obtain a (1−2ε)−1 · (3/2+ε) approximation using O(µ(V) · log(n) · log(k) · (1/ε)3) memory. As ε < 1/4,
we have (1 − 2ε)−1 · (3/2 + ε) ≤ (3/2 + 8ε), and therefore to get a 3/2 + ε, we have to use an ε′ = ε/8
so that the probability to have an approximation ratio worse than 3/2 + ε approximation is at most
exp(−2 · (ε/8)2 ·µ(V)) + n−3.

A Deferred Proofs
Proof of Lemma 20. In the following, we will use the notation Pa,b = Uold

a ∩ Unew
b for a, b ∈ J1, kK.

We prove (i) by strong induction. We start with the case j = 1. Let i0 be the largest i set such as
P1,i ̸= ∅. Then we know that for all v ∈ Uold

1 ,

ρ̃new
M (v) ≥ ρM′new/(

⋃i0−1
i=1 Unew

i)
(Unew

i0) by Proposition 17

≥ ρM′new/(
⋃i0−1

i=1 Unew
i)

(P1,i0) by maximality of Unew
i0

≥ ρM′new/(
⋃i0−1

i=1 P1,i)
(P1,i0) as

i0−1⋃
i=1

P1,i ⊆
i0−1⋃
i=1

Unew
i (Proposition 14)

= ρM′old/(
⋃i0−1

i=1 P1,i)
(P1,i0) as unew /∈ Uold

1

≥ ρM′old(Uold
1). by Proposition 15

For the induction step, let 2 ≤ j ≤ k. Suppose that the property is true for all i ∈ J1, j−1K. We want
to prove that the property is also true for j. Let i0 be the largest i such that Pj,i ̸= ∅. Then we know
that for all v ∈ Uold

j ,

ρ̃new
M (v) ≥ ρM′new/(

⋃i0−1
i=1 Unew

i)
(Unew

i0) ≥ ρM′new/(
⋃i0−1

i=1 Unew
i)

(Pj,i0).

Then we have two cases:

• We have
⋃j−1

i=1 Uold
i ⊆

⋃i0−1
i=1 Unew

i . In that case we can write, similarly as in the previous case,

ρ̃new
M (v) ≥ ρM′new/(

⋃i0−1
i=1 Unew

i)
(Pj,i0)

≥ ρM′new/(
⋃j−1

i=1 Uold
i ∪

⋃i0−1
i=1 Pj,i)

(Pj,i0) as
j−1⋃
i=1

Uold
i ∪

i0−1⋃
i=1

Pj,i ⊆
i0−1⋃
i=1

Unew
i

= ρM′old/(
⋃j−1

i=1 Uold
i ∪

⋃i0−1
i=1 Pj,i)

(Pj,i0) as unew /∈
j−1⋃
i=1

Uold
i ∪

i0⋃
i=1

Pj,i

≥ ρM′ old(Uold
j). by Proposition 15

• Otherwise, there exists u′ ∈ Uold
i1

such that i1 < j and u′ /∈
⋃i0−1

i=1 Unew
i . It means that u′ ∈ Unew

i2
for some i2 ≥ i0, and hence ρ̃new

M (u′) ≤ ρ̃new
M (v). Then we have

ρ̃new
M (v) ≥ ρ̃new

M (u′) ≥ ρM′old/(
⋃i1−1

i=1 Uold
i)

(Uold
i1) ≥ ρM′old/(

⋃j−1
i=1 Uold

i)(U
old
j),

where the second inequality uses the strong induction hypothesis and the third uses Proposition 17.

This concludes the proof of (i).
Now we move to (ii). Observe that (i) implies the result for v ∈ V ′old. If v /∈ spanM(V ′old),

then it is clear that the density associated to that element can only increase (recall that by Defini-
tion 19, ρ̃old

M (v) = 0). From now on we suppose that v ∈ spanM(V ′old) and we denote j = min{j ∈

20

J1, kK : v ∈ spanM(
⋃j

i=1 U
old
i)}. By (i) we know that for all v′ ∈

⋃j
i=1 U

old
i , we have ρ̃new

M (v′) ≥
ρM′old/(

⋃j−1
i=1 Uold

i)(U
old
j) = ρ̃old

M (v′) ≥ ρ̃old
M (v), hence we also have ρ̃new

M (v) ≥ minv′∈
⋃j

i=1 Uold
i

ρ̃old
M (v′) ≥

ρ̃old
M (v), as the associated density of v will be at least equal to the smallest density of the elements in⋃j
i=1 U

old
i , as once all those elements are in the decomposition we are sure that v is spanned.

For (iii), we only have to prove the upper bound (the lower bound comes from (ii)). Suppose that in
the new decomposition, unew appears in Unew

i0
. Then it means that for all i < i0, we have Unew

i = Uold
i ,

as the previous sets have been made using the very same elements.
If unew /∈ spanM/(

⋃i0−1
i=1 Uold

i)
(Unew

i0
\{unew}), then the only possibility is ρM′new/(

⋃i0−1
i=1 Uold

i)
(Unew

i0
) = 1

and we have our upper bound. From now on we assume that unew ∈ spanM/(
⋃i0−1

i=1 Uold
i)

(Unew
i0
\{unew}).

Let j = min{j ∈ J1, kK : unew ∈ spanM(
⋃j

i=1 U
old
i)} (j is well-defined by our assumption immediately

before). Let Pi,i0 = Uold
i ∩Unew

i0
. Let i1 be the largest i such that Pi,i0 ̸= ∅. As unew ∈ spanM(

⋃i0−1
i=1 Uold

i ∪⋃i1
i=1 Pi,i0) ⊆ spanM(

⋃i1
i=1 U

old
i) (by observing that i1 ≥ i0 as Unew

i = Uold
i for i < i0), it means that

i1 ≥ j. As a result we have

ρ̃new
M (unew) = ρM′new/(

⋃i0−1
i=1 Uold

i)
(Unew

i0)

≤ ρM′new/(
⋃i0−1

i=1 Uold
i ∪

⋃i1−1
i=1 Pi,i0

)
(Pi1,i0 ∪ {unew}) by Proposition 15

≤ ρM′new/(
⋃i0−1

i=1 Uold
i ∪

⋃i1−1
i=1 Pi,i0

)
(Pi1,i0) + 1

= ρM′old/(
⋃i0−1

i=1 Uold
i ∪

⋃i1−1
i=1 Pi,i0

)
(Pi1,i0) + 1 as unew /∈

i0−1⋃
i=1

Uold
i ∪

i1⋃
i=1

Pi,i0

≤ ρM′old/(
⋃i1−1

i=1 Uold
i)

(Pi1,i0) + 1 by Proposition 14

≤ ρM′old/(
⋃i1−1

i=1 Uold
i)

(Uold
i1) + 1 by maximality of Uold

i1

≤ ρM′old/(
⋃j−1

i=1 Uold
i)(U

old
j) + 1 by Proposition 17 and i1 ≥ j

= ρ̃old
M (unew) + 1.

For property (iv), we can first observe that the elements having densities larger than ρ̃new
M (unew), which

is upper bounded by ρ̃old
M (unew)+1, will remain with the same densities (actually they will even remain in

the same sets Ui as it was observed in the proof of (iii)). So we just focus on the case ρ̃old
M (v) < ρ̃old

M (unew).
As ρ̃old

M (unew) > 0, we can set j = min{j ∈ J1, kK : unew ∈ spanM(
⋃j

i=1 U
old
i)}.

Let Usmall =
⋃k

i=j+1 U
old
i and Ubig =

⋃j
i=1 U

old
i . First, suppose that there exists an element v ∈ Usmall

such that ρ̃new
M (v) ≥ ρ̃old

M (unew). Let P = {v ∈ Usmall : ρ̃
new
M (v) ≥ ρ̃old

M (unew)}. Let Pi = P ∩ Unew
i for all

i, and let i0 be the smallest index i such that Pi ̸= ∅. Then

ρ̃new
M (v) ≤ ρM′new/(

⋃i0−1
i=1 Unew

i)
(Unew

i0) by Proposition 17

≤ ρM′new/(
⋃i0

i=1 Unew
i \Pi0

)
(Pi0) by Proposition 15

≤ ρM′new/(Ubig∪{unew})(Pi0) as
i0⋃
i=1

Unew
i \Pi0 ⊆

j⋃
i=1

Uold
i ∪ {unew}

= ρM′old/(Ubig)(Pi0) as unew ∈ spanM(Ubig)

≤ ρM′old/(Ubig)(U
old
j+1) by maximality of Uold

j+1

< ρM′old/(Ubig\Uold
j)(U

old
j) by Proposition 17

= ρ̃old
M (unew),

a contradiction to the assumption that i0 exists, implying that P = ∅.
As a result, the set of elements in V ′ of density smaller than ρ̃old

M (unew) remains the same (note that
this set cannot become bigger because of property (i)). Thereby, the execution of Algorithm 1 can be

21

decomposed into two phases, the early phase when the elements of Ubig ∪ {unew} are processed, and the
late phase when the elements of Usmall are processed. As spanM(Ubig ∪ {unew}) = spanM(Ubig), the
construction of the sets in the late phase is the same no matter unew is in V ′ or not. Hence the sets are
the same and so are the associated densities. This concludes the proof of (iv).

Proof of Lemma 21. Consider the behavior when uold is added to V ′\{uold}: it is clear that Lemma 20
applies. As a result the points (i) and (ii) come easily from Lemma 20 (ii). For (iii), observe that from
Lemma 20 (iii) we get that ρ̃new

M (uold) ≤ ρ̃old
M (uold) ≤ ρ̃new

M (uold) + 1 and hence we obtain also (iii) here.
For (iv) the bounds are a bit different from what we could get from Lemma 20 (iv) but using ideas similar
to that from the previous proof one can easily show the desired result.

Proof of Theorem 23. Start with an empty subset V ′. Then apply the following local improvement steps
repeatedly on V ′, until it is no longer possible. If an element in V ′ violates Property (i) of Definition 3,
then remove it from V ′; similarly, if an element in V \V ′ violates Property (ii), insert it into V ′. Note
that among the two local improvement steps, the priority is given to the deletion operations.

Observe that when no element violates Property (i), all the elements have densities bounded by β
in both matroids. To prove that this algorithm terminates in finite time and to show the existence of a
DCS, we introduce a potential function:

Φ(V ′) = (2β − 7) · |V ′| −
∑

l∈{1,2}

 k∑
j=1

(
rankM′

l/(
⋃j−1

i=1 Ul,i)
(Ul,j) · (ρM′

l/(
⋃j−1

i=1 Ul,i)
(Ul,j))

2
)

where Ul,1, . . . , Ul,k denotes the density-based decomposition of V ′ in Ml for l ∈ {1, 2}. We can rewrite
this function in a more convenient form:

Φ(V ′) = (2β − 7) · |V ′| −
∑

l∈{1,2}

 k∑
j=1

ρ2l,j

where for l ∈ {1, 2}, the vector ρl = (ρl,1, . . . , ρl,k) is the list of the densities of each set of the decompo-
sition Ul,1, . . . , Ul,k counted with multiplicity equal to their rank (so that, for instance, ρM′

l/(
⋃j−1

i=1 Ui)
(Uj)

appears rankM′
l/(

⋃j−1
i=1 Ui)

(Uj) times in that vector; we potentially add some zeros in the end so that the
vector has exactly k components).

The execution of the algorithm can be seen as a series of batches of operations, consisting of one
insertion operation followed by some number of deletion operations. Each batch has a finite size because
we can make only a finite number of deletions when no insertion is performed. At the end of each batch
of operations, all the densities are bounded by β, hence using Proposition 22 (as for this result to hold it
is only required that the densities are bounded by β) we have that Φ is bounded by (2β − 7) ·β ·µ(V).
Then we have to show that Φ increases at each local improvement step by at least some constant amount
and we will be done.

When Property (i) of Definition 3 is not satisfied by some element in uold ∈ V ′old, then it is removed
to get a new set V ′new = V ′old\{uold}. Hence from the vectors ρold

l = (ρl,1, . . . , ρl,k) we get new vectors
ρnew
l = (ρl,1 − λl,1, . . . , ρl,k − λl,k), with the following properties:

• λl,i ≥ 0 (by Lemma 21 (ii));

•
∑k

j=1 λl,j = 1 for l ∈ {1, 2} (as we always have
∑k

j=1 ρl,j = |V ′|, see Proposition 18);

• λl,i > 0⇒ ρ̃old
Ml

(uold)− 1 ≤ ρl,i ≤ ρ̃old
Ml

(uold) for l ∈ {1, 2} (by Lemma 21 (iv)).

As a result we get:

Φ(V ′new)− Φ(V ′old) = −(2β − 7) +
∑

l∈{1,2}

 k∑
j=1

ρ2l,j − (ρl,j − λl,j)
2

22

= −2β + 7 +
∑

l∈{1,2}

 k∑
j=1

2ρl,jλl,j −
k∑

j=1

λ2
l,j

≥ −2β + 5 +

∑
l∈{1,2}

 k∑
j=1

2ρl,jλl,j

= −2β + 5 +

∑
l∈{1,2}

 ∑
ρ̃old
Ml

(uold)−1≤ρl,j≤ρ̃old
Ml

(uold)

2ρl,jλl,j

≥ −2β + 5 +

∑
l∈{1,2}

2 · (ρ̃old
Ml

(uold)− 1)
∑

ρ̃old
Ml

(uold)−1≤ρl,j≤ρ̃old
Ml

(uold)

λl,j

= −2β + 5 + 2 · (ρ̃old

M1
(uold) + ρ̃old

M2
(uold)− 2)

> −2β + 1 + 2β = 1.

The first inequality comes from λl,i ≥ 0 and
∑k

j=1 λl,j = 1, implying that
∑k

j=1 λ
2
l,j ≤ 1. The last

inequality comes from ρ̃old
M1

(uold) + ρ̃old
M2

(uold) > β. Hence we get an increase of Φ of at least 1.
Similarly, when Property (ii) of Definition 3 is not satisfied by some element in unew ∈ V \V ′old, then

it is added to get a new set V ′new = V ′old ∪ {unew}. Hence from the vectors ρold
l = (ρl,1, . . . , ρl,k) we get

new vectors ρnew
l = (ρl,1 + λl,1, . . . , ρl,k + λl,k), with the following properties:

• λl,i ≥ 0 (by Lemma 20 (ii));

•
∑k

j=1 λl,j = 1 for l ∈ {1, 2} (as we always have
∑k

j=1 ρl,j = |V ′|, see Proposition 18);

• λl,i > 0⇒ ρ̃old
Ml

(unew) ≤ ρl,i ≤ ρ̃old
Ml

(unew) + 1 for l ∈ {1, 2} (by Lemma 20 (iv)).

As a result we get:

Φ(V ′new)− Φ(V ′old) = (2β − 7)−
∑

l∈{1,2}

 k∑
j=1

(ρ2l,j + λl,j)
2 − ρ2l,j

= 2β − 7−

∑
l∈{1,2}

 k∑
j=1

2ρl,jλl,j +

k∑
j=1

λ2
l,j

≥ 2β − 9−

∑
l∈{1,2}

 k∑
j=1

2ρl,jλl,j

= 2β − 9−

∑
l∈{1,2}

 ∑
ρ̃old
Ml

(unew)≤ρl,j≤ρ̃old
Ml

(unew)+1

2ρl,jλl,j

≥ 2β − 9−

∑
l∈{1,2}

2 · (ρ̃old
Ml

(unew) + 1)
∑

ρ̃old
Ml

(unew)≤ρl,j≤ρ̃old
Ml

(unew)+1

λl,j

= 2β − 9− 2 · (ρ̃old

M1
(unew) + ρ̃old

M2
(unew) + 2)

> 2 · (β − β−)− 13 ≥ 1.

The first inequality comes from λl,i ≥ 0 and
∑k

j=1 λl,j = 1, implying that
∑k

j=1 λ
2
l,j ≤ 1. To move to

the last line we use that ρ̃old
M1

(unew) + ρ̃old
M2

(unew) < β−, and then that β ≥ β− +7. Hence we also get an
increase of Φ of at least 1.

23

As a result, a (β, β−)-DCS can be found in at most 2 ·β2 ·µ(V) such local improvement steps.

References
[AB19] Sepehr Assadi and Aaron Bernstein. Towards a unified theory of sparsification for matching

problems. In Jeremy T. Fineman and Michael Mitzenmacher, editors, 2nd Symposium on
Simplicity in Algorithms, SOSA 2019, January 8-9, 2019, San Diego, CA, USA, volume 69
of OASICS, pages 11:1–11:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[AB21] Sepehr Assadi and Soheil Behnezhad. Beating two-thirds for random-order streaming match-
ing. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International
Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021,
Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 19:1–19:13. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[AB23] Amir Azarmehr and Soheil Behnezhad. Robust communication complexity of matching:
EDCS achieves 5/6 approximation. In Kousha Etessami, Uriel Feige, and Gabriele Puppis,
editors, 50th International Colloquium on Automata, Languages, and Programming, ICALP
2023, July 10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs, pages 14:1–14:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[Ber20] Aaron Bernstein. Improved bounds for matching in random-order streams. In Artur Czumaj,
Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata,
Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual
Conference), volume 168 of LIPIcs, pages 12:1–12:13. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020.

[BHI18] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Dynamic algorithms via
the primal-dual method. Inf. Comput., 261:219–239, 2018.

[BK22] Soheil Behnezhad and Sanjeev Khanna. New trade-offs for fully dynamic matching via hi-
erarchical EDCS. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the
2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference /
Alexandria, VA, USA, January 9 - 12, 2022, pages 3529–3566. SIAM, 2022.

[BKS23] Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak. Sublinear algorithms for
(1.5+ϵ)-approximate matching. In Barna Saha and Rocco A. Servedio, editors, Proceedings
of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL,
USA, June 20-23, 2023, pages 254–266. ACM, 2023.

[Bli21] Joakim Blikstad. Breaking O(nr) for matroid intersection. In Nikhil Bansal, Emanuela
Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages,
and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference),
volume 198 of LIPIcs, pages 31:1–31:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021.

[BMNT23] Joakim Blikstad, Sagnik Mukhopadhyay, Danupon Nanongkai, and Ta-Wei Tu. Fast algo-
rithms via dynamic-oracle matroids. CoRR, abs/2302.09796, 2023.

[BRR23] Soheil Behnezhad, Mohammad Roghani, and Aviad Rubinstein. Sublinear time algorithms
and complexity of approximate maximum matching. In Barna Saha and Rocco A. Servedio,
editors, Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC
2023, Orlando, FL, USA, June 20-23, 2023, pages 267–280. ACM, 2023.

24

[BS15] Aaron Bernstein and Cliff Stein. Fully dynamic matching in bipartite graphs. In Magnús M.
Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata,
Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan,
July 6-10, 2015, Proceedings, Part I, volume 9134 of Lecture Notes in Computer Science,
pages 167–179. Springer, 2015.

[BS16] Aaron Bernstein and Cliff Stein. Faster fully dynamic matchings with small approximation
ratios. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016, pages 692–711. SIAM, 2016.

[CCPV07] Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a submodular
set function subject to a matroid constraint (extended abstract). In Matteo Fischetti and
David P. Williamson, editors, Integer Programming and Combinatorial Optimization, 12th
International IPCO Conference, Ithaca, NY, USA, June 25-27, 2007, Proceedings, volume
4513 of Lecture Notes in Computer Science, pages 182–196. Springer, 2007.

[CGQ15] Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud. Streaming algorithms for submodular
function maximization. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and
Bettina Speckmann, editors, Automata, Languages, and Programming - 42nd International
Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, volume 9134
of Lecture Notes in Computer Science, pages 318–330. Springer, 2015.

[CKLV19] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. Matroids, match-
ings, and fairness. In Kamalika Chaudhuri and Masashi Sugiyama, editors, The 22nd In-
ternational Conference on Artificial Intelligence and Statistics, AISTATS 2019, 16-18 April
2019, Naha, Okinawa, Japan, volume 89 of Proceedings of Machine Learning Research, pages
2212–2220. PMLR, 2019.

[CLS+19] Deeparnab Chakrabarty, Yin Tat Lee, Aaron Sidford, Sahil Singla, and Sam Chiu-wai Wong.
Faster matroid intersection. In David Zuckerman, editor, 60th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12,
2019, pages 1146–1168. IEEE Computer Society, 2019.

[DFZ11] Randall Dougherty, Christopher F. Freiling, and Kenneth Zeger. Network coding and matroid
theory. Proc. IEEE, 99(3):388–405, 2011.

[Edm70] Jack Edmonds. Submodular functions, matroids, and certain polyhedra. Combinatorial Struc-
tures and Their Applications, 1970.

[Edm71] Jack Edmonds. Matroids and the greedy algorithm. Mathematical Programming, 1(1):127–
136, 1971.

[Edm79] Jack Edmonds. Matroid intersection. In P L Hammer, E L Johnson, and B H Korte, ed-
itors, Discrete Optimization I: Proceedings of the Advanced Research Institute on Discrete
Optimization and Systems Applications of the Systems Science Panel of NATO and of the
Discrete Optimization Symposium, volume 4, pages 39–49. Elsevier, 1979.

[FHM+20] Alireza Farhadi, Mohammad Taghi Hajiaghayi, Tung Mai, Anup Rao, and Ryan A. Rossi.
Approximate maximum matching in random streams. In Shuchi Chawla, editor, Proceedings
of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City,
UT, USA, January 5-8, 2020, pages 1773–1785. SIAM, 2020.

[FKK18] Moran Feldman, Amin Karbasi, and Ehsan Kazemi. Do less, get more: Streaming submodular
maximization with subsampling. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 730–740, 2018.

25

[FKM+05] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theoretical Computer Science, 348:207–216,
12 2005.

[FNSZ20] Moran Feldman, Ashkan Norouzi-Fard, Ola Svensson, and Rico Zenklusen. The one-way com-
munication complexity of submodular maximization with applications to streaming and ro-
bustness. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath,
and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1363–1374.
ACM, 2020.

[Fuj08] Satoru Fujishige. Theory of principal partitions revisited. In William J. Cook, László Lovász,
and Jens Vygen, editors, Research Trends in Combinatorial Optimization, Bonn Workshop on
Combinatorial Optimization, November 3-7, 2008, Bonn, Germany, pages 127–162. Springer,
2008.

[GJS21] Paritosh Garg, Linus Jordan, and Ola Svensson. Semi-streaming algorithms for submodular
matroid intersection. In Mohit Singh and David P. Williamson, editors, Integer Programming
and Combinatorial Optimization - 22nd International Conference, IPCO 2021, Atlanta, GA,
USA, May 19-21, 2021, Proceedings, volume 12707 of Lecture Notes in Computer Science,
pages 208–222. Springer, 2021.

[GKK12] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming
complexity of maximum bipartite matching. In Yuval Rabani, editor, Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto,
Japan, January 17-19, 2012, pages 468–485. SIAM, 2012.

[GKMS19] Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted matchings
via unweighted augmentations. In Peter Robinson and Faith Ellen, editors, Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON,
Canada, July 29 - August 2, 2019, pages 491–500. ACM, 2019.

[GP13] Manoj Gupta and Richard Peng. Fully dynamic (1 + ε)-approximate matchings. In 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA, pages 548–557. IEEE Computer Society, 2013.

[GS17] Guru Prashanth Guruganesh and Sahil Singla. Online matroid intersection: Beating half for
random arrival. In Friedrich Eisenbrand and Jochen Könemann, editors, Integer Programming
and Combinatorial Optimization - 19th International Conference, IPCO 2017, Waterloo, ON,
Canada, June 26-28, 2017, Proceedings, volume 10328 of Lecture Notes in Computer Science,
pages 241–253. Springer, 2017.

[GSSU22] Fabrizio Grandoni, Chris Schwiegelshohn, Shay Solomon, and Amitai Uzrad. Maintaining
an EDCS in general graphs: Simpler, density-sensitive and with worst-case time bounds. In
Karl Bringmann and Timothy Chan, editors, 5th Symposium on Simplicity in Algorithms,
SOSA@SODA 2022, Virtual Conference, January 10-11, 2022, pages 12–23. SIAM, 2022.

[GT84] Harold N. Gabow and Robert Endre Tarjan. Efficient algorithms for a family of matroid
intersection problems. J. Algorithms, 5(1):80–131, 1984.

[HS22] Chien-Chung Huang and François Sellier. Maximum weight b-matchings in random-order
streams. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman, ed-
itors, 30th Annual European Symposium on Algorithms, ESA 2022, September 5-9, 2022,
Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages 68:1–68:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022.

26

[Kap13] Michael Kapralov. Better bounds for matchings in the streaming model. In Sanjeev Khanna,
editor, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1679–1697.
SIAM, 2013.

[Kap21] Michael Kapralov. Space lower bounds for approximating maximum matching in the edge
arrival model. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1874–
1893. SIAM, 2021.

[Kis22] Peter Kiss. Deterministic dynamic matching in worst-case update time. In Mark Braverman,
editor, 13th Innovations in Theoretical Computer Science Conference, ITCS 2022, January
31 - February 3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 94:1–94:21. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[KMM12] Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-
streaming with few passes. In Anupam Gupta, Klaus Jansen, José D. P. Rolim, and Rocco A.
Servedio, editors, Approximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques - 15th International Workshop, APPROX 2012, and 16th Interna-
tional Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012. Proceedings,
volume 7408 of Lecture Notes in Computer Science, pages 231–242. Springer, 2012.

[Kon18] Christian Konrad. A simple augmentation method for matchings with applications to stream-
ing algorithms. In Igor Potapov, Paul G. Spirakis, and James Worrell, editors, 43rd Interna-
tional Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August
27-31, 2018, Liverpool, UK, volume 117 of LIPIcs, pages 74:1–74:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018.

[Kus97] Eyal Kushilevitz. Communication complexity. In Advances in Computers, volume 44, pages
331–360. Elsevier, 1997.

[Mes06] Julián Mestre. Greedy in approximation algorithms. In Yossi Azar and Thomas Erlebach,
editors, Algorithms - ESA 2006, 14th Annual European Symposium, Zurich, Switzerland,
September 11-13, 2006, Proceedings, volume 4168 of Lecture Notes in Computer Science,
pages 528–539. Springer, 2006.

[Mur99] Kazuo Murota. Matrices and matroids for systems analysis, volume 20. Springer Science &
Business Media, 1999.

[Rec89] András Recski. Matroid Theory and its Applications in Electric Network Theory and in
Statics. Springer, 1989.

[RSW22] Mohammad Roghani, Amin Saberi, and David Wajc. Beating the folklore algorithm for
dynamic matching. In Mark Braverman, editor, 13th Innovations in Theoretical Computer
Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA, volume
215 of LIPIcs, pages 111:1–111:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[Sch03] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency. Springer, 2003.

[XG94] Ying Xu and Harold N. Gabow. Fast algorithms for transversal matroid intersection prob-
lems. In Ding-Zhu Du and Xiang-Sun Zhang, editors, Algorithms and Computation, 5th In-
ternational Symposium, ISAAC ’94, Beijing, P. R. China, August 25-27, 1994, Proceedings,
volume 834 of Lecture Notes in Computer Science, pages 625–633. Springer, 1994.

27

	Introduction
	Density-Based Decomposition
	Density-Constrained Subsets for Matroid Intersection
	Application to One-Way Communication
	Application to Random-Order Streams
	Deferred Proofs

