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Abstract. The input is a bipartite grapts = (42U B,E) where each vertex € 4U B ranks its
neighbors in a strict order of preference. This is the same as an iastdirtbe stable marriage
problem with incomplete lists. A matching* is said to be popular if there is no matchilgsuch
that more vertices are better off i than inM*. Any stable matching o& is popular, however such

a matching is aninimumcardinality popular matching. We consider the problem of computing a
maximunrcardinality popular matching iG.

It has very recently been shown that when preference lists tiesyehe problem of determining if

a given instance admits a popular matching or not is NP-complete. Wieéerg@mnce lists arstrict,
popular matchings always exist, however the complexity of computingxanmuan cardinality pop-
ular matching was unknown. In this paper we give a simple characternzatipopular matchings
when preference lists are strict and a sufficient condition for a maxiganinality popular match-
ing. We then show a®(mry) algorithm for computing a maximum cardinality popular matching,
wherem= |E| andng = min(|-4|,|B|).

1 Introduction

Our input is a bipartite grap® = (A4 U B, E) where each vertex ranks its neighbors in a strict
order of preference. Each vertexc 4 U B seeks to be assigned to one of its neighbors and
u's preference is given by the orderinguis preference list. Preference lists can be incomplete,
which means that a vertex may be adjacent to only some of the vertices on ¢nesioi (\We
assume without loss of generaility thabelongs td’s list if and only if b belongs taa’s list, for
anya andb.) Note that this is the same as an instance ofstiable marriaggoroblem with in-
complete lists and it is customary to call the two sides of the gnaphandwomerrespectively.
LetV denote the entire vertex sé@tJU B and let|V| = n and|E| = m. We assume that no vertex
is isolated, son > n/2.

A matchingM is a set of edges no two of which share an endpoint. An €dgg is said
to be ablocking edgdor a matchingM if by being matched to each other, batrandv are
better offthan their respective assignmentaMin that is,u is either unmatched iM or prefers
v to M(u) and similarly,v is either unmatched iM or prefersu to M(v). A matching that
admits no blocking edges is called a stable matching. It is known that everpéesiaadmits
a stable matching [9] and such a matching can be computed in linear time by at&raighd
generalization [5] of the Gale/Shapley algorithm [3] for complete lists.

1.1 Popular Matchings

For any two matchingd andM’, we say that vertex prefersM to M’ if u is better off inM
than inM’ (i.e., u is either matched i and unmatched iM’ or matched in both and prefers
M(u) to M’(u)). We say thaM is more popular thai’, denoted byM > M’, if the number of
vertices that prefei to M’ is more than the number of vertices that préfgrto M.

* Work done when C.-C. Huang was at MPI Saadien supported by a Humboldt fellowship and visited TIFR
Mumbai under the IMPECS program.



Definition 1. A matching M is popular if there is no matching that is more popular than M.

Popularity is an attractive notion of optimality as a majority vote cannot force aatiogr
from a popular matching. &denfors [4] introduced the notion of popularity in the context of
stable matchings. Popular matchings have been studied extensively deriagttfew years [1,
11,10,8,13,12,7] in the case where only verticesgdhave preferences while vertices 8f
have no preferences. Thus each edge(a,b) in G has a rank associated with it (the rank that
a assigns td). There are simple examples in the one-sided preference lists domain thiat ad
no popular matching. In the world of two-sided strict preference listsyjaopnatchings always
exist since stable matchings always exist and every stable matching is p@gulge observe in
the next paragraph.

When comparing a stable matchiSgo any matchingM, note that for any edgec M, both
the endpoints of cannot prefeM to S- if they do, then it contradicts the stability 8f Hence if
one endpoint oé prefersM to S, then the other has to pref8to M. Thus the number of votes
in favor of M is at most the number of votes in favor&fhenceM cannot be more popular than
S. So popular matchings always exist in the world of two-sided strict peatar lists. But not all
popular matchings are stable as shown by this simple example 3efa;,a,} andB = {by, by}
and let the preference lists be as shown in Fig. 1.

a; : by by bi:ap a
a . b]_ bzial

Fig. 1. Herea;'s top choice ih; and second choice % while b;’s top choice isa; and second choice &; for ap,
the only neighbor i, and forh,, the only neighbor isy.

In this instance, the matchifday, b1)} is the only stable matching, whifga;, by), (a2, b1)}
is popular but unstable. Thus the containmigsitible matchingsC { popular matchingscould
be strict.

1.2 Our problem

GivenG = (4U B, E) with two-sided preference lists, a stable matching has usually been con-
sidered the optimal way of matching the vertices. The fact that there caalidecking edge in
a stable matching is a very strong condition and it is known ([5], Section 4.5aPpthstable
matchings inG = (4U B, E) have the same size and match exactly the same set of vertices, let
U denote this subset &. We show in Section 2 that every popular matching has to match all
the vertices irJ and a stable matching isainimumcardinality popular matching.

There are many problems, where it is desirable to match more than just theyeéntit,
for instance, in allocating training positions to trainees or projects to studehése the total
absence of blocking edges is not necessary and a more relaxed defafistability suffices.
Thus at one end of the spectrum, we have stable matchings whbtecking edge is permitted
and whose size is the minimum among all popular matchings and at the other erdves
maximum cardinality matchings that are not stable in any sense, since theepoefg of vertices
play no role here. What we seek is a matching that is somewhere in betwsenleextremes
- we are willing to weaken to some extent the notion of stability for the sake oinitgea larger
matching.



The notion of popularity captures this slightly weakened notion of stability:Kohgcedges
are permitted in a popular matchifg, nevertheles$1 hasoverall stability since there is no
matching where more vertices are better off thallirHence in problems where we are ready to
substitute stability with popularity, for the sake of increasing the size of thatireg matching,
what we seek is anaximumcardinality popular matching. In other words, we want a largest
matchingM in G such that there is no matching where more vertices are better off tHdn in
There are instances (as in our example in Fig. 1) where a maximum cardirmgdifjepp matching
can be twice as large as a stable matching.

Our main result is that a maximum cardinality popular matchinG s (4 U B,E) can be
computed inO(mny) time, wherem= |E| andng = min(| 4|, |B|). We now give an overview of
how we obtain this result and other results here. The following definition willdeful to us:

Definition 2. For any ue 4 U B and neighbors x and y of u, define u’s vote between x and y as:

1 ifuprefersxtoy
votey(X,y) = ¢ —1 if u prefersyto x
0 otherwise (i.e., x ).

Let M be any matching i®. Label every edge = (u,v) in E\ M by the pair(ae, B¢), where
O = votey(V,M(u)) andfe = votey(u,M(Vv)), i.e.,de is U's vote forv vs.M(u) andf3e is V's vote
for u vs. M(v). Note that for any vertex, if uis unmatched irM, thenvote,(v,M(u)) = 1 for
any neighbow of u, since every vertex prefers being matched with any of its neighbors tg bein
unmatched.

Any path/cyclep in G where alternate edges m belong toM is called an alternating
path/cycle with respect tM. For an alternating patp, if the endpoints ofp are unmatched
in M, thenp is called an augmenting path wt.

Theorem 1 gives a simple characterization of popular matchings in a GraptV, E) with
strict preference lists. Note that this theorem also holds for non-biparétihg with strict pref-
erence lists, referred to as thmommategproblem; however popular matchings need not always
exist in the roommates problem. We prove Theorem 1 in Section 2.

Theorem 1. Let Gy denote the subgraph of G obtained by deleting all edges from G that are
labeled(—1,—1) wrt M. The matching M is popular in G if and only if the following conditions
hold in Gy:

(i) There is no alternating cycle with respect to M that containd.d) edge.
(i) There is no alternating path starting from an unmatched vertex that contaif, 1) edge.
(iii) There is no alternating path with respect to M that contains two or n{dréd) edges.

While a stable matching forbids gll,1) edges, it is condition (iii) that allow§l, 1) edges
in a popular matchind/l - at most on€1,1) edge can be allowed in certain alternating paths in
Gwm. In addition to conditions (i)-(iii), suppodd also satisfies the following condition:

(iv) There is no augmenting path with respect to M in.G

We will show in Section 2 that such a matchilighas to be a maximum cardinality popular
matching. Note that unlike conditions (i)-(iii) that are both sufficient andasary for a popular
matching, condition (iv) is natecessarjyor a maximum cardinality popular matching (Section 2
has such an example). In fact, it is not clear if there always exists a mgtthen satisfies
conditions (i)-(iv). We show an algorithm in Section 3 that always coogtrsuch a matching in
a bipartite grapl = (A4 U B, E) with strict preference lists.
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Our approach. Suppose we partition the vertex $et= 24U B intoL andR, i.e.,LUR= G, and
reorganize the grap8 by placing all the vertices df on the left and all the vertices &on the
right. Note that. andR need not be independent sets. Mebe a matching i x R, i.e., every
edge ofM has one endpoint ib and the other endpoint R.

Definition 3. Call a matching MC L x R goodwith respect tqL, R) if the following two prop-
erties are satisfied:

(1) Thereis no edge markéd, 1) in L x R.
(2) Every edgein Ix L is marked(—1,—1).

Property (1) of goodness states that for egry) € L x Rthat is not inM, eithera prefers
M(a) to b or b prefersM(b) to a or both. Property (2) of goodness states that for eeeiry
L x L, each endpoint o prefers its partner i to the other endpoint ad. Theorem 2 proved
in Section 2 establishes the link between a good matching and the matching thatkwe se

Theorem 2. If M is a matching that is good with respect to some partitibnR) of V and M is
R-perfect, then M satisfies conditions (i)-(iv).

Given a partitionL, R) of V, to construct a matching that satisfies property (1) of goodness
is easy: the Gale/Shapley algorithm on the edge set restrictedtd x R) where vertices in
L propose and those iR dispose, yields a matchifg C L x R that has no edge markéd, 1)
in L x R. To ensure thaM obeys property (2), we need to come up with a suitdbte V.
Additionally, M needs to béR-perfect so that we can use Theorem 2. We show the following
theorem in Section 3.

Theorem 3. A matching M that is good wrt a partitiofi.,R) of V and which is R-perfect can
be computed in Onny) time, where m= |E| and rp = min(|-4|, |B|).

Finally, we show a linear time algorithm that is based on Theorem 1 to test iea gihatch-
ingM in G= (AU B,E) is popular or not.

1.3 Related Results

Abraham et al. [1] considered the popular matchings problem in the dorhameesided pref-
erence lists; they described efficient algorithms to determine if a given oestadmits a popular
matching or not and if so, to compute one with maximum cardinality. For one-pidderence
lists (both for strict lists and for lists with ties), they gave a structural cherigation of instances
that admit popular matchings. The work in [1] on one-sided popular matefwag generalized
to the capacitated version by Manlove and Sng [11], the weighted vergidebtre [14], and

Mahdian studied random popular matchings [10]. Kavitha and Nasres[&g# as McDermind

and Irving [13] independently studied the problem of computing an optimalillpo matching

for strict instances where the notion of optimality is specified as a part of pl. iRor instances
that do not admit popular matchings, McCutchen [12] considered thdgonobf computing a
least unpopular matching and showed this problem to be NP-hard, whiithKaMestre, and
Nasre [7] showed the existence of popular mixed matchings and effidgorithms for com-

puting them.

Gardenfors [4], who originated the notion of popular matchings, consibtiénis problem in
the domain of two-sided preference lists. When ties are allowed in pretetists here, it has
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recently been shown by Eir Irving, and Manlove [2] that the problem of computing an arbitrary
popular matching in the stable marriage problem is NP-hard. The complexity ohaximum
cardinality popular matching problem in the stable marriage problem wheearprefe lists are
strict (recall that the popular matchings always exist here) was netrkiso far and we answer
this question here.

2 Structural Results

Characterization of Popular Matchings. In this section we first prove Theorem 1 and then
show that conditions (i)-(iv) imply a maximum cardinality popular matching. Fiesshow that
conditions (i)-(iii) imply popularity and vice-versa in the proof of Theorem 1

Proof of Theorem 1.SupposeM is any matching irG that satisfies conditions (i)-(iii) given in
Theorem 1. LeM’ be any matching is. DefineA(M’,M) as follows:

AM M) =% gvoteu(M’(u), M(u)).

ThusA(M’,M) is the difference between the votes tMitgets vsM and the votes tha¥l gets
vs. M’. Note thatM(u) or M’(u) can also be the state of being unmatched, which is the least
preferred state for any. We haveM’ - M if and only if A(M’,M) > 0. We will now show that
A(M’;M) < 0 for all matchingsv’. This will imply thatM is popular.

We need to computg ,votey(M’(u),M(u)) now. Mark each edge = (u,v) of M’ by the
pair (de,Be) Whereoae = votey (v, M(u)) andfe = vote,(u,M(V)). Supposee = Be = —1. That
is, bothu andv are happier with their partners M than with each other. Then we can as well
assume thaM’ leavesu andv unmatched, i.e., we can delete the edges) from M’ since
this makes no difference twte,(M’(u),M(u)) or vote,(M’(v),M(v)) because both these values
were —1 to begin with and they both remainl after assuming that andv are unmatched in
M’. Thus in order to evaluatg, votey,(M’(u),M(u)), we can assume thd’ is a matching in
the subgraplGy. Recall thatGy is the subgraph ofs obtained by deleting all edges marked
(—=1,-1) wrt M.

Letp be any connected componeniino M’. We haved(M',M) = 5, 3 e, votey (M’ (u), M(u)),
where the sum is over all the componepts M & M’. For verticesu that are isolated iM & M’,
M(u) = M’(u), so we need to consider only those componeritsat contain two or more ver-
tices. Each sucp in M @ M’ is either a cycle or a path; alsote,(M’(u),M(u)) = £1 for each

vertexu in p.
Let p be a cycle. Since every vertexnis matched byM’, we have
Z votey(M'(u),M(u)) = Z Oe+ Be Q)
uep e=(u,v)e pnM’

whereae = votey(V,M(u)) and 3¢ = votey(u,M(v)). Note that for every edge € p, (0e,Be)
is either(1,1) or (—1,1) or (1,—1). But we are given thaWl satisfies condition (i) of Theo-
rem 1. Hence there is nd, 1) edge inp. Thus for each edgec pNM’, ae+ Be = 0 and hence
2ecpnm Oe+ Be=0.

Let p be a path. Suppose both the endpointp afre matched itM’. Then Egn. (1) holds
here. Since an endpoint pfis free inM, by condition (ii) of Theorem 1, we have rit, 1) edge
wrt M in p. Thus for each edgec pNM’, de+Be = 0 and hencg .o Oe +Be = 0.
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— Suppose exactly one endpointgis matched irM’. Then

> voteu(M'(U),M(u)) = —1 + 5 oe+Pe

uep e=(u,v)e pnM’

since there is one vertex that is matchediitout not inM’ and that vertex prefeid to M. Here
too an endpoint op is free inM, and so by condition (ii), we have n@,1) edge wrtM in p.
Thus for each edgec pNM’, e+ Be = 0 and hencg ¢, votey(M'(u),M(u)) = —1 here.

— Suppose neither endpointpis matched ifM’. Then

zvoteu(M’(u),M(u)) = -2 + z Oe+Be

uep e=(u,v)e pnM’

since there are two vertices that are matcheibut not inM’ and those two vertices prefer
M to M’. We use condition (iii) here. There can be at most ¢hd) edge wrtM in p. Thus
except for at most one edgen pNM’, we havete +Be = 0. SOy ¢ (yv)c prm de+Be < 2, thus
> uep Votey(M'(u),M(u)) < 0.

We have shown that for each compongf M & M’, we havey ., votey (M’ (u),M(u)) <O0.
Thus it follows thatA(M’;M) < 0. In other words, ifM satisfies properties (i)-(iii), theNl is
popular.

We will now show the converse. That isNf does not satisfy one or more of conditions (i)-
(iii) of Theorem 1, therM is not popular.

e SupposeM does not satisfy property (i). So there is a cyClén Gy that contains 41,1)
edge wrtM. It is easy to see that the matchiky®s C is more popular thaiM.

e SupposeM does not satisfy property (ii). Then there is an alternating patitt M, one of
whose endpoints is unmatchedVhand p contains g1,1) edge. It is again easy to see that
M @ p is more popular thaM.

e SupposeM does not satisfy property (iii). Then there is an alternating gattrt M that
contains two or moré¢l, 1) edges wriM. It is again easy to see thit® p is more popular
thanM.

This finishes the proof of Theorem 1. O
Lemma 1. Any stable matching is a minimum cardinality popular matching s G1U B,E).

Proof. Let Sbe a stable matching i@. We know thatSis popular. LeR be any matching such
that|R| < |§. Then one of the components Bft Sis a pathp that is augmenting with respect
to R, i.e., both the endpoints gf are unmatched iR. Since the endpoints gf preferSto R, we
have

Z votey(R(u),S(u)) = —2 + Z Oe+Pe

uep e=(u,v)e pNR
whereae = votey (v, S(u)) ande = votey(u, Sv)). The main observation here is that sirgis
stable no edge oR can be g1,1) edge. Thus for eachin pNR, we haveoe+ e < 0. Hence
Y uepVotey(R(u), S(u)) < —2, in other wordsR& p is more popular thaR.

Thus no matching of size smaller th&can be popular. S& is a minimum cardinality

popular matching irG. a

Recall that it is known ([5], Section 4.5.2) that all stable matchings #a (4 U B,E) have
the same size and match exactly the same set of verticés denote this subset of vertices.
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Corollary 1. Every popular matching in G has to match all vertices in U.

Proof. Let R be a matching that does not match some U. ThenR® S, whereSis stable,
contains a patlp, wherev is an endpoint op. Since no edge dk can be g1,1) edge wrtS, it is
easy to see that,c,votey(R(u), u)) < —1, in other wordsR® p is more popular thaR. O

The sufficient condition. Recallcondition (iv)stated in Section Ifhere is no augmenting path
with respect to M in . We now show that a matching that satisfies conditions (i)-(iv) is what
we seek.

Theorem 4. If a popular matching M satisfies condition (iv), then M is a maximum cardinality
popular matching in G.

Proof. SinceM is a popular matching, we know thitsatisfies conditions (i)-(iii) of Theorem 1.
Let Q be another matching iG and let|/Q| > [M|. SoQ® M contains an augmenting paghwrt
M. We will show using condition (iv) tha® & p is more popular tha®. Thus no matching of
size larger thanM| can be popular. Hence it follows thist is a maximum cardinality popular
matching inG.

Condition (iv) states that there is no augmenting path with respédtitoGy,. So the pattp
has to use edges outsi@g, i.e., p containg —1, —1) edges wriM. Split the pathp into subpaths
p1, P2, -, Pt by removing the—1, —1) edges fronmp. Each of the subpaths belongs toGy.

Each of the pathgy, ..., pi—1 can have at most ond, 1) edge wrtM by condition (iii). By
condition (ii), neitherp; nor p; can contain 41,1) edge. Thus we have

S votey(Q(U),M(u)) < 2(t—2) —2(t — 1),

Uep

where the first term @ — 2) counts the total number ¢, 1) edges possible oven, ..., p; and
the second term(2— 1) counts all thg —1, —1) edges inp (one such edge betwe@nandp; 1,
fori=1,...t —1. Thusy ,votey(Q(u),M(u)) < —2. In other wordsQ @ p is more popular
thanQ. O

Note that condition (iv) is nohecessanfor a popular matching to be one of maximum
cardinality, as shown by the following example.

ap . bl b2 b3 bl:al ay ag
a by b by:a; a
ag . bl b3 g

Fig. 2. Herea;'s top choice id; and second choice & and third choice i$3 anday’s top choice idh; and second
choice ishy while az’s only choice ish;. The preference lists of tHg’s are symmetric.

The matchingS= {(az,b1), (a,b2)} is the only stable matching in the instance in Fig. 2
and this is also a maximum cardinality popular matching. However there is an atiggipath
az-bi-a;-bs wrt Sin Gs. However, there is another maximum cardinality popular matching
{(a1,b2), (az,b1) } that admits no augmenting path®.

An example of a stableoommatesinstance wherao popular matching satisfies condi-
tion (iv) is given in Fig. 3. Note that this instance is the same as the example i2 Figh
two extra edges(ap, az) and(by, bs), wherex; is x3’s second choice ang is x,’s third choice,
for x = a,b. This instance admits a stable matchig {(as,b1), (az,b2)} indicated in bold in
Fig. 3. This is the only popular matching here.
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3
2 2
1
2 ag
bs 31 1 2
3
b2 2 2 az

Fig. 3. The preferences of the vertices are indicated on the edges. The guilapmatching heré(as,b1), (az,b2)}.

— The matchingVl; = {(a1,b2), (az,b1)} is not popular since there is an alternating path
bs-bo-a1-b1-az in Gy, that has an unmatched vertexas an endpoint with éL,1) edge (the
edge(ag,by)) init.

— The matchingMz = {(a1,b1), (az,a3), (b2,bs)} is not popular since there is an alternating
cycleC = bz-by-ap-az-bi-a1-bs in Gy, that has d1,1) edge (the edgéay, b)) init.

— The matchingMz = {(ay1,bs), (az,b2), (as,b1)} is not popular since there is an alternating
pathp’ = a;-bp-a-b; in Gy, that has twq1, 1) edges (the edgdsy,by) and(ag,b1)) init.

In other words, we hav®él; < Mz < M3 < M; and Sis the only popular matching here.
However there is an augmenting pditha;- b;-az wrt Sin Gs. Thus no popular matching in this
instance satisfies condition (iv). However as we shall see in Section 3¢ istdblemarriage
problem (i.e.G is a bipartite graph), there is always a matchingia- (42U B, E) that satisfies
conditions (i)-(iv).

We also show an instan€g= (AU B, E) below whose stable matchif®has size 4 and the
size of a maximum cardinality popular matching is 6. However there is no pomahing in
G of size 5. The preference lists of the vertices are given below.

a . b1 ag - b4 b2 b3 a5:b5 b4
b i a» a1 bs : a3 bs:a ag a5
azibl b5 bz a - b4 aeib5 be
b, 1 a a3 by: a5 a3z as bs : ag

a bl az b2 ag b3

55 2 bs as by ="514

Fig. 4. The only stable marriage hereSs= {(ap,b1), (b2,a3), (as,bs), (a6, bs) }.

There are 4 augmenting paths wrt the stable matc8ingGs. These are:

— p1 = a1-br-ap-bp-ag-bs — P2 = as-bs-as-bs-as-bs

— p3 = a1-by-az-bs-as-be — P4 = a1-by-ap-br-az-bs-as-bs-ag-be.

It is easy to see that none 8 p; is popular, for 1< i < 4. HoweverS® p1 ® p2, which is
{(a1,b1), (az,b2), (as,bs), (as,bs), (as,bs), (as,b6) }, is popular. Thus there is a popular match-
ing of size 6, however there is no popular matching of size 5, but thereeifthe matching
9 of size 4. That is, there are several augmenting paths with resp&inht&s and for every
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augmenting patip, the matchingS® p is unpopular. So aaugmenting patitype technique to
find a matching that satisfies conditions (i)-(iv) does not look promisingaandeed a new idea.

2.1 Good Matchings

Recall the definition of a good matching (Definition 3 from Section 1). Me€ L x R be a
matching that iggjoodwith respect toL,R), whereL UR = V. We will now prove Theorem 2
that a good matching that B-perfect satisfies conditions (i)-(iv).

Proof of Theorem 2Let M be a matching that is good with respect to some partitioiR) of
V and suppos# is R-perfect. Consider the grafghy. By property (2) of goodness, the debf
vertices is independent i@y. We now show that conditions (i)-(iv) are obeyedMy

Condition (i). Let C be an alternating cycle with respectibin Gy. SinceM C L x R, every
edge inCNM is an edge oL x R. Thus the number of vertices afthat are inC equals the
number of vertices oR that are inC. Since there is no edge By between any pair of vertices
in L, the only way an alternating cycfeé can exist inGy, is thatC C L x R. By property (1)
of goodness oM, there is no(1,1) edge inL x R. HenceC has no(1,1) edge wrtM. Thus
condition (i) is satisfied.

Condition (ii). Let p= (up,us,...,ux) be an alternating path with respectitbin Gy such that
Up is unmatched itM. SinceM is R-perfect, the vertexp € L. Since there are nbx L edges in
Gwm, the next vertexu; in pis in R. SinceM uses onlyL x R edges, it follows thati, = M(uy)
has to be irL, andus is in R sinceu, has no neighbor ih and so on. Thug C L x R. Hence by
property (1) of goodness ®fl, condition (ii) is satisfied.

Condition (iii). Let p = (up,us,...,ux) be any alternating path with respectNbin Gy. We
need to show thap has at most onél, 1) edge wrtM in Gy . Since it is only edges outsidé
that get labeled, we can assume without loss of generality(that;) ¢ M. If up € L, then the
same argument as in the earlier case (which showed that condition (ii) iseshtisfiows that
p C L x Rand so there iao (1,1) edge inp.

So let us assume thag € R. Since there ar® x R edges inGy, there are two cases:

Case 1:Every odd indexed vertex (i.e., for everythe vertexu,i, 1) is in L. Then the entire
path uses only. x Redges, hence there is (ib 1) edge inp.

Case 2:Not every odd indexed vertex is In Let uyj,1 be the first odd indexed vertex that
is in R. That is, the edgé€uyj,u2j1) € Rx R Thenuyj 2, which isM(uzj41) has to be irL.
Since there are nb x L edges inGy, thereafter every odd indexed vertex_, of pisinRand
Uz = M(ux—1) has to be irL, so every even indexed vertexirafteruy;j. 1 is in L. Hence there
can be only on® x R edge, which iguy;j,Uj+1), in p. Thusp has at most on¢l, 1) edge and
condition (jii) is satisfied.

Condition (iv). Suppose there exists an augmenting gath (Ug, U1, ..., Ux4+1) Wrt M in Gy,
that is, the verticesly andux. 1 are unmatched iM. SinceM is R-perfect,ug € L and since
there are nd x L edgesu; which isug’s neighbor has to be iR. So the vertexi, = M(u;) is
in L, and the vertexiz which isup’s neighbor has to be iR, andus = M(usz) has to be ir., and
so on. That is, evergvenindexed vertexy; is in L and everyoddindexed vertex;, 1 is in R.
Thusuyk. 1 (the other endpoint gb) has to be irR, which contradicts tha¥l is R-perfect, since
U1 IS unmatched itM. Hence there exists no augmenting pathMriin Gy,.

This finishes the proof of Theorem 2. O



3 The Algorithm

Our job now is to find a partitioriL, R) and a matchingvl that is good wrt this partition and
which isR-perfect. The vertices iR can be viewed as the “sought-after” vertices since they are
all matched irVl and the vertices ih are the vertices thaeekpartners irk.

For convenience, we will refer to the elementsdand B asmenandwomen respectively.
Let Ag C 4 andBy C ‘B be the sets of those men and women respectively, that are unmatched in
any stable matching @& = (A4 U B, E). Recall that every stable matching@leaves the same
vertices unmatched. L&t = AgUByp. Observe thak, is an independent set. LB{ =V \ L;.

It is easy to construct a matchimd; that is good with respect to the partitioh, R;): let
M1 be the matching obtained when verticed. ppropose to the vertices & and vertices oRy
dispose. That is, we run the Gale/Shapley algorithm on the “bipartite” grbfatined by placing
L1 on the left and?; on the right and the edge set restrictedta (L1 x Ry).

We now show thai; is good with respect tiL1, R;). Property (1) of goodness holds by the
very nature of the proposal-disposal algorithm and property (2) ajdloeiness of any matching
M1 C L1 x Ry is vacuously true, sinck; is an independent set {B, and hence ity If M; is
R;-perfect, then we are done. Otherwise we need to define d.raaw show that we have made
some progress.

Our algorithm is given below. We assume without loss of generality|tBg& |4|. Recall
that we want our matchiniyl to satisfy the following:

— M is good with respect to some partitigh, R) and
— M is R-perfect.

Algorithm 1 Input: G= (42U B, E) with strict preference lists
1. Let S be the stable matching obtained by the proposal-disposal algorithm on
(4,B). {That is, men propose and women disppse.
2. LetL; = set of vertices left unmatched & letR;y =V \ L1.
3.i=1.
4. while truedo
compute a matchinifl; by the proposal-disposal algorithm 0, R)).
if M; is Ri-perfectthen returnM;.

5

6

7. letA C 4 be the set of men iR who are unmatched ii;.
8

9

setl! = LjUA andR =V \ L.
. compute a matchinifl! by the proposal-disposal algorithm 0, R/).
10. if M is R-perfectthen returnM/.

11. letB; be the set of vertices iR left unmatched by;.
{we will show that all these vertices have to be wofnen

12.  setli;; =LUBjandR1 =V \Lit1.

13. i=i+1

14. end while

We use the Gale/Shapley proposal-disposal algorithm several times initAflgat. This
proposal-disposal algorithm di,R) for anyL ¢ AU B andR=V \ L is given in Fig. 5. This
subroutine describes the Gale/Shapley algorithm on the “bipartite” grapineld by placind-
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on the left andR on the right and the edge set restricte&to (L x R); here vertices of propose
to the vertices oR and vertices oR dispose.

-M=0.
while there is some € L unmatched itM who has not yet been rejected by all its neighborR @
—u proposes to its most preferred neighb@ R that has not rejectea
if v prefersu to M(v) then
—vassigndM(v) =u. {so the vertex that was Vv’s previous partner in M is now rejectedtby v
else
—vrejectsu.
end if
end while
— ReturnM.

Fig. 5. Computing a matchiniy! C L x Rwith L proposing andR =V \ L disposing

Note that in this subroutine even if there is an edagev) € L x L such thatw is u's most
preferred neighbor it that has not yet rejectad u ignores wand proposes to its most preferred
neighbor inR that has not yet rejectad This is because the above algorithm runs on the edge
setEN (L x R), so edges of x L play no part at all.

Since every unmatchetle L proposes in decreasing order of preference and averR
improves in the choice of its partner wheneWé(r) gets reassigned, Claim 1 stated below is
straightforward. This will be used in our analysis.

Claim 1 If M is the matching returned by the Gale/Shapley proposal-disposal ighgaron
(L,R), then there is no edge,r) in L x R such thatote,(r,M(¢)) = 1 andvote, (¢{,M(r)) = 1.

Description of Algorithm 1. Our initial left sidel; is the subset of vertices left unmatched
in any stable matching db. As discussed earlier, the matchiMy obtained by running the
Gale/Shapley proposal-disposal algorithm betwleeandR; =V \ L1 will be good wrt(L1,Ry).
If every vertex ofR; receives a proposal, then we have our desired matching. Otherwise, we
enter thesecond stagef the first iteration. In the second stage, we move all the unmatcieed
from Ry to L1 and run the proposal-disposal algorithm between thelneggall this set.}) and
the newR; (call this setR;) to computeM’. We will show thatM is good with respect to the
new left-right partition.

If M} matches all the vertices on the right, then this is the desired matching. Othertvise le
B; denote the set of unmatched vertices (women) [as is proved below] oigkthevho are not
matched byM7. We setl, = L1 UBy (our oldL; along withB;) andR, = Ry \ By (our old Ry
with B; deleted) and move to the next iteration of the algorithm. The unmatched men wied mov
from right to left in the second stage of the first iteration are back on thémigw. Their purpose
was to identify the sdB;.

At the start of the-th iteration, we have a partitiofk;, R;) of V.

— If the matchingVj; that results from the proposal-disposal algorithm(lbnR) is R;-perfect,
thenM,; is the desired matching.

— Else letA; be the set ofnenin R, who are unmatched iNl;. We run the proposal-disposal
algorithm on(L; UA;, R \ A)). If the resulting matchindl! matches all the vertices & \ A;,
thenM!/ is the desired matching.

11



— Else letB; be the set of unmatched vertices (women) [as is proved below] on the \ight.
setlLi;1 = LjUB; andR 11 = R\ B;; the next iteration begins.

Lemma 2. For every i, the set BC B.

Proof. The setB; is the set of vertices df = R\ A that are unmatched ikl{. The matching
M! is the result of vertices ih] = L; UA; proposing and vertices iR disposing. Note that every
vertex of R that was matched iM; with vertices inL; proposing, will remain matched i/
with L{ = Lj UA; proposing tdR' = R\ A.

Thus everymanin R, who was matched i; will remain matched irM/. Since we moved
all the unmatched men & (this is the sef\)) away fromR; to form R = R\ A;, every vertex
of R that is unmatched iM/ has to be avoman That is, the seB; of vertices ofR that are
unmatched iM/, is a subset of3. O

Termination of the algorithmlt is easy to see that every iteration tak&sn+ n) time, which is
O(m). We now show that the while loop in Algorithm 1 runs for at mpBt iterations.

Lemma 3. The number of while-loop iterations in Algorithm 1 is at m@Bit

Proof. To show that termination has to happen within the fiB} iterations is simple. This

is because if termination does not happen inittle iteration, therLj ; D L; becauseB; # 0
(otherwise termination would have happened initileiteration). Once a woman moves to the
left side of the graph, she never moves back to the right side again.tfi¢éngsis an iteratiok,

for some 1< k < |B|, where eitheMy is R¢-perfect on\/IlQ matches all thevomenin R{< (in other
words, M, will be R, -perfect). Thus the termination condition gets satisfied. Hence the algorithm
terminates in thé-th iteration, for somé < | B|. O

The bound of©(|B|) is tight on the number of iterations. We show an instaGce (A4 U
B,E), where4 = {a3,ay,...,8n} andB = {by,by,...,bx} on which Algorithm 1 runs fon
iterations. For each &£ k < n—1, the preference lists are:

k-1 : bok—1 b b2y Pok—1: ax—1 @x an
ax © bo1 b boc: ax—1 ax

For the 4 verticeson_1,b2n_1, 820, andbyy, the preference lists are:

amn-1 : bon_1 bon bon_1: @n-1 a@n
axpn : by b3 bs - boy_g bo: @& az as -+ ap-1

In the above instanc®= {(as,b1), (a2, bz), (as,bs), ..., (8zn-1,b2n-1)} is the only stable match-
ing. This leavesay, and by, unmatched. Algorithm 1 runs fdrB|/2 = n iterations as shown
below:

— The setL; = {apn, bon}. In the first round, the matching, obtained is{(azn, b1), (bon,a1)}-
Then the unmatchaden &, as, . . ., axn_1 On the right move to the left and make their propos-
als. The resulting matchin¥; is {(az,b1), (a3, bs), (as,b4), ..., (a2n-1,b2n-1), (b2n,a1) }.
The only vertex unmatched on the rightis So we set, = L; U {b,} and start the second
round.
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— Inthe second round whéen proposes t&,, the matchindvi, = {(b2,a1), (agn, b1), (b2n,a3) }
is obtained. Then the unmatchewn @,a4,as, ..., a1 move to the left from the right and
make their proposals and the matchig = {(az,b1), (a1,b2), (as,bs),. .., (azn-1,bon-1),
(b2n,a1)} is obtained. The only vertex unmatched on the righkisSo we setz =L, U{bs}
and start the third round.

— At the end of tha-th round, where K i <n-—1, the set;; will be set toL; U {by}. In
then-th round the set, = {azn, b2, b4, bs, . . ., bon—2,b2n }. WhenL,, proposes tér, =V \ Ly,
the matching isMp = {(azgn,b1), (b2,a1), (ba,83), ..., (ban—2,82n-3), (b2n,82n-1) }. The un-
matched men on the right agg, a4, ..., ax_»2. When these move to the left and propose, the
resulting matching iM;, = {(bz,a1), (az,b1), (ba,a3), (a4,b3),..., (ban,82n-1), (82n, b2n-1) }.

All the vertices on the right are matchedMyj,, hence the algorithm returns this matching in
then-th iteration.

3.1 Correctness of Algorithm 1
We will show in this section that our algorithm maintains the following invariants:

e M; is good with respect toL;,R;).
e M/ is good with respect toL{,R)).

For all the matching#; and M/ computed in our algorithm, property (1) of goodness is
obvious since these matchings are obtained by the proposal-dispos#hatgoetween the left
side and the right side (see Claim 1). What we need to show now is tharpr@p) of goodness
is also obeyed by them.

We know thatM; is good with respect toL1,R;). This is because; is an independent set
and so property (2) of goodness is vacuously true. The next lemmasshetM] also obeys
property (2) of goodness.

Lemma 4. If (a,b) € L7 x L], thenvotea(b, M](a)) = —1 andvotey(a, M} (b)) = —1.

Proof. Let e = (a,b) be any edge irL} x L]. Sincel] = AgUBoUA; whereAgU By is an
independent set, the vertevhas to be iMA;. Observe that every vertex 8f will be matched in
M3 by virtue of the fact that the other verticeslif comprise the set of vertices unmatched in
any stable matching d&. It is easy to see thate A; gets a partner iM] that is at least as good
asS(a), whereSis the stable matching that results from verticegliproposing to vertices if.
Recall thatBy is the set of women unmatched$hsoa regardsS(a) better than any neighbor in
Bo. Thusa prefersM(a) to all his neighbors ifBy, hencevote,(b,Mj(a)) = —1.

Now we show thatote,(a, M/ (b)) = —1. Recall that each man ity was leftunmatched
in M1: sob € By prefersMi(b) to all her neighbors id\;. Observe that no vertex of By gets
dislodged fronM1(b) (a man) by the presence&f in L} since vertices of; propose tavomen
ThusM] (b) = M1(b) and sovotep(a, M3 (b)) = —1. This finishes the proof of the lemma. O

This proves thaM] is good with respect tdL},R;). Now consider any > 2. We assume
by induction hypothesis onthat the matchingll_; C L ; x R_; is good with respect to

(Li_1,R_a)-
Lemma 5 shows that thevl; C L; x Ry will be good with respect téL;, R)).

Lemma 5. If (a,b) € Lj x Lj, thenvote,(b,M;(a)) = —1 andvotep(a, M;(b)) = —1.
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Proof. The setl; = AoUByUB1U---UB;j_;. Lete= (a,b) € Lj x Lj. Soa has to be inAg
andb € BoU---UBj_1. We need to show that evesye Ay prefersM;(a) to his neighbors in
BoU---UBj_1 and evenb € BoU---UB;_1 prefersM;(b) to her neighbors ir.

By induction hypothesis, we know thif{_; is good with respect teL{ ,,R_;), where the
setli ; =AgUBoU---UBj_2UA_1. So for every edgéa,b) € L{ ; x Li_;, we know thata
prefersM/_,(a) to any neighbobin BoU---UB;j_». It is easy to see that ayc A gets at least
as good a partner iN; as inM/_; because; = (L ;\ Ai_1)UB;_1.

— The presence dBj_1 in Lj does not hurt the men g when they propose to women iR
becausd;_1 is the set of women who werexmatchean the right when the men ity were
proposing in(L{_;,R_;).

— Also, the absence @_; on the left helps the men iy as they are the only men proposing
on the left now in(L;, R) in comparison with(L{ _;,R_).

Thus for anya € Ag anda’s neighborb € BoU - -- UB;j_2, votea(b,M;(a)) = —1. Also, for any
a € Ag and neighbob € B;_1, we know thatvotea(b,M;_;(a)) = —1 since the vertices d&;_1
were unmatched iM;_,, hencevotea(b, M;(a)) = —1.

Now we show that for everfa,b) € L; x L;, the vertexo also votes-1 for avs M;(b). First,
there are no edges betweBgp andAy. Sob € B;U---UB;_1. Each woman iBiU---UB;_1
is matched in any stable matching @fand recall that, is the set of men left unmatched in
any stable matching @&. Hence when women iB; U---UB;_; propose to men itd \ A, each
woman inB; U ---UBj_1 gets matched to a man that she considers better than her neighbors in
A. Thus foranyp € By U---UB;j_; andb’s neighbora € A, votep(a, Mj(b)) = —1. This finishes
the proof of this lemma. O

SupposeMi; does not match all the vertices ), then we run the second stage of thib
iteration, where all the men iR, who were left unmatched byi; (call this set4;) are moved to
the left. Thud| = Ly UA;. Thatis,L{ = AoUByU---UB_1 UA,.

The proposal-disposal algorithm betwdgrandR results in the matchiniyl!. We will now
show that property (2) of goodness also holdsNBr By induction hypothesis oh we know
that the matchind/!_, is good with respect toL{ ,,R_,). The following claim will be helpful
to us.

Claim 2 The set AC A;_1, where A 1 is the set of men injR; left unmatched by Mj.

Proof. The setA;_1 was the set of men iR,_; left unmatched byM; 1. Observe that every
vertex inR;_; that was matched with;_; = AgUBoU - - - UB;_» proposing, will remain matched
with Lj_1 UA_1 proposing toR_; \ Ai_1. Thus everymanin R_; who was matched iM;_;
will remain matched iM{_, with the women irBoU- - - UB;_» proposing on the left. At the end
of the (i — 1)-th iteration, the sef_1 goes back to the right and the &t 1 moves to the left.
With the women irBoU - - - U Bj_1 proposing in the-th iteration, all the men who were matched
in the second stage of the previous iteration, continue to remain matchedrard/edices of
A_1 also possibly get matched. So the set of meR;iwho are unmatched iN; is a subset of

Ai_1, thatis,Ai C Ai_1. 0

We will now show that for anya,b) € L| x L{, votea(b,M{(a)) = —1 andvote,(a, M{(b)) =
—1in Lemmas 6 and 7, respectively.

Lemma 6. If (a,b) € L x L}, thenvotea(b, M{(a)) = —1.
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Proof. We know from Claim 2 tha#, C Ai_;. Now B;_1 is the set of women ifR_, left un-
matchedwhen vertices ol{_;, which containsAo U Ai_1, were proposing on the left in the
second stage of th@ — 1)-th iteration. Hence each manc Ao UA_1 prefersM/_;(a) to any
neighborb € Bi_1. Each man ifAg UA; gets at least as good a partneMfas inM;_; because

— there are fewer men proposing now than in the second stage ¢f th&)-th iteration as
AgUA C AgUA_1 and

— itis only the unmatched women who moved away fréfn,. Hence all women who belong
to {M/_,(a) :ae AgUA_1} are still present i} for AgUA; to propose to.

We know from the induction hypothesis thd} , is good with respecttfL{ ;,R ;). Hence
eacha e AgUA_1 prefersM/_,(a) to any neighbor iBoU- - - UB;_». Also, we just argued that
ae AgUA;_1 prefersM;_; (a) to any neighbor irB;_1. SinceA; C Ai_; and becaus®(a) is at
least as good alsll_;(a) for all a€ AgUA, it follows thatvotea(b, M/ (a)) = —1 for any edge
(a,b) whereac AgUA andb € BoU---UBj_2UB;j_1. O

Lemma 7. If (a,b) € L x L{, thenvotey(a, M{(b)) = —1.

Proof. Sincel] = AgUBoU---UBj_1UA;, for any(a,b) € L{ x L{, the vertexa € AgUA;.
Case 1Suppose € A;. SinceA is the set of men iR who areunmatchedn M;, it follows that
each ofb € BoU--- UB;j_1 prefersM;(b) to any neighbor i\;. Also for anyb € BoU---UB;_1,
we haveM!(b) = M;(b), since it is onlyunmatched methat moved fronR; to the left side to
form L. Thusvotep(a,M] (b)) = —1.
Case 2Supposea € Ag. Consider any edge between a maAjgrand a womai € BoU---UB;_1.
In the first placep has to be irB; U---UB;j_1 sinceAqU Bg is an independent set. Eveloye
B1U---UBj_1 prefers her partnavl!(b) to any neighbor i, sinceA is the set of unmatched
men in any stable matching &. Thusvotey(a, M/ (b)) = —1.

Hence for anyp € BoU - -- UB;_1, and any neighbaa € AgU A, we havevotey(a, M{ (b)) =
-1. O

Thus property (2) of goodness is true #df. We have thus shown that for everywhere
1 <i < number of iterations in our algorithrV}; is good with respect teL;, R ) andM/ is good
with respect to(L{,R). Thus as soon as we find &% or anM/ that matches all the vertices
on the right, we have a good matching that matches all the vertices on the ightnd 3 tells
us that within the firs{B| iterations of the while loop, there is an iteratikrsuch that either
M or My matches all the vertices on the right. This completes the proof of correathess
algorithm.

Thus Algorithm 1 always returns a good matchMgvrt a partition(L, R) such thaM is R-
perfect. Since the running time of Algorithm 1@&m- |‘B|) (recall that we assume®| < |4|),
Theorem 3 stated in Section 1 follows. Combining all the results, we can dmcheorem 5.

Theorem 5. A maximum cardinality popular matching in a bipartite graph=65(4 U B,E)
with 2-sided strict preference lists can be computed {m@®) time, where m= |E| and rp =
min(|-4], | B]).

3.2 Testing for popularity

In this section we show a linear time algorithm to test if a matching in a stable marrstgade

G = (4 U B,E) with strict preference lists is popular or not. This problem was previousty c
sidered in [2] where a®(my/n) algorithm was shown for this problem. Here we use Theorem 1
to design our linear time algorithm.
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Our algorithm first labels each edge= (u,v) in E'\ M by (votey(v,M(u)),votey(u,M(v))).
If there exists no edge labelédl, 1) in E \ M, thenM is stable, hence popular. So let us assume
that edges labelefl, 1) exist. We first delete fron& all edges labeled—1,—1) to form the
graphGy. Theorem 1 tells us if any of (a), (b), (c) given below is presenGjp thenM is
unpopular; otherwise it is popular.

(a) an alternating cycle that contains an edge labgled)
(b) an alternating path starting from an unmatched vertex that containganadztled 1,1)
(c) an alternating path that contains two or more edges latj&lddl.

So what we need to do in our algorithm is to check if (a), (b), or (c) exis&inWe build a
tree similar to adungarian treein Gy. (A Hungarian tree is typically used to find an augmenting
path wrt a given matching.)

Our Algorithm. Our algorithm to check for the existence of (a), (b), or (cBia is given below.

1. Mark the endpoints of all the edges labefédl) in Gy.
2. We build a tree or more appropriately, a layered graph, using edg&g as follows:
— all the marked women are at level O
— the men matched to level 0 vertices are in level 1
— thenewneighbors of the level 1 vertices are level 2 vertices (i.e., the women inQevel
do not get repeated here)
— the men matched to the women in level 2 are level 3 vertices
— the neighbors of the level 3 vertices not seen so far are level 4 vericdso on.
Note that for any vertex in this tree, there is an alternating path that starts with a matched
edge from a level 0 vertex 1@

3. If either a marked man or a unmatched woman is encountered in the abmhém return
“unpopulaf’.

4. Build another such tree By where all the markechenare in level O, the vertices matched
to them are in level 1, their new neighbors are in level 2, and so on. lharatched man is
encountered in this tree, then retutmpopular’.

5. Return opular.

Claim 3 If a marked man is encountered in Step 3, then this is evidence of (d). or (c

Proof. Let x be the marked man encountered in this tree. Observe that men are reachigth th
matched edges in this tree. Thus there is an alternating path starting with a medgeddom a
marked woman (call this vertgg and ending with a matched edgexirBothy andx are marked.
Thusx has an edge labeléd, 1) incident to it, so doeg.

If it is the samg(1, 1) edge that is incident to bothandy (i.e., there is 41, 1) edge between
x andy), then this is an alternating cycle with d 1) edge. So suppose tlig 1) edges incident
on x andy are different. Sinc& is bipartite,x andy do not have a common neighbor, thus the
(1,1) edge incident om, followed by the alternating path betweeandy, followed by the(1,1)
edge incident oy is an alternating path with tw(l, 1) edges. O

The following claims are straightforward.

Claim 4 If an unmatched woman in encountered in Step 3, then this is evidende of (b

Claim 5 If an unmatched man is encountered in Step 4, then this is evidence of (b).
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Thus it follows from Claims 3, 4, and 5 that whenever the algorithm retwnpdpular”, the
matchingM is unpopular. Now we need to show that if the algorithm returns “populaehM
is indeed popular.

Lemma 8. If an alternating cycle with &1, 1) edge or an alternating path with twd, 1) edges
exists in Gy, then a marked man has to be encountered in Step 3 of our algorithm.

Proof. Supposésy has either an alternating cycle with(g 1) edge or an alternating path with
two (1,1) edges inGy. Let p be a shortest such cycle or pathplfs an alternating cycle, then
let (x1,Y1,...,X% Yk) (thex's are men and thg¢'s are women) denotg)\ {e}, whereeis the edge
labeled(1,1) in p. If p is an alternating path with tw(l, 1) edges inGy, then the first and last
edges ofp are(1,1) edges and letxi,ys,...,X,Yk) denotep after removing these twel, 1)
edges.

In both cases (whetheris a cycle or a path), the verticesandyy are marked. The vertex,
being a marked woman, is present in level 0 in our tree. The vegtdoeing the vertex matched
to yk, is present in level 1, the vertgx 1 being a neighbor okc_1 has to be in level 2y_1
cannot be in level 0 since that would contragidbeing a shortest such cycle/path), and so on.
Thus the vertex;, which is a marked man, will be encountered in level-21. O

Lemma 9. If Gy has an alternating path starting from an unmatched woman that contains a
(1,1) edge, then an unmatched woman has to be encountered in Step 3 ofaithaig

Proof. Let p be a shortest alternating path@, starting from an unmatched woman that con-
tains a(1,1) edge. Since the first edge pf(incident on an unmatched vertex) and the last edge
of p (a(1,1) edge) are unmatched edgpss of odd length. Lep = (Yo, X1, Y1, - - - s Xk, Yi; Xk4-1)
wherey is the unmatched woman arf, x«+1) is the(1,1) edge. Hencey has to be marked
and being a marked woman, it has to be present in level 0. The argumeri$ sowilar to the
proof of Lemma 8. The vertex, is matched tgk, soxg is in level 1 and so on, thus the vertex
Yo, an unmatched woman, will be encountered in leel 2 O

We can symmetrically show that @y, has an alternating path starting from an unmatched
man that contains &1,1) edge, then a marked man has to be encountered in Step 4 of our
algorithm. Thus it follows that if the algorithm reaches Step 5, tBgnhas none of (a), (b),

(c). The popularity oM now follows from Theorem 1. It is easy to see that our algorithm takes
linear time. Thus we can conclude the following theorem.

Theorem 6. Given a bipartite graph G= (A4 U B, E) with 2-sided strict preference lists and a
matching M in G, we can test if M is popular in G in linear time.

Conclusions and Open problems.We gave a simple characterization of popular matchings in
any instancé (not necessarily bipartite) with two-sided preference lists that are strictred.
We also showed a sufficient condition for a popular matching to be one dfraxcardinality.
We introduced the notion of a “good” matching wrt a partiti@nR) of the vertex set and showed
that such a matching that is al&perfect has to be a maximum cardinality popular matching.
For a bipartite grapf® = (AU B, E), we gave an efficient algorithm to compute such a matching.
We also showed a linear time algorithm to test if a given matchir@+a (A4 U B,E) is popular.

For non-bipartites with strict preference lists (also called the roommates problem), the com-
plexity of determining ifG admits a popular matching or not is an open problem. For roommates
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instances that admit stable matchings (given a roommates instance, there & &rireealgo-
rithm in [6] that computes a stable matching if it exists), there is no polynomial tinozitdg

known for computing a maximum cardinality popular matching. For testing a matdhing
a roommates instance for popularity, @m,/na(n, m) log®/? n) algorithm was given in [2].
This algorithm uses a maximum weight matching algorithm, it is an open problenteioceaur
algorithm in Section 3.2 to the non-bipartite case.

AcknowledgmentsWe thank the reviewers of the conference version of this paper for their
helpful comments.
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