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Abstract. The input is a bipartite graphG = (A ∪B ,E) where each vertexu ∈ A ∪B ranks its
neighbors in a strict order of preference. This is the same as an instance of thestable marriage
problem with incomplete lists. A matchingM∗ is said to be popular if there is no matchingM such
that more vertices are better off inM than inM∗. Any stable matching ofG is popular, however such
a matching is aminimumcardinality popular matching. We consider the problem of computing a
maximumcardinality popular matching inG.

It has very recently been shown that when preference lists haveties, the problem of determining if
a given instance admits a popular matching or not is NP-complete. When preference lists arestrict,
popular matchings always exist, however the complexity of computing a maximum cardinality pop-
ular matching was unknown. In this paper we give a simple characterization of popular matchings
when preference lists are strict and a sufficient condition for a maximumcardinality popular match-
ing. We then show anO(mn0) algorithm for computing a maximum cardinality popular matching,
wherem= |E| andn0 = min(|A |, |B |).

1 Introduction

Our input is a bipartite graphG = (A ∪B,E) where each vertex ranks its neighbors in a strict
order of preference. Each vertexu ∈ A ∪B seeks to be assigned to one of its neighbors and
u’s preference is given by the ordering inu’s preference list. Preference lists can be incomplete,
which means that a vertex may be adjacent to only some of the vertices on the other side. (We
assume without loss of generaility thata belongs tob’s list if and only if b belongs toa’s list, for
anya andb.) Note that this is the same as an instance of thestable marriageproblem with in-
complete lists and it is customary to call the two sides of the graphmenandwomenrespectively.
Let V denote the entire vertex setA ∪B and let|V| = n and|E| = m. We assume that no vertex
is isolated, som≥ n/2.

A matchingM is a set of edges no two of which share an endpoint. An edge(u,v) is said
to be ablocking edgefor a matchingM if by being matched to each other, bothu andv are
better offthan their respective assignments inM: that is,u is either unmatched inM or prefers
v to M(u) and similarly,v is either unmatched inM or prefersu to M(v). A matching that
admits no blocking edges is called a stable matching. It is known that every instanceG admits
a stable matching [9] and such a matching can be computed in linear time by a straightforward
generalization [5] of the Gale/Shapley algorithm [3] for complete lists.

1.1 Popular Matchings

For any two matchingsM andM′, we say that vertexu prefersM to M′ if u is better off inM
than inM′ (i.e., u is either matched inM and unmatched inM′ or matched in both and prefers
M(u) to M′(u)). We say thatM is more popular thanM′, denoted byM ≻ M′, if the number of
vertices that preferM to M′ is more than the number of vertices that preferM′ to M.

⋆ Work done when C.-C. Huang was at MPI Saarbrücken supported by a Humboldt fellowship and visited TIFR
Mumbai under the IMPECS program.



Definition 1. A matching M is popular if there is no matching that is more popular than M.

Popularity is an attractive notion of optimality as a majority vote cannot force a migration
from a popular matching. G̈ardenfors [4] introduced the notion of popularity in the context of
stable matchings. Popular matchings have been studied extensively during the last few years [1,
11, 10, 8, 13, 12, 7] in the case where only vertices ofA have preferences while vertices ofB
have no preferences. Thus each edgee= (a,b) in G has a rank associated with it (the rank that
a assigns tob). There are simple examples in the one-sided preference lists domain that admit
no popular matching. In the world of two-sided strict preference lists, popular matchings always
exist since stable matchings always exist and every stable matching is popular, as we observe in
the next paragraph.

When comparing a stable matchingSto any matchingM, note that for any edgee∈ M, both
the endpoints ofecannot preferM to S- if they do, then it contradicts the stability ofS. Hence if
one endpoint ofe prefersM to S, then the other has to preferS to M. Thus the number of votes
in favor ofM is at most the number of votes in favor ofS, henceM cannot be more popular than
S. So popular matchings always exist in the world of two-sided strict preference lists. But not all
popular matchings are stable as shown by this simple example: letA = {a1,a2} andB = {b1,b2}
and let the preference lists be as shown in Fig. 1.

a1 : b1 b2 b1 : a1 a2
a2 : b1 b2 : a1

Fig. 1. Herea1’s top choice isb1 and second choice isb2 while b1’s top choice isa1 and second choice isa2; for a2,
the only neighbor isb1 and forb2, the only neighbor isa1.

In this instance, the matching{(a1,b1)} is the only stable matching, while{(a1,b2),(a2,b1)}
is popular but unstable. Thus the containment{stable matchings} ⊆ { popular matchings} could
be strict.

1.2 Our problem

GivenG = (A ∪B,E) with two-sided preference lists, a stable matching has usually been con-
sidered the optimal way of matching the vertices. The fact that there can beno blocking edge in
a stable matching is a very strong condition and it is known ([5], Section 4.5.2) that all stable
matchings inG = (A ∪B,E) have the same size and match exactly the same set of vertices, let
U denote this subset ofV. We show in Section 2 that every popular matching has to match all
the vertices inU and a stable matching is aminimumcardinality popular matching.

There are many problems, where it is desirable to match more than just the vertices inU ,
for instance, in allocating training positions to trainees or projects to students,where the total
absence of blocking edges is not necessary and a more relaxed definition of stability suffices.
Thus at one end of the spectrum, we have stable matchings wherenoblocking edge is permitted
and whose size is the minimum among all popular matchings and at the other end, we have
maximum cardinality matchings that are not stable in any sense, since the preferences of vertices
play no role here. What we seek is a matching that is somewhere in between these two extremes
- we are willing to weaken to some extent the notion of stability for the sake of obtaining a larger
matching.
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The notion of popularity captures this slightly weakened notion of stability: blocking edges
are permitted in a popular matchingM, neverthelessM hasoverall stabilitysince there is no
matching where more vertices are better off than inM. Hence in problems where we are ready to
substitute stability with popularity, for the sake of increasing the size of the resulting matching,
what we seek is amaximumcardinality popular matching. In other words, we want a largest
matchingM in G such that there is no matching where more vertices are better off than inM.
There are instances (as in our example in Fig. 1) where a maximum cardinality popular matching
can be twice as large as a stable matching.

Our main result is that a maximum cardinality popular matching inG = (A ∪B,E) can be
computed inO(mn0) time, wherem= |E| andn0 = min(|A |, |B|). We now give an overview of
how we obtain this result and other results here. The following definition will be useful to us:

Definition 2. For any u∈ A ∪B and neighbors x and y of u, define u’s vote between x and y as:

voteu(x,y) =











1 if u prefers x to y

−1 if u prefers y to x

0 otherwise (i.e., x= y).

Let M be any matching inG. Label every edgee= (u,v) in E\M by the pair(αe,βe), where
αe = voteu(v,M(u)) andβe = votev(u,M(v)), i.e.,αe is u’s vote forv vs.M(u) andβe is v’s vote
for u vs. M(v). Note that for any vertexu, if u is unmatched inM, thenvoteu(v,M(u)) = 1 for
any neighborv of u, since every vertex prefers being matched with any of its neighbors to being
unmatched.

Any path/cycleρ in G where alternate edges inρ belong toM is called an alternating
path/cycle with respect toM. For an alternating pathρ, if the endpoints ofρ are unmatched
in M, thenρ is called an augmenting path wrtM.

Theorem 1 gives a simple characterization of popular matchings in a graphG = (V,E) with
strict preference lists. Note that this theorem also holds for non-bipartite graphs with strict pref-
erence lists, referred to as theroommatesproblem; however popular matchings need not always
exist in the roommates problem. We prove Theorem 1 in Section 2.

Theorem 1. Let GM denote the subgraph of G obtained by deleting all edges from G that are
labeled(−1,−1) wrt M. The matching M is popular in G if and only if the following conditions
hold in GM:

(i) There is no alternating cycle with respect to M that contains a(1,1) edge.
(ii) There is no alternating path starting from an unmatched vertex that contains a(1,1) edge.

(iii) There is no alternating path with respect to M that contains two or more(1,1) edges.

While a stable matching forbids all(1,1) edges, it is condition (iii) that allows(1,1) edges
in a popular matchingM - at most one(1,1) edge can be allowed in certain alternating paths in
GM. In addition to conditions (i)-(iii), supposeM also satisfies the following condition:

(iv) There is no augmenting path with respect to M in GM.

We will show in Section 2 that such a matchingM has to be a maximum cardinality popular
matching. Note that unlike conditions (i)-(iii) that are both sufficient and necessary for a popular
matching, condition (iv) is notnecessaryfor a maximum cardinality popular matching (Section 2
has such an example). In fact, it is not clear if there always exists a matching that satisfies
conditions (i)-(iv). We show an algorithm in Section 3 that always constructs such a matching in
a bipartite graphG = (A ∪B,E) with strict preference lists.
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Our approach. Suppose we partition the vertex setV =A ∪B into L andR, i.e.,L ∪̇R= G, and
reorganize the graphG by placing all the vertices ofL on the left and all the vertices ofRon the
right. Note thatL andR need not be independent sets. LetM be a matching inL×R, i.e., every
edge ofM has one endpoint inL and the other endpoint inR.

Definition 3. Call a matching M⊆ L×R goodwith respect to(L,R) if the following two prop-
erties are satisfied:

(1) There is no edge marked(1,1) in L×R.
(2) Every edge in L×L is marked(−1,−1).

Property (1) of goodness states that for every(a,b) ∈ L×R that is not inM, eithera prefers
M(a) to b or b prefersM(b) to a or both. Property (2) of goodness states that for everye in
L×L, each endpoint ofe prefers its partner inM to the other endpoint ofe. Theorem 2 proved
in Section 2 establishes the link between a good matching and the matching that we seek.

Theorem 2. If M is a matching that is good with respect to some partition(L,R) of V and M is
R-perfect, then M satisfies conditions (i)-(iv).

Given a partition(L,R) of V, to construct a matching that satisfies property (1) of goodness
is easy: the Gale/Shapley algorithm on the edge set restricted toE∩ (L×R) where vertices in
L propose and those inR dispose, yields a matchingM ⊆ L×R that has no edge marked(1,1)
in L×R. To ensure thatM obeys property (2), we need to come up with a suitableL ⊂ V.
Additionally, M needs to beR-perfect so that we can use Theorem 2. We show the following
theorem in Section 3.

Theorem 3. A matching M that is good wrt a partition(L,R) of V and which is R-perfect can
be computed in O(mn0) time, where m= |E| and n0 = min(|A |, |B|).

Finally, we show a linear time algorithm that is based on Theorem 1 to test if a given match-
ing M in G = (A ∪B,E) is popular or not.

1.3 Related Results

Abraham et al. [1] considered the popular matchings problem in the domain of one-sided pref-
erence lists; they described efficient algorithms to determine if a given instance admits a popular
matching or not and if so, to compute one with maximum cardinality. For one-sidedpreference
lists (both for strict lists and for lists with ties), they gave a structural characterisation of instances
that admit popular matchings. The work in [1] on one-sided popular matchings was generalized
to the capacitated version by Manlove and Sng [11], the weighted version by Mestre [14], and
Mahdian studied random popular matchings [10]. Kavitha and Nasre [8] as well as McDermind
and Irving [13] independently studied the problem of computing an optimal popular matching
for strict instances where the notion of optimality is specified as a part of the input. For instances
that do not admit popular matchings, McCutchen [12] considered the problem of computing a
least unpopular matching and showed this problem to be NP-hard, while Kavitha, Mestre, and
Nasre [7] showed the existence of popular mixed matchings and efficient algorithms for com-
puting them.

Gärdenfors [4], who originated the notion of popular matchings, considered this problem in
the domain of two-sided preference lists. When ties are allowed in preference lists here, it has
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recently been shown by Biró, Irving, and Manlove [2] that the problem of computing an arbitrary
popular matching in the stable marriage problem is NP-hard. The complexity of the maximum
cardinality popular matching problem in the stable marriage problem when preference lists are
strict (recall that the popular matchings always exist here) was not known so far and we answer
this question here.

2 Structural Results

Characterization of Popular Matchings. In this section we first prove Theorem 1 and then
show that conditions (i)-(iv) imply a maximum cardinality popular matching. Firstwe show that
conditions (i)-(iii) imply popularity and vice-versa in the proof of Theorem 1.

Proof of Theorem 1.SupposeM is any matching inG that satisfies conditions (i)-(iii) given in
Theorem 1. LetM′ be any matching inG. Define∆(M′,M) as follows:

∆(M′,M) = ∑
u∈A∪B

voteu(M
′(u),M(u)).

Thus∆(M′,M) is the difference between the votes thatM′ gets vs.M and the votes thatM gets
vs. M′. Note thatM(u) or M′(u) can also be the state of being unmatched, which is the least
preferred state for anyu. We haveM′ ≻ M if and only if ∆(M′,M) > 0. We will now show that
∆(M′,M) ≤ 0 for all matchingsM′. This will imply thatM is popular.

We need to compute∑uvoteu(M′(u),M(u)) now. Mark each edgee = (u,v) of M′ by the
pair (αe,βe) whereαe = voteu(v,M(u)) andβe = votev(u,M(v)). Supposeαe = βe = −1. That
is, bothu andv are happier with their partners inM than with each other. Then we can as well
assume thatM′ leavesu and v unmatched, i.e., we can delete the edge(u,v) from M′ since
this makes no difference tovoteu(M′(u),M(u)) or votev(M′(v),M(v)) because both these values
were−1 to begin with and they both remain−1 after assuming thatu andv are unmatched in
M′. Thus in order to evaluate∑uvoteu(M′(u),M(u)), we can assume thatM′ is a matching in
the subgraphGM. Recall thatGM is the subgraph ofG obtained by deleting all edges marked
(−1,−1) wrt M.

Let ρ be any connected component inM⊕M′. We have∆(M′,M)= ∑ρ ∑u∈ρ voteu(M′(u),M(u)),
where the sum is over all the componentsρ ∈ M⊕M′. For verticesu that are isolated inM⊕M′,
M(u) = M′(u), so we need to consider only those componentsρ that contain two or more ver-
tices. Each suchρ in M⊕M′ is either a cycle or a path; alsovoteu(M′(u),M(u)) = ±1 for each
vertexu in ρ.

Let ρ be a cycle. Since every vertex inρ is matched byM′, we have

∑
u∈ρ

voteu(M
′(u),M(u)) = ∑

e=(u,v)∈ρ∩M′
αe+βe (1)

whereαe = voteu(v,M(u)) andβe = votev(u,M(v)). Note that for every edgee∈ ρ, (αe,βe)
is either(1,1) or (−1,1) or (1,−1). But we are given thatM satisfies condition (i) of Theo-
rem 1. Hence there is no(1,1) edge inρ. Thus for each edgee∈ ρ∩M′, αe+βe = 0 and hence
∑e∈ρ∩M′ αe+βe = 0.

Let ρ be a path. Suppose both the endpoints ofρ are matched inM′. Then Eqn. (1) holds
here. Since an endpoint ofρ is free inM, by condition (ii) of Theorem 1, we have no(1,1) edge
wrt M in ρ. Thus for each edgee∈ ρ∩M′, αe+βe = 0 and hence∑e∈ρ∩M′ αe+βe = 0.
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– Suppose exactly one endpoint ofρ is matched inM′. Then

∑
u∈ρ

voteu(M
′(u),M(u)) = −1 + ∑

e=(u,v)∈ρ∩M′
αe+βe

since there is one vertex that is matched inM but not inM′ and that vertex prefersM to M′. Here
too an endpoint ofρ is free inM, and so by condition (ii), we have no(1,1) edge wrtM in ρ.
Thus for each edgee∈ ρ∩M′, αe+βe = 0 and hence∑u∈ρ voteu(M′(u),M(u)) = −1 here.

– Suppose neither endpoint ofρ is matched inM′. Then

∑
u∈ρ

voteu(M
′(u),M(u)) = −2 + ∑

e=(u,v)∈ρ∩M′
αe+βe

since there are two vertices that are matched inM but not inM′ and those two vertices prefer
M to M′. We use condition (iii) here. There can be at most one(1,1) edge wrtM in ρ. Thus
except for at most one edgee in ρ∩M′, we haveαe+βe = 0. So∑e=(u,v)∈ρ∩M′ αe+βe ≤ 2, thus
∑u∈ρ voteu(M′(u),M(u)) ≤ 0.

We have shown that for each componentρ of M⊕M′, we have∑u∈ρ voteu(M′(u),M(u))≤ 0.
Thus it follows that∆(M′,M) ≤ 0. In other words, ifM satisfies properties (i)-(iii), thenM is
popular.

We will now show the converse. That is, ifM does not satisfy one or more of conditions (i)-
(iii) of Theorem 1, thenM is notpopular.

• SupposeM does not satisfy property (i). So there is a cycleC in GM that contains a(1,1)
edge wrtM. It is easy to see that the matchingM⊕C is more popular thanM.

• SupposeM does not satisfy property (ii). Then there is an alternating pathp wrt M, one of
whose endpoints is unmatched inM andp contains a(1,1) edge. It is again easy to see that
M⊕ p is more popular thanM.

• SupposeM does not satisfy property (iii). Then there is an alternating pathp wrt M that
contains two or more(1,1) edges wrtM. It is again easy to see thatM⊕ p is more popular
thanM.

This finishes the proof of Theorem 1. ⊓⊔

Lemma 1. Any stable matching is a minimum cardinality popular matching in G= (A ∪B,E).

Proof. Let Sbe a stable matching inG. We know thatS is popular. LetR be any matching such
that |R| < |S|. Then one of the components ofR⊕S is a pathp that is augmenting with respect
to R, i.e., both the endpoints ofp are unmatched inR. Since the endpoints ofp preferS to R, we
have

∑
u∈p

voteu(R(u),S(u)) = −2 + ∑
e=(u,v)∈ p∩R

αe+βe

whereαe = voteu(v,S(u)) andβe = votev(u,S(v)). The main observation here is that sinceS is
stable, no edge ofR can be a(1,1) edge. Thus for eache in p∩R, we haveαe+βe ≤ 0. Hence
∑u∈pvoteu(R(u),S(u)) ≤−2, in other words,R⊕ p is more popular thanR.

Thus no matching of size smaller thanS can be popular. SoS is a minimum cardinality
popular matching inG. ⊓⊔

Recall that it is known ([5], Section 4.5.2) that all stable matchings inG = (A ∪B,E) have
the same size and match exactly the same set of vertices, letU denote this subset of vertices.
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Corollary 1. Every popular matching in G has to match all vertices in U.

Proof. Let R be a matching that does not match somev ∈ U . ThenR⊕S, whereS is stable,
contains a pathp, wherev is an endpoint ofp. Since no edge ofRcan be a(1,1) edge wrtS, it is
easy to see that∑u∈pvoteu(R(u),S(u)) ≤−1, in other words,R⊕ p is more popular thanR. ⊓⊔

The sufficient condition. Recallcondition (iv)stated in Section 1:There is no augmenting path
with respect to M in GM. We now show that a matching that satisfies conditions (i)-(iv) is what
we seek.

Theorem 4. If a popular matching M satisfies condition (iv), then M is a maximum cardinality
popular matching in G.

Proof. SinceM is a popular matching, we know thatM satisfies conditions (i)-(iii) of Theorem 1.
Let Q be another matching inG and let|Q| > |M|. SoQ⊕M contains an augmenting pathp wrt
M. We will show using condition (iv) thatQ⊕ p is more popular thanQ. Thus no matching of
size larger than|M| can be popular. Hence it follows thatM is a maximum cardinality popular
matching inG.

Condition (iv) states that there is no augmenting path with respect toM in GM. So the pathp
has to use edges outsideGM, i.e.,p contains(−1,−1) edges wrtM. Split the pathp into subpaths
p1, p2, . . . , pt by removing the(−1,−1) edges fromp. Each of the subpathspi belongs toGM.

Each of the pathsp2, . . . , pt−1 can have at most one(1,1) edge wrtM by condition (iii). By
condition (ii), neitherp1 nor pt can contain a(1,1) edge. Thus we have

∑
u∈p

voteu(Q(u),M(u)) ≤ 2(t −2)−2(t −1),

where the first term 2(t −2) counts the total number of(1,1) edges possible overp1, . . . , pt and
the second term 2(t −1) counts all the(−1,−1) edges inp (one such edge betweenpi andpi+1,
for i = 1, . . .t −1. Thus∑u∈pvoteu(Q(u),M(u)) ≤ −2. In other words,Q⊕ p is more popular
thanQ. ⊓⊔

Note that condition (iv) is notnecessaryfor a popular matching to be one of maximum
cardinality, as shown by the following example.

a1 : b1 b2 b3 b1 : a1 a2 a3
a2 : b1 b2 b2 : a1 a2
a3 : b1 b3 : a1

Fig. 2. Herea1’s top choice isb1 and second choice isb2 and third choice isb3 anda2’s top choice isb1 and second
choice isb2 while a3’s only choice isb1. The preference lists of thebi ’s are symmetric.

The matchingS= {(a1,b1),(a2,b2)} is the only stable matching in the instance in Fig. 2
and this is also a maximum cardinality popular matching. However there is an augmenting path
a3-b1-a1-b3 wrt S in GS. However, there is another maximum cardinality popular matchingM =
{(a1,b2),(a2,b1)} that admits no augmenting path inGM.

An example of a stableroommatesinstance whereno popular matching satisfies condi-
tion (iv) is given in Fig. 3. Note that this instance is the same as the example in Fig.2 with
two extra edges:(a2,a3) and(b2,b3), wherex2 is x3’s second choice andx3 is x2’s third choice,
for x = a,b. This instance admits a stable matchingS= {(a1,b1),(a2,b2)} indicated in bold in
Fig. 3. This is the only popular matching here.
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Fig. 3.The preferences of the vertices are indicated on the edges. The only popular matching here{(a1,b1),(a2,b2)}.

– The matchingM1 = {(a1,b2),(a2,b1)} is not popular since there is an alternating pathp =
b3-b2-a1-b1-a2 in GM1 that has an unmatched vertexb3 as an endpoint with a(1,1) edge (the
edge(a1,b1)) in it.

– The matchingM2 = {(a1,b1),(a2,a3),(b2,b3)} is not popular since there is an alternating
cycleC = b3-b2-a2-a3-b1-a1-b3 in GM2 that has a(1,1) edge (the edge(a2,b2)) in it.

– The matchingM3 = {(a1,b3),(a2,b2),(a3,b1)} is not popular since there is an alternating
pathp′ = a1-b2-a2-b1 in GM3 that has two(1,1) edges (the edges(a1,b2) and(a2,b1)) in it.

In other words, we haveM1 ≺ M2 ≺ M3 ≺ M1 and S is the only popular matching here.
However there is an augmenting pathb3-a1- b1-a3 wrt S in GS. Thus no popular matching in this
instance satisfies condition (iv). However as we shall see in Section 3, in the stablemarriage
problem (i.e.,G is a bipartite graph), there is always a matching inG = (A ∪B,E) that satisfies
conditions (i)-(iv).

We also show an instanceG = (A ∪B,E) below whose stable matchingShas size 4 and the
size of a maximum cardinality popular matching is 6. However there is no popularmatching in
G of size 5. The preference lists of the vertices are given below.

a1 : b1 a3 : b4 b2 b3 a5 : b5 b4

b1 : a2 a1 b3 : a3 b5 : a2 a6 a5

a2 : b1 b5 b2 a4 : b4 a6 : b5 b6

b2 : a2 a3 b4 : a5 a3 a4 b6 : a6
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a1 b1 a2 b2 a3 b3

b6 a6 b5 a5 b4 a4

Fig. 4.The only stable marriage here isS= {(a2,b1),(b2,a3),(a5,b4),(a6,b5)}.

There are 4 augmenting paths wrt the stable matchingS in GS. These are:
– p1 = a1-b1-a2-b2-a3-b3 – p2 = a4-b4-a5-b5-a6-b6

– p3 = a1-b1-a2-b5-a6-b6 – p4 = a1-b1-a2-b2-a3-b4-a5-b5-a6-b6.

It is easy to see that none ofS⊕ pi is popular, for 1≤ i ≤ 4. HoweverS⊕ p1⊕ p2, which is
{(a1,b1),(a2,b2),(a3,b3),(a4,b4),(a5,b5),(a6,b6)}, is popular. Thus there is a popular match-
ing of size 6, however there is no popular matching of size 5, but there is one (the matching
S) of size 4. That is, there are several augmenting paths with respect toS in GS and for every
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augmenting pathρ, the matchingS⊕ρ is unpopular. So anaugmenting path-type technique to
find a matching that satisfies conditions (i)-(iv) does not look promising andwe need a new idea.

2.1 Good Matchings

Recall the definition of a good matching (Definition 3 from Section 1). LetM ⊆ L×R be a
matching that isgoodwith respect to(L,R), whereL ∪̇R= V. We will now prove Theorem 2
that a good matching that isR-perfect satisfies conditions (i)-(iv).

Proof of Theorem 2.Let M be a matching that is good with respect to some partition(L,R) of
V and supposeM is R-perfect. Consider the graphGM. By property (2) of goodness, the setL of
vertices is independent inGM. We now show that conditions (i)-(iv) are obeyed byM.

Condition (i). Let C be an alternating cycle with respect toM in GM. SinceM ⊆ L×R, every
edge inC∩M is an edge ofL×R. Thus the number of vertices ofL that are inC equals the
number of vertices ofR that are inC. Since there is no edge inGM between any pair of vertices
in L, the only way an alternating cycleC can exist inGM is thatC ⊆ L×R. By property (1)
of goodness ofM, there is no(1,1) edge inL×R. HenceC has no(1,1) edge wrtM. Thus
condition (i) is satisfied.

Condition (ii). Let p = 〈u0,u1, . . . ,uk〉 be an alternating path with respect toM in GM such that
u0 is unmatched inM. SinceM is R-perfect, the vertexu0 ∈ L. Since there are noL×L edges in
GM, the next vertexu1 in p is in R. SinceM uses onlyL×R edges, it follows thatu2 = M(u1)
has to be inL, andu3 is in Rsinceu2 has no neighbor inL and so on. Thusp⊆ L×R. Hence by
property (1) of goodness ofM, condition (ii) is satisfied.

Condition (iii). Let p = 〈u0,u1, . . . ,uk〉 be any alternating path with respect toM in GM. We
need to show thatp has at most one(1,1) edge wrtM in GM. Since it is only edges outsideM
that get labeled, we can assume without loss of generality that(u0,u1) /∈ M. If u0 ∈ L, then the
same argument as in the earlier case (which showed that condition (ii) is satisfied) shows that
p⊆ L×Rand so there isno (1,1) edge inp.

So let us assume thatu0 ∈ R. Since there areR×Redges inGM, there are two cases:
Case 1:Every odd indexed vertex (i.e., for everyi, the vertexu2i+1) is in L. Then the entire

path uses onlyL×Redges, hence there is no(1,1) edge inp.
Case 2:Not every odd indexed vertex is inL. Let u2 j+1 be the first odd indexed vertex that

is in R. That is, the edge(u2 j ,u2 j+1) ∈ R×R. Thenu2 j+2, which isM(u2 j+1) has to be inL.
Since there are noL×L edges inGM, thereafter every odd indexed vertexu2k−1 of p is in R and
u2k = M(u2k−1) has to be inL, so every even indexed vertex inp afteru2 j+1 is in L. Hence there
can be only oneR×R edge, which is(u2 j ,u2 j+1), in p. Thusp has at most one(1,1) edge and
condition (iii) is satisfied.

Condition (iv). Suppose there exists an augmenting pathp = 〈u0,u1, . . . ,u2k+1〉 wrt M in GM,
that is, the verticesu0 andu2k+1 are unmatched inM. SinceM is R-perfect,u0 ∈ L and since
there are noL×L edges,u1 which isu0’s neighbor has to be inR. So the vertexu2 = M(u1) is
in L, and the vertexu3 which isu2’s neighbor has to be inR, andu4 = M(u3) has to be inL, and
so on. That is, everyevenindexed vertexu2i is in L and everyodd indexed vertexu2i+1 is in R.
Thusu2k+1 (the other endpoint ofp) has to be inR, which contradicts thatM is R-perfect, since
u2k+1 is unmatched inM. Hence there exists no augmenting path wrtM in GM.

This finishes the proof of Theorem 2. ⊓⊔
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3 The Algorithm

Our job now is to find a partition(L,R) and a matchingM that is good wrt this partition and
which isR-perfect. The vertices inR can be viewed as the “sought-after” vertices since they are
all matched inM and the vertices inL are the vertices thatseekpartners inR.

For convenience, we will refer to the elements ofA andB asmenandwomen, respectively.
Let A0 ⊂ A andB0 ⊂ B be the sets of those men and women respectively, that are unmatched in
any stable matching ofG = (A ∪B,E). Recall that every stable matching inG leaves the same
vertices unmatched. LetL1 = A0∪B0. Observe thatL1 is an independent set. LetR1 = V \L1.

It is easy to construct a matchingM1 that is good with respect to the partition(L1,R1): let
M1 be the matching obtained when vertices ofL1 propose to the vertices ofR1 and vertices ofR1

dispose. That is, we run the Gale/Shapley algorithm on the “bipartite” graphobtained by placing
L1 on the left andR1 on the right and the edge set restricted toE∩ (L1×R1).

We now show thatM1 is good with respect to(L1,R1). Property (1) of goodness holds by the
very nature of the proposal-disposal algorithm and property (2) of thegoodness of any matching
M1 ⊆ L1×R1 is vacuously true, sinceL1 is an independent set inG, and hence inGM. If M1 is
R1-perfect, then we are done. Otherwise we need to define a newL and show that we have made
some progress.

Our algorithm is given below. We assume without loss of generality that|B| ≤ |A |. Recall
that we want our matchingM to satisfy the following:

– M is good with respect to some partition(L,R) and
– M is R-perfect.

Algorithm 1 Input: G= (A ∪B,E) with strict preference lists
1. Let S be the stable matching obtained by the proposal-disposal algorithm on

(A ,B). {That is, men propose and women dispose.}
2. LetL1 = set of vertices left unmatched inS; let R1 = V \L1.
3. i = 1.

4. while truedo
5. compute a matchingMi by the proposal-disposal algorithm on(Li ,Ri).
6. if Mi is Ri-perfectthen returnMi .

7. letAi ⊂ A be the set of men inRi who are unmatched inMi .
8. setL′

i = Li ∪Ai andR′
i = V \L′

i .

9. compute a matchingM′
i by the proposal-disposal algorithm on(L′

i ,R
′
i).

10. if M′
i is R′

i-perfectthen returnM′
i .

11. letBi be the set of vertices inR′
i left unmatched byM′

i .
{we will show that all these vertices have to be women}

12. setLi+1 = Li ∪Bi andRi+1 = V \Li+1.
13. i = i +1.
14. end while

We use the Gale/Shapley proposal-disposal algorithm several times in Algorithm 1. This
proposal-disposal algorithm on(L,R) for anyL ⊂ A ∪B andR= V \L is given in Fig. 5. This
subroutine describes the Gale/Shapley algorithm on the “bipartite” graph obtained by placingL
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on the left andRon the right and the edge set restricted toE∩(L×R); here vertices ofL propose
to the vertices ofR and vertices ofRdispose.

– M = /0.
while there is someu∈ L unmatched inM who has not yet been rejected by all its neighbors inR do

– u proposes to its most preferred neighborv∈ R that has not rejectedu.
if v prefersu to M(v) then

– v assignsM(v) = u. {so the vertex that was v’s previous partner in M is now rejected by v}
else

– v rejectsu.
end if

end while
– ReturnM.

Fig. 5.Computing a matchingM ⊆ L×Rwith L proposing andR= V \L disposing

Note that in this subroutine even if there is an edge(u,w) ∈ L×L such thatw is u’s most
preferred neighbor inG that has not yet rejectedu, u ignores wand proposes to its most preferred
neighbor inR that has not yet rejectedu. This is because the above algorithm runs on the edge
setE∩ (L×R), so edges ofL×L play no part at all.

Since every unmatchedℓ ∈ L proposes in decreasing order of preference and everyr ∈ R
improves in the choice of its partner wheneverM(r) gets reassigned, Claim 1 stated below is
straightforward. This will be used in our analysis.

Claim 1 If M is the matching returned by the Gale/Shapley proposal-disposal algorithm on
(L,R), then there is no edge(ℓ, r) in L×R such thatvoteℓ(r,M(ℓ)) = 1 andvoter(ℓ,M(r)) = 1.

Description of Algorithm 1. Our initial left sideL1 is the subset of vertices left unmatched
in any stable matching ofG. As discussed earlier, the matchingM1 obtained by running the
Gale/Shapley proposal-disposal algorithm betweenL1 andR1 =V \L1 will be good wrt(L1,R1).
If every vertex ofR1 receives a proposal, then we have our desired matching. Otherwise, we
enter thesecond stageof the first iteration. In the second stage, we move all the unmatchedmen
from R1 to L1 and run the proposal-disposal algorithm between the newL1 (call this setL′

1) and
the newR1 (call this setR′

1) to computeM′
1. We will show thatM′

1 is good with respect to the
new left-right partition.

If M′
1 matches all the vertices on the right, then this is the desired matching. Otherwise let

B1 denote the set of unmatched vertices (women) [as is proved below] on the right who are not
matched byM′

1. We setL2 = L1∪B1 (our oldL1 along withB1) andR2 = R1 \B1 (our oldR1

with B1 deleted) and move to the next iteration of the algorithm. The unmatched men who moved
from right to left in the second stage of the first iteration are back on the right now. Their purpose
was to identify the setB1.

At the start of thei-th iteration, we have a partition(Li ,Ri) of V.

– If the matchingMi that results from the proposal-disposal algorithm on(Li ,Ri) is Ri-perfect,
thenMi is the desired matching.

– Else letAi be the set ofmenin Ri who are unmatched inMi . We run the proposal-disposal
algorithm on(Li ∪Ai ,Ri \Ai). If the resulting matchingM′

i matches all the vertices ofRi \Ai ,
thenM′

i is the desired matching.

11



– Else letBi be the set of unmatched vertices (women) [as is proved below] on the right.We
setLi+1 = Li ∪Bi andRi+1 = Ri \Bi ; the next iteration begins.

Lemma 2. For every i, the set Bi ⊆ B.

Proof. The setBi is the set of vertices ofR′
i = Ri \Ai that are unmatched inM′

i . The matching
M′

i is the result of vertices inL′
i = Li ∪Ai proposing and vertices inR′

i disposing. Note that every
vertex ofR′

i that was matched inMi with vertices inLi proposing, will remain matched inM′
i

with L′
i = Li ∪Ai proposing toR′

i = Ri \Ai .
Thus everymanin Ri who was matched inMi will remain matched inM′

i . Since we moved
all the unmatched men ofRi (this is the setAi) away fromRi to form R′

i = Ri \Ai , every vertex
of R′

i that is unmatched inM′
i has to be awoman. That is, the setBi of vertices ofR′

i that are
unmatched inM′

i , is a subset ofB. ⊓⊔

Termination of the algorithm.It is easy to see that every iteration takesO(m+n) time, which is
O(m). We now show that the while loop in Algorithm 1 runs for at most|B| iterations.

Lemma 3. The number of while-loop iterations in Algorithm 1 is at most|B|.

Proof. To show that termination has to happen within the first|B| iterations is simple. This
is because if termination does not happen in thei-th iteration, thenLi+1 ⊃ Li becauseBi 6= /0
(otherwise termination would have happened in thei-th iteration). Once a woman moves to the
left side of the graph, she never moves back to the right side again. Thusthere is an iterationk,
for some 1≤ k≤ |B|, where eitherMk is Rk-perfect orM′

k matches all thewomenin R′
k (in other

words,M′
k will be R′

k-perfect). Thus the termination condition gets satisfied. Hence the algorithm
terminates in thek-th iteration, for somek≤ |B|. ⊓⊔

The bound ofΘ(|B|) is tight on the number of iterations. We show an instanceG = (A ∪
B,E), whereA = {a1,a2, . . . ,a2n} andB = {b1,b2, . . . ,b2n} on which Algorithm 1 runs forn
iterations. For each 1≤ k≤ n−1, the preference lists are:

a2k−1 : b2k−1 b2k b2n b2k−1 : a2k−1 a2k a2n

a2k : b2k−1 b2k b2k : a2k−1 a2k

For the 4 verticesa2n−1,b2n−1,a2n, andb2n, the preference lists are:

a2n−1 : b2n−1 b2n b2n−1 : a2n−1 a2n

a2n : b1 b3 b5 · · · b2n−1 b2k : a1 a3 a5 · · · a2n−1

In the above instanceS= {(a1,b1),(a2,b2),(a3,b3), . . . ,(a2n−1,b2n−1)} is the only stable match-
ing. This leavesa2n andb2n unmatched. Algorithm 1 runs for|B|/2 = n iterations as shown
below:

– The setL1 = {a2n,b2n}. In the first round, the matchingM1 obtained is{(a2n,b1),(b2n,a1)}.
Then the unmatchedmen a2,a3, . . . ,a2n−1 on the right move to the left and make their propos-
als. The resulting matchingM′

1 is {(a2,b1),(a3,b3),(a4,b4), . . . ,(a2n−1,b2n−1),(b2n,a1)}.
The only vertex unmatched on the right isb2. So we setL2 = L1∪{b2} and start the second
round.
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– In the second round whenL2 proposes toR2, the matchingM2 = {(b2,a1),(a2n,b1),(b2n,a3)}
is obtained. Then the unmatchedmen a2,a4,a5, . . . ,a2n−1 move to the left from the right and
make their proposals and the matchingM′

2 = {(a2,b1),(a1,b2),(a4,b3), . . . ,(a2n−1,b2n−1),
(b2n,a1)} is obtained. The only vertex unmatched on the right isb4. So we setL3 = L2∪{b4}
and start the third round.

– At the end of thei-th round, where 1≤ i ≤ n−1, the setLi+1 will be set toLi ∪{b2i}. In
then-th round the setLn = {a2n,b2,b4,b6, . . . ,b2n−2,b2n}. WhenLn proposes toRn =V \Ln,
the matching isMn = {(a2n,b1),(b2,a1),(b4,a3), . . . ,(b2n−2,a2n−3),(b2n,a2n−1)}. The un-
matched men on the right area2,a4, . . . ,a2n−2. When these move to the left and propose, the
resulting matching isM′

n = {(b2,a1),(a2,b1),(b4,a3),(a4,b3), . . . ,(b2n,a2n−1),(a2n,b2n−1)}.
All the vertices on the right are matched inM′

n, hence the algorithm returns this matching in
then-th iteration.

3.1 Correctness of Algorithm 1

We will show in this section that our algorithm maintains the following invariants:

• Mi is good with respect to(Li ,Ri).
• M′

i is good with respect to(L′
i ,R

′
i).

For all the matchingsMi andM′
i computed in our algorithm, property (1) of goodness is

obvious since these matchings are obtained by the proposal-disposal algorithm between the left
side and the right side (see Claim 1). What we need to show now is that property (2) of goodness
is also obeyed by them.

We know thatM1 is good with respect to(L1,R1). This is becauseL1 is an independent set
and so property (2) of goodness is vacuously true. The next lemma shows thatM′

1 also obeys
property (2) of goodness.

Lemma 4. If (a,b) ∈ L′
1×L′

1, thenvotea(b,M′
1(a)) = −1 andvoteb(a,M′

1(b)) = −1.

Proof. Let e = (a,b) be any edge inL′
1 × L′

1. SinceL′
1 = A0 ∪B0 ∪A1 whereA0 ∪B0 is an

independent set, the vertexa has to be inA1. Observe that every vertex ofA1 will be matched in
M′

1 by virtue of the fact that the other vertices inL′
1 comprise the set of vertices unmatched in

any stable matching ofG. It is easy to see thata∈ A1 gets a partner inM′
1 that is at least as good

asS(a), whereS is the stable matching that results from vertices inA proposing to vertices inB.
Recall thatB0 is the set of women unmatched inS, soa regardsS(a) better than any neighbor in
B0. Thusa prefersM′

1(a) to all his neighbors inB0, hencevotea(b,M′
1(a)) = −1.

Now we show thatvoteb(a,M′
1(b)) = −1. Recall that each man inA1 was leftunmatched

in M1: sob ∈ B0 prefersM1(b) to all her neighbors inA1. Observe that no vertexb of B0 gets
dislodged fromM1(b) (a man) by the presence ofA1 in L′

1 since vertices ofA1 propose towomen.
ThusM′

1(b) = M1(b) and sovoteb(a,M′
1(b)) = −1. This finishes the proof of the lemma. ⊓⊔

This proves thatM′
1 is good with respect to(L′

1,R
′
1). Now consider anyi ≥ 2. We assume

by induction hypothesis oni that the matchingM′
i−1 ⊆ L′

i−1 × R′
i−1 is good with respect to

(L′
i−1,R

′
i−1).

Lemma 5 shows that thenMi ⊆ Li ×Ri will be good with respect to(Li ,Ri).

Lemma 5. If (a,b) ∈ Li ×Li , thenvotea(b,Mi(a)) = −1 andvoteb(a,Mi(b)) = −1.
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Proof. The setLi = A0 ∪B0 ∪B1 ∪ ·· · ∪Bi−1. Let e = (a,b) ∈ Li × Li . So a has to be inA0

andb ∈ B0∪ ·· · ∪Bi−1. We need to show that everya ∈ A0 prefersMi(a) to his neighbors in
B0∪·· ·∪Bi−1 and everyb∈ B0∪·· ·∪Bi−1 prefersMi(b) to her neighbors inA0.

By induction hypothesis, we know thatM′
i−1 is good with respect to(L′

i−1,R
′
i−1), where the

setL′
i−1 = A0∪B0∪ ·· · ∪Bi−2∪Ai−1. So for every edge(a,b) ∈ L′

i−1× L′
i−1, we know thata

prefersM′
i−1(a) to any neighborb in B0∪·· ·∪Bi−2. It is easy to see that anya∈ A0 gets at least

as good a partner inMi as inM′
i−1 becauseLi = (L′

i−1\Ai−1)∪Bi−1.

– The presence ofBi−1 in Li does not hurt the men inA0 when they propose to women inRi

becauseBi−1 is the set of women who wereunmatchedon the right when the men inA0 were
proposing in(L′

i−1,R
′
i−1).

– Also, the absence ofAi−1 on the left helps the men inA0 as they are the only men proposing
on the left now in(Li ,Ri) in comparison with(L′

i−1,R
′
i−1).

Thus for anya ∈ A0 anda’s neighborb ∈ B0∪ ·· · ∪Bi−2, votea(b,Mi(a)) = −1. Also, for any
a∈ A0 and neighborb∈ Bi−1, we know thatvotea(b,M′

i−1(a)) = −1 since the vertices ofBi−1

were unmatched inM′
i−1, hencevotea(b,Mi(a)) = −1.

Now we show that for every(a,b) ∈ Li ×Li , the vertexb also votes−1 for a vsMi(b). First,
there are no edges betweenB0 andA0. Sob ∈ B1∪ ·· · ∪Bi−1. Each woman inB1∪ ·· · ∪Bi−1

is matched in any stable matching ofG and recall thatA0 is the set of men left unmatched in
any stable matching ofG. Hence when women inB1∪·· ·∪Bi−1 propose to men inA \A0, each
woman inB1∪ ·· ·∪Bi−1 gets matched to a man that she considers better than her neighbors in
A0. Thus for anyb∈ B1∪·· ·∪Bi−1 andb’s neighbora∈ A0, voteb(a,Mi(b)) =−1. This finishes
the proof of this lemma. ⊓⊔

SupposeMi does not match all the vertices inRi , then we run the second stage of thei-th
iteration, where all the men inRi who were left unmatched byMi (call this setAi) are moved to
the left. ThusL′

i = Li ∪Ai . That is,L′
i = A0∪B0∪·· ·∪Bi−1∪Ai .

The proposal-disposal algorithm betweenL′
i andR′

i results in the matchingM′
i . We will now

show that property (2) of goodness also holds forM′
i . By induction hypothesis oni, we know

that the matchingM′
i−1 is good with respect to(L′

i−1,R
′
i−1). The following claim will be helpful

to us.

Claim 2 The set Ai ⊆ Ai−1, where Ai−1 is the set of men in Ri−1 left unmatched by Mi−1.

Proof. The setAi−1 was the set of men inRi−1 left unmatched byMi−1. Observe that every
vertex inRi−1 that was matched withLi−1 = A0∪B0∪·· ·∪Bi−2 proposing, will remain matched
with Li−1∪Ai−1 proposing toRi−1 \Ai−1. Thus everyman in Ri−1 who was matched inMi−1

will remain matched inM′
i−1 with the women inB0∪·· ·∪Bi−2 proposing on the left. At the end

of the(i −1)-th iteration, the setAi−1 goes back to the right and the setBi−1 moves to the left.
With the women inB0∪·· ·∪Bi−1 proposing in thei-th iteration, all the men who were matched
in the second stage of the previous iteration, continue to remain matched and some vertices of
Ai−1 also possibly get matched. So the set of men inRi who are unmatched inMi is a subset of
Ai−1, that is,Ai ⊆ Ai−1. ⊓⊔

We will now show that for any(a,b) ∈ L′
i ×L′

i , votea(b,M′
i (a)) = −1 andvoteb(a,M′

i (b)) =
−1 in Lemmas 6 and 7, respectively.

Lemma 6. If (a,b) ∈ L′
i ×L′

i , thenvotea(b,M′
i (a)) = −1.
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Proof. We know from Claim 2 thatAi ⊆ Ai−1. Now Bi−1 is the set of women inR′
i−1 left un-

matchedwhen vertices ofL′
i−1, which containsA0 ∪Ai−1, were proposing on the left in the

second stage of the(i −1)-th iteration. Hence each mana ∈ A0∪Ai−1 prefersM′
i−1(a) to any

neighborb∈ Bi−1. Each man inA0∪Ai gets at least as good a partner inM′
i as inM′

i−1 because

– there are fewer men proposing now than in the second stage of the(i − 1)-th iteration as
A0∪Ai ⊆ A0∪Ai−1 and

– it is only the unmatched women who moved away fromR′
i−1. Hence all women who belong

to {M′
i−1(a) : a∈ A0∪Ai−1} are still present inR′

i for A0∪Ai to propose to.

We know from the induction hypothesis thatM′
i−1 is good with respect to(L′

i−1,R
′
i−1). Hence

eacha∈ A0∪Ai−1 prefersM′
i−1(a) to any neighbor inB0∪ ·· ·∪Bi−2. Also, we just argued that

a∈ A0∪Ai−1 prefersM′
i−1(a) to any neighbor inBi−1. SinceAi ⊆ Ai−1 and becauseM′

i (a) is at
least as good asM′

i−1(a) for all a ∈ A0∪Ai , it follows thatvotea(b,M′
i (a)) = −1 for any edge

(a,b) wherea∈ A0∪Ai andb∈ B0∪·· ·∪Bi−2∪Bi−1. ⊓⊔
Lemma 7. If (a,b) ∈ L′

i ×L′
i , thenvoteb(a,M′

i (b)) = −1.

Proof. SinceL′
i = A0∪B0∪·· ·∪Bi−1∪Ai , for any(a,b) ∈ L′

i ×L′
i , the vertexa∈ A0∪Ai .

Case 1: Supposea∈ Ai . SinceAi is the set of men inRi who areunmatchedin Mi , it follows that
each ofb∈ B0∪·· ·∪Bi−1 prefersMi(b) to any neighbor inAi . Also for anyb∈ B0∪·· ·∪Bi−1,
we haveM′

i (b) = Mi(b), since it is onlyunmatched menthat moved fromRi to the left side to
form L′

i . Thusvoteb(a,M′
i (b)) = −1.

Case 2: Supposea∈A0. Consider any edge between a man inA0 and a womanb∈B0∪·· ·∪Bi−1.
In the first place,b has to be inB1∪ ·· · ∪Bi−1 sinceA0∪B0 is an independent set. Everyb ∈
B1∪ ·· ·∪Bi−1 prefers her partnerM′

i (b) to any neighbor inA0, sinceA0 is the set of unmatched
men in any stable matching ofG. Thusvoteb(a,M′

i (b)) = −1.
Hence for anyb∈ B0∪·· ·∪Bi−1, and any neighbora∈ A0∪Ai , we havevoteb(a,M′

i (b)) =
−1. ⊓⊔

Thus property (2) of goodness is true forM′
i . We have thus shown that for everyi, where

1≤ i ≤ number of iterations in our algorithm,Mi is good with respect to(Li ,Ri) andM′
i is good

with respect to(L′
i ,R

′
i). Thus as soon as we find anMi or anM′

i that matches all the vertices
on the right, we have a good matching that matches all the vertices on the right. Lemma 3 tells
us that within the first|B| iterations of the while loop, there is an iterationk such that either
Mk or M′

k matches all the vertices on the right. This completes the proof of correctnessof our
algorithm.

Thus Algorithm 1 always returns a good matchingM wrt a partition(L,R) such thatM is R-
perfect. Since the running time of Algorithm 1 isO(m· |B|) (recall that we assumed|B| ≤ |A |),
Theorem 3 stated in Section 1 follows. Combining all the results, we can conclude Theorem 5.

Theorem 5. A maximum cardinality popular matching in a bipartite graph G= (A ∪B,E)
with 2-sided strict preference lists can be computed in O(mn0) time, where m= |E| and n0 =
min(|A |, |B|).

3.2 Testing for popularity

In this section we show a linear time algorithm to test if a matching in a stable marriage instance
G = (A ∪B,E) with strict preference lists is popular or not. This problem was previously con-
sidered in [2] where anO(m

√
n) algorithm was shown for this problem. Here we use Theorem 1

to design our linear time algorithm.
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Our algorithm first labels each edgee= (u,v) in E \M by (voteu(v,M(u)),votev(u,M(v))).
If there exists no edge labeled(1,1) in E \M, thenM is stable, hence popular. So let us assume
that edges labeled(1,1) exist. We first delete fromG all edges labeled(−1,−1) to form the
graphGM. Theorem 1 tells us if any of (a), (b), (c) given below is present inGM, thenM is
unpopular; otherwise it is popular.

(a) an alternating cycle that contains an edge labeled(1,1)
(b) an alternating path starting from an unmatched vertex that contains an edge labeled(1,1)
(c) an alternating path that contains two or more edges labeled(1,1).

So what we need to do in our algorithm is to check if (a), (b), or (c) exists inGM. We build a
tree similar to aHungarian treein GM. (A Hungarian tree is typically used to find an augmenting
path wrt a given matching.)

Our Algorithm. Our algorithm to check for the existence of (a), (b), or (c) inGM is given below.

1. Mark the endpoints of all the edges labeled(1,1) in GM.
2. We build a tree or more appropriately, a layered graph, using edges ofGM as follows:

– all the marked women are at level 0
– the men matched to level 0 vertices are in level 1
– thenewneighbors of the level 1 vertices are level 2 vertices (i.e., the women in level0

do not get repeated here)
– the men matched to the women in level 2 are level 3 vertices
– the neighbors of the level 3 vertices not seen so far are level 4 vertices, and so on.

Note that for any vertexu in this tree, there is an alternating path that starts with a matched
edge from a level 0 vertex tou.

3. If either a marked man or a unmatched woman is encountered in the above tree, then return
“unpopular”.

4. Build another such tree inGM where all the markedmenare in level 0, the vertices matched
to them are in level 1, their new neighbors are in level 2, and so on. If an unmatched man is
encountered in this tree, then return “unpopular”.

5. Return “popular”.

Claim 3 If a marked man is encountered in Step 3, then this is evidence of (a) or (c).

Proof. Let x be the marked man encountered in this tree. Observe that men are reached through
matched edges in this tree. Thus there is an alternating path starting with a matchededge from a
marked woman (call this vertexy) and ending with a matched edge inx. Bothy andx are marked.
Thusx has an edge labeled(1,1) incident to it, so doesy.

If it is the same(1,1) edge that is incident to bothx andy (i.e., there is a(1,1) edge between
x andy), then this is an alternating cycle with a(1,1) edge. So suppose the(1,1) edges incident
on x andy are different. SinceG is bipartite,x andy do not have a common neighbor, thus the
(1,1) edge incident onx, followed by the alternating path betweenx andy, followed by the(1,1)
edge incident ony is an alternating path with two(1,1) edges. ⊓⊔

The following claims are straightforward.

Claim 4 If an unmatched woman in encountered in Step 3, then this is evidence of (b).

Claim 5 If an unmatched man is encountered in Step 4, then this is evidence of (b).
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Thus it follows from Claims 3, 4, and 5 that whenever the algorithm returns “unpopular”, the
matchingM is unpopular. Now we need to show that if the algorithm returns “popular”,thenM
is indeed popular.

Lemma 8. If an alternating cycle with a(1,1) edge or an alternating path with two(1,1) edges
exists in GM, then a marked man has to be encountered in Step 3 of our algorithm.

Proof. SupposeGM has either an alternating cycle with a(1,1) edge or an alternating path with
two (1,1) edges inGM. Let ρ be a shortest such cycle or path. Ifρ is an alternating cycle, then
let 〈x1,y1, . . . ,xk,yk〉 (thex’s are men and they’s are women) denoteρ\{e}, wheree is the edge
labeled(1,1) in ρ. If ρ is an alternating path with two(1,1) edges inGM, then the first and last
edges ofρ are(1,1) edges and let〈x1,y1, . . . ,xk,yk〉 denoteρ after removing these two(1,1)
edges.

In both cases (whetherρ is a cycle or a path), the verticesx1 andyk are marked. The vertexyk,
being a marked woman, is present in level 0 in our tree. The vertexxk, being the vertex matched
to yk, is present in level 1, the vertexyk−1 being a neighbor ofxk−1 has to be in level 2 (yk−1

cannot be in level 0 since that would contradictρ being a shortest such cycle/path), and so on.
Thus the vertexx1, which is a marked man, will be encountered in level 2k−1. ⊓⊔

Lemma 9. If GM has an alternating path starting from an unmatched woman that contains a
(1,1) edge, then an unmatched woman has to be encountered in Step 3 of our algorithm.

Proof. Let ρ be a shortest alternating path inGM starting from an unmatched woman that con-
tains a(1,1) edge. Since the first edge ofρ (incident on an unmatched vertex) and the last edge
of ρ (a (1,1) edge) are unmatched edges,ρ is of odd length. Letρ = 〈y0,x1,y1, . . . ,xk,yk,xk+1〉,
wherey0 is the unmatched woman and(yk,xk+1) is the(1,1) edge. Henceyk has to be marked
and being a marked woman, it has to be present in level 0. The argument nowis similar to the
proof of Lemma 8. The vertexxk is matched toyk, soxk is in level 1 and so on, thus the vertex
y0, an unmatched woman, will be encountered in level 2k. ⊓⊔

We can symmetrically show that ifGM has an alternating path starting from an unmatched
man that contains a(1,1) edge, then a marked man has to be encountered in Step 4 of our
algorithm. Thus it follows that if the algorithm reaches Step 5, thenGM has none of (a), (b),
(c). The popularity ofM now follows from Theorem 1. It is easy to see that our algorithm takes
linear time. Thus we can conclude the following theorem.

Theorem 6. Given a bipartite graph G= (A ∪B,E) with 2-sided strict preference lists and a
matching M in G, we can test if M is popular in G in linear time.

Conclusions and Open problems.We gave a simple characterization of popular matchings in
any instanceG (not necessarily bipartite) with two-sided preference lists that are strictly ordered.
We also showed a sufficient condition for a popular matching to be one of maximum cardinality.
We introduced the notion of a “good” matching wrt a partition(L,R) of the vertex set and showed
that such a matching that is alsoR-perfect has to be a maximum cardinality popular matching.
For a bipartite graphG= (A∪B,E), we gave an efficient algorithm to compute such a matching.
We also showed a linear time algorithm to test if a given matching inG = (A ∪B,E) is popular.

For non-bipartiteG with strict preference lists (also called the roommates problem), the com-
plexity of determining ifG admits a popular matching or not is an open problem. For roommates
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instances that admit stable matchings (given a roommates instance, there is a linear time algo-
rithm in [6] that computes a stable matching if it exists), there is no polynomial time algorithm
known for computing a maximum cardinality popular matching. For testing a matchingM in
a roommates instance for popularity, anO(m

√

nα(n,m) log3/2n) algorithm was given in [2].
This algorithm uses a maximum weight matching algorithm, it is an open problem to extend our
algorithm in Section 3.2 to the non-bipartite case.

Acknowledgments.We thank the reviewers of the conference version of this paper for their
helpful comments.

References

1. D.J. Abraham, R.W. Irving, T. Kavitha and K. Mehlhorn. Popular matchings. SIAM Journal on Computing,
Vol.37, No.4, pp. 1030–1045, 2007.

2. P. Biro, R. W. Irving, D. F. Manlove. Popular matchings in the Marriage and Roommates problems Proceedings
of the seventh International Conference on Algorithms and Complexity (CIAC), 97-108, 2010.

3. D. Gale and L.S. Shapley.College admissions and the stability of marriage. American Mathematical Monthly,
69:9–15, 1962.

4. P. G̈ardenfors.Match making: assignments based on bilateral preferences. Behavioural Sciences, 20:166–173,
1975.

5. D. Gusfield and R.W. Irving.The Stable Marriage Problem: Structure and Algorithms. MIT Press, 1989.
6. R.W. Irving. An Efficient Algorithm for the “Stable Roommates” Problem.Journal of Algorithms, 6: 577-595,

1985.
7. T. Kavitha, J. Mestre, and M. Nasre. Popular mixed matchings. InProceedings of the 36th International Collo-

quium on Automata, Languages and Programming, pages 574–584, 2009.
8. T. Kavitha and M. Nasre. Note: Optimal popular matchings.Discrete Applied Mathematics, 157(14):3181–3186,

2009.
9. D. E. Knuth. Mariages Stables. Les Presses de L’Université de Montreal, 1976.
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