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Abstract. We are given a bipartite graph G = (A ∪ B,E) where each
vertex has a preference list ranking its neighbors: in particular, every
a ∈ A ranks its neighbors in a strict order of preference, whereas the
preference lists of b ∈ B may contain ties. A matching M is popular if
there is no matching M ′ such that the number of vertices that prefer
M ′ to M exceeds the number that prefer M to M ′. We show that the
problem of deciding whether G admits a popular matching or not is
NP-hard. This is the case even when every b ∈ B either has a strict
preference list or puts all its neighbors into a single tie. In contrast, we
show that the problem becomes polynomially solvable in the case when
each b ∈ B puts all its neighbors into a single tie. That is, all neighbors of
b are tied in b’s list and and b desires to be matched to any of them. Our
main result is an O(n2) algorithm (where n = |A ∪ B|) for the popular
matching problem in this model. Note that this model is quite different
from the model where vertices in B have no preferences and do not care
whether they are matched or not.

1 Introduction

We are given a bipartite graph G = (A ∪ B,E) where the vertices in A are
called applicants and the vertices in B are called posts, and each vertex has a
preference list ranking its neighbors in an order of preference. Here we assume
that vertices in A have strict preferences while vertices in B are allowed to have
ties in their preference lists. Thus each applicant ranks all posts that she finds
interesting in a strict order of preference, while each post need not come up
with a total order on all interested applicants – here applicants may get grouped
together in terms of their suitability, thus equally competent applicants are tied
together at the same rank.

Our goal is to compute a popular matching in G. The definition of popularity
uses the notion of each vertex casting a “vote” for one matching versus another.
A vertex v prefers matching M to matching M ′ if either v is unmatched in M ′

and matched in M or v is matched in both matchings and M(v) (v’s partner
in M) is ranked better than M ′(v) in v’s preference list. In an election between
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matchings M and M ′, each vertex v votes for the matching that it prefers or it
abstains from voting if M and M ′ are equally preferable to v. Let φ(M,M ′) be
the number of vertices that vote for M in an election between M and M ′.

Definition 1. A matching M is popular if φ(M,M ′) ≥ φ(M ′,M) for every
matching M ′.

If φ(M ′,M) > φ(M,M ′), then we say M ′ is more popular than M and denote
it by M ′ � M ; else M � M ′. Observe that popular matchings need not always
exist. Consider an instance where A = {a1, a2, a3} and B = {b1, b2, b3} and for
i = 1, 2, 3, each ai has the same preference list which is b1 followed by b2 followed
by b3 while each bi ranks a1, a2, a3 the same, i.e. a1, a2, a3 are tied together in bi’s
preference list. It is easy to see that for any matching M here, there is another
matching M ′ such that M ′ �M , thus this instance admits no popular matching.

The popular matching problem is to determine if a given instance G = (A ∪
B,E) admits a popular matching or not, and if so, to compute one. This problem
has been studied in the following two models.

• 1-sided model: here it is only vertices in A that have preferences and cast
votes; vertices in B are objects with no preferences or votes.
• 2-sided model: vertices on both sides have preferences and cast votes.

Popular matchings need not always exist in the 1-sided model and the prob-
lem of whether a given instance admits one or not can be solved efficiently using
the characterization and algorithm from [1]. In the 2-sided model when all prefer-
ence lists are strict, it can be shown that any stable matching is popular [3]; thus a
popular matching can be found in linear time using the Gale-Shapley algorithm.
However when ties are allowed in preference lists on both sides, Biró, Irving, and
Manlove [3] showed that the popular matching problem is NP-complete. In this
paper we focus on the following variant:

∗ it is only vertices in A that have preference lists ranking their neighbors,
however vertices on both sides cast votes.

That is, vertices in B have no preference lists ranking their neighbors – how-
ever b desires to be matched to any of its neighbors. Thus in an election between
two matchings, b abstains from voting if it is matched in both or unmatched
in both, else it votes for the matching where it is matched. An intuitive under-
standing of such an instance is that A is a set of applicants and B is a set of tasks
– while each applicant has a preference list over the tasks that she is interested
in, each task just cares to be assigned to anyone who is interested in performing
it. We will see in Section 2 that the above problem is significantly different from
the popular matching problem in the 1-sided model where vertices in B do not
cast votes. We show the following results here, complementing our polynomial
time algorithm in Theorem 1 with our hardness result in Theorem 2.

Theorem 1. Given a bipartite graph G = (A ∪ B,E) where each a ∈ A has a
strict preference list over its neighbors while each b ∈ B puts all its neighbors
into a single tie, the popular matching problem in G can be solved in O(n2) time,
where |A ∪B| = n.



Theorem 2. The popular matching problem is NP-complete in G = (A∪B,E)
where each a ∈ A has a strict preference list while each b ∈ B either has a strict
preference list or puts all its neighbors into a single tie.

Note that our NP-hardness reduction needs B to have Ω(|B|) vertices with
strict preference lists and Ω(|B|) vertices with single ties as their preference
lists. Theorem 2 follows from a simple reduction from the (2,2)-e3-sat problem
which is NP-complete [2]. Our reduction shows that the 2-sided popular matching
problem in G = (A∪B,E) where every vertex in A has a strict preference list of
length 2 or 4 and every vertex in B has either a strict preference list of length 2
or a single tie of length 2 or 3 as a preference list is NP-complete.

We show Theorem 1 by partitioning the set B into three sets: the first set
X is a subset of top posts and, roughly speaking, the second set Y consists of
mid-level posts, and the third set Z consists of unwanted posts (see Figure 1).
Applicants get divided into two sets: the set of those with one or more neighbors
in the set Z (call this set nbr(Z)) and the rest (this set is A \ nbr(Z)).

Our algorithm performs the partition of B into X,Y , and Z over several
iterations. Initially X = F , where F is the set of top posts, Y = B \ F , and
Z = ∅. In each iteration, certain top posts get demoted from X to Y and certain
non-top posts get demoted from Y to Z. With new posts entering Z, we also
have applicants moving from A \nbr(Z) to nbr(Z). Using the partition 〈X,Y, Z〉
of B, we will build a graph H where each applicant keeps at most two edges:
either to its most preferred post in X and also in Y or to its most preferred post
in Z and also in Y . Some dummy posts may be included in Y .

We prove that G admits a popular matching if and only if H admits an
A-complete matching, i.e., one that matches all vertices in A. We show that
corresponding to any popular matching in G, there is a partition 〈L1, L2, L3〉
of B into top posts, mid-level posts, and unwanted posts such that X ⊇ L1 and
Z ⊆ L3, where 〈X,Y, Z〉 is the partition computed by our algorithm. This allows
us to show that if H does not admit an A-complete matching, then G has no
popular matching. In fact, not every popular matching in G becomes an A-
complete matching in H. However it will be the case that if G admits popular
matchings, then at least one of them becomes an A-complete matching in H.

Background. Popular matchings have been well-studied in the 1-sided model
[1, 9–15] where only vertices of A have preferences and cast votes. Abraham et
al. [1] gave polynomial time algorithms to determine if a given instance admits
a popular matching or not – their algorithm also works when preference lists of
vertices in A admit ties. Gärdenfors [5], who introduced the notion of popular
matchings, considered this problem in the domain of 2-sided preference lists. In
any instance G = (A∪B,E) with 2-sided strict preference lists, a stable matching
is actually a minimum size popular matching and polynomial algorithms for
computing a maximum size popular matching were given in [7, 8].

Organization of the paper. Section 2 has preliminaries, Section 3 has our
algorithm and our proof of correctness. Due to the space constraints, certain
proofs (incl. the proof of Theorem 2) have been omitted from this version of the
paper. These proofs will be included in the full version of the paper.



2 Preliminaries

For any a ∈ A, let f(a) denote a’s most desired post. Let F = {f(a) : a ∈ A} be
the set of top posts. We will refer to posts in F as f -posts and to those in B\F as
non-f -posts. For any a ∈ A, let ra be the rank of a’s most preferred non-f -post
in a’s preference list; when all of a’s neighbors are in F , we set ra = ∞. The
following theorem characterizes popular matchings in the 1-sided voting model.

Theorem 3 (from [1]). Let G = (A ∪ B,E) be an instance of the 1-sided
popular matching problem, where each a ∈ A has a strict preference list. Let M
be any matching in G. M is popular if and only if the following two properties
are satisfied:

(i) M matches every b ∈ F to some applicant a such that b = f(a);
(ii) M matches each applicant a to either f(a) or its neighbor of rank ra.

Thus the only applicants that may be left unmatched in a popular matching
here are those a ∈ A that satisfy ra =∞.

Let us consider the following example where A = {a1, a2, a3} and B =
{b1, b2, b3}: both a1 and a2 have the same preference list which is b1 > b2 (b1
followed by b2) while a3’s preference list is b1 > b2 > b3. Assume first that only
applicants cast votes. The only posts that any of a1, a2, a3 can be matched to
in a popular matching here are b1 and b2. As there are three applicants and
only two possible partners in a popular matching, there is no popular match-
ing here. However in our 2-sided voting model, where posts also care about
being matched and all neighbors are in a single tie, we have a popular match-
ing {(a1, b1), (a2, b2), (a3, b3)}. Note that b3 is ranked third in a3’s preference
list, which is worse than ra3 = 2, however such edges are permitted in popular
matchings in our 2-sided model.

Consider the following example: A = {a0, a1, a2, a3} and B = {b0, b1, b2, b3};
both a1 and a2 have the same preference list which is b1 > b2 while a3’s preference
list is b1 > b0 > b2 and a0’s preference list is b0 > b3. There is again no popular
matching here in the 1-sided model, however in our 2-sided voting model, we
have a popular matching {(a0, b3), (a1, b1), (a2, b2), (a3, b0)}. Note that b0 ∈ F
and here it is matched to a3 and f(a3) 6= b0; also a3 is matched to its second
ranked post: this is neither its top post nor its ra3

-th ranked post (ra3
= 3 here).

Thus popular matchings in our 2-sided voting model are quite different from
the characterization given in Theorem 3 for popular matchings in the 1-sided
model. Our algorithm (presented in Section 3) uses the following decomposition.

Dulmage-Mendelsohn decomposition [4]. Let M be a maximum matching in a
bipartite graph G = (A∪B,E). Using M , we can partition A∪B into three dis-
joint sets: a vertex v is even (similarly, odd) if there is an even (resp., odd) length
alternating path (with respect to M) from an unmatched vertex to v. Similarly, a
vertex v is unreachable if there is no alternating path from an unmatched vertex
to v. Denote by E , O, and U the sets of even, odd, and unreachable vertices, re-
spectively. The following properties (proved in [6]) will be used in our algorithm
and analysis.



• E , O, and U are pairwise disjoint. Let M ′ be any maximum matching in G
and let E ′, O′, and U ′ be the sets of even, odd, and unreachable vertices with
respect to M ′, respectively. Then E = E ′, O = O′, and U = U ′.

• Every maximum matching M matches all vertices in O ∪ U and has size
|O|+ |U|/2. In M , every vertex in O is matched with some vertex in E , and
every vertex in U is matched with another vertex in U .

• The graph G has no edge in E × (E ∪ U).

3 Finding popular matchings in a 2-sided voting model

The input is G = (A ∪B,E) where each applicant a ∈ A has a strict preference
list while each post b ∈ B has a single tie as its preference list. Our algorithm
below builds a graph H using a partition 〈X,Y, Z〉 of B that is constructed in
an iterative manner. Initialize X = F , Y = B \ F , and Z = ∅.

For any a ∈ A, recall that ra is the rank of a’s most preferred non-f -post.
For any U ⊆ B, let nbr(U) (similarly, nbrH(U)) denote the set of neighbors
in G (resp., in H) of the vertices in U . Note that our algorithm will maintain
nbrH(X) ∩ nbr(Z) = ∅ by ensuring that nbrH(X) ⊆ A \ nbr(Z).

(I) While true do
0. H is the empty graph on A ∪B.
1. For each a ∈ A \ nbr(Z) do:

– if f(a) ∈ X then add the edge (a, f(a)) to H.
2. For every b ∈ X that is isolated in H do:

– delete b from X and add b to Y .
3. For each a ∈ A do:

– let b be a’s most preferred post in the set Y ; if the rank of b in a’s
preference list is ≤ ra (i.e., ra or better), then add (a, b) to H.

4. Consider the graph H constructed in steps 1-3. Compute a maximum
matching in H. [This is to identify “even” posts in H.]

– If there exist even posts in Y then delete all even posts from Y
and add them to Z.

– Else quit the While-loop.
(II) Every a ∈ nbr(Z) adds the edge (a, b) to H where b is a’s most preferred

post in the set Z.
(III) Add all posts in D = {`(a) : a ∈ A and ra = ∞} to Y , where `(a) is the

dummy last resort post of applicant a. For every applicant a such that
nbr({a}) ⊆ X, add the edge (a, `(a)) to H.

Note that if a matchingM includes the edge (a, `(a)), it means a is unmatched
in M . The condition for exiting the While-loop ensures that all posts in Y , and
hence all in X ∪ Y , are odd/unreachable in the subgraph of H with the set of
posts restricted to real posts in X ∪ Y (i.e., the non-dummy ones). So starting
with a maximum matching in this subgraph and augmenting it after adding the
edges on posts in Z in Step (II) and the edges on dummy posts in Step (III),
we get a maximum matching in H that matches all real posts in X ∪ Y . After
the construction of H, our algorithm for the popular matching problem in G is
given below.



• If H admits an A-complete matching, then return one that matches all real
posts in X ∪ Y ; else output “G has no popular matching”.
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X

Y

Z

nbr(Z)

A \ nbr(Z)

XM(X)

M(Z)

M(Y ) Y

Z

Fig. 1. The set B gets partitioned into X,Y , and Z. We have nbrH(X) ∩ nbr(Z) =
∅. In the figure on the right, the horizontal edges belong to M . Only the edges of
(M(Y )×X) ∪ (M(Z)× (X ∪ Y )) can be labeled +1.

In the rest of this section, we prove the following theorem.

Theorem 4. G admits a popular matching if and only if H admits an A-
complete matching, i.e., one that matches all vertices in A.

The sufficient part. We first show that if H admits an A-complete match-
ing, then G admits a popular matching. We have already observed that if H ad-
mits an A-complete matching, then H has an A-complete matching that matches
all real posts in X ∪Y . Call this matching M ; other than the dummy last resort
posts, all posts that are unmatched in M have to be in Z.

A useful observation is that Z ⊆ B \ F . This is because in Step 4 of the
While-loop in our algorithm, all f -posts in Y are odd/unreachable in H as they
are the only neighbors in H of applicants who regard them as f -posts.

We now assign edge labels in {±1} to all edges in G\M : for an edge (a, b) in
G \M , if a prefers b to M(a), then we label this edge +1, else we label this −1.
The label of (a, b) is basically a’s vote for b vs M(a). Figure 1 is helpful here.



For any U ∈ {X,Y, Z}, let M(U) ⊆ A be the set of applicants matched in
M to posts in U . The following lemma is important.

Lemma 1. Every edge of G in M(X) × Y is labeled −1; similarly, every edge
in M(Y )× Z is labeled −1. Any edge labeled +1 has to be either in M(Y )×X
or in M(Z)× (X ∪ Y ).

Proof. Every edge of nbr(X) × X that is present in H is a top ranked edge.
Since M belongs to H, the edges of M from nbr(X)×X are top ranked edges.
Thus it is clear that every edge of G in M(X) × Y is labeled −1. Regarding
M(Y )× Z, every edge of nbr(Y )× Y that is present in the graph H is an edge
(a, b) where the rank of b in a’s preference list is ≤ ra (i.e., ra or better); on the
other hand, every edge of nbr(Z)× Z that is present in the graph H is an edge
(a, b′) where the rank of b′ in a’s preference list is ≥ ra (because b′ ∈ B \ F ).
Since M belongs to H, the edges of M from nbr(Y )× Y are ranked better than
edges of nbr(Z)× Z. Thus every edge of G in M(Y )× Z is labeled −1.

We now show that any edge labeled +1 has to be in either M(Y ) × X or
M(Z)×(X∪Y ) (see Figure 1). Consider any edge (a, b) /∈M such that b ∈ U and
a ∈ M(U), where U ∈ {X,Y, Z}. It follows from the construction of the graph
H that a vertex in nbr(U) can be adjacent in H to only its most preferred post
in U . Thus any edge (a, b) /∈ M where b ∈ U and a ∈ M(U) is ranked −1. We
have already seen that all edges in M(X)×Y and in M(Y )×Z are labeled −1.
There are no edges in M(X) × Z since M(X) ⊆ A \ nbr(Z). Thus any edge
labeled +1 has to be in either M(Y )×X or M(Z)× (X ∪ Y ). ut

Let M ′ be any matching in G. The symmetric difference of M ′ and M is
denoted by M ′ ⊕M : this consists of alternating paths and alternating cycles
– note that edges here alternate between M and M ′. It will be convenient to
assume that last resort posts are used only in M and not in M ′. The claim that
M �M ′ follows easily from Lemma 2. This proves the popularity of M .

Lemma 2. Consider M ′ ⊕M . The following three properties hold:

(i) in any alternating cycle in M ′⊕M , the number of edges that are labeled −1
is at least the number of edges that are labeled +1.

(ii) in any alternating path in M ′⊕M , the number of edges that are labeled +1
is at most two plus the number of edges that are labeled −1; in case one
of the endpoints of this path is a last resort post, then the number of edges
labeled +1 is at most one plus the number of edges labeled −1.

(iii) in any even length alternating path in M ′ ⊕M , the number of edges that
are labeled −1 is at least the number of edges that are labeled +1; in case
one of the endpoints of this path is a last resort post, then the number of
edges labeled −1 is at least one plus the number of edges labeled +1.

The necessary part. We now show the other side of Theorem 4. That is, if
G admits a popular matching, then H admits an A-complete matching. Let M∗

be a popular matching in G. Lemma 3 will be useful to us.



Lemma 3. If (a, b) ∈ M∗ and b ∈ F , then b has rank better than ra in a’s
preference list.

Label the edges of G\M∗ by +1 or −1: the label of an edge (a, b) in G\M∗ is
the vote of a for b vs M∗(a). In case a is not matched in M∗, then vote(a, b) = +1
for any neighbor b of a. Due to the popularity of M∗, the following two properties
hold on these edge labels (otherwise M∗ ⊕ ρ �M∗).

(∗) there is no alternating path ρ such that the edge labels in ρ \ M∗ are
〈+1,+1,+1, · · · 〉, i.e., no three consecutive non-matching edges labeled +1.

(∗∗) there is no alternating path ρ where the edge labels in ρ\M∗ are 〈+1,+1,−1,
+1,+1, · · · 〉.

From the matching M∗ and the edge labels on G \M∗, we partition B into
L1 ∪ L2 ∪ L3 as follows. This partition uses property (∗) in a crucial way.

0. Initialize L1 = L2 = ∅ and L3 = {b ∈ B : b is unmatched in M∗}. We now
add more posts to the sets L1, L2, L3 as described below.

1. Any alternating path with respect to M∗ can have at most two consecutive
non-matching edges that are labeled +1. For each length-5 alternating path
ρ = a0-b0-a1-b1-a2-b2 where (a0, b0), (a1, b1), (a2, b2) ∈ M∗ and both (a1, b0)
and (a2, b1) are marked +1, add bi−1 to Li, for i = 1, 2, 3.

2. Now consider those b ∈ B that are matched in M∗ but b is not a part of any
length-5 alternating path where both the non-matching edges are labeled +1.
We repeat the following two steps till there are no more posts to be added
to either L2 or L3 via these rules:

– suppose M∗(b) has no +1 edge incident on it: if M∗(b) ∈ nbr(L3), then
add b to L2.

– if M∗(b) has a +1 edge to a vertex in L2, then add b to L3.
3. For each b such that M∗(b) has no +1 edge incident on it:

– if M∗(b) /∈ nbr(L3), then add b to L1.
4. For each b not yet in L2 ∪ L3 and M∗(b) has a +1 edge to a vertex in L1:

– add b to L2.

Lemma 4. The above partition 〈L1, L2, L3〉 satisfies the following properties:

(1) F ⊆ L1 ∪ L2, where F is the set of top posts.
(2) M∗(L1) ∩ nbr(L3) = ∅.

We will use the partition 〈L1, L2, L3〉 of B to build the following subgraph
G′ = (A ∪B,E′) of G. For each a ∈ A, include the following edges in E′:

(i) if a /∈ nbr(L3), then add the edge (a, f(a)) to E′.
(ii) if a has a neighbor of rank ≤ ra in L2, then add the edge (a, b) to E′, where

b is a’s most preferred neighbor in L2.
(iii) if a ∈ nbr(L3), then add the edge (a, b) to E′, where b is a’s most preferred

neighbor in L3.

Lemma 5. Every edge of the matching M∗ belongs to the graph G′.



Proof. The set B has been partitioned into L1∪L2∪L3. We will now show that
for each post b0 that is matched in M∗, the edge (M∗(b0), b0) belongs to G′.

– Case 1. The post b0 ∈ L1. Hence there is no +1 edge incident on a0 = M∗(b0),
in other words, b0 = f(a0). Lemma 4.2 tells us that M∗(L1)∩nbr(L3) = ∅; hence
a0 has no neighbor in L3 and by rule (i) above, the edge (a0, f(a0)) = (a0, b0)
belongs to the edge set of G′.

– Case 2. Next we consider the case when b0 ∈ L2. It is easy to see that b0
has to be a0’s most preferred post in L2, where a0 = M∗(b0). Otherwise there
would have been an edge (a0, b1) labeled +1 with b1 ∈ L2, where b1 is a0’s most
preferred post in L2. Then either b1 ∈ L1 or b0 ∈ L3 (from how we construct
the sets L1, L2, L3), a contradiction. We now have to show that the rank of b0
in a0’s preference list is ≤ ra, otherwise the edge (a0, b0) does not belong to G′.

Suppose b0 ∈ F . Since the edge (a0, b0) ∈M∗, which is a popular matching,
it follows from Lemma 3 that b0 is ranked better than ra0

in a0’s preference list;
thus the edge (a0, b0) would belong to G′. So the case left is when b0 /∈ F . If b0
is not a0’s most preferred post outside F , then there is the length-5 alternating
path ρ = b0-a0-b1-a1-f(a1)-M∗(f(a1)), where b1 is the most preferred post of a0
outside F and a1 = M∗(b1). The alternating path ρ has two consecutive non-
matching edges (a0, b1) and (a1, f(a1)) that are labeled +1. This contradicts the
presence of b0 in L2 as such a post would have to be in L3. Thus if b0 /∈ F ,
then b0 has to be a0’s most preferred post outside F , i.e. b0 has rank ra0

in a0’s
preference list.

– Case 3. We finally consider the case when the post b0 ∈ L3. We need to show
that b0 is the most preferred post of a0 = M∗(b0) in L3. Suppose not. Let b1 be
a0’s most preferred post in L3. Since b1 ∈ L3 while F ∩L3 = ∅ (by Lemma 4.1),
we know that there is an edge labeled +1 incident on a1 = M∗(b1). Let this
edge be (a1, b2) and let a2 be M∗(b2). So there is a length-5 alternating path
p = b0-a0-b1-a1-b2-a2 where both the non-matching edges (a0, b1) and (a1, b2)
are labeled +1. This contradicts the presence of b1 in L3 as such a post would
have to be in L2. Thus b0 is a0’s most preferred post in L3. ut

The following lemma shows the relationship between the partition 〈L1, L2, L3〉
and the partition 〈X,Y, Z〉 constructed by our algorithm earlier.

Lemma 6. The set X ⊇ L1 and the set Z ⊆ L3, where X and Z are the sets
in the partition 〈X,Y, Z〉 constructed by our algorithm that builds the graph H.

The matching M∗ need not be A-complete. However it would help us to
assume that M∗ is A-complete, so we augment M∗ by adding (a, `(a)) edges for
every a ∈ A that is unmatched in M∗. Recall that `(a) is the dummy last resort
post of a. However the augmented matching M∗ need not belong to the graph
G′ any longer – hence we augment G′ also by adding some dummy vertices and
some edges as described below.

The augmentation of G′ is analogous to Step (III) of our algorithm – we
augment G′ as follows: let L2 = L2 ∪D, where D = {`(a) : a ∈ A and ra =∞};
if nbr({a}) ⊆ L1, then add (a, `(a)) to G′. Thus when compared to G′, the



augmented G′ has some new vertices (all these are dummy last resort posts) and
some new edges – each new edge is of the form (a, `(a)) where `(a) is a’s only
neighbor in L2 ∪ L3. These new edges are enough to show the following lemma.

Lemma 7. The augmented matching M∗ belongs to the augmented graph G′.

Since the augmented M∗ is an A-complete matching, it follows from Lemma 7
that the augmented graph G′ admits an A-complete matching. Theorem 5 uses
Lemma 6 to show that if the augmented graph G′ admits an A-complete match-
ing, then so does the graph H constructed by our algorithm.

Theorem 5. If H does not admit an A-complete matching, then the augmented
graph G′ cannot admit an A-complete matching.

Proof. We will use G′ to refer to the augmented graph G′ in this proof. The rules
for adding edges in H and in G′ are exactly the same – the only difference is
in the partition 〈X,Y, Z〉 on which H is based vs the partition 〈L1, L2, L3〉 on
which G′ is based. If 〈X,Y, Z〉 = 〈L1, L2, L3〉, then the graphs H and G′ are
exactly the same.

L1

X \ L1

Y ∩ L2

L3 \ Z

L2

A \ nbr(Z)

Z

A′

A′′

B′

nbr(Z) \ nbrH(L3 \ Z)

nbr(Z) ∩ nbrH(L3 \ Z)

Fig. 2. The part of G′ inside the box will be called G′
0. The graph G′ has no edge

between any applicant in A′ and any post in Z.



Refer to Figure 2. This denotes how the partition 〈X,Y, Z〉 can be modified
to the partition 〈L1, L2, L3〉. We know from Lemma 6 that X ⊇ L1 and Z ⊆ L3.
Consider the subgraph G′0 of G′ induced on the vertex set A′ = (A \ nbr(Z)) ∪
(nbr(Z) ∩ nbrH(L3 \ Z)) and B′ = X ∪ Y . This is the part bounded by the box
in Figure 2. In our analysis, we can essentially separate G′ into G′0 and the part
outside G′0 due to the following claim that says G′ has no edges between A′

and Z.

Claim 1 G′ has no edge (a, b) where a ∈ A′ and b ∈ Z.

Proof. Any applicant a ∈ A′ has to belong to either A \ nbr(Z) or to nbr(Z) ∩
nbrH(L3 \ Z) (see Figure 2). There is obviously no edge in G between a vertex
in A \ nbr(Z) and any vertex in Z. So suppose a ∈ nbr(Z) ∩ nbrH(L3 \ Z). For
b ∈ L3, if the edge (a, b) is in G′, then b has to be a’s most preferred post in
L3. We will now show that b ∈ L3 \ Z, equivalently b /∈ Z. Thus G′ has no edge
(a, b) where a ∈ A′ and b ∈ Z.

Since a ∈ nbrH(L3 \ Z), the graph H contains an edge between a and some
b′ ∈ L3 \Z. Recall that an element of L3 \Z is a real post in Y . By the rules of
including edges in H, it follows that the rank of b′ in a’s preference list is ≤ ra.
The entire set L3 cannot contain any post of rank better than ra for any a ∈ A
since any post of rank better than ra in a’s list belongs to F while L3 ∩ F = ∅
(by Lemma 4.1). So b′ has rank ra in a’s list. Thus a’s most preferred neighbor
in L3 belongs to L3 \ Z. ut

Let G0 be the subgraph of G′0 obtained by deleting from G′0 the edges that
are absent in H. Thus G0 is a subgraph of both G′ and H. The following claim
will be useful to us.

Claim 2 All posts in (X \L1)∪ (L3 \Z) are odd/unreachable in G0. Moreover,
every edge (a, b) in G′ that is missing in H satisfies b ∈ (X \ L1) ∪ (L3 \ Z).

Consider the graph G1 whose edge set is the intersection of the edge sets of
G′ and H. Equivalently, G1 can be constructed by adding to the edge set of G0

the edges incident on A′′ = nbr(Z) \ nbrH(L3 \ Z) that are present in both G′

and H (see Fig. 2). This is due to the fact that G′ has no edge in A′ × Z.
We claim that all posts in (X \ L1) ∪ (L3 \ Z) are odd/unreachable in G1.

This is because Claim 2 tells us that each post in this set is odd/unreachable in
G0 and due to the absence of A′×Z edges in G′, the graph G1 has no new edge
(new when compared to G0) incident on the set A′ of applicants in G0. Hence
all posts in (X \ L1) ∪ (L3 \ Z) remain odd/unreachable in G1.

Claim 2 also tells us that all edges in G′ that are missing in H are incident on
posts in (X \ L1) ∪ (L3 \ Z). We know that all these posts are odd/unreachable
in G1, hence G′ has no new edge (new when compared to G1) on posts that are
even in G1. Thus the size of a maximum matching in G′ equals the size of a
maximum matching in G1. This is at most the size of a maximum matching in
H, since G1 is a subgraph of H. Hence if H has no A-complete matching, then
neither does G′. ut



Theorem 5, along with Lemma 7, finishes the proof of the necessary part of
Theorem 4 and this completes the proof of correctness of our algorithm.

It is easy to see that each iteration of our algorithm takes O(n) time (where
|A∪B| = n) since it involves finding a maximum matching in a subgraph where
each vertex in A has degree at most 2. Thus the running time of our algorithm
is O(n2) and Theorem 1 stated in Section 1 follows.

Conclusions and an open problem. We gave an O(n2) algorithm for the
popular matching problem in G = (A ∪ B,E) where vertices in A have strict
preference lists while each vertex in B puts all its neighbors into a single tie and
n = |A∪B|. Our algorithm needs the preference lists of vertices in A to be strict
and the complexity of this problem when ties are allowed in the preference lists
of vertices in A is currently unknown.
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