
New Results for Non-Preemptive Speed Scaling

Chien-Chung Huang1 and Sebastian Ott2

1 Chalmers University, Göteborg, Sweden villars@gmail.com
2 Max-Planck-Institut für Informatik, Saarbrücken, Germany ott@mpi-inf.mpg.de

Abstract. We consider the speed scaling problem introduced in the
seminal paper of Yao et al. [24]. In this problem, a number of jobs, each
with its own processing volume, release time, and deadline, needs to be
executed on a speed-scalable processor. The power consumption of this
processor is P (s) = sα, where s is the processing speed, and α > 1
is a constant. The total energy consumption is power integrated over
time, and the objective is to process all jobs while minimizing the energy
consumption.
The preemptive version of the problem, along with its many variants, has
been extensively studied over the years. However, little is known about
the non-preemptive version of the problem, except that it is strongly
NP-hard and allows a (large) constant factor approximation [5, 8, 16]. Up
until now, the (general) complexity of this problem is unknown. In the
present paper, we study an important special case of the problem, where
the job intervals form a laminar family, and present a quasipolynomial-
time approximation scheme for it, thereby showing that (at least) this
special case is not APX-hard, unless NP ⊆ DTIME(2poly(logn)).
The second contribution of this work is a polynomial-time algorithm for
the special case of equal-volume jobs. In addition, we show that two other
special cases of this problem allow fully polynomial-time approximation
schemes.

1 Introduction

Speed scaling is a widely applied technique for energy saving in modern micro-
processors. Its general idea is to strategically adjust the processing speed, with
the dual goals of finishing the tasks at hand in a timely manner while minimizing
the energy consumption. The following theoretical model was introduced by Yao
et al. in their seminal paper of 1995 [24]. We are given a set of jobs, each with
its own volume vj (number of CPU cycles needed for completion of this job),
release time rj (when the job becomes available), and deadline dj (when the job
needs to be finished), and a processor with power function P (s) = sα, where
s is the processing speed, and α > 1 is a constant (typically between two and
three for modern microprocessors [13, 23]). The energy consumption is power
integrated over time, and the objective is to process all given jobs within their
time windows [rj , dj), while minimizing the total energy consumption.
Most work in the literature focuses on the preemptive version of the problem,
where the execution of a job may be interrupted and resumed at a later point of

time. For this setting, Yao et al. [24] gave a polynomial-time exact algorithm to
compute the optimal schedule. The non-preemptive model, where a job must be
processed uninterruptedly until its completion, has so far received surprisingly
little attention, even though it is often preferred in practice and widely used
in current real-life applications. For example, most current real-time operating
systems for automotive applications use non-preemptive scheduling as defined
by the OSEK/VDX standard [22]. The advantage of this strategy lies in the
significant lower overhead (preemption requires to memorize and restore the
state of the system and the job) [5], and the avoidance of synchronization efforts
for shared resources [22]. From a theoretical point of view, the non-preemptive
model is of interest, since it is a natural variation of Yao et al.’s original model.
So far, little is known about the complexity of the non-preemptive speed scaling
problem. On the negative side, no lower bound is known, except that the problem
is strongly NP-hard [5]. On the positive side, Antoniadis and Huang [5] showed
that the problem has a constant factor approximation algorithm, although the
obtained factor 25α−4 is rather large. Recently, Bampis et al. [8] and Cohen-
Addad et al. [16] have significantly improved on the constant.

1.1 Our Results and Techniques

In this paper, we work towards better understanding the complexity of the non-
preemptive speed scaling problem, by considering several special cases and pre-
senting (near-)optimal algorithms. In the following, we give a summary of our
results.

Laminar Instances: An instance is said to be laminar if for any two differ-
ent jobs j1 and j2, either [rj1 , dj1) ⊆ [rj2 , dj2), or [rj2 , dj2) ⊆ [rj1 , dj1), or
[rj1 , dj1) ∩ [rj2 , dj2) = ∅. The problem remains strongly NP-hard for this
case [5]. We present the first (1 + ε)-approximation for this problem, with
a quasipolynomial running time (i.e. a running time bounded by 2poly(logn)

for any fixed ε > 0); a so-called quasipolynomial-time approximation scheme
(QPTAS). Our result implies that laminar instances are not APX-hard, un-
less NP ⊆ DTIME(2poly(logn)). We remark that laminar instances form an
important subclass of instances that not only arise commonly in practice (e.g.
when jobs are created by recursive function calls [19]), but are also of theoret-
ical interest, as they highlight the difficulty of the non-preemptive speed scal-
ing problem: Taking instances with an “opposite” structure, namely agree-
able instances (here for any two jobs j1 and j2 with rj1 < rj2 , it holds that
dj1 < dj2), the problem becomes polynomial-time solvable [5]. On the other
hand, further restricting the instances from laminar to purely-laminar (see
next case) results in a problem that is only weakly NP-hard and admits an
FPTAS.

Purely-Laminar Instances: An instance is said to be purely-laminar if for
any two different jobs j1 and j2, either [rj1 , dj1) ⊆ [rj2 , dj2), or [rj2 , dj2) ⊆
[rj1 , dj1). We present a fully polynomial-time approximation scheme (FP-
TAS) for this class of instances. This is the best possible result (unless P =
NP), as the problem is still (weakly) NP-hard [5].

2

Equal-Volume Jobs: If all jobs have the same volume v1 = v2 = . . . = vn = v,
we present a polynomial-time algorithm for computing an (exact) optimal
schedule. We thereby improve upon a recent result of Bampis et al. [7], who
proposed a 2α-approximation algorithm, and answer their question for the
complexity status of this problem.

Bounded Number of Time Windows: If the total number of different time
windows is bounded by a constant, we present an FPTAS for the prob-
lem. This result is again optimal (unless P = NP), as the problem remains
(weakly) NP-hard even if there are only two different time windows [5].

The basis of all our results is a discretization of the problem, in which we allow
the processing of any job to start and end only at a carefully chosen set of
grid points on the time axis. We then use dynamic programming to solve the
discretized problem. For laminar instances, however, even computing the optimal
discretized solution is hard. The main technical contribution of our QPTAS is a
relaxation that decreases the exponential size of the DP-tableau without adding
too much energy cost. For this, we use a kind of overly compressed representation
of job sets in the bookkeeping. Roughly speaking, we “lose” a number of jobs in
each step of the recursion, but we ensure that these jobs can later be scheduled
with only a small increment of energy cost.

1.2 Related Work

The study of dynamic speed scaling problems for reduced energy consumption
was initiated by Yao, Demers, and Shenker in 1995. In their seminal paper [24],
they presented a polynomial-time algorithm for finding an optimal schedule when
preemption of jobs is allowed. Furthermore, they also studied the online version
of the problem (again with preemption of jobs allowed), where jobs become
known only at their release times, and developed two constant-competitive al-
gorithms called Average Rate and Optimal Available.

Over the years, a rich spectrum of variations and generalizations of the origi-
nal model have been investigated, mostly with a focus on the preemptive version.
Irani et al. [18], for instance, considered a setting where the processor addition-
ally has a sleep state available. Another extension of the original model is to
restrict the set of possible speeds that we may choose from, for example by
allowing only a number of discrete speed levels [15, 20], or bounding the maxi-
mum possible speed [9, 14, 17]. Variations with respect to the objective function
have also been studied, for instance by Albers and Fujiwara [2] and Bansal et
al. [11], who tried to minimize a combination of energy consumption and total
flow time of the jobs. Finally, the problem has also been studied for arbitrary
power functions [10], as well as for multiprocessor settings [1, 3, 12].

In contrast to this diversity of results, the non-preemptive version of the
speed scaling problem has been addressed rarely in the literature. Only in 2012,
Antoniadis and Huang [5] proved that the problem is strongly NP-hard, and gave
a 25α−4-approximation algorithm for the general case. Recently, the approxima-
tion ratio has been improved to 2α−1(1+ ε)B̃α, where B̃α is the α-th generalized

3

Bell number, by Bampis et al. [8], and to (12(1 + ε))α−1 by Cohen-Addad et
al. [16]. For the special case where all jobs have the same volume, Bampis et
al. [7] proposed a 2α-approximation algorithm. Independently of our result for
this setting, Angel et al. [4] also gave a polynomial-time exact algorithm for such
instances, with the same complexity of O

(
n21
)
.

Very recently, multi-processor non-preemptive speed scaling also started to
draw the attention of researchers. See [7, 16] for details.

1.3 Organization of the Paper

Our paper is organized as follows. In section 2 we give a formal definition of
the problem and establish a couple of preliminaries. In section 3 we present a
QPTAS for laminar instances, and in section 4 we present a polynomial-time
algorithm for instances with equal-volume jobs. Our FPTASs for purely-laminar
instances and instances with a bounded number of different time windows can
be found in the appendix. Most proofs are also deferred to the appendix.

2 Preliminaries and Notations

The input is given by a set J of n jobs, each having its own release time rj , dead-
line dj , and volume vj > 0. The power function of the speed-scalable processor
is P (s) = sα, with α > 1, and the energy consumption is power integrated over
time. A schedule specifies for any point of time (i) which job to process, and (ii)
which speed to use. A schedule is called feasible if every job is executed entirely
within its time window [rj , dj), which we will also call the allowed interval of
job j. Preemption is not allowed, meaning that once a job is started, it must be
executed entirely until its completion. Our goal is to find a feasible schedule of
minimum total energy consumption.

We use E(S) to denote the total energy consumed by a given schedule S,
and E(S, j) to denote the energy used for the processing of job j in schedule
S. Furthermore, we use OPT to denote the energy consumption of an optimal
schedule. A crucial observation is that, due to the convexity of the power function
P (s) = sα, it is never beneficial to vary the speed during the execution of a
job. This follows from Jensen’s Inequality. We can therefore assume that in an
optimal schedule, every job is processed using a uniform speed.

In the following, we restate a proposition from [5], which allows us to speed
up certain jobs without paying too much additional energy cost.

Proposition 1. Let S and S′ be two feasible schedules that process j using
uniform speeds s and s′ > s, respectively. Then E(S′, j) = (s′/s)α−1 · E(S, j).

As mentioned earlier, all our results rely on a discretization of the time axis, in
which we focus only on a carefully chosen set of time points. We call these points
grid points and define grid point schedules as follows.

Definition 1 (Grid Point Schedule). A schedule is called grid point schedule
if the processing of every job starts and ends at a grid point.

4

We use two different sets of grid points, Papprox and Pexact. The first set, Papprox,
is more universal, as it guarantees the existence of a near-optimal grid point
schedule for any kind of instances. On the contrary, the set Pexact is specialized
for the case of equal-volume jobs, and on such instances guarantees the existence
of a grid point schedule with energy consumption exactly OPT. We now give
a detailed description of both sets. For this, let us call a time point t an event
if t = rj or t = dj for some job j, and let t1 < t2 < . . . < tp be the set of
ordered events. We call the interval between two consecutive events ti and ti+1

a zone. Furthermore, let γ := 1 + d1/εe, where ε > 0 is the error parameter of
our approximation schemes.

Definition 2 (Grid Point Set Papprox). The set Papprox is obtained in the
following way. First, create a grid point at every event. Secondly, for every zone
(ti, ti+1), create n2γ − 1 equally spaced grid points that partition the zone into
n2γ many subintervals of equal length Li = ti+1−ti

n2γ . Now Papprox is simply the
union of all created grid points.

Note that the total number of grid points in Papprox is at most O
(
n3(1 + 1

ε)
)
, as

there are O
(
n) zones, for each of which we create O

(
n2γ

)
grid points.

Lemma 1. There exists a grid point schedule G with respect to Papprox, such
that E(G) ≤ (1 + ε)α−1OPT.

Definition 3 (Grid Point Set Pexact). For every pair of events ti ≤ tj, and
for every k ∈ {1, . . . , n}, create k − 1 equally spaced grid points that partition
the interval [ti, tj] into k subintervals of equal length. Furthermore, create a grid
point at every event. The union of all these grid points defines the set Pexact.

Clearly, the total number of grid points in Pexact is O
(
n4
)
.

Lemma 2. If all jobs have the same volume v1 = v2 = . . . = vn = v, there
exists a grid point schedule G with respect to Pexact, such that E(G) = OPT.

3 Laminar Instances

In this section, we present a QPTAS for laminar problem instances. We start
with a small example to motivate our approach, in which we reuse some ideas
of Muratore et al. [21] for a different scheduling problem. Consider Figure 1,
where we have drawn a number of (laminar) time intervals, purposely arranged
in a tree structure. Imagine that for each of those intervals Ik, we are given a
set of jobs Jk whose allowed interval is equal to Ik. Furthermore, let us make
the simplifying assumption that no job can “cross” the boundary of any interval
Ik during its execution. Then, in any feasible schedule, the set of jobs J1 at the
root of the tree decomposes into two subsets; the set of jobs processed in the left
child I2, and the set of jobs processed in the right child I3. Having a recursive
procedure in mind, we can think of the jobs in the root as being split up and
handed down to the respective children. Each child then has a set of “inherited”

5

I
1

I
2

I
4

I
3

I
5

Fig. 1. Time intervals of a laminar instance, arranged in a tree structure.

jobs, plus its own original jobs to process, and both are available throughout its
whole interval. Now, the children also split up their jobs, and hand them down
to the next level of the tree. This process continues until we finally reach the
leaves of the tree, where we can simply execute the given jobs at a uniform speed
over the whole interval.
Aiming for a reduced running time, we reverse the described process and in-
stead compute the schedules in a bottom-up manner via dynamic programming,
enumerating all possible sets of jobs that a particular node could “inherit” from
its ancestors. This dynamic programming approach is the core part of our QP-
TAS, though it bears two major technical difficulties. The first one is that a job
from a father node could also be scheduled “between” its children, starting in
the interval of child one, stretching over its boundary, and entering the inter-
val of child two. We overcome this issue by taking care of such jobs separately,
and additionally listing the truncated child-intervals in the dynamic program-
ming tableau. The second (and main) difficulty is the huge number of possible
job sets that a child node could receive from its parent. Reducing this number
requires a controlled “omitting” of small jobs during the recursion, and a con-
densed representation of job sets in the DP tableau. At any point of time, we
ensure that “omitted” jobs only cause a small increment of energy cost when
being added to the final schedule. We now elaborate the details, beginning with
a rounding of the job volumes. Let I be the original problem instance.

Definition 4 (Rounded Instance). The rounded instance I ′ is obtained by
rounding down every job volume vj to the next smaller number of the form
vmin(1 + ε)i, where i ∈ N≥0 and vmin is the smallest volume of any job in the
original instance. The numbers vmin(1 + ε)i are called size classes, and a job
belongs to size class Ci if its rounded volume is vmin(1 + ε)i.

Lemma 3. Every feasible schedule S′ for I ′ can be transformed into a feasible
schedule S for I with E(S) ≤ (1 + ε)αE(S′).

From now on, we restrict our attention to the rounded instance I ′. Remember
that our approach uses the inherent tree structure of the time windows. We
proceed by formally defining a tree T that reflects this structure.

6

Definition 5 (Tree T). For every interval [ti, ti+1) between two consecutive
events ti and ti+1, we introduce a vertex v. Additionally, we introduce a vertex
for every time window [rj , dj), j ∈ J that is not represented by a vertex yet.
If several jobs share the same allowed interval, we add only one single vertex
for this interval. The interval corresponding to a vertex v is denoted by Iv. We
also associate a (possibly empty) set of jobs Jv with each vertex v, namely the
set of jobs j whose allowed interval [rj , dj) is equal to Iv. Finally, we specify a
distinguished root node r as follows. If there exists a vertex v with Iv = [r∗, d∗),
where r∗ is the earliest release time and d∗ the latest deadline of any job in J , we
set r := v. Otherwise, we introduce a new vertex r with Ir := [r∗, d∗) and Jr := ∅.
The edges of the tree are defined in the following way. A node u is the son of a
node v if and only if Iu ⊂ Iv and there is no other node w with Iu ⊂ Iw ⊂ Iv. As
a last step, we convert T into a binary tree by repeating the following procedure
as long as there exists a vertex v with more than two children: Let v1 and v2
be two “neighboring” sons of v, such that Iv1 ∪ Iv2 forms a contiguous interval.
Now create a new vertex u with Iu := Iv1 ∪ Iv2 and Ju := ∅, and make u a new
child of v, and the new parent of v1 and v2. This procedure eventually results in
a binary tree T with O(n) vertices.

The main idea of our dynamic program is to stepwise compute schedules for
subtrees of T , that is for the jobs associated with the vertices in the subtree
(including its root), plus a given set of “inherited” jobs from its ancestors. Enu-
merating all possible sets of “inherited” jobs, however, would burst the limits
of our DP tableau. Instead, we use a condensed representation of those sets via
so-called job vectors, focusing only on a logarithmic number of size classes and
ignoring jobs that are too small to be covered by any of these. To this end, let δ
be the smallest integer such that n/ε ≤ (1 + ε)δ, and note that δ is O(log n) for
any fixed ε > 0.

Definition 6 (Job Vector). A job vector
−→
λ is a vector of δ + 1 integers

λ0, . . . , λδ. The first component λ0 specifies a size class, namely the largest out
of δ size classes from which we want to represent jobs (therefore λ0 ≥ δ−1). The
remaining δ components take values between 0 and n each, and define a number
of jobs for each of the size classes Cλ0

, Cλ0−1, . . . , Cλ0−δ+1 in this order. For
example, if δ = 2, the job vector (4, 2, 7) defines a set containing 2 jobs with
volume vmin(1 + ε)4 and 7 jobs with volume vmin(1 + ε)3.

We refer to the set of jobs defined by a job vector
−→
λ as J(

−→
λ).

Remark: We do not associate a strict mapping from the jobs defined by a job

vector
−→
λ to the real jobs (given as input) they represent. The jobs J(

−→
λ) should

rather be seen as dummies that are used to reserve space and can be replaced
by any real job of the same volume.

Definition 7 (Heritable Job Vector). A job vector
−→
λ = (λ0, . . . , λδ) is her-

itable to a vertex v of T if:

1. At least λi jobs in
⋃

u ancestor of v

Ju belong to size class Cλ0−i+1, for 1 ≤ i ≤ δ.

7

2. λ1 > 0 or λ0 = δ − 1.

The conditions on a heritable job vector ensure that for a fixed vertex v, λ0 can
take only O(n) different values, as it must specify a size class that really occurs
in the rounded instance, or be equal to δ− 1. Therefore, in total, we can have at
most O(nδ+1) different job vectors that are heritable to a fixed vertex of the tree.
In order to control the error caused by the laxity of our job set representation,
we introduce the concept of δ-omitted schedules.

Definition 8 (δ-omitted Schedule). Let J be a given set of jobs. A δ-omitted
schedule for J is a feasible schedule for a subset R ⊆ J , s.t. for every job
j ∈ J \ R, there exists a job big(j) ∈ R with volume at least vj(1 + ε)δ that is
scheduled entirely inside the allowed interval of j. The jobs in J \ R are called
omitted jobs, the ones in R non-omitted jobs.

Lemma 4. Every δ-omitted schedule S′ for a set of jobs J can be transformed
into a feasible schedule S for all jobs in J , such that E(S) ≤ (1 + ε)αE(S′).

The preceding lemma essentially ensures that representing the δ largest size
classes of an “inherited” job set suffices if we allow a small increment of energy
cost. The smaller jobs can then be added safely (i.e. without increasing the energy
cost by too much) to the final schedule. We now turn to the central definition
of the dynamic program. All schedules in this definition are with respect to the
rounded instance I ′, and all grid points relate to the set Papprox.

Definition 9. For any vertex v in the tree T , any job vector
−→
λ that is heritable

to v, and any pair of grid points g1 ≤ g2 with [g1, g2) ⊆ Iv, let G(v,
−→
λ , g1, g2) de-

note a minimum cost grid point schedule for the jobs in the subtree of v (including

v itself) plus the jobs J(
−→
λ) (these are allowed to be scheduled anywhere inside

[g1, g2)) that uses only the interval [g1, g2). Furthermore, let S(v,
−→
λ , g1, g2) be a

δ-omitted schedule for the same set of jobs in the same interval [g1, g2), satisfying

E
(
S(v,

−→
λ , g1, g2)

)
≤ E

(
G(v,

−→
λ , g1, g2)

)
.

Dynamic Program. Our dynamic program computes the schedules S(v,
−→
λ , g1, g2).

For ease of exposition, we focus only on computing the energy consumption val-

ues E(v,
−→
λ , g1, g2) := E

(
S(v,

−→
λ , g1, g2)

)
, and omit the straightforward book-

keeping of the corresponding schedules. The base cases are the leaves of T . For
a particular leaf node `, we set

E(`,
−→
λ , g1, g2) :=

{
0 if J` ∪ J(

−→
λ) = ∅

V α

(g2−g1)α−1 otherwise,

where V is the total volume of all jobs in J`∪J(
−→
λ). This corresponds to execut-

ing J` ∪ J(
−→
λ) at uniform speed using the whole interval [g1, g2). The resulting

schedule is feasible, as no release times or deadlines occur in the interior of I`.
Furthermore, it is also optimal by the convexity of the power function. Thus

E(`,
−→
λ , g1, g2) ≤ E

(
G(`,

−→
λ , g1, g2)

)
.

8

When all leaves have been handled, we move on to the next level, the parents
of the leaves. For this and also the following levels up to the root r, we compute

the values E(v,
−→
λ , g1, g2) recursively, using the procedure Compute in Figure 2.

An intuitive description of the procedure is given below.

Compute (v,
−→
λ , g1, g2):

Let v1 and v2 be the children of v, such that Iv1 is the earlier of the intervals
Iv1 , Iv2 . Furthermore, let g be the grid point at which Iv1 ends and Iv2 starts.

Initialize MIN :=∞.

For all gridpoints g̃1, g̃2, s.t. g1 ≤ g̃1 < g < g̃2 ≤ g2, and all jobs j ∈ Jv ∪ J(
−→
λ), do:

E :=
vj
α

(g̃2−g̃1)α−1 ; J̃ :=
(
Jv ∪ J(

−→
λ)

)
\ {j}; −→γ := Vector (J̃).

MIN := min
{

MIN,

min{E + E(v1,
−→γ1, g1, g̃1) + E(v2,

−→γ2, g̃2, g2) : J(−→γ1) ∪ J(−→γ2) = J(−→γ)}
}

.

J̃ := Jv ∪ J(
−→
λ); −→γ := Vector (J̃).

a1 := min{g1, g}; a2 := min{g2, g}; b1 := max{g1, g}; b2 := max{g2, g}.

E(v,
−→
λ , g1, g2) := min

{
MIN,

min{E(v1,
−→γ1, a1, a2) + E(v2,

−→γ2, b1, b2) : J(−→γ1) ∪ J(−→γ2) = J(−→γ)}
}

.

Vector (J̃):

Let C` be the largest size class of any job in J̃ .

i := max{`, δ − 1}.
For k := i− δ + 1, . . . , i do: xk := |{p ∈ J̃ : p belongs to size class Ck}|.
Return (i, xi, xi−1, . . . , xi−δ+1).

Fig. 2. Procedure for computing the remaining entries of the DP.

Our first step is to iterate through all possible options for a potential “crossing”
job j, whose execution interval [g̃1, g̃2) stretches from child v1 into the interval
of child v2. For every possible choice, we combine the optimal energy cost E for
this job (obtained by using a uniform execution speed) with the best possible
way to split up the remaining jobs between the truncated intervals of v1 and
v2. Here we consider only the δ largest size classes of the remaining jobs J̃ , and
omit the smaller jobs. This omitting happens during the construction of a vector
representation for J̃ using the procedure Vector. Finally, we also try the option
that no “crossing” job exists and all jobs are split up between v1 and v2. In this
case we need to take special care of the subproblem boundaries, as g1 > g or
g2 < g are also valid arguments for Compute.

9

Lemma 5. The schedules S(v,
−→
λ , g1, g2) constructed by the above dynamic pro-

gram are δ-omitted schedules for the jobs in the subtree of v plus the jobs J(
−→
λ).

Furthermore, they satisfy E
(
S(v,

−→
λ , g1, g2)

)
≤ E

(
G(v,

−→
λ , g1, g2)

)
.

Combining Lemmas 1, 3, 4, and 5 we can now state our main theorem. A detailed
proof is provided in the appendix.

Theorem 1. The non-preemptive speed scaling problem admits a QPTAS if the
instance is laminar.

4 Equal-Volume Jobs

In this section, we consider the case that all jobs have the same volume v1 =
v2 = . . . = vn = v. We present a dynamic program that computes an (exact)
optimal schedule for this setting in polynomial time. All grid points used for this
purpose relate to the set Pexact.

As a first step, let us order the jobs such that r1 ≤ r2 ≤ . . . ≤ rn. Further-
more, let us define an ordering on schedules as follows.

Definition 10 (Completion Time Vector). Let C1, . . . , Cn be the completion

times of the jobs j1, . . . , jn in a given schedule S. The vector
−→
S := (C1, . . . , Cn)

is called the completion time vector of S.

Definition 11 (Lexicographic Ordering). A schedule S is said to be lexi-
cographically smaller than a schedule S′ if the first component in which their

completion time vectors differ is smaller in
−→
S than in

−→
S′.

We now elaborate the details of the DP, focusing on energy consumption values
only.

Definition 12. Let i ∈ {1, . . . , n} be a job index, and let g1, g2, and g3 be grid
points satisfying g1 ≤ g2 ≤ g3. We define E(i, g1, g2, g3) to be the minimum
energy consumption of a grid point schedule for the jobs {jk ∈ J : k ≥ i ∧ g1 <
dk ≤ g3} that uses only the interval [g1, g2).

Dynamic Program. Our goal is to compute the values E(i, g1, g2, g3). To this
end, we let

E(i, g1, g2, g3) :=

{
0 if {jk ∈ J : k ≥ i ∧ g1 < dk ≤ g3} = ∅
∞ if ∃k ≥ i : g1 < dk ≤ g3 ∧ [rk, dk) ∩ [g1, g2) = ∅.

Note that if g1 = g2, one of the above cases must apply. We now recursively
compute the remaining values, starting with the case that g1 and g2 are consec-
utive grid points, and stepwise moving towards cases with more and more grid
points in between g1 and g2. The recursion works as follows. Let E(i, g1, g2, g3)
be the value we want to compute, and let jq be the smallest index job in
{jk ∈ J : k ≥ i ∧ g1 < dk ≤ g3}. Furthermore, let G denote a lexicographically

10

smallest optimal grid point schedule for the jobs {jk ∈ J : k ≥ i ∧ g1 < dk ≤ g3},
using only the interval [g1, g2). Our first step is to “guess” the grid points bq and
eq that mark the beginning and end of jq’s execution interval in G, by minimizing
over all possible options. We then use the crucial observation that in G, all jobs
J− := {jk ∈ J : k ≥ q + 1 ∧ g1 < dk ≤ eq} are processed completely before jq,
and all jobs J+ := {jk ∈ J : k ≥ q+1 ∧ eq < dk ≤ g3} are processed completely
after jq. For J− this is obviously the case because of the deadline constraint. For
J+ this holds as all these jobs have release time at least rq by the ordering of the
jobs, and deadline greater than eq by definition of J+. Therefore any job in J+

that is processed before jq could be swapped with jq, resulting in a lexicographic
smaller schedule; a contradiction. Hence, we can use the following recursion to
compute E(i, g1, g2, g3).

E(i, g1, g2, g3) := min
{ vq

α

(eq − bq)α−1
+ E(q + 1, g1, bq, eq) + E(q + 1, eq, g2, g3) :

(g1 ≤ bq < eq ≤ g2) ∧ (bq ≥ rq) ∧ (eq ≤ dq)
}
.

Once we have computed all values, we output the schedule S corresponding to
E(1, r∗, d∗, d∗), where r∗ is the earliest release time and d∗ the latest deadline of
any job in J . Lemma 2 implies that E(S) = OPT. The running time complexity
of this algorithm is O

(
n21
)
: There are O

(
n4
)

grid points in Pexact, and thus

O
(
n13
)

entries to compute. To calculate one entry, we need to minimize over

O
(
n8
)

different options.

Theorem 2. The non-preemptive speed scaling problem admits a polynomial
time algorithm if all jobs have the same volume.

5 Conclusion

In this paper, we made a step towards narrowing down the complexity of the non-
preemptive speed scaling problem. The most interesting open question is whether
a (Q)PTAS is also possible for general instances. Some of our techniques, such as
the grid point discretization or δ-omitted schedules, can also be applied to this
setting. The problematic part is that our QPTAS relies on the tree structure of
the time windows, which is only given in laminar instances. It is unclear whether
and how this approach can be refined to deal with the general case.

References

1. Albers, S., Antoniadis, A., Greiner, G.: On multi-processor speed scaling with
migration: extended abstract. In: SPAA. pp. 279–288. ACM (2011)

2. Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization.
In: STACS. LNCS, vol. 3884, pp. 621–633. Springer (2006)

3. Albers, S., Müller, F., Schmelzer, S.: Speed scaling on parallel processors. In: SPAA.
pp. 289–298. ACM (2007)

11

4. Angel, E., Bampis, E., Chau, V.: Throughput maximization in the speed-scaling
setting, arXiv:1309.1732

5. Antoniadis, A., Huang, C.C.: Non-preemptive speed scaling. In: SWAT. LNCS, vol.
7357, pp. 249–260. Springer (2012)

6. Azar, Y., Epstein, L., Richter, Y., Woeginger, G.J.: All-norm approximation algo-
rithms. J. Algorithms 52(2), 120–133 (2004)

7. Bampis, E., Kononov, A., Letsios, D., Lucarelli, G., Nemparis, I.: From preemptive
to non-preemptive speed-scaling scheduling. In: COCOON. LNCS, vol. 7936, pp.
134–146. Springer (2013)

8. Bampis, E., Kononov, A., Letsios, D., Lucarelli, G., Sviridenko, M.: Energy efficient
scheduling and routing via randomized rounding. In: FSTTCS. LIPIcs, vol. 24, pp.
449–460. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

9. Bansal, N., Chan, H.L., Lam, T.W., Lee, L.K.: Scheduling for speed bounded
processors. In: ICALP (1). LNCS, vol. 5125, pp. 409–420. Springer (2008)

10. Bansal, N., Chan, H.L., Pruhs, K.: Speed scaling with an arbitrary power function.
In: SODA. pp. 693–701. SIAM (2009)

11. Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. In: SODA.
pp. 805–813. SIAM (2007)

12. Bingham, B.D., Greenstreet, M.R.: Energy optimal scheduling on multiprocessors
with migration. In: ISPA. pp. 153–161. IEEE (2008)

13. Brooks, D., Bose, P., Schuster, S., Jacobson, H.M., Kudva, P., Buyuktosunoglu,
A., Wellman, J.D., Zyuban, V.V., Gupta, M., Cook, P.W.: Power-aware microar-
chitecture: Design and modeling challenges for next-generation microprocessors.
IEEE Micro 20(6), 26–44 (2000)

14. Chan, H.L., Chan, J.W.T., Lam, T.W., Lee, L.K., Mak, K.S., Wong, P.W.H.: Op-
timizing throughput and energy in online deadline scheduling. ACM Transactions
on Algorithms 6(1) (2009)

15. Chen, J.J., Kuo, T.W., Lu, H.I.: Power-saving scheduling for weakly dynamic volt-
age scaling devices. In: WADS. LNCS, vol. 3608, pp. 338–349. Springer (2005)

16. Cohen-Addad, V., Li, Z., Mathieu, C., , Mills, I.: Energy-efficient algorithms for
non-preemptive speed-scaling, arXiv:1402.4111v2

17. Han, X., Lam, T.W., Lee, L.K., To, I.K.K., Wong, P.W.H.: Deadline scheduling and
power management for speed bounded processors. Theor. Comput. Sci. 411(40-42),
3587–3600 (2010)

18. Irani, S., Shukla, S.K., Gupta, R.K.: Algorithms for power savings. In: SODA. pp.
37–46. ACM/SIAM (2003)

19. Li, M., Liu, B.J., Yao, F.F.: Min-energy voltage allocation for tree-structured tasks.
In: COCOON. LNCS, vol. 3595, pp. 283–296. Springer (2005)

20. Li, M., Yao, F.F.: An efficient algorithm for computing optimal discrete voltage
schedules. In: MFCS. LNCS, vol. 3618, pp. 652–663. Springer (2005)

21. Muratore, G., Schwarz, U.M., Woeginger, G.J.: Parallel machine scheduling with
nested job assignment restrictions. Oper. Res. Lett. 38(1), 47–50 (2010)

22. Negrean, M., Ernst, R.: Response-time analysis for non-preemptive scheduling in
multi-core systems with shared resources. In: SIES. pp. 191–200. IEEE (2012)

23. Wierman, A., Andrew, L.L.H., Tang, A.: Power-aware speed scaling in processor
sharing systems: Optimality and robustness. Perform. Eval. 69(12), 601–622 (2012)

24. Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced cpu energy.
In: FOCS. pp. 374–382. IEEE Computer Society (1995)

12

A Proof of Proposition 1

Proposition 1. Let S and S′ be two feasible schedules that process j using
uniform speeds s and s′ > s, respectively. Then E(S′, j) = (s′/s)α−1 · E(S, j).

Proof.

E(S′, j) = P (s′)
vj
s′

= (s′)α−1vj = (
s′

s
)α−1sα−1vj

= (
s′

s
)α−1P (s)

vj
s

= (
s′

s
)α−1E(S, j).

ut

B Proof of Lemma 1

Lemma 1. There exists a grid point schedule G with respect to Papprox, such
that E(G) ≤ (1 + ε)α−1OPT.

Proof. Let S∗ be an optimal schedule, that is E(S∗) = OPT. We show how to
modify S∗ by shifting and compressing certain jobs, s.t. every execution interval
starts and ends at a grid point. For the proof we focus on one particular zone
(ti, ti+1), and the lemma follows by applying the transformation to each other
zone individually.

Let us consider the jobs that S∗ processes within the zone (ti, ti+1). If a job’s
execution interval overlaps partially with this zone, we consider only its fraction
inside (ti, ti+1) and treat this fraction as if it were a job by itself. We denote the
set of (complete and partial) jobs in zone (ti, ti+1) by J . If J = ∅, nothing needs
to be done. Otherwise, we can assume that S∗ uses the entire zone (ti, ti+1)
without any idle periods to process the jobs in J . If this were not the case, we
could slow down the processing of any job in J without violating a release time
or deadline constraint, and thus obtain a feasible schedule with lower energy cost
than S∗, a contradiction. Consequently, the total time for processing J in S∗ is
γn2Li (recall that Li = ti+1−ti

n2γ), and as |J | ≤ n, there must exist a job j ∈ J
with execution time Tj ≥ γnLi.

We now partition the jobs in J \ j into J+, the jobs processed after j, and
J−, the jobs processed before j. First, we restrict our attention to J+. Let
q1, . . . , q|J+| denote the jobs in J+ in the order they are processed by S∗. Starting
with the last job q|J+|, and going down to q1, we modify the schedule as follows.
We keep the end of q|J+|’s execution interval fixed, and shift its start to the
next earlier grid point, reducing its uniform execution speed accordingly. At the
same time, to not produce any overlappings, we shift the execution intervals of
all qk, k < |J+| by the same amount, in the direction of earlier times (leaving
their lengths unchanged). Eventually, we also move the execution end point of
j by the same amount towards earlier times (leaving its start point fixed). This
shortens the execution interval of j and “absorbs” the shifting of the jobs in
J+. The shortening of j’s execution interval is compensated by an appropriate

13

increase of speed. We then proceed with q|J+|−1, keeping its end (which now
already resides at a grid point) fixed, and moving its start to the next earlier
grid point. Again, the shift propagates to earlier jobs in J+, which are moved
by the same amount, and shortens j’s execution interval once more. When all
jobs in J+ have been modified in this way, we turn to J− and apply the same
procedure there. This time, we keep the start times fixed and instead shift the
right end points of the execution intervals towards later times. As before, j
“absorbs” the propagated shifts, as we increase its start time accordingly. After
this modification, the execution intervals of all jobs in J start and end at grid
points only.

To complete the proof, we need to analyze the changes made in terms of
energy consumption. Let G denote the schedule obtained by the above modifi-
cation of S∗. Obviously, for all j′ ∈ J \ j, we have that E(G, j′) ≤ E(S∗, j′), as
the execution intervals of those jobs are only prolonged during the transforma-
tion process, resulting in a less or equal execution speed. The only job whose
processing time is possibly shortened, is j. Since |J | ≤ n, it can be shortened at
most n times, each time by a length of at most Li. Remember that the execution
time of j in S∗ was Tj ≥ γnLi. Therefore, in G, its execution time is at least
Tj − nLi ≥ Tj − Tj/γ. Thus the speedup factor of j in G compared to S∗ is at
most

Tj

Tj − Tj
γ

=
1

1− 1
γ

≤ 1 + ε,

where the last inequality follows from the definition of γ. Hence, Proposition 1
implies that E(G, j) ≤ (1 + ε)α−1E(S∗, j), and the lemma follows by summing
up the energy consumptions of the individual jobs. ut

C Proof of Lemma 2

Lemma 2. If all jobs have the same volume v1 = v2 = . . . = vn = v, there
exists a grid point schedule G with respect to Pexact, such that E(G) = OPT.

Proof. Let S∗ be an optimal schedule. W.l.o.g., we can assume that S∗ changes
the processing speed only at events (recall that an event is either a release time or
a deadline of some job), as a constant average speed between any two consecutive
events minimizes the energy consumption (this follows from Jensen’s Inequality)
without violating release time or deadline constraints. Given this property, we
will show that S∗ is in fact a grid point schedule with respect to Pexact. To
this end, we partition the time horizon of S∗ into phases of constant speed,
that is time intervals of maximal length during which the processing speed is
unchanged. As every job itself is processed using a uniform speed, no job is
processed only partially within a phase. Each phase is therefore characterized
by a pair of events ti ≤ tj indicating its beginning and end, and a number x
of jobs that are processed completely between ti and tj at constant speed. It is
clear that the grid points created for the pair (ti, tj) and k := x in the definition
of Pexact correspond exactly to the start and end times of the jobs in this phase.
Since this is true for every phase, S∗ is indeed a grid point schedule. ut

14

D Proof of Lemma 3

Lemma 3. Every feasible schedule S′ for I ′ can be transformed into a feasible
schedule S for I with E(S) ≤ (1 + ε)αE(S′).

Proof. The lemma easily follows by using the same execution intervals as S′

and speeding up accordingly. As rounded and original volume of a job differ by
at most a factor of 1 + ε, we need to increase the speed at any time t by at
most this factor. Therefore the energy consumption grows by at most a factor
of (1 + ε)α. ut

E Proof of Lemma 4

Lemma 4. Every δ-omitted schedule S′ for a set of jobs J can be transformed
into a feasible schedule S for all jobs in J , such that E(S) ≤ (1 + ε)αE(S′).

Proof. Let R be the set of non-omitted jobs in S′. W.l.o.g., we can assume that
S′ executes each job in R at a uniform speed, as this minimizes the energy
consumption. For every j ∈ R, define SMALL(j) := {x ∈ J \ R : big(x) = j}.
Note that every omitted job occurs in exactly one of the sets SMALL(j), j ∈ R.
The schedule S is constructed as follows. For all j ∈ R, we process the jobs
{j} ∪ SMALL(j) using the execution interval of j in S′ and a uniform speed.
The processing order may be chosen arbitrarily. Clearly, the resulting schedule is
feasible by the definition of big(x). In order to finish the total volume Vj of the
jobs {j} ∪ SMALL(j) within the interval of j in S′, we need to raise the speed
in this interval by the factor Vj/vj . As |SMALL(j)| ≤ n, and vx ≤ vj(1 + ε)−δ

for all x ∈ SMALL(j), we have that

Vj ≤ vj + nvj(1 + ε)−δ ≤ vj + nvj
ε

n
≤ (1 + ε)vj ,

where the second inequality follows from the definition of δ. For the speedup
factor, we therefore obtain Vj/vj ≤ 1 + ε. Hence, the energy consumption grows
by at most the factor (1 + ε)α. ut

F Proof of Lemma 5

Lemma 5. The schedules S(v,
−→
λ , g1, g2) constructed by the above dynamic pro-

gram are δ-omitted schedules for the jobs in the subtree of v plus the jobs J(
−→
λ).

Furthermore, they satisfy E
(
S(v,

−→
λ , g1, g2)

)
≤ E

(
G(v,

−→
λ , g1, g2)

)
.

Proof. We prove the lemma by induction. In the base cases, that is at the leaves
of T , we already argued that the schedules are feasible and optimal. Since no
jobs are omitted at all, the lemma is obviously true at this level. We now perform

the induction step. To this end, let us consider a fixed schedule S(v,
−→
λ , g1, g2),

and let us assume the lemma is true for the children v1 and v2 of v. We first show

15

that S(v,
−→
λ , g1, g2) is indeed a δ-omitted schedule. The only point where jobs are

omitted in the recursive procedure is the call of Vector (J̃), where a vector-
representation −→γ of J̃ is constructed. This vector −→γ only represents a subset of
the jobs J̃ , namely the jobs in the δ largest size classes of J̃ . Let jmax denote a job
in J̃ with maximum volume, i.e. a job belonging to the largest size class. Then
every omitted job jom has volume at most vjmax

(1 + ε)−δ, and we can choose
big(jom) := jmax to satisfy the requirements of Definition 8, as long as jmax is
indeed contained in one of the subschedules that we combine in the recursion
step. If, however, jmax is omitted in the corresponding subschedule, then there
exists a job big(jmax) as required in Definition 8, by induction hypothesis. In

this case we can choose big(jom) := big(jmax). This proves that S(v,
−→
λ , g1, g2)

is indeed a δ-omitted schedule.

We now argue about the energy consumption. Let J1 and J2 denote the

subsets of jobs that G(v,
−→
λ , g1, g2) processes entirely within Iv1 and Iv2 , respec-

tively. If there exists a “crossing” job spanning from Iv1 into Iv2 , we denote
this job by jc. Now we look at the iteration that handles exactly this situa-
tion, i.e. when j = jc and g̃1, g̃2 mark the beginning and end of jc’s execution

interval in G(v,
−→
λ , g1, g2), or the passage after the for-loop for the case with-

out “crossing” job. As mentioned earlier, the procedure possibly omits certain

jobs and only splits up a subset of Jv ∪ J(
−→
λ) between the children v1 and v2.

Since all possible splits are tried, one option for the min-operation is to combine
subschedules that process a subset of J1 within Iv1 , and a subset of J2 within
Iv2 . By induction hypothesis, and since we only schedule subsets of J1 and J2,
the energy consumption of these subschedules is at most the energy spent by

G(v,
−→
λ , g1, g2) for executing J1 and J2, respectively. Furthermore, if there exists

a “crossing” job jc, then executing this job from g̃1 to g̃2 at uniform speed costs

at most the energy that G(v,
−→
λ , g1, g2) pays for this job. Summing up the dif-

ferent parts, we get that the considered option has an energy consumption of at

most E
(
G(v,

−→
λ , g1, g2)

)
. The lemma follows as we choose the minimum over all

possible options. ut

G Proof of Theorem 1

Theorem 1. The non-preemptive speed scaling problem admits a QPTAS if the
instance is laminar.

Proof. Let r∗ be the earliest release time, and d∗ be the latest deadline of any

job in J . Furthermore, let r be the root of the tree T , and let
−→
0 denote the

(heritable) job vector representing the empty set, i.e.
−→
0 := (δ − 1, 0, . . . , 0).

We consider the schedule S(r,
−→
0 , r∗, d∗), which is a δ-omitted schedule for the

rounded instance by Lemma 5, and turn it into a feasible schedule Sr for the
whole set of (rounded) jobs, using Lemma 4. Finally, we apply Lemma 3 to turn

16

Sr into a feasible schedule S for the original instance I, and obtain

E(S) ≤ (1 + ε)αE(Sr) ≤ (1 + ε)2αE
(
S(r,
−→
0 , r∗, d∗)

)
≤ (1 + ε)2αE

(
G(r,

−→
0 , r∗, d∗)

)
≤ (1 + ε)3α−1OPT =

(
1 +O(ε)

)
OPT.

Here, the third inequality holds by Lemma 5, and the fourth inequality follows

from Lemma 1 and the fact that G(r,
−→
0 , r∗, d∗) is an optimal grid point sched-

ule for the rounded instance (with smaller job volumes). The quasipolynomial
running time of the algorithm is easily verified, as we have only a polynomial
number of grid points, and at most a quasipolynomial number of job vectors
that are heritable to any vertex of the tree. ut

H Purely-Laminar Instances

In this section, we present an FPTAS for a purely-laminar instance I. W.l.o.g.,
we assume that the jobs are ordered by inclusion of their time windows, that
is [r1, d1) ⊆ [r2, d2) ⊆ · · · ⊆ [rn, dn). Furthermore, whenever we refer to grid
points in this section, we refer to the set Papprox. Our FPTAS uses dynamic
programming to construct an optimal grid point schedule for I, satisfying the
following structural property:

Property 1. For any k > 1, jobs j1, . . . , jk−1 are either all processed before jk,
or all processed after jk.

This structure can easily be established in any schedule for I by performing a
sequence of energy-preserving swaps. According to this, the following lemma is
a straightforward extension of Lemma 1 to the purely-laminar case.

Lemma 6. If the problem instance is purely-laminar, there exists a grid point
schedule G with respect to Papprox that satisfies Property 1 and has energy cost
E(G) ≤ (1 + ε)α−1OPT.

Proof. Consider an optimal schedule S∗ for I, and let J− and J+ be the jobs
executed before and after j1, respectively. Now rearrange the execution intervals
(without changing their lengths) of the jobs in J+ into smallest index first order
(SIF), by repeatedly swapping two consecutively processed jobs ja preceding
jb, with a > b. For the swap, we let the execution interval of jb now start at
ja’s original starting time, and directly append ja’s execution interval once jb
is finished. Note that each such swap maintains feasibility, as no release times
occurs during the execution of the jobs in J+, and a > b implies da ≥ db.
Similarly, we rearrange the execution intervals of the jobs in J− into largest
index first order (LIF), and denote the resulting schedule by S′. Clearly, E(S′) =
OPT, as the rearrangements preserve the energy cost of every individual job.
Furthermore, S′ satisfies Property 1. To see this, let us fix k > 1 and distinguish
whether jk is in J− or in J+. In the first case, when jk ∈ J−, all j ∈ J+ are
scheduled after jk by definition of J−/J+, and all ji ∈ J−, i < k are scheduled

17

after jk by the LIF-order. In the second case, when jk ∈ J+, all j ∈ J− are
scheduled before jk by definition of J−/J+, and all ji ∈ J+, i < k are scheduled
before jk by the SIF-order. As a final step, we now apply the transformation
from the proof of Lemma 1 to S′. Since this transformation does not change the
order of any jobs, the resulting grid point schedule G still satisfies Property 1,
and has energy cost E(G) ≤ (1 + ε)α−1OPT. ut
Dynamic Program. For any k ≤ n and grid points g1 ≤ g2, let S(k, g1, g2)
denote a minimum cost grid point schedule for j1, . . . , jk that satisfies Property
1 and uses only the time interval between g1 and g2. The corresponding energy
cost of S(k, g1, g2) is denoted by E(k, g1, g2), where E(k, g1, g2) :=∞ if no such
schedule exists. For ease of exposition, we only show how to compute the energy
consumption values E(k, g1, g2), and omit the straightforward bookkeeping of
the corresponding schedules. The base cases are given by E(0, g1, g2) = 0, for all
g1 ≤ g2. All remaining entries can be computed with the following recursion.

E(k + 1, g1, g2) =

∞ if (g1 = g2) ∨ (g1 ≥ dk+1) ∨ (g2 ≤ rk+1).

min
{

vk+1
α

(g′2−g′1)α−1 + min{E(k, g1, g
′
1), E(k, g′2, g2)} :

(g1 ≤ g′1 < g′2 ≤ g2) ∧ (g′1 ≥ rk+1) ∧ (g′2 ≤ dk+1)
}

otherwise.

Intuitively, we minimize over all possible combinations of grid points g′1 and g′2
that could mark the beginning and end of jk+1’s execution. For fixed g′1 and
g′2, it is best to process jk+1 at uniform speed, resulting in the energy cost
vk+1

α/(g′2 − g′1)α−1 for this job. The remaining jobs j1, . . . , jk must then be
scheduled either before or after jk+1, to satisfy Property 1. This fact is captured
in the second min-operation of the formula. The constraints on g′1 and g′2 ensure
that jk+1 can be feasibly scheduled in the chosen interval.

Once we have computed all values E(k, g1, g2) (and their corresponding
schedules), we output the schedule S̃ := S(n, r∗, d∗), where r∗ is the earliest
release time and d∗ the latest deadline of any job in I. Note that S̃ is an op-
timal grid point schedule with Property 1 for I. Hence, Lemma 6 implies that
E(S̃) ≤ (1 + ε)α−1OPT =

(
1 +O(ε)

)
OPT. Finally, it is easy to verify that the

running time of the algorithm is polynomial in n and 1/ε, since the total num-
ber of grid points in Papprox is O

(
n3(1 + 1

ε)
)
. We therefore obtain the following

theorem.

Theorem 3. The non-preemptive speed scaling problem admits an FPTAS if
the instance is purely-laminar.

I Bounded Number of Time Windows

Let us consider a problem instance I, and group together jobs that share the
same time window. We refer to the group of jobs with time window [r, d) as the
type Trd.

18

Theorem 4. The non-preemptive speed scaling problem admits an FPTAS if
the total number of types is at most a constant c.

Our FPTAS draws on ideas of Antoniadis and Huang [5], as we transform the
problem into an instance I ′ of unrelated machine scheduling with `α-norm ob-
jective. In this problem, one is given a set of machines M, a set of jobs J ,
and numbers pij that specify the processing time of job j on machine i. The
goal is to find an assignment A of the jobs to the machines that minimizes
Cost(A) = (

∑
i∈M(

∑
j:A(j)=i pij)

α)1/α. In general, this problem is APX-hard [6].
Our instance, however, will have only a constant number of machines, and for
this special case an FPTAS exists [6].

The transformation works as follows. Let G be an optimal grid point schedule
with respect to Papprox, and for each type Trd let b(Trd) and e(Trd) denote the
grid points at which G starts to process the first job of Trd and finishes the last
job of Trd, respectively. Our first step is to “guess” the entire set of grid points
b(·) and e(·), by trying out all possible options with r ≤ b(Trd) < e(Trd) ≤ d
for every type Trd. Note that the total number of choices that we have to make
is at most O

(
n6c(1 + 1

ε)2c
)
, and thus polynomial in both n and 1/ε. For one

particular guess, let g1 < g2 < . . . < gk be the ordered set of distinct grid points
b(·) and e(·). The instance I ′ has a machine i for every interval [gi, gi+1), and a
job j for every job of the original instance. The processing times pij are given
as pij :=

vj
(gi+1−gi)1−1/α if [gi, gi+1) ⊆ [rj , dj), and pij :=∞ otherwise.

Note that the total number of machines in I ′ is k−1 < 2c. Hence, the FPTAS
of [6] can be applied to obtain an assignment A with Cost(A) ≤ (1 + ε)OPT′,
where OPT′ denotes the cost of an optimal assignment for I ′. The following two
lemmas imply Theorem 4.

Lemma 7. Every finite-cost assignment A for I ′ can be transformed into a
schedule S for I, such that E(S) =

(
Cost(A)

)α
.

Proof. For any i ∈M, let Ai denote the set of jobs that A assigns to machine i. In
order to create the schedule S, we iterate through all i ∈M and process the jobs
in Ai within the interval [gi, gi+1), using the uniform speed (

∑
j∈Ai vj)/(gi+1 −

gi). The resulting schedule is clearly feasible, as A has finite cost and every
j ∈ Ai thus satisfies [gi, gi+1) ⊆ [rj , dj). For the energy consumption of S we get

E(S) =
∑
i∈M

(∑
j∈Ai vj

gi+1 − gi

)α
(gi+1 − gi) =

∑
i∈M

(∑
j∈Ai vj

(gi+1 − gi)1−1/α

)α

=
∑
i∈M

(∑
j∈Ai

pij

)α
=
(

Cost(A)
)α
.

ut

Lemma 8. If the grid points b(·) and e(·) are guessed correctly, there exists an

assignment A for I ′ with Cost(A) ≤
(
(1 + ε)α−1OPT

)1/α
.

19

Proof. Remember that G is an optimal grid point schedule for I, and that the
grid points b(Trd) and e(Trd) mark the time points at which G starts to process
the first job of type Trd and finishes the last job of Trd, respectively. Now ob-
serve that in G, every job j is processed entirely within some interval [gi, gi+1),
satisfying [gi, gi+1) ⊆ [rj , dj). This is true because rj ≤ b(Trjdj) < e(Trjdj) ≤ dj ,
and no job can stretch from an interval [gx−1, gx) into [gx, gx+1) since gx indeed
marks the beginning or end of some job. Let Ai denote the set of jobs which are
entirely processed within [gi, gi+1), and let A be the assignment that maps all
jobs from Ai to machine i. The cost of A is given as

Cost(A) =

(∑
i∈M

(∑
j∈Ai

pij

)α)1/α

=

(∑
i∈M

(∑
j∈Ai vj

(gi+1 − gi)1−1/α
)α)1/α

=

(∑
i∈M

(∑
j∈Ai vj

gi+1 − gi

)α
(gi+1 − gi)

)1/α

≤
(
E(G)

)1/α
≤
(

(1 + ε)α−1OPT
)1/α

.

Here the last two inequalities follow from the convexity of the power function
and Lemma 1, respectively. ut

20

