
Non-Preemptive Speed Scaling

Antonios Antoniadis∗ Chien-Chung Huang∗

Abstract

We consider the following variant of the speed scaling problem introduced by Yao, Demers, and Shenker. We
are given a set of jobs and we have a variable-speed processor to process them. The higher the processor speed,
the higher the energy consumption. Each job is associated with its own release time, deadline, and processing
volume. The objective is to find a feasible schedule that minimizes the energy consumption. Moreover, no
preemption of jobs is allowed.

Unlike the preemptive version that is known to be in P, the non-preemptive version of speed scaling is strongly
NP-hard. In this work, we present a constant factor approximation algorithm for it. The main technical idea is
to transform the problem into the unrelated machine scheduling problem with Lp-norm objective.

1 Introduction

The speed scaling problem was introduced by Yao, Demers and Shenker [16] in 1995. The input is a set J of jobs.
Each job j ∈ J is associated with a release time rj , a deadline dj and a volume vj . W.l.o.g., we assume that release
times and deadlines are given as integers. We have a variable-speed processor, which is associated with a power
function P (s) = sα with α > 1. Assuming that job j ∈ J is always processed at a speed of sj , then j requires vj/sj
time to be completed. The energy consumption of the processor is power integrated over time. A schedule is said
to be feasible if the volume of each job is completely processed not before its release time but before its deadline.
The goal is to find a feasible schedule that minimizes the total energy consumption.

Given our growing awareness of the environment, speed scaling is a natural problem to study. Practically,
many modern microprocessors, in order to be more energy-efficient, have the built-in capability to vary their speed.
It is desirable to have good scheduling policies in order to reduce the energy consumption in such computing
environments. Furthermore this can help prolonging battery lives in mobile devices.

The original model of Yao et al. assumes that jobs can be preempted. That is, the execution of a job may
be paused and resumed at a later point in time. The non-preemptive version of this problem, where a job, once
started, must be processed until its completion, has not been studied so far. We call the problem non-preemptive
speed scaling. The assumption that preemption is disallowed is a natural one to make, since preemption is known
to cause significant overhead in practice. The fact that some theoretically good scheduling algorithms perform
relatively bad in practice has been attributed to this overhead [10, 11, 13]. Furthermore, since the preemption
of a job may require storing the state of both the system and the processing of the job, the implementation of
preemption can become particularly hard in some settings. Some researchers try to cope with the above problems
by either limiting or completely avoiding preemption (see [4, 5] for some examples).

Unlike the preemptive speed scaling, for which Yao et al. gave a simple and elegant polynomial time algorithm,
the non-preemptive speed scaling problem is NP-hard. To see this, consider the following reduction from the
partition problem [12]. In the partition problem, a set of integers N = {n1, n2, · · · } is given. The question is
whether the set N can be partitioned into two disjoint subsets, so that the sum of one subset is equal to the sum
of the other subset. We create a job j with release time 1 and deadline 2. Its volume vj is

∑
i ni. Further, for

each integer nt ∈ N , create a job of volume vt with release time 0 and deadline 3. Due to the fact that the power
function P (s) = sα is strictly convex, it is easy to see that the original instance allows a partition if and only if
the optimal schedule uses the same speed in the intervals [0, 1) and [2, 3). By a straightforward generalization of
the idea, we can reduce from the 3-Partition problem [12] to show that non-preemptive speed scaling is strongly
NP-hard.

∗Department of Computer Science, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin. {antoniad,
villars}@informatik.hu-berlin.de

1

We note that even though the general case of the problem is NP-hard, there is a natural special case that is
in P: when the given instance has agreeable deadlines. An instance has agreeable deadlines if given any two jobs
j, j′ ∈ J with rj < rj′ , then dj ≤ dj′ . In words, earlier-released jobs also have earlier deadlines. For this special
case, the original algorithm of Yao et al. can be applied by the observation that the schedule returned does not
make use of preemption. However, to deal with the general case, novel algorithmic ideas are required.

Our Contribution and Technique

We develop a constant-factor approximation algorithm for the problem of non-preemptive speed scaling.

Theorem 1. There exists a polynomial time algorithm that achieves a 25α−4-approximation for the non-preemptive
speed scaling problem. For the special case of laminar instances, there exists a polynomial time algorithm that
achieves a 24α−3-approximation.

An instance is said to be a laminar instance if for any two jobs j, j′ ∈ J , either [rj , dj) ⊆ [rj′ , dj′), [rj′ , dj′) ⊆
[rj , dj), or [rj , dj) ∩ [rj′ , dj′) = ∅. Laminar instances are of interest for two reasons. First, they form a natural
special class of instances. As reported in [14], when the jobs are created by recursive calls in a program, the resulting
instance is laminar. Secondly, and more importantly, we observe that a laminar instance is in a sense the “opposite”
of an instance with agreeable deadlines: for any two jobs that have overlapping intervals, the one with earlier release
time must have a latter deadline. As the agreeable version can be solved in polynomial time, this “opposite” version
highlights the difficulty of the non-preemptive speed scaling problem. (Observe that the reductions we used earlier
from partition/3-partition are laminar instances as well).

In Section 3, we show how to achieve a 24α−3 approximation for laminar instances. The rough idea is to use
a series of transformations, which involve the “chopping up” of the intervals of the jobs, so that we can reduce a
laminar instance into an instance of unrelated machine scheduling with the Lα-norm objective, which is known to
be 2-approximable [2]. The “chopping up” of an interval, roughly speaking, means that we create new instances
with the additional constraint that a job has to be processed entirely within a sub-interval. The technical challenge
is to bound the growth of the cost throughout the series of transformations.

In Section 4, we develop a sweepline algorithm and use a certain “energy-folding” technique, to reduce a general
instance into a laminar instance, at a further cost of 2α−1 in the approximation factor.

Due to space constraints some of the proofs are omitted.

Previous work

Even though dynamic speed scaling has been studied extensively over the past years, to the best of our knowledge,
non-preemptive speed scaling was not considered before. As already mentioned, the study of the (preemptive)
problem was initiated by Yao et al. [16], who have developed a polynomial-time algorithm for the offline problem.
Some special cases of the preemptive version of the problem have also been studied. For example, when the given
instance is laminar [14] or when the power function is discrete [15].

In [8] and [9] constant-factor approximation algorithms for the problem on fixed-speed processors were given.
In [8], more than one processor may be used in order to feasibly schedule the jobs, and the objective is to minimize
the number of used processors. In [9] one may skip jobs in order to produce a feasible schedule. The objective here
is to maximize the number of scheduled jobs. In [7] a similar problem of scheduling jobs without preemption on
a variable-speed processor was studied. However in their model the processor can only operate at discrete speed
levels, and there are precedence constraints among the jobs. They show that their problem is NP-hard and give
polynomial time approximation schemes for two restricted cases.

So far we only discussed the offline version of the speed scaling problem. The online version has also been
extensively studied (but still only for the preemptive version). Yao et al. [16] presented two online algorithms called
Average Rate and Optimal Available. For the first they have proven a competitive ratio of (2α)α/2 whereas the
second was analyzed by Bansal, Kimbrel and Pruhs [3] who have shown a tight competitive ratio of αα.

For a recent literature review on energy efficient algorithms, see [1].

2

2 Preliminaries

We define a more general version of our problem. Let J be the set of jobs. Each job j ∈ J has a set of disjoint
allowed intervals, Ij1 = [rj1, dj1), Ij2 = [rj2, dj2), · · · . A schedule S is feasible if each job j ∈ J is executed entirely
within one of its allowed intervals. Note that in the original problem instance I, each job has only one allowed
interval. We will transform I so that a job may have multiple intervals. Let dmax be the latest deadline in the
original instance I. Assume without loss of generality, that the earliest release time among all the jobs in J is 0.

Throughout the article, we implicitly assume that a feasible schedule processes a job using a uniform speed.
This assumption is without loss of generality, since the power function P (s) = sα is strictly convex and using a
uniform speed for a given job minimizes its expended energy.

Given a schedule S, let S(j) = [bj , ej) denote the execution interval of job j and ej(S) the finishing time of job
j under schedule S. Furthermore, let E(S) denote the total energy spent by schedule S and E(S, j) be the energy
used for processing job j under schedule S. The following proposition follows from our assumption that a feasible
schedule processes each job at uniform speed.

Proposition 1. Suppose that schedules S and S ′ process job j with speed s and s′ respectively. Ifs ≤ cs′ for some
c ≥ 1, then E(S, j) ≤ cα−1E(S ′, j).

Proof. Recall that vj is the volume of job j. Then

E(S, j) = P (s)
vj
s

= vjs
α−1 ≤ vjcα−1

(s′)α

s′
= cα−1P (s′)

vj
s′

= cα−1E(S ′, j).

3 Special Case: Laminar Family

In this section we assume that the given instance I is a laminar instance. Recall that for such an instance, for
any two jobs j, j′ ∈ J , either [rj , dj) ⊆ [rj′ , dj′), [rj′ , dj′) ⊆ [rj , dj), or [rj , dj) ∩ [rj′ , dj′) = ∅. We can associate
the jobs in I with a tree structure as follows. A job j is a descendant of another job j′ in the tree if and only if
[rj , dj) ⊂ [rj′ , dj′). A job j is said to be a leaf job if its interval [rj , dj) is not a proper superset of the interval of
any other job. In case that there are more than one candidate leaf jobs with identical intervals [rj , dj), we pick
an arbitrary one of them as a leaf job. Let the leaf jobs form a set L. Note that all the jobs in L have distinct
deadlines.

Transformation I

Our first step is to partition the entire interval [0, dmax) into “zones” using a set of “landmarks.”

Definition 1. Let τ1 < τ2 < · · · < τ|L| be the set of ordered deadlines dj for the jobs j ∈ L. Furthermore, let τ0 = 0
and τ|L|+1 = dmax. (Note that τ0 < τ1 and τ|L| ≤ τ|L|+1.) The intervals [τi, τi+1) for all 0 ≤ i ≤ |L| are called
zones. Throughout the text, we will refer to the τi’s as landmarks.

We create a new instance I1 as follows. Consider a job j ∈ J with its allowed interval Ij = [rj , dj), such that

τi−1 ≤ rj < τi < τi+1 < · · · < τi+k < dj ≤ τi+k+1.

We replace its allowed interval Ij = [rj , dj) with a set of allowed intervals
⋃k+2
s=1 Ijs, where

Ij1 = [rj , τi), Ij(k+2) = [τi+k, dj), and Ijs = [τs+i−2, τs+i−1) for 2 ≤ s ≤ k + 1.

See Figure 1 for an illustration. We now show that the above partition of jobs’ allowed intervals does not increase
the cost of an optimal solution by too much.

Lemma 1. Let OPTI and OPTI1 denote the optimal schedules for instances I and I1 respectively. Then E(OPTI1) ≤
2α−1E(OPTI).

3

Ik
Ij

I`

(a) The original instance I.

Ik1
Ij1 Ij2

I`1 I`2 I`3

(b) The modified instance I1.

Figure 1: In (a), the two dotted lines are the landmarks, since they are the deadlines of the leaf jobs. In (b), we
show how to use the landmarks to divide a job’s allowed interval in I into several allowed intervals in the modified
instance I1.

Proof. We prove the lemma by transforming OPTI into a feasible schedule OPT I1 for instance I1 and argue that
E(OPT I1) ≤ 2α−1E(OPTI).

First observe that for any job j, its execution in OPTI cannot strictly contain a zone, unless it is the last zone.
That is,

OPTI(j) 6⊃ [τi−1, τi), 1 ≤ i ≤ |L|.

This holds because every zone [τi−1, τi) contains a leaf job’s entire interval Ij′ for 1 ≤ i ≤ |L|. (Notice that the
last zone does not necessarily contain the interval of a leaf job.) If OPTI(j) contains such a zone, then job j′ is not
processed in OPTI , a contradiction.

By this observation, OPTI(j) = [bj , ej) crosses at most one landmark τi. In our transformation we do not change
the execution intervals for any job j that does not cross any landmark τi, i.e., OPT I1(j) = OPTI(j). Observe that
these jobs are completely processed within one of their allowed intervals in I1 and their processing speeds remain
the same.

Next suppose that a job j crosses a landmark τi ∈ [bj , ej). Without loss of generality, we can assume that

τi − bj ≥ ej − τi, (1)

in other words, job j does not get processed for more time after τi than it does before τi.
OPT I1 processes job j using the interval [bj , τi) while in the interval [τi, ej), OPT I1 does not process any job.

It is clear that OPT I1 executes job j completely within one of its allowed intervals; and none of the jobs execution
times overlap. Furthermore, by (1),

Speed of j in OPT I1 =
vj

τi − bj
≤ 2

vj
ej − bj

= 2 · Speed of j in OPTI .

By Proposition 1,

E(OPT I1) =
∑
j∈J

E(OPT I1 , j) ≤ 2α−1
∑
j∈J

E(OPT I , j) = 2α−1E(OPTI).

Now the proof follows from the fact that E(OPTI1) ≤ E(OPT I1).

Transformation II

In the second transformation, inside each zone [τi−1, τi), we define a set of sublandmarks to further subdivide the
zone into a set of subzones. The allowed intervals of a job are (possibly) shortened and then further fragmented by
these subzones. We now flesh out the details.

Recall that each job in J has at most one allowed interval in the zone [τi−1, τi). Let J ′ ⊆ J be the subset of
the jobs that have exactly one allowed interval in this zone. For simplicity, we assume that the allowed interval of
a job j ∈ J ′ is also its first allowed interval Ij1 = [rj1, dj1). We divide the jobs in J ′ into three groups.

j ∈ A if rj1 = τi−1, dj1 < τi;

j ∈ B if τi−1 < rj1, dj1 = τi;

j ∈ C if rj1 = τi−1, dj1 = τi.

4

(a) Laminar family case (b) General case.

Figure 2: A zone. The dashed lines represent allowed intervals for jobs of group A, the dotted ones for jobs of
group B. Finally, the solid lines represent the allowed intervals for jobs of group C. (a) illustrates a zone after
Transformation I. (b) illustrates a zone after Transformation I1 (see Section 4).

See Figure 2(a) for an illustration. Observe that jobs in group C have their allowed intervals span the entire
zone; furthermore, by our assumption that the original instance I is a laminar instance, the allowed intervals of
jobs in group A do not overlap with the allowed intervals of jobs in group B.

Lemma 2. Let S be a feasible schedule for instance I1 and let J ′′ be the jobs of J ′ that are processed within
[τi−1, τi). Then S can be transformed into a feasible schedule S ′ with the following properties:

• S ′ consumes no more energy than S.

• All jobs in J ′′ are processed within the zone [τi−1, τi).

• S ′ executes all the jobs of group A∩J ′′ before the jobs of group C ∩J ′′, which in turn are executed before the
jobs of group B ∩J ′′, in [τi−1, τi). Moreover, in S ′, the jobs of A∩J ′′ are processed according to the earliest
deadline first principle and the jobs of B ∩ J ′′ according to the earliest release time first principle.

Proof. This follows from the fact that the allowed intervals of jobs in group C span the entire zone and the fact
that jobs j in group A (resp. group C) have the release time rj1 = τi−1 (resp. the deadline dj1 = τi).

Let dAl be the latest deadline for the jobs in group A and rBf the earliest release time for the jobs in group B.
Let λA = τi−1 + 3/4(dAl − τi−1) and λB = τi − 3/4(τi − rBf) be two sublandmarks and [λA, λB) be a subzone (we
will define more sublandmarks inside [τi−1, λA) and [λB , τi) in a moment). Then

λB − λA = (λB − rBf) + (dAl − λA) + (rBf − dAl) =

(τi − rBf) + (dAl − τi−1)

4
+ rBf − dAl =

τi − τi−1
4

+
3(rBf − dAl)

4
≥ τi − τi−1

4
. (2)

Therefore, the subzone [λA, λB) is of length at least a fourth of the entire zone. Intuitively speaking, in our
proof, this subzone is “reserved” for the jobs in group C. Given any schedule for I1, even if the processing of the
jobs in group C spans the entire zone, we can always increase their processing speed by a factor of 4 and process
them entirely within the subzone [λA, λB).

Let dAf be the earliest deadline in group A and rBl the latest release time in group C. Also, let x be the
largest positive integer so that τi−1 + (dAf − τi−1)2x−1 < λA and y to be the largest positive integer so that
τi − (τi − rBl)2y−1 > λB . We define the following sublandmarks.

λkA = τi−1 + (dAf − τi−1)2k−1, for 1 ≤ k ≤ x;

λx+1
A = λA;

λy+1
B = λB ;

λkB = τi − (τi − rBl)2k−1, for 1 ≤ k ≤ y.

5

λ0(τi−1)

λ1
A

dAf

λ2
A λ3

A λ4
A λ5

A λ6
A λ7

A(λx+1)

λA =
3
4
dAl dAl

Figure 3: The sublandmarks inside the interval [τi−1, λA).

Notice that in the case that τi−1 + (dAf − τi−1) = dAf ≥ λA, we do not define any sublandmark in [τi−1, λA);
similarly for [λB , τi), if τi − (τi − rBl) ≥ λB . (Also note that it is possible that dAf = dAl or rBf = rBl).
Finally, observe that as we assume that all release times and deadlines are integers, there can be only O(dlog dmaxe)
sublandmarks in each zone.

The sublandmarks {λkA}xk=1 and {λkB}
y
k=1 are used to partition the intervals [τi−1, λA) and [λB , τi) into subzones

respectively. See Figure 3 for an illustration. It can be observed that the sizes of the subzones in [τi−1, λA) grow
geometrically, except the first and the last one; similarly, the sizes of the subzones [λB , τi), except the first and the
last one, decrease geometrically. Roughly speaking, in our proof, these subzones will be “reserved” for jobs in group
A and B respectively.

We now use the set of sublandmarks {λkA}xk=1 ∪ {λkB}
y
k=1 ∪ λA ∪ λB to partition the allowed intervals of all jobs

in J ′ in a somewhat similar manner to the previous transformation. Suppose there are totally g sublandmarks in
the zone [τi−1, τi). Let λw denote the w-th sublandmark (in increasing order) for 1 ≤ w ≤ g. For convenience, let
λ0 = τi−1 and λg+1 = τi.

We create a new instance I2 based on I1 as follows. For a job j ∈ J ′ with the allowed interval Ij1 = [rj1, dj1),
let λu be the first sublandmark so that rj1 ≤ λu and λu+k be the last sublandmark so that λu+k ≤ dj1. Then

rj1 ≤ λu < λu+1 < · · · < λu+k ≤ dj1.

We replace its allowed interval Ij1 = [rj1, dj1) with a set of allowed intervals
⋃k
s=1 Ij1s, where

Ij1s = [λu+s−1, λu+s),∀s, 1 ≤ s ≤ k.

Note that by this definition, a subzone [λk−1, λk) becomes an allowed interval of job j in instance I2 if and
only if Ij1 spans the entire interval [λk−1, λk). In the case that rj1 < λu (this may happen for jobs in B ∩ J ′′) or
dj1 > λu+k (which may happen for jobs in A ∩ J ′′), [rj1, λu) or [λu+k, dj1) respectively are not allowed intervals.

Lemma 3. Let OPTI1 and OPTI2 denote the optimal schedules for instances I1 and I2 respectively. Then
E(OPTI2) ≤ 4α−1E(OPTI1).

Proof. We construct a feasible solution OPT I2 for instance I2 based on the optimal solution OPTI1 for instance I1.
Let J ′′ ⊆ J ′ be the subset of jobs that are processed in the zone [τi−1, τi) in the schedule OPTI1 . By Lemma 2, we
can assume that the jobs in A ∩ J ′′ are processed first, the jobs in C ∩ J ′′ second, followed by the jobs in B ∩ J ′′.
We also can assume that jobs in A ∩ J ′′ (resp. B ∩ J ′′) are processed in the order of their increasing deadlines
(resp. increasing release times).

Suppose that there exists at least one sublandmark within [τi−1, λA). Recall that we define λkA = τi−1 + (dAf −
τi−1)2k−1 for 1 ≤ k ≤ x; furthermore, λx+1

A = λA. In the rest of this proof, let λk := λkA for 1 ≤ k ≤ x + 1. For
simplicity, we can assume that τi−1 = 0. By rescaling, let dAf = 1.

The following facts follow straightforwardly from the definitions and the assumptions:

6

λk = 2k−1, for each 1 ≤ k ≤ x;

λx+1 = (3/4)dAl ≤ 2x.

For convenience, let λ0 = τi−1. We show how each of the jobs in A ∩ J ′′ can be processed entirely within one
of these subzones [λk−1, λk) when we build the schedule OPT I2 . The basic idea is this: treat these subzones as
bins with capacity equal to their length, and the jobs j ∈ A ∩ J ′′ as items whose sizes are their processing time
|OPTI1(j)| divided by a factor of 4. Each item j ∈ A ∩ J ′′ can only be put into a bin (subzone) whose interval is
entirely contained in j’s allowed interval Ij1. If this can be done, then we have a new schedule where the jobs in
A ∩ J ′′ are feasibly processed, i.e., within their allowed intervals in instance I2, with processing speeds equal to 4
times their original speeds in OPTI1 .

Let tj = |OPTI1(j)| for all jobs j ∈ A ∩ J ′′. Moreover, let us divide A ∩ J ′′ into disjoint sets J1 ∪̇ J2 ∪̇ · · · ∪̇
Jx+1 ∪̇ Jx+2 as follows. Job j ∈ Jk if its finishing time ej(OPTI1) ∈ [λk−1, λk) for 1 ≤ k ≤ x + 1. In case that
ej(OPTI1) ∈ [λx+1, dAl), let j ∈ Jx+2.

We note that if j ∈ Jk for k ≥ 2, then j can be feasibly processed within any of the subzones [λk′−1, λk′) for
any 1 ≤ k′ ≤ k− 1 in instance I2, since each such subzone [λk′−1, λk′) will be one of the allowed intervals of j in I2
(this follows from the fact that ej(OPTI1) ≥ λk−1.) Note also that all jobs in J1 can be feasibly processed within
the subzone [λ0, λ1) in instance I2, since in I1, all jobs in A∩J ′′ have their deadlines at least as late as dAf = λ1.
These facts are used in the proof of the following claims.

Claim 1. Suppose that there exists at least one sublandmark within [τi−1, λA). We can process all jobs of A ∩ J ′′
in OPT I2 at four times their speeds in OPTI1 . Moreover, in OPT I2 , the following hold:

1. Suppose that x = 1. Then all jobs in A∩J ′′ = J1 ∪J2 ∪J3 are feasibly processed within the subzone [λ0, λ1);

2. (a) Suppose that x ≥ 2. Then all jobs in J1 ∪ J2 are feasibly processed within the subzone [λ0, λ1).

(b) Suppose that x ≥ 3. Then all jobs in Jk are feasibly processed within the subzone [λk−2, λk−1) for
3 ≤ k ≤ x;

(c) Suppose that x ≥ 2. Then all jobs in Jx+1 ∪ Jx+2 are feasibly processed within the subzones [λx−1, λx)
and/or [λx, λx+1).

Proof. For (1) suppose that x = 1. Then λ2 = (3/4)dAl ≤ 21 = 2, implying that dAl ≤ 8/3. We can thus execute
all jobs in A ∩ J ′′ with quadrupled speeds within this subzone, since it takes at most dAl/4 = 2/3 amount of time.
So (1) is proved.

For (2a), first observe that the subzone [λ0, λ1) is of size 20 − 0 = 1. Suppose that x ≥ 2. As
∑
j∈J1∪J2

tj ≤
λ2 = 2, we can thus execute all jobs in J1 ∪ J2 with quadrupled speeds within this subzone, since it takes at most
λ2/4 = 0.5 amount of time.

(2b) can be proved similarly. As
∑
j∈Jk tj ≤ λk, we can execute all jobs in Jk with quadrupled speeds in time

at most λk/4 = 2k−3. The subzone [λk−2, λk−1) has enough size for it, since λk−1 − λk−2 = 2k−3.
(2c) Consider the following two cases.

Case 1. Suppose that Jx+1 = ∅. There is nothing to prove if Jx+2 = ∅. So assume that Jx+2 6= ∅. We show
below that all jobs in Jx+2 can be processed with quadrupled speeds in either [λx−1, λx) or [λx, λx+1).

Recall that 2x−1 = λx < λx+1 = (3/4)dAl ≤ 2x. Therefore,

(4/3)2x−1 < dAl ≤ (4/3)2x.

Suppose that dAl ≤ 2x. We can process all jobs in Jx+2 with quadrupled speeds in the subzone [λx−1, λx), since

λx − λx−1 = 2x−2 ≥ dAl
4
≥
∑
j∈Jx+2

tj

4
.

Next suppose that dAl = (2x + k) ≤ (4/3)2x, for some k > 0. Then we can similarly quadruple the speeds of all
jobs in Jx+2 and process them in the subzone [λx, λx+1) because

7

λx+1 − λx = (3/4)dAl − 2x−1 = 2x−2 + (3/4)k ≥ 2x−2 + k/4 =
dAl
4
≥
∑
j∈Jx+2

tj

4
.

Case 2. Suppose that Jx+1 6= ∅. Let

λx + t = (3/4)dAl = λx+1. (3)

If we can quadruple the speeds of all jobs in Jx+1 ∪ Jx+2 and execute them within the subzone [λx−1, λx), we
then are done. So suppose not. Thus,

λx − λx−1 = 2x−2 <

∑
j∈Jx+1∪Jx+2

tj

4
≤ dAl

4
,

implying that dAl/4 > 2x−2, which in turn implies that

t > 3 · 2x−2 − λx. (4)

We claim that we can process all jobs in Jx+1 with quadrupled speeds within the subzone [λx−1, λx) and all

jobs in Jx+2 with quadrupled speeds within the subzone [λx, λx+1). To see the former, observe that

∑
j∈Jx+1

tj

4 ≤
λx+1/4 = 2x−2, while the subzone [λx−1, λx) is of size λx − λx−1 = 2x−2.

For the latter, we need the following critical observation. Since Jx+1 6= ∅, the execution of jobs in Jx+2 starts
at most as early as λx. This implies that∑

j∈Jx+2
tj

4
≤ dAl − λx

4
=
λx + t

3
− λx

4
=
λx
12

+
t

3
,

where the first equality follows from (3).

On the other hand, the size of the subzone [λx, λx+1) is exactly t. Subtracting the upper-bound of

∑
j∈Jx+2

tj

4
from t we get

t− λx
12
− t

3
> 2 · 2x−2 − 2λx

3
− λx

12
=

2x−1

4
> 0,

where the first inequality follows from (4).
Thus we can fit the jobs in J2 into the subzone [λx, λx+1). The proof follows.

Claim 2. Suppose that there is no sublandmark in [τi−1, λA). We can feasibly process all jobs in A∩J ′′ in OPT I2
in the subzone [τi−1, λA) so that their speeds are four times their speeds in OPTI1 .

Proof. Observe that there is no sublandmark within [τi−1, λA) only if λA = (3/4)dAl ≤ dAf = 1. In this case, all
jobs in A ∩ J ′′ have the subzone [τi−1, λA) as one of its allowed intervals in instance I2, since dAf ≥ λA. Now we

can quadruple the speeds of the jobs in A ∩ J ′′ and process them in
∑
j∈A∩J′′ tj

4 ≤ dAl/4 = 1/3 amount of time,
which is less than the size of the subzone [τi−1, λA), which is (3/4)dAl − 0 ≥ (3/4)dAf = 3/4. This completes the
proof.

Claims 1 and 2 imply that the jobs in A ∩ J ′′ can be feasibly processed within the subzones partitioning the
interval [τi−1, λA) with quadrupled speeds. By a symmetric argument, in OPT I2 , the jobs in B ∩ J ′′ can be
feasibly processed within the subzones partitioning the interval [λB , τi) with quadrupled speeds. Finally, in OPT I2 ,
by equation (2), all jobs in C ∩ J ′′ can be feasibly processed using the subzone [λA, λB) with quadrupled speeds.
Using Proposition 1, we can thus conclude that E(OPT I2) ≤ 4α−1E(OPTI1). Now the entire lemma follows from
the fact that E(OPTI2) ≤ E(OPT I2).

8

Transformation III

In this section, we transform I2 into an instance I3 for unrelated machine scheduling with the objective of minimizing
the Lα-norm.

Unrelated Machine Scheduling with Lα-norm objective
Given m machinesM and n jobs J , where each job j takes pij processing time on machine i, the goal is to
find an assignmentAmapping jobs to machines that minimizes COST (A) = (

∑
i∈M(

∑
j:A(j)=i pij)

α)1/α.

Recall that in I2, each job j ∈ J has a set of allowed intervals, each of which corresponds to a subzone. Let the
collection of all subzones be Z and |zi| denote the length of a subzone zi ∈ Z. In I3, each subzone zi corresponds
to a machine i ∈M. For each job j ∈ J and each subzone zi, if j does not have an allowed interval corresponding
to zi, then pij = +∞. If it has such an interval, then let pij =

vj
|zi|(α−1)/α .

Note that by convexity of the power function, we can assume that a schedule in I2 processes a set of jobs within a
subzone using a uniform speed. The following lemma shows a one-to-one correspondence between a feasible schedule
in I2 and a feasible assignment in I3.

Lemma 4. For each assignment A in I3, a feasible schedule SI2(A) for instance I2 can be created as follows. If a
set of jobs J ′ ⊆ J is assigned to machine i ∈ M in A, SI2(A) processes the jobs in J ′ with the uniform speed of∑

j∈J′ vj

|zi| in subzone zi. Conversely, given a feasible schedule SI2(A) for instance I2, let AI2(j) denote the subzone

in which job j is processed under SI2(A). We can create an assignment A in instance I3 so that A(j) = AI2(j) for
all jobs j ∈ J .

In both cases, we have (COST (A))α = E(SI2(A)).

Proof. It is clear that SI2(A) and A are a feasible schedule (assignment) for instances I2 and I3 respectively. Now
the proof follows by observing that

E(SI2(A)) =
∑
zi∈Z

(∑
j:A(j)=i vj

|zi|

)α
|zi| =

∑
zi∈Z

(∑
j:A(j)=i vj

|zi|(α−1)/α

)α
=

∑
i∈M

 ∑
j:A(j)=i

pij

α

= (COST (A))α.

Lemma 5. Let OPTI3 be an optimal and A be a feasible solution for I3, such that COST (A) ≤ 2COST (OPTI3),
i.e., A is a 2-approximate solution for I3. Let SI2(A) be the corresponding schedule of A and OPTI2 be the
corresponding schedule of OPTI3 in instance I2. Then E(SI2(A)) ≤ 2αE(OPTI2).

Proof. This follows easily from Lemma 4, as

E(SI2(A)) = (COST (A))α ≤ 2α(COST (OPTI3))α = 2α(E(OPTI2)1/α)α = 2αE(OPTI2).

We can produce a 2-approximation schedule as stated in Lemma 5 using the algorithm of Azar and Epstein [2].
Combining Lemmas 1, 3, and 5, we prove Theorem 1 for the case of laminar instances.

4 General Instances

For a general instance, our algorithm is similar to what we have done for a laminar instance. Recall that we use
the following three transformations for a laminar instance I.

1. Transformation I. Introduce a set of landmarks to transform I to I1, where each job’s allowed interval is
chopped up into a set of allowed intervals.

9

2. Transformation II. Introduce a set of sublandmarks to transform I1 to I2, where each allowed interval of a
job is possibly shortened and then further chopped up into a set of allowed intervals.

3. Transformation III. Transform I2 to I3, an instance of unrelated machine scheduling.

For a general instance I, Transformations II and III can remain unchanged. But we need to revise Transforma-
tion I as follows.

• Transformation I1. We introduce a sweepline algorithm to define the landmarks.

• Transformation I2. We shorten a subset of the allowed intervals so that the instance has the same structure
as we have had after transformation I when dealing with a laminar instance.

Transformation I1

We define a set of landmarks using the sweepline algorithm Sweep presented in Figure 4. Let Ψ = ∪j∈J {rj , dj} be
the set of events. Note that Ψ ≤ 2|J |. The order of these events is based on their numerical values, where ties are
broken arbitrarily.

Algorithm Sweep, sweeps the time horizon from left to right until it meets the first deadline. It then sets this
deadline as a landmark. Every job that was seen up to that point gets “removed” and Sweep repeats the same
procedure.

Algorithm Sweep:

Initialization: Set Jc := ∅, and events Ψ := ∪j∈J {rj , dj}. Assume that the elements ti, 1 ≤ ti ≤ |Ψ| of Ψ are
ordered, and let Tland := {0, dmax} be the initial set of landmarks.
For i = 1 to |Ψ| do:

If ti = rj for some job j ∈ J \Jc then Jc = Jc ∪ {j}.
Else If ti = dj for some j ∈ Jc then

add ti to Tland; Set Jc := ∅.

Figure 4: A sweepline algorithm to define landmarks.

Let τ0 = 0 < τ1 < · · · < τk < τk+1 = dmax be the set of landmarks defined by the above sweepline algorithm.
The following lemma follows easily by an inductive argument.

Lemma 6. Let τi ∈ Tland be the set of landmarks returned by the algorithm Sweep, where τi’s are ordered increas-
ingly. Within each zone [τi−1, τi), for 1 ≤ i < |Tland|, there exists at least a job j ∈ J whose allowed interval Ij is
completely contained in such a zone, i.e., Ij ⊆ [τi−1, τi).

We create a new instance I1 based on I in the same manner as before. For each job j ∈ J with its allowed
interval Ij = [rj , dj) , suppose that

τi−1 ≤ rj < τi < τi+1 < · · · < τi+k < dj ≤ τi+k+1.

Then as in Transformation I, we replace its allowed interval Ij = [rj , dj) with a set of allowed intervals
⋃k+2
s=1 Ijs,

where

Ij1 = [rj , τi), Ij(k+2) = [τi+k, dj), and Ijs = [τs+i−2, τs+i−1) for 2 ≤ s ≤ k + 1.

Lemma 7. Let OPTI and OPTI1 denote the optimal schedules for instances I and I1 respectively. Then E(OPTI1) ≤
2α−1E(OPTI).

Proof. The proof is almost the same as the proof of Lemma 1. By Lemma 6, we know that no execution OPTI(j)
spans more than one landmark. Using this fact we can build OPT I1 where all jobs are executed within their allowed
intervals with at most double their speeds in OPTI . As OPT I1 is feasible for I1, the proof follows by the fact that
E(OPTI1) ≤ E(OPT I1).

10

Transformation I2

In I1, each job has at most one allowed interval in the zone [τi−1, τi). Let J ′ ⊆ J be the set of jobs j that have
exactly one allowed interval in [τi−1, τi). Assume that j ∈ J ′ has the allowed interval Ij1 = [rj1, dj1). As before,
we can divide J ′ into three groups A, B and C: (1) j ∈ A, if rj1 = τi−1, dj1 < τi; (2) j ∈ B if τi−1 < rj1, dj1 = τi;
and (3) j ∈ C if rj1 = τi−1, dj1 = τi.

However, unlike the laminar case, the allowed intervals of jobs in groups A and B can overlap (see Figure 2(b))
in instance I1. Thus the technique employed in Transformation II breaks down.

To deal with this, we shorten the allowed intervals of jobs in groups A and B so that in the new instance I1,1,
the allowed intervals of jobs in group A do not overlap with those of jobs in group B. We argue that the cost of the
optimal solution in instance I1,1 does not increase by too much compared to the optimal solution in instance I1.

We now transform I1 into I1,1 as follows. For the zone [τi−1, τi), let again dAl be the latest deadline in group
A and rBf the earliest release time in group B. Suppose that j ∈ J ′ and its allowed interval is Ij1 = [rj1, dj1).

• If j ∈ A and dj1 > τi−1 + dAl−τi−1

2 , then replace j’s allowed interval with I ′j1 = [τi−1, τi−1 + dAl−τi−1

2).

• If j ∈ B and rj1 < τi − τi−dBf
2 , then replace j’s allowed interval with I ′j1 = [τi − τi−rBf

2 , τi).

Observe that because Lemma 2 still holds for instances I1 and I1,1, we can assume that the jobs in group A are
processed first, then the jobs in group C, and then jobs in groups B. Jobs in group A (resp. group B) are processed
in the order of their increasing deadlines (resp. increasing release times). We show the following lemma.

Lemma 8. Let OPTI1 and OPTI1,1 denote the optimal schedules for instances I1 and I1,1 respectively. Then
E(OPTI1,1) ≤ 2α−1E(OPTI).

Proof. We build a feasible schedule OPT I1,1 for instance I1,1 based on OPTI1 and show that the cost of the former
is at most 2α−1 times larger than the latter.

We construct OPT I1,1 for each zone [τi−1, τi) separately. For simplicity, assume that τi−1 = 0. Let ξA =
τi−1 + (dAl − τi−1)/2 and ξB = τi − (τi − rBf)/2. Let J ′′ be the subset of jobs that are processed in this zone
[τi−1, τi) under OPTI1 .

Similar to the proof of Claim 1, assume that every job j in J ′′ ∩ A takes tj = |OPTI1(j)| time to finish. We
can assume, by Lemma 2, that the jobs in J ′′ ∩A are executed by the earliest deadline first principle. In OPT I1,1
we process the jobs in J ′′ ∩ A again according to the earliest deadline first principle but each job j only for time
tj/2 (i.e., at twice speed than the one it had in OPTI1). We need to prove that this modified schedule is feasible.

Observe that ej(OPTI1) =
∑j
i=1 ti and ej(OPT I1,1) =

∑j
i=1

ti
2 , we get that ej(OPT I1,1) = 1

2ej(OPTI1) holds
for all 1 ≤ j ≤ |J ′′ ∩ A|. Therefore, we claim that all jobs in A ∩ J ′′ are feasibly processed (i.e., before their
deadlines) in I1,1, since by our choice of ξA = τi−1 + (dAl − τi−1)/2, their allowed intervals are shortened by at
most a factor of 2. By a symmetric argument, all jobs in J ′′ ∩ B can be feasibly processed within [ξB , τi) with
their speeds doubled in OPT I1,1 for I1,1. Finally in OPT I1,1 , we can process all jobs in C ∩J ′′ with their original

speeds in I1, because the jobs in (A∪B)∩J ′′ use only half of their execution times in OPT I1,1 , and by definition,
all jobs in C have their allowed interval spanning the entire zone [τi−1, τi).

Finally, as all jobs are processed with at most double speeds in OPT I1,1 , by Proposition 1,

E(OPT I1,1) ≤ 2α−1E(OPTI1).

Now the proof follows by the fact that E(OPTI1,1) ≤ E(OPT I1,1).

Combining Lemmas 7, 8, 3, and 5, we complete the proof of Theorem 1.

References

[1] S. Albers. Energy-efficient algorithms. In Comm. of the ACM, 53(5), 86-96, 2010.

[2] Y. Azar and A. Epstein. Convex programming for scheduling unrelated parallel machines. In STOC 2005,
331-337.

11

[3] N. Bansal, T. Kimbrel and K. Pruhs. Speed scaling to manage energy and temperature. In J. ACM, 54:1, 2007

[4] Y. Bartal, S. Leonardi, G. Shallom and R. Sitters. On the value of preemption in scheduling. In APPROX
2006, 39-48.

[5] O. Braun and G. Schmid. Parallel processor scheduling with limited number of preemptions. In SIAM J.
Computing, 32:671-680, 2003.

[6] D. M. Brooks, P. Bose, S. E. Schuster, H. Jacobson, P. N. Kudva, A. Buyuktosunoglu, J.-D. Wellman, V.
Zyuban, M. Gupta and P. W. Cook. Power-aware microarchitecture: Design and modeling challenges for
next-generation microprocessors. In IEEE Micro, 20(6):26-44, 2000.

[7] J.-J. Chen, T.-W. Kuo and H.-I Lu. Power-saving scheduling for weakly dynamic voltage scaling devices. WADS
2005, 338-349.

[8] J. Chuzhoy and P. Codenotti. Resource minimization job scheduling. APPROX 2009, 70-83.

[9] J. Chuzhoy, R. Ostrovsky and Y. Rabani. Approximation algorithms for the job interval selection problem and
related scheduling problems. Math. Oper. Res. 31(4), 730-738, 2006.

[10] R.T. Dimpsey and R.K. Iyer. Performance degradation due to multiprogramming and system overheads in real
workloads: Case study on a shared memory multiprocessor. In International Conference on Supercomputing
1990, 227-238.

[11] Y. Etsion, D. Tsafrir and D.G. Feitelson. Effects of clock resolution on the scheduling of interactive and soft
real-time processes. In SIGMETRICS 1990, 172-183.

[12] M.R. Garey and D.S. Johnson. Computers and intractability: a guide to the theory of NP-Completeness. W.H.
Freeman, 1979.

[13] C. Natarajan, S. Sharma and R.K Iyer. Measurement-based characterization of global memory and network
connection, operating system and parallelization overheads: Case study on a shared memory multiprocessor.
In Annual International Symposium on Computer Architecture, 21:71-80, 1994.

[14] M. Li, B.J. Liu and F.F. Yao. Min-energy voltage allocation for tree-structured tasks. In J. Combinatorial
Optimization, 11:305-319, 2006.

[15] M. Li and F.F. Yao. An efficient algorithm for computing optimal discrete voltage schedules. SIAM J. on
Computing, 35:658-671, 2005.

[16] F.F. Yao, A.J. Demers and S. Shenker. A scheduling model for reduced CPU energy. In FOCS 1995, 374-382.

12

