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Improved Multi-Pass Streaming Algorithms for

Submodular Maximization with Matroid Constraints∗

Chien-Chung Huang† Theophile Thiery‡ Justin Ward‡

Abstract

We give improved multi-pass streaming algorithms for the problem of
maximizing a monotone or arbitrary non-negative submodular function
subject to a general p-matchoid constraint in the model in which elements
of the ground set arrive one at a time in a stream. The family of constraints
we consider generalizes both the intersection of p arbitrary matroid con-
straints and p-uniform hypergraph matching. For monotone submodular
functions, our algorithm attains a guarantee of p + 1 + ε using O(p/ε)-
passes and requires storing only O(k) elements, where k is the maximum
size of feasible solution. This immediately gives an O(1/ε)-pass (2 + ε)-
approximation algorithms for monotone submodular maximization in a ma-
troid and (3 + ε)-approximation for monotone submodular matching. Our
algorithm is oblivious to the choice ε and can be stopped after any number
of passes, delivering the appropriate guarantee. We extend our techniques
to obtain the first multi-pass streaming algorithm for general, non-negative
submodular functions subject to a p-matchoid constraint with a number of
passes independent of the size of the ground set and k. We show that a
randomized O(p/ε)-pass algorithm storing O(p3k log(k)/ε3) elements gives
a (p + 1 + γ̄off + O(ε))-approximation, where γ̄off is the guarantee of the
best-known offline algorithm for the same problem.

1 Introduction

Many discrete optimization problems in theoretical computer science, operations
research, and machine learning can be cast as special cases of maximizing a
submodular function f subject to some constraint. Formally, a function f :
2X → R≥0 is submodular if and only if f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B)
for all A,B ⊆ X. One reason for the ubiquity of submodularity in optimization
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settings is that it also captures a natural “diminishing returns” property. Let
f(e | A) , f(A+ e)− f(A) be the marginal increase obtained in f when adding
an element e to a set A (where here and throughout we use the shorthands
A+ e and A− e for A∪ {e} and A\{e}, respectively). It is well-known that f is
submodular if and only if f(e | B) ≤ f(e | A) for any A ⊆ B and any e 6∈ B. If
additionally we have f(e | A) ≥ 0 for all A and e 6∈ A we say that f is monotone.

Here, we consider the problem of maximizing both monotone and arbitrary
submodular functions subject to an arbitrary p-matchoid constraint on the set
of elements that can be selected. Formally, a p-matchoid Mp = (Ip,X) on
X is given by a collection of matroids {Mi = (Xi,Ii)} each defined on some
subset of X, where each e ∈ X is present in at most p of these subsets. A
set S ⊆ X is then independent if and only if S ∩ Xi ∈ Ii for each matroid
Mi. One can intuitively think of a p-matchoid as a collection of matroids in
which each element “participates” in at most p of the matroid constraints. The
resulting family of constraints is quite general and captures both intersections of
pmatroid constraints (by letting Xi = X for allMi) and matchings in p-uniform
hypergraphs (by considering X as a collection of hyperedges and defining a
uniform matroid constraint for each vertex, ensuring that at most one hyperedge
containing this vertex is selected).

In many applications of submodular optimization, such as summarization [1,
20, 22, 24] we must process datasets so large that they cannot be stored in mem-
ory. Thus, there has been recent interest in streaming algorithms for submodular
optimization problems. In this context, we suppose the ground set X is initially
unknown and elements arrive one-by-one in a stream. We suppose that the
algorithm has an efficient oracle for evaluating the submodular function f on
any given subset of X, but has only enough memory to store a small number
of elements from the stream. Variants of standard greedy and local search algo-
rithms have been developed that obtain a constant-factor approximation in this
setting, but their approximation guarantees are considerably worse than that of
their simple, offline counterparts.

Here, we consider the multi-pass setting in which the algorithm is allowed to
perform several passes over a stream—in each pass all of X arrives in some order,
and the algorithm is still only allowed to store a small number of elements. In the
offline setting, simple variants of greedy [15] or local search [13, 18] algorithms
in fact give the best-known approximation guarantees for maximizing submod-
ular functions subject to the p-matroid constraints or a general p-matchoid con-
straint. However, these algorithms potentially require considering all elements
in X each time a choice is made. It is natural to ask whether this is truly nec-
essary, or whether we could instead recover an approximation ratio nearly equal
to these offline algorithms by using only a constant number of passes through
the data stream.
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1.1 Our Results

Here we show that for monotone submodular functions, O(1/ε)-passes suffice to
obtain guarantees only (1 + ε) times worse than those guaranteed by the offline
local search algorithm. We give an O(p/ε)-pass streaming algorithm that gives a
p+1+ε approximation for maximizing a monotone submodular function subject
to an arbitrary p-matchoid constraint. It immediately gives us an O(1/ε)-pass
streaming algorithm attaining a 2 + ε approximation for matroid constraints
and a 3+ ε approximation for matching constraints in graphs. Each pass of our
algorithm is equivalent to a single pass of the streaming local search algorithm
described by Chakrabarti and Kale [6] and Chekuri, Gupta, and Quanrud [7].
However, obtaining a rapid convergence to a p + 1 + ε approximation requires
some new insights. We show that if a pass makes either large or small progress
in the value of f , then the guarantee obtained at the end of this pass can be im-
proved. Balancing these two effects then leads to a carefully chosen sequence of
parameters for each pass. Our general approach is similar to that of Chakrabarti
and Kale [6], but our algorithm is oblivious to the choice of ε. This allows us to
give a uniform bound on the convergence of the approximation factor obtained
after some number d of passes. This bound is actually available to the algo-
rithm, and so we can certify the quality of the current solution after each pass.
In practice, this allows for terminating the algorithm early if a sufficient guaran-
tee has already been obtained. Even in the worst case, however, we improve on
the number of passes required by similar previous results by a factor of O(ε−2).
Our algorithm only requires storing O(k) elements, where k is the rank of the
given p-matchoid, defined as the size of the largest independent set of elements.

Building on these ideas, we also give a randomized, multi-pass algorithm that
uses O(p/ε)-passes and attains a p+1+γ̄off+O(ε) approximation for maximizing
an arbitrary submodular function subject to a p-matchoid constraint, where γ̄off
is the approximation ratio attained by best-known offline algorithm for the same
problem. To the best of our knowledge, ours is the first multipass algorithm when
the function is non-monotone with a number of passes independent of n and k,
where n is the size of the ground set. In this case, our algorithm requires storing
O(p3k log k/ε3) elements. We remark that to facilitate comparison with existing
work, we have stated all approximation guarantees as factors γ ≥ 1. However,
we note that if one states ratios of the form 1/γ less than 1, then our results
lead to 1/γ − ε approximations in which all dependence on p can be eliminated
(by setting simply selecting some ε′ = pε).
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1.2 Related Work

Current State of the Art

Offline Streaming
Constraint

M NN M NN

matroid e/(e− 1) [5] 2.598 [3] 4 [6, 7, 11] 5.8284 [11]

(p, b)-hyp.m p+ ε [13] p
2+ε

p−1 [13] 4p [7, 11] 4p+ 2− o(1) [11]

p-mat.int p+ ε [18] p
2+(p−1)ε

p−1 [18] 4p [6, 7, 11] 4p+ 2− o(1) [11]
ep

(1−ε)(2−o(1))p-matchoid p+ 1 [2, 15]
[8, 12]

4p [7, 11] 4p+ 2− o(1) [11]

Table 1: Approximation ratio in offline and streaming setting

Multipass Our results
Constraint

M #-passes NN M NN #-passes

matroid 2 + ε [6] O(1/ε3) [6] ∗ 2 + ε 4.589 + ε O(1/ε)

(p, b)-hyp.m p+ 1 + ε O(p4 log(p)/ε3) ∗ p+ 1 + ε O(p/ε)
[6] [6]

p+ 1 +O(ε)

+ p
2

p−1

p-mat.int p+ 1 + ε O(p4 log(p)/ε3) ∗ p+ 1 + ε O(p/ε)
[6] [6]

p+ 1 +O(ε)

+ p
2

p−1

p-matchoid ∗ ∗ ∗ p+ 1 + ε
p+ 1 +O(ε)
+ ep

(1−ε)(2−o(1))
O(p/ε)

Table 2: Summary of results for maximizing a submdodular function in the
multipass streaming.

We use the following abbreviations: M means monotone and NN means that
f is non-negative. p-mat.int means p-matroid intersection and (p, b)-hyp.m
denotes rank p-hypergraph b-matching.
∗: If we restrict ourselves with algorithms performing O(poly(ε, p))-passes
then only the 1-pass setting is understood.

There is a vast literature on submodular maximization with various con-
straints and different models of computation. In the offline model, the work on
maximizing a monotone submodular function goes back to Nemhauser, Wolsey
and Fischer [25]. Monotone submodular functions are well studied and many
new and powerful results have been obtained since then. The best approxima-
tion algorithm under a matroid constraint is due to Calinescu et al. [5] which is
the best that can be done using a polynomial number of queries [25] (if f is given
as a value oracle) or assuming P 6= NP [9] (if f is given explicitly). For more
general constraints, Lee, Sviridenko and Vondrák obtained a p + ε approxima-
tion algorithm under p-matroid intersection constraint [18]. Feldman et al. [13]
obtained the same approximation ratio for the general class of p-exchange sys-
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tems. For general p-matchoid constraints, the best approximation ratio is p+1,
which is attained by the standard greedy algorithm [15].

Non-monotone objectives are less understood even under the simplest as-
sumptions. The current best-known result for maximizing a submodular func-
tion under a matroid constraint is 2.598 [3], which is far from the 2.093 hardness
result [16]. Table 1 gives the best known bounds for the constraints that we
consider in the paper.

Due to the large volume of data in modern applications, there has also been
a line of research focused on developing fast algorithms for submodular maxi-
mization [2, 23]. However, all results we have discussed so far assume that the
entire instance is available at any time, which may not be feasible for massive
datasets. This has motivated the study of streaming submodular maximization
algorithms with low memory requirements. Badaniyuru et al. [1] achieved a
2+ ε approximation algorithm for maximizing a monotone submodular function
under a cardinality constraint in the streaming setting. This was recently shown
to be the best possible bound attainable in one pass with memory sublinear in
the size of the instance [14]. Chakrabarti and Kale [6] gave a 4p approximation
for p-matroid intersection constraint or p-uniform hypergraph matching. Later,
Chekuri et al. [7] generalized their argument to arbitrary p-matchoid constraints,
and also gave a modified algorithm for handling non-monotone submodular ob-
jectives. A fast, randomized variant of the algorithm of [6] was studied by Feld-
man, Karbasi and Kazemi [11], who showed that it has the same approximation
guarantee when f is monotone and achieves a 2p+2

√

p(p+ 1)+1 = 4p+2−o(1)
approximation for general submodular function. Related to our work, there is
an active research direction focusing on streaming (sub)modular maximization
subject to matching constraints. For submodular maximization, the best ap-
proximation is 3 + 2

√
2 and 4 + 2

√
3 for monotone and non-montone functions

respectively [19].
When multiple passes through the stream are allowed, less is known and the

tradeoff between the approximation guarantee and the number of passes requires
more attention. Assuming cardinality constraints, one can obtain a e

e−1 +ε mul-
tipass streaming algorithm in O(1/ε)-passes (see [2, 17, 21, 22, 26]). Huang et
al. [17] achieved a 2 + ε approximation under a knapsack constraint in O(1/ε)
passes. For the intersection of p-partition matroids or rank p-hypergraph match-
ing, the number of passes becomes dependent on p. Chakrabarti and Kale [6]1

showed that if one allows O
(

p4 log(p)/ε3
)

-passes, a p + 1 + ε approximation
is possible. Here we show how to obtain the same guarantee for an arbitrary
p-matchoid constraint, while reducing the number of passes to O(p/ε).

1In [6] a bound of O(log p/ε3) is stated. We note that there appears to be a small oversight in
their analysis, arising from the fact that their convergence parameter κ in this case is O(ε3/p4).
In any case, it seems reasonable to assume that p is a small constant in most cases.
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Algorithm 1: The multi-pass streaming local search algorithm

procedure MultipassLocalSearch(α, β1, . . . , βd)
S0 ← ∅;
for i = 1 to d do

Let S̃ be the output of StreamingLocalSearch(α, βi, Si−1);

Si ← S̃;

return Sd;

procedure StreamingLocalSearch(α, β, Sinit)
S ← Sinit;
foreach x in the stream do

if x ∈ Sinit then discard x;
Cx ← Exchange(x, S);
if f(x|S) ≥ α+ (1 + β)

∑

c∈Cx
ν(c, S) then

S ← S\Cx + x;

return S;

2 The main multi-pass streaming algorithm

For monotone functions, our main multi-pass algorithm is given by the procedure
MultipassLocalSearch in Algorithm 1. We suppose that we are given a
submodular function f : 2X → R≥0 and a p-matchoid constraintMp = (Ip,X)
on X given as a collection of matroids {Mi = (Xi,Ii)}. Our procedure runs
for d passes, each of which uses a modification of the algorithm of Chekuri,
Gupta, and Quanrud [7], given as the procedure StreamingLocalSearch. In
each pass, procedure StreamingLocalSearch maintains a current solution
S, which is initially set to some Sinit. Whenever an element x ∈ Sinit arrives
again in the subsequent stream, the procedure simply discards x. For all other
elements x, the procedure invokes a helper procedure Exchange, given formally
in Algorithm 2, to find an appropriate set Cx ⊆ S of up to p elements so that
S\Cx + x ∈ I. It then exchanges x with Cx if it gives a significantly improved
solution. The improvement is measured with respect to a set of auxiliary weights
ν(x, S) maintained by the algorithm. For u, v ∈ X, let u ≺ v denote that
“element u arrives before v” in the stream. Then, we define the incremental
value of an element e with respect to a set T as

ν(e, T ) = f(e | {t′ ∈ T : t′ ≺ e}) .

There is a slight difficulty here in that we must also define incremental values for
the elements of Sinit. To handle this difficulty, we in fact define ≺ with respect
to a pretend stream ordering. Note that in all invocations of the procedure
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Algorithm 2: The procedure Exchange(x, S)

procedure Exchange(x, S)
Cx ← ∅;
foreachMℓ = (Xℓ,Iℓ) with x ∈ Xℓ do

Sℓ ← S ∩Xℓ;
if Sℓ + x 6∈ I then

Tℓ ← {y ∈ Sℓ : Sℓ − y + x ∈ Iℓ};
Cx ← Cx + argmint∈Tℓ

ν(t, S);

return Cx;

StreamingLocalSearch made by MultipassLocalSearch, the set Sinit is
either ∅ or the result of a previous application of StreamingLocalSearch.
In our pretend ordering (≺) all of Sinit first arrives in the same relative pretend
ordering as the previous pass, followed by all of X\Sinit in the same order given
by the stream X. We then define our incremental values with respect to this
pretend stream ordering.

Using these incremental values, StreamingLocalSearch proceeds as fol-
lows. When an element x 6∈ Sinit arrives, StreamingLocalSearch computes a
set of elements Cx ⊆ S that can be exchanged for x. StreamingLocalSearch
replaces Cx with x if and only if the marginal value f(x | S) with respect to S
is at least (1 + β) times larger than the sum of the current incremental values
ν(c, S) of all elements c ∈ Cx plus some threshold α, where α, β > 0 are given as
parameters. In this case, we say that the element x is accepted. Otherwise, we
say that x is rejected. An element x ∈ S that has been accepted may later be
removed from S if x ∈ Cy for some later element y that arrives in the stream.
In this case we say that x is evicted.

The approximation ratio obtained by one pass of StreamingLocalSearch
depends on the parameter β in two ways, which can be intuitively understood
in terms of the standard analysis of the offline local search algorithm for the
problem. Intuitively, if β is chosen to be too large, more valuable elements will
be rejected upon arrival and so, in the offline setting, our solution would be
only approximately locally optimal, leading to a deterioration of the guarantee
by a factor of (1 + β). However, in the streaming setting, the algorithm only
attempts to exchange an element upon its arrival, and so the final solution will
not necessarily be even (1 + β)-approximately locally optimal—an element x
may be rejected because f(x | S) is small when it arrives, but the processing of
later elements in the stream can evict some elements of S. After these evictions,
we could have f(x | S) larger. The key observation in the analyses of [6, 7] is
that the total value of these evicted elements—and so also the total increase in
the marginal value of all rejected elements—can be bounded by O( 1

β
) times the
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final value of f(S) at the end of the algorithm. Intuitively, if β is chosen to
be too small, the algorithm will make more exchanges, evicting more elements,
which may result in rejected elements being much more valuable with respect
to the final solution. Selecting the optimal value of β thus requires balancing
these two effects.

Here, we observe that this second effect depends only on the total value
of those elements that were accepted after an element arrives. To use this
observation, we measure the ratio δ = f(Sinit)/f(S̃) between the value of the
initial solution Sinit of some pass of StreamingLocalSearch and the final
solution S̃ produced by this pass. If δ is relatively small—and so one pass makes
a lot of progress—then this pass gives us an improvement of δ−1 over the ratio
already guaranteed by the previous pass since f(S̃) = δ−1f(Sinit). On the other
hand, if δ is relatively large—and so one pass does not make much progress—
then the total increase in the value of our rejected elements can be bounded by
1−δ
β

f(S̃), and so the potential loss due to only testing these elements at arrival
is relatively small. Balancing these two effects allows us to set β smaller in each
subsequent passes and obtain an improved guarantee.

We now turn to the analysis of our algorithm. Here we focus on a single pass
of StreamingLocalSearch. For T,U ⊆ X we let f(T | U) , f(T∪U)−f(U).
Throughout, we use S to denote the current solution maintained by this pass
(initially, S = Sinit). The following key properties of incremental values will be
useful in our analysis. We defer the proof to the Appendix.

Lemma 2.1. For any T ⊆ U ⊆ X,

1.
∑

e∈T ν(e, T ) = f(T )− f(∅).

2. ν(e, U) ≤ ν(e, T ) for all e ∈ T .

3. f(T | U\T ) ≤∑

t∈T ν(t, U).

4. At all times during the execution of StreamingLocalSearch, ν(e, S) ≥
α for all e ∈ S.

Let A denote the set of elements accepted during the present pass. These
are the elements which were present in the solution S at some previous time
during the execution of this pass. Initially we have A = S = Sinit and whenever
an element is added to S, during this pass we also add this element to A. Let
Ã and S̃ denote the sets of elements A and S at the end of this pass. Note
that we regard all elements of Sinit as having been accepted at the start of the
pass. The following lemma follows from the analysis of Chekuri, Gupta, and
Quanrud [7] in the single-pass setting. We give a complete, self-contained proof
in Appendix A. Each element e ∈ Ã\S̃ was accepted but later evicted by the
algorithm. For any such evicted element, we let χ(e) denote the value of ν(e, S)
at the moment that e was removed from S.
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Lemma 2.2. Let f : 2X → R≥0 be a submodular function. Suppose S̃ is the
solution produced at the end of one pass of StreamingLocalSearch and Ã
be the set of all elements accepted during this pass. Then,

f(OPT ∪ Ã) ≤ (p + βp− β)
∑

e∈Ã\S̃

χ(e) + (p+ βp + 1)f(S̃) + kα .

We now derive a bound for the summation
∑

e∈Ã\S̃ χ(e) (representing the

value of evicted elements) in terms of the total gain f(S̃)− f(Sinit) made by the
pass, and also bound the total number of accepted elements in terms of f(OPT ).

Lemma 2.3. Let f : 2X → R≥0 be a submodular function. Suppose that S̃ is
the solution produced at the end of one pass of StreamingLocalSearch and
Ã is the set of all elements accepted during this pass. Then, |Ã| ≤ f(OPT )/α
and

∑

e∈Ã\S̃

χ(e) ≤ 1

β

(

f(S̃)− f(Sinit)
)

.

Proof. We consider the quantity Φ(A) ,
∑

e∈A\S χ(e). Suppose some element
a with Ca 6= ∅ is added to S by the algorithm, evicting the elements of Ca.
Then (as each element can be evicted only once) Φ(A) increases by precisely
∆ ,

∑

e∈Ca
χ(e). Let S−

a , S
+
a and A−

a , A
+
a be the sets S and A, respectively,

immediately before and after a is accepted. Let δa := f(S+
a ) − f(S−

a ) be the
change in the objective function after the exchange between a and Ca. Since a
is accepted, we must have f(a | S−

a ) ≥ α+ (1 + β)
∑

e∈Ca
ν(e, S−

a ). Then,

δa = f(S−
a \Ca + a)− f(S−

a ),

= f(a | S−
a \Ca)− f(Ca | S−

a \Ca),

≥ f(a | S−
a )− f(Ca | S−

a \Ca), (by submodularity)

≥ f(a | S−
a )−

∑

e∈Ca

ν(e, S−
a ), (by Lemma 2.1 (3))

≥ α+ (1 + β)
∑

e∈Ca

ν(e, S−
a )−

∑

e∈Ca

ν(e, S−
a ), (since a is accepted)

= α+ β
∑

e∈Ca

χ(e) (by definition of χ(e))

= α+ β∆.

It follows that whenever Φ(A) increases by ∆, f(S) must increase by at least
β∆. Initially, Φ(A) = 0 and f(S) = f(Sinit) and at the end of the algorithm,
Φ(A) =

∑

e∈Ã\S̃ χ(e) and f(S) = f(S̃). Thus, β
∑

e∈Ã\S̃ χ(e) ≤ [f(S̃)−f(Sinit)].
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It remains to show that |Ã| ≤ f(OPT )/α. For this, we note that the above
chain of inequalities also implies that every time an element is accepted (and
so |A| increases by one), f(S) also increases by at least α. Thus, we have
f(OPT ) ≥ f(S̃) ≥ α|Ã|.

Using Lemma 2.3 to bound the sum of exit values in Lemma 2.2 then im-
mediately gives us the following guarantee for each pass performed in Multi-

passLocalSearch. In the ith such pass, we will have Sinit = Si−1, S̃ = Si,
and β = βi. We let Ai denote the set of Ã of all elements accepted during this
particular pass.

Lemma 2.4. Let f : 2X → R≥0 be a submodular function. Consider the ith pass
of StreamingLocalSearch performed by MultipassLocalSearch, and let
Ai be the set of all elements accepted during this pass. Then, |Ai| ≤ f(OPT )/α
and

f(OPT ∪Ai) ≤ (p/βi + p− 1) [f(Si)− f(Si−1)] + (p+ pβi + 1)f(Si) + kα .

3 Analysis of the multipass algorithm for monotone

functions.

We now show how to use Lemma 2.4 together with a careful selection of param-
eters α and β1, . . . , βd to derive guarantees for the solution f(Si) produced after
the ith pass made in MultipassLocalSearch. Here, we consider the case that
f is a monotone function. In this case, we have f(OPT ) ≥ f(OPT ∪Ai) for all
i. We set α = 0 in each pass. In the first pass, we will set β1 = 1. Then, since
S0 = ∅ Lemma 2.4 immediately gives:

f(OPT ) ≤ f(OPT ∪A1) ≤ (2p− 1) [f(S1)− f(∅)] + (2p+ 1)f(S1) = 4pf(S1) .
(1)

For passes i > 1, we use the following, which relates the approximation guarantee
obtained in this pass to that from the previous pass.

Theorem 1. For i > 1, suppose that f(OPT ) ≤ γi−1 · f(Si−1) and define

δi =
f(Si−1)
f(Si)

as the ratio between the two previous passes. Then,

f(OPT ) ≤ min
{

γi−1δi, (
p
βi

+ p− 1)(1 − δi) + p+ βip+ 1
}

· f(Si) + kα .

Proof. From the definition of γi−1 and δi, we have:

f(OPT ) ≤ γi−1f(Si−1) = γi−1δif(Si) .

On the other hand, f(Si)− f(Si−1) = (1− δi)f(Si). Thus, Lemma 2.4 gives:

f(OPT ) ≤ [(p/βi + p− 1) (1− δi) + p+ βip+ 1] f(Si) + kα .

10



Now, we observe that for any fixed guarantee γi−1 from the previous pass,
γi−1δi is an increasing function of δi and (p/βi+ p− 1)(1− δi)+ p+βip+1 is an
decreasing function of δi. Thus, the guarantee we obtain in Theorem 1 is always
at least as good as that obtained when these two values are equal. Setting:

γi−1δi = ( p
βi

+ p− 1)(1 − δi) + p+ βip+ 1,

and solving for δi gives us:

δi =
p(1 + βi)

2

p+ βi(γi−1 − 1 + p)
. (2)

In the following analysis, we consider this value of δi since the guarantee given by
Theorem 1 will always be no worse than that given by this value. The analysis
for a single matroid constraint follows from our results for p-matchoids, but
the analysis and parameter values obtained are much simpler, so we present it
separately, first.

Theorem 2. Suppose we run Algorithm 1 for an arbitrary matroid constraint
and monotone submodular function f , with βi = 1

i
. Then 2(1 + 1

i
)f(Si) ≥

f(OPT ) for all i > 0. In particular, after i = 2
ε
passes, (2+ ε)f(Si) ≥ f(OPT ).

Proof. Let γi be the guarantee for our algorithm after i passes. We show, by
induction on i, that γi ≤ 2(i+1)

i
. For i = 1, we have β1 = 1 and so from (1) we

have γ1 = 4, as required. For i > 1, suppose that γi−1 ≤ 2i
i−1 . Since p = 1 and

βi = 1/i, identity (2) gives:

δi ≤
(1 + 1

i
)2

1 + 1
i
( 2i
i−1)

=

(i+1)2

i2

(i−1)+2
i−1

=
(i− 1)(i + 1)

i2
.

Thus, by Theorem 1, the ith pass of our algorithm has guarantee γi satisfying:

γi ≤ γi−1δi ≤
2i

i− 1

(i− 1)(i + 1)

i2
=

2(i+ 1)

i
,

as required.

Theorem 3. Suppose we run Algorithm 1 for an arbitrary p-matchoid constraint
and monotone submodular function f , β1 = 1 and

βi =
γi−1 − 1− p

γi−1 − 1 + p
,

for i > 1, where γi is given by the recurrence γ1 = 4p and

γi = 4p
γi−1(γi−1 − 1)

(γi−1 − 1 + p)2
,

for i > 1. Then
(

p+ 1 + 4p
i

)

f(Si) ≥ f(OPT ) for all i > 0. In particular, after

i = 4p
ε

passes, (p+ 1 + ε)f(Si) ≥ f(OPT ).
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Proof. We first show that approximation guarantee of our algorithm after i
passes is given by γi. Setting β1 = 1, we obtain γ1 = 4p from (1), agreeing
with our definition. For passes i > 1, let βi = γi−1−1−p

γi−1−1+p
. As in the case of

matroid constraint, Theorem 1 implies that the guarantee for pass i will be at
most δiγi−1, where δi is chosen to satisfy (2). Specifically, if we set

δi =
p
(

1 + γi−1−1−p
γi−1−1+p

)2

p+ γi−1−1−p
γi−1−1+p

(γi−1 − 1 + p)
=

p
(

2(γi−1−1)
γi−1−1+p

)2

γi−1 − 1
=

4p(γi−1 − 1)

(γi−1 − 1 + p)2
,

then we have δiγi−1 = γi.
We now show by induction on i that γi ≤ p + 1 + 4p

i
. In the case i = 1, we

have γ1 = 4p and the claim follows immediately from p ≥ 1. In the general case
i > 0, and we may assume without loss of generality that γi−1 ≥ 1. Otherwise
the theorem holds immediately, as each subsequent pass can only increase the
value of the solution. Then, we note (as shown in Appendix B) that for p ≥ 1
and γi−1 ≥ 1, γi is an increasing function of γi−1. By the induction hypothesis,
γi−1 ≤ p+ 1 + 4p

i−1 . Therefore:

γi ≤
4p

(

p+ 1 + 4p
i−1

)(

p+ 4p
i−1

)

(

2p + 4p
i−1

)2 ≤ p+ 1 + 4p
i
,

as required. The last inequality above follows from straightforward but tedious
algebraic manipulations, which can be found in Appendix B.

4 A multi-pass algorithm for general submodular

functions

In this section, we show that the guarantees for monotone submdodular maxi-
mization can be extended to non-monotone submodular maximization even when
dealing with multiple passes. Our main algorithm is given by procedure Mul-

tipassRandomizedLocalSearch in Algorithm 3. In each pass, it calls a pro-
cedure RandomizedLocalSearch, which is an adaptation of StreamingLo-
calSearch, to process the stream. Note that each such pass produces a pair
of feasible solutions S and S′, which we now maintain throughout Multipass-

RandomizedLocalSearch. The set S is maintained similarly as before and
gradually improves by exchanging “good” elements into a solution throughout
the pass. The set S′ will be maintained by considering the best output of an
offline algorithm that we run after each pass as described in more detail below.

To deal with non-monotone submodular functions, we will limit the prob-
ability of elements being added to S. Instead of exchanging good elements on
arrival, we store them in a buffer B of size m. When the buffer becomes full,

12



Algorithm 3: The randomized multi-pass streaming algorithm

procedure MultipassRandomizedLocalSearch(α, β1, . . . , βd,m)
S0 ← ∅, S′

0 ← ∅;
for i = 1 to d do

Let (S̃, S′) be the output of
RandomizedLocalSearch(Si−1, α, βi,m);

Si ← S̃, S′
i ← argmax{f(S′

i−1), f(S
′)};

return S̄ = argmax{f(Sd), f(S
′
d)};

procedure RandomizedLocalSearch(Sinit, α, β,m)
S ← Sinit; B ← ∅;
foreach x in the stream do

if f(x | S) ≥ α+ (1 + β)
∑

e∈Cx
ν(e, S) then

B ← B + x;

if |B| = m then

x← uniformly random element from B;
Cx ← Exchange(x, S);
B ← B − x; S ← S + x− Cx;
foreach x′ in B do

Cx′ ← Exchange(x′, S);
if f(x′ | S) < α+ (1 + β)

∑

e∈C
x′
ν(e, S) then

B ← B − x′;

S′ ← Offline(B);
return (S, S′);

an element is chosen uniformly at random and added to S. Adding a new el-
ement to the current solution may affect the quality of the remaining elements
in the buffer and thus we need to re-evaluate them and remove the elements
that are no longer good. As before, we let A denote the set of elements that
were previously added to S during the current pass of the algorithm. Note that
we do not consider an element to be accepted until it has actually been added
to S from the buffer. For any fixed set of random choices, the execution of
RandomizedLocalSearch can be considered as the execution of Streamin-
gLocalSearch on the following stream: we suppose that an element x arrives
whenever it is selected from the buffer and accepted into S. All elements that are
discarded from the buffer after accepting x then arrive, and will also be rejected
by StreamingLocalSearch. Any elements remaining in the buffer after the
execution of the algorithm do not arrive in the stream. Applying Lemma 2.4
with respect to this pretend stream ordering allows us to bound f(S̃) with re-

13



spect to f(OPT \B) (that is, the value of the part of OPT that does not remain
in the buffer B) after a single pass of RandomizedLocalSearch. Formally, let
B̃i be the value of the buffer after the ith pass of our algorithm. Then, applying
Lemma 2.4 to the set OPT\B̃i, and taking expectation, gives:

E[f(Ai ∪ (OPT\B̃i))] ≤(p/β + p− 1) (E[f(Si)]− E[f(Si−1)])

+ (p + βp+ 1)E[f(Si)] + αk . (3)

In order to bound the value of the elements in B̃i, we apply any offline γ̄off -
approximation algorithm Offline to the buffer at the end of the pass to obtain
a solution S′. In MultipassRandomizedLocalSearch, we then remember
the best such offline solution S′

i computed across the first i passes. Then, in the
ith pass, we have

E[f(OPT ∩ B̃i)] ≤ γ̄off E[f(S′)] ≤ γ̄off E[f(S′
i)] . (4)

From submodularity of f and Ai ∩ B̃i = ∅ we have f(Ai ∪ OPT ) ≤ f(Ai ∪
(OPT\B̃i)) + f(OPT ∩ B̃i). Thus, combining (3) and (4) we have:

E[f(Ai ∪OPT )] ≤ (p/β + p− 1) (E[f(Si)]− E[f(Si−1)])

+ (p+ βp+ 1)E[f(Si)] + γ̄off E[f(S′
i)] + αk . (5)

To relate the right-hand side to f(OPT ) we use the following result from Buch-
binder et al. [4]:

Lemma 4.1 (Lemma 2.2 in [4]). Let f : 2X → R≥0 be a non-negative submodular
function. Suppose that A is a random set where no element e ∈ X appears in A
with probability more than p. Then, E[f(A)] ≥ (1− p) f(∅). Moreover, for any
set Y ⊆ X, it follows that E[f(Y ∪A) ] ≥ (1− p)f(Y ).

We remark that a similar theorem also appeared earlier in Feige, Mirrokni,
and Vondrák [10] for a random set that contains each element independently
with probability exactly p. Here, the probability that an element occurs in Ai is
delicate to handle because such an element may either originate from the start-
ing solution Si−1 or be added during the pass. Thus, we use a rougher estimate.
By definition Ai ⊆ Ai∪Ai−1∪ . . .∪A1. Thus, Pr[e ∈ Ai] ≤ Pr[e ∈ Ai ∪ . . . ∪A1].
The number of selections during the jth pass is at most |Aj| and by Lemma 2.4
(applied to the set OPT \B̃j due to our pretend stream ordering in each pass j),
|Aj | ≤ f(OPT \ B̃j)/α ≤ f(OPT )/α in any pass. Here, the second inequality
follows from the optimality of OPT , and the fact that any subset of the feasible
solution OPT is also feasible for our p-matchoid constraint. Thus, the total
number of selections in the first i passes at most

∑i
j=1 |Aj | ≤ i · f(OPT )/α.

We select an element only when the buffer is full, and each selection is made
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independently and uniformly at random from the buffer. Thus, the probabil-
ity that any given element is selected when the algorithm makes a selection is
at most 1/m and by a union bound, Pr[e ∈ Ai ∪ . . . ∪A1] ≤ i · f(OPT )/(mα).
Let d be the number of passes that the algorithm makes and suppose we set
α = εf(OPT )/2k (in Appendix C we show that this can be accomplished ap-
proximately by guessing f(OPT ), which can be done at the expense of an extra
factor O(log k) space). Finally, let m = 4dk/ε2. Then, applying Lemma 4.1,
after i ≤ d passes we have:

E[f(Ai ∪OPT )] ≥(1− d · f(OPT )/(mα)) f(OPT ) ≥(1− ε/2) f(OPT ) . (6)

Our definition of α also implies that αk ≤ ε/2f(OPT ). Using this and equation
(6) in (5), we obtain:

(1− ε)f(OPT )

≤ (p/β + p− 1)(E[f(Si)]−E[f(Si−1)]) + (p+ βp+1)E[f(Si)] + γ̄off E[f(S′
i)] .

(7)

As we show in Appendix C, the rest of the analysis then follows similarly to that
in Section 3, using the fact that f(S̄) = max{f(Sd), f(S

′
d)}.

Theorem 4. Let Mp =(X,I) be a p-matchoid of rank k and let f : 2X → R≥0

be a non-negative submodular function. Suppose there exists an algorithm for the
offline instance of the problem with approximation factor γ̄off . For any ε > 0,
the randomized streaming local-search algorithm returns a solution S̄ ∈ I such
that

f(OPT ) ≤(p+ 1 + γ̄off +O(ε))E[f(S̄)]

using a total space of O
(

p3k log2 k
ε3

)

and O
(

p
ε

)

-passes.
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A Proof of Lemma 2.2

Here, we give a self-contained analysis of the single-pass algorithm of Chekuri,
Gupta, and Quanrud [7], corresponding to Algorithm 1 initialized with Sinit = ∅.
First, we prove Lemma 2.1, which concerns properties of the incremental values
maintained by Algorithm 1.

Lemma 2.1. For any T ⊆ U ⊆ X,

1.
∑

e∈T ν(e, T ) = f(T )− f(∅).

2. ν(e, U) ≤ ν(e, T ) for all e ∈ T .

3. f(T | U\T ) ≤∑

t∈T ν(t, U).

4. At all times during the execution of StreamingLocalSearch, ν(e, S) ≥
α for all e ∈ S.

Proof. Property (1) follows directly from the telescoping summation

∑

e∈T

ν(e, T ) =
∑

e∈T

[f(e ∪ {t′ ∈ T : t′ ≺ e})− f({t′ ∈ T : t′ ≺ e}] = f(T )− f(∅).

Property (2) follows from submodularity since T ⊆ U implies that {t′ ∈ T :
t′ ≺ e} ⊆ {t′ ∈ U : t′ ≺ e}.

For property (3), we note that:

f(T | U\T ) =
∑

t∈T

f(t | U\T ∪ {t′ ∈ T : t′ ≺ t}),

≤
∑

t∈T

f(t | {u′ ∈ U : u′ ≺ t}),

=
∑

t∈T

ν(t, U) ,

where the first equation follows from a telescoping summation, and the inequality
follows from submodularity, since {u′ ∈ U : u′ ≺ t} ⊆ U \ T ∪ {t′ ∈ T : t′ ≺ t}.

We prove property (4) by induction on the stream of elements arriving.
Initially S = ∅. Thus, the first time that any element x is accepted, we must
have Cx = ∅ and so f(x | S) ≥ α ≥ 0. After this element is accepted, we have
ν(x, S) = ν(x, {x}) = f(x | ∅) = α. Proceeding inductively, then, let S−

x and S+
x

be the set of elements in S before and after some new element x arrives and is
processed by Algorithm 1, and suppose that ν(s, S−

x ) ≥ α for all s ∈ S−
x . Then,

if x is rejected, we have S+
x = S−

x and so ν(s, S+
x ) = ν(s, S−

x ) ≥ α for all s ∈ S+
x .

If x is accepted, then S+
x = S\Cx+x and f(x | S−

x ) ≥ α+(1+β)
∑

e∈Cx
ν(e, S−

x ).
Thus,

ν(x, S+
x ) ≥ f(x | S+

x − x) ≥ f(x | S−
x ) ≥ α+ (1 + β)|Cx|α ≥ α ,
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where the first inequality follows from property (2) of the lemma, the second from
submodularity, and the third from the induction hypothesis and the assumption
that x is accepted. For any other s ∈ S+

x , we have {t′ ∈ S\Cx : t′ ≺ s} ⊆ {t′ ∈
S : t′ ≺ s} and so by property (3) of the lemma, ν(s, S+

x ) ≥ ν(s, S−
x ) ≥ α, as

required.

In our analysis we will use the following structural lemma from Chekuri et
al. [7] (here, restated in our notation). This lemma applies to the execution of
our algorithm StreamingLocalSearch when Sinit = ∅, and so no element is
discarded upon arrival due to x ∈ Sinit. However, we note that the execution
of our algorithm is in fact exactly the same as this algorithm executed on the
pretend stream ordering introduced in Section 2 to define the incremental values
ν. Specifically, in each pass of our algorithm, the set Sinit is a feasible solution
produced by the preceding pass and in the pretend stream ordering, all elements
of Sinit arrive in our pretend ordering in the same relative (pretend) order as
this preceding pass. It follows that whenever x ∈ Sinit arrives in our pretend
ordering for the present pass, we have Cx = ∅ and ν(x, S) = ν(x, Sinit) ≥ α
by Lemma 2.1 (4), since x was present in the feasible solution S = Sinit at the
end of the preceding pass. Thus, each x ∈ Sinit will first be accepted in our
pretend stream ordering, and then the rest of X\Sinit is processed, exactly as in
StreamingLocalSearch.

Recall that we let Ã be the set of all elements that were accepted by this
pass of StreamingLocalSearch (and so at some point appeared in S). For
each element x ∈ X, we let S−

x be the current set S at the moment that x arrives
and S+

x the set after x is processed. For an element e that is accepted but later
evicted from S, let χ(e) be the incremental value ν(e, S) of e at the moment
that e was evicted.

Lemma A.1 (Lemma 9 of [7]). Let T ∈ I be a feasible solution disjoint from
Ã, and S̃ be the output of the streaming algorithm. There exists a mapping
ϕ : T → 2Ã such that:

1. Every s ∈ S̃ appears in the set ϕ(t) for at most p choices of t ∈ T .

2. Every e ∈ Ã\S̃ appears in the set ϕ(t) for at most p− 1 choices of t ∈ T .

3. For each t ∈ T :

∑

c∈Ct

ν(c, S−
t ) ≤

∑

e∈ϕ(t)\S̃

χ(e) +
∑

s∈ϕ(t)∩S̃

ν(s, S̃) .

Using this charging argument, we can now prove Lemma 2.2 directly.
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Lemma 2.2. Let f : 2X → R≥0 be a submodular function. Suppose S̃ is the
solution produced at the end of one pass of StreamingLocalSearch and Ã
be the set of all elements accepted during this pass. Then,

f(OPT ∪ Ã) ≤ (p + βp− β)
∑

e∈Ã\S̃

χ(e) + (p+ βp + 1)f(S̃) + kα .

Proof. Let R = OPT\Ã. Since S−
r ⊆ Ã for all r, the submodularity of f implies

that
∑

r∈R

f(r | S−
r ) ≥

∑

r∈R

f(r | Ã) ≥ f(R ∪ Ã)− f(Ã) = f(OPT ∪ Ã)− f(Ã) . (8)

For any r ∈ R, since r was rejected upon arrival,

f(r | S−
r ) ≤ (1 + β)

∑

c∈Cr

ν(c, S−
r ) + α . (9)

Thus, applying Lemma A.1 we obtain:

∑

r∈R

f(r | S−
r ) ≤ (1 + β)

∑

r∈R

∑

c∈Cr

ν(c, S−
r ) + kα, ((9) and |R| ≤ k)

≤
∑

r∈R

(1 + β)

[

∑

e∈ϕ(r)\S̃

χ(e) +
∑

s∈ϕ(r)∩S̃

ν(s, S̃)

]

+ kα, (Lemma A.1 (3))

≤ (1 + β)

[

(p− 1)
∑

e∈Ã\S̃

χ(e) + p
∑

s∈S̃

ν(s, S̃)

]

+ kα, (Lemma A.1 (1, 2))

where in the last inequality we have also used Lemma 2.1 (4), which implies that
each χ(e) and ν(s, S̃) is non-negative. Combining the above inequality with (8),
we obtain

f(OPT ∪ Ã) ≤ (1 + β)



(p − 1)
∑

e∈Ã\S̃

χ(e) + p
∑

s∈S̃

ν(s, S̃)



+ f(Ã) + kα . (10)

We now bound f(Ã) in terms of the values ν(s, S̃) and χ(e). Since S ⊆ Ã at
all times during the algorithm, and χ(e) = ν(e, S) at the moment e was evicted,
we have χ(e) ≥ ν(e, Ã) by Lemma 2.1 (2). Thus,

f(Ã)−f(∅) =
∑

a∈Ã

ν(a, Ã) =
∑

s∈S̃

ν(s, Ã)+
∑

e∈Ã\S̃

ν(e, Ã) ≤
∑

s∈S̃

ν(s, S̃)+
∑

e∈Ã\S̃

χ(e) ,

(11)
where the first equation follows from Lemma 2.1 (1), and the last inequality
follows from Lemma 2.1 (2).
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Combining (10) and (11) we have:

f(OPT ∪ Ã) ≤ ((1 + β)(p− 1) + 1)
∑

e∈Ã\S̃

χ(e)

+ ((1 + β)p + 1)
∑

e∈S̃

ν(s, S̃) + f(∅) + kα,

= (p + pβ − β)
∑

e∈Ã\S̃

χ(e) + (p+ βp+ 1)
∑

s∈S̃

ν(s, S̃) + f(∅) + kα .

(12)

By Lemma 2.1 (1), we have the following bound for the second summation in
(12):

(p+βp+1)
∑

e∈S̃

ν(e, S̃)+f(∅) = (p+βp+1)[f(S̃)−f(∅)]+f(∅) ≤ (p+βp+1)f(S̃) .

Combining this and (12) we obtain:

f(OPT ∪ Ã) ≤ (p+ pβ − β)
∑

e∈Ã\S̃

χ(e) + (p+ βp+ 1)f(S̃) + kα.

B Calculations for the proof of Theorem 3

We recall that

γi = γi−1δi =
4pγi−1(γi−1 − 1)

(γi−1 − 1 + p)2
.

Then, to see that γi is an increasing function of γi−1 for p ≥ 1 and γi−1 ≥ 1, we
note that:

d

dγi−1
γi =

4p(γi−1 − 1) + 4pγi−1

(γi−1 − 1 + p)2
− 8pγi(γi−1 − 1)

(γi−1 − 1 + p)3

=
4p(γi−1 − 1)(γi−1 − 1 + p) + 4pγi−1(γi−1 − 1 + p)− 8pγi−1(γi−1 − 1)

(γi−1 − 1 + p)3

≥ 4pγi−1(γi−1 − 1) + 4pγ2i−1 − 8pγi−1(γi−1 − 1)

(γi−1 − 1 + p)3
≥ 0.

The third line follows from p ≥ 1 and the final inequality is by γi−1 ≥ 1.
We now verify the following inequality used at the end of Theorem 3:

4p
(

p+ 1 + 4p
i−1

)(

p+ 4p
i−1

)

(

2p + 4p
i−1

)2 ≤ p+ 1 + 4p
i
.
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Rearranging both sides and placing over a common denominator gives:

4p
(

p+ 1 + 4p
i−1

)(

p+ 4p
i−1

)

(

2p + 4p
i−1

)2 =
4p ((p+ 1)(i − 1) + 4p) (p(i− 1) + 4p)

(2p(i− 1) + 4p)2
,

=
4p ((p+ 1)(i − 1) + 4p) (p(i− 1) + 4p)

(2p(i+ 1))2
,

=
((i− 1)(p + 1) + 4p) (i+ 3)

(i+ 1)2
,

=
(i− 1)(i+ 3)i(p + 1) + i(i+ 3)4p

i(i+ 1)2
,

=

(

i2 + 2i− 3
)

i(p+ 1) + (i2 + 3i)4p

i(i+ 1)2
,

and

p+ 1 + 4p
i
=

(p+ 1)i+ 4p

i
,

=
i(i+ 1)2(p + 1) + (i+ 1)24p

i(i+ 1)2
,

=

(

i2 + 2i+ 1
)

i(p+ 1) +
(

i2 + 2i+ 1
)

4p

i(i+ 1)2
.

Then, since p ≥ 1 and i ≥ 1,

(

p+ 1 + 4p
i

)

−
4p

(

p+ 1 + 4p
i−1

)(

p+ 4p
i−1

)

(

2p + 4p
i−1

)2 =
4i(p + 1)− 4(i− 1)p

i(i + 1)2
≥ 0.

C Additional Details for the Non-Monotone Case

C.1 Guessing the value of f(OPT )

Guessing the value of f(OPT ) is a common technique in streaming submodular
function maximization. Badanidiyuru et al. [1] showed how to approximate
f(OPT ) within a constant factor usingO(log(k)) space in a single pass. To avoid
extra complications, we show how to guess f(OPT ) in two passes and refer the
reader to [1] for an approximation of f(OPT ) on the fly. Let τ = maxe∈X f(e).
Using submodularity, it is easy to see that τ ≤ f(OPT ) ≤ kτ . Consider the set

Λ =
{

2i | i ∈ Z, τ ≤ 2i ≤ k · τ
}

.

Then there exists a value λ ∈ Λ such that f(OPT)
2 ≤ λ ≤ f(OPT ). Setting

the parameter α = ελ/(2k), we get that α ∈ [εf(OPT ) /4k; εf(OPT ) /2k]. The
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defined range of α is sufficient for the analysis2. Unfortunately, it is still not
possible to know which λ ∈ Λ satisfies the property. However, it suffices to run
the randomized local-search algorithm for every λ ∈ Λ in parallel and output
the best solution of all the copies. This operation increases the space complexity
by a multiplicative O(log2 k) factor, and adds one additional pass to find τ .

C.2 Proof of Theorem 6

Here we give a full proof of the following theorem from Section 4:

Theorem 4. Let Mp =(X,I) be a p-matchoid of rank k and let f : 2X → R≥0

be a non-negative submodular function. Suppose there exists an algorithm for the
offline instance of the problem with approximation factor γ̄off . For any ε > 0,
the randomized streaming local-search algorithm returns a solution S̄ ∈ I such
that

f(OPT ) ≤(p+ 1 + γ̄off +O(ε))E[f(S̄)]

using a total space of O
(

p3k log
2
k

ε3

)

and O
(

p
ε

)

-passes.

In the same spirit as in Section 3, we show that we can derive a guarantee
with respect to the solution E[f(Si)] produced after the ith pass even when
the function is non-monotone. In fact, we show that the analysis of the non-
monotone case reduces to the monotone case as shown in the following theorem.

Theorem 5. Let f be a non-negative submodular function. Let the additive
threshold α = εf(OPT )/2k and let d ≥ i > 1. Suppose that at the start of
the ith iteration of the randomized local-search algorithm with a buffer of size
m = 4dk/ε2 we have (1− ε)f(OPT )≤γi−1 E[f(Si−1)] + γ̄off E[f(S′

i−1)]. Then,

(1− ε)f(OPT ) ≤ min

{

γi−1δi,

(

p

βi
+ p− 1

)

(1− δi) + p+ βip+ 1

}

· E[f(Si)]

+ γ̄off E[f(S′
i)],

where δi =
E[f(Si−1)]
E[f(Si)]

.

Proof. From the definition of γi−1 and δi, it follows that,

(1−ε)f(OPT ) ≤ γi−1 E[f(Si−1)]+γ̄off E[f(S′
i−1)] ≤ γi−1δi E[f(Si)]+γ̄off E[f(S′

i)]
(13)

where in the last inequality we have used the definition of δi and the fact that
f(S′

i) ≥ f(S′
i−1), which follows from the way S′

i is defined in Algorithm 3.

2Equation (6) and the bound αk ≤ εf(OPT ) are where we need the exact value of α, using
upper and lower bounds for α yield the same result up to the hidden constant in the term O(ǫ).
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On the other hand, E[f(Si)] − E[f(Si−1)] = (1 − δi)E[f(Si)]. Thus, by (7)
we also have:

(1−ε)f(OPT )

≤
(

p
βi

+ p− 1
)

(E[f(Si)]− E[f(Si−1)])+(p+ βp + 1)E[f(Si)] + γ̄off E[f(S′
i)]

=
((

p
βi

+ p− 1
)

(1− δi) + p+ βip+ 1
)

E[f(Si)] + γ̄off E[f(S′
i)] . (14)

Since the right-hand side of equation 13 is an increasing function of δi and the
right-hand side of equation 14 is a decreasing function of δi, the guarantee we
obtain is always at least as good as that obtained when these two values are
equal.

As in the monotone case, the lemma enables us to derive values of β so as
to minimize the value of the approximation ratio. The following follows directly
from the same calculations as in Section 3 and Appendix B.

Theorem 6. Suppose we run Algorithm 3 with a buffer of size m = 4dk/ε2

on a arbitrary p-matchoid constraint and a submodular function, with α =
εf(OPT )/2k, β1 = 1 and βi = γi−1−1−p

γi−1−1+p
where γi is given by the recurrence,

γ1 = 4p and γi =
4pγi−1(γi−1−1)
(γi−1−1+p)2 . Then,

(1− ε)f(OPT ) ≤
(

p+ 1 +
4p

i

)

E[f(S̃i)] + γ̄off E[f(S′
i)].

In particular after d = 4p
ε

passes,

(1− ε)f(OPT ) ≤(p+ 1 + γ̄off + ε)E[f(S̄d)] .

Under a matroid constraint, Algorithm 3 with α = εf(OPT )/2k, βi = 1/i and
d = 2ε−1 passes outputs a solution S̄ such that,

(1− ε)f(OPT ) ≤(2 + γ̄off + ε)E[f(S̄)] ,

where γ̄off is the approximation ration of the best offline algorithm for maximizing
f under a matroid constraint.

Proof of Theorem 4. We assume that we know the value of f(OPT ) before hand,
which can be accomplished approximately as in Section C.1. Let ε′ = ε/p
with 1/2 ≥ ε′ > 0 and let α = ε′f(OPT )/2k. We want to obtain an additive
error term instead of a multiplicative error term as stated in Theorem 6. By
Theorem 6,

(1− ε′)f(OPT ) ≤
(

p+ 1 + γ̄off +
4p

d

)

E[f(S̄d)]

=(p+ 1 + γ̄off)
(

1 +O
(

d−1
))

E[f(S̄d)] .
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Using the fact that (1− ε′)−1 ≤ 1 + 2ε′ for ε′ ∈ (0, 1/2], we get that,

f(OPT ) ≤(p+ 1 + γ̄off)
(

1 +O
(

d−1
))(

1 + 2ε′
)

E[f(S̄d)] . (15)

Since ε′ = ε/p, setting d = O(p/ε) we finally obtain the desired result:

f(OPT ) ≤(p+ 1 + γ̄off)(1 +O(ε/p))(1 + 2ε/p)E[f(S̄d)]

≤(p+ 1 + γ̄off +O(ε))E[f(S̄d)].

For the space complexity, we note that the randomized local-search algo-
rithm stores the buffer B and maintains two past solutions Si, S

′
i ∈ I, together

with the current solution S ∈ I. Hence, the total space needed is equal to
O(|B|+ |S′

i|+ |Si|+ |S|) = O(m+ 3k) = O
(

p3kε−3
)

, times an additional factor
of O(log k) for guessing f(OPT ). The number of passes is d = O(p/ε).
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