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Abstract
Our input instance is a bipartite graph G = (A∪B,E) where A is a
set of applicants, B is a set of jobs, and each vertex u ∈ A∪B has a
preference list ranking its neighbors in a strict order of preference.
For any two matchings M and T in G, let φ(M,T ) be the number of
vertices that prefer M to T . A matching M is popular if φ(M,T )≥
φ(T,M) for all matchings T in G. There is a utility function w :
E→Q and we consider the problem of matching applicants to jobs
in a popular and utility-optimal manner. A popular mixed matching
could have a much higher utility than all popular matchings, where
a mixed matching is a probability distribution over matchings, i.e., a
mixed matching Π = {(M0, p0), . . . ,(Mk, pk)} for some matchings
M0, . . . ,Mk and ∑

k
i=0 pi = 1, pi ≥ 0 for all i. The function φ(·, ·)

easily extends to mixed matchings; a mixed matching Π is popular
if φ(Π,Λ)≥ φ(Λ,Π) for all mixed matchings Λ in G.

Motivated by the fact that a popular mixed matching could
have a much higher utility than all popular matchings, we study the
popular fractional matching polytope PG. Our main result is that
this polytope is half-integral and in the special case where a stable
matching in G is a perfect matching, this polytope is integral. This
implies that there is always a max-utility popular mixed matching Π

such that Π = {(M0,
1
2 ),(M1,

1
2 )} where M0 and M1 are matchings

in G. As Π can be computed in polynomial time, an immediate
consequence of our result is that in order to implement a max-utility
popular mixed matching in G, we need just a single random bit.

We analyze PG whose description may have exponentially
many constraints via an extended formulation with a linear number
of constraints. The linear program that gives rise to this formulation
has an unusual property: self-duality. In other words, this linear
program is identical to its dual program. This is a rare case where
an LP of a natural problem has such a property. The self-duality of
this LP plays a crucial role in our proof of half-integrality of PG.

We also show that our result carries over to the roommates
problem, where the graph G need not be bipartite. The polytope
of popular fractional matchings is still half-integral here and so we
can compute a max-utility popular half-integral matching in G in
polynomial time. To complement this result, we also show that the
problem of computing a max-utility popular (integral) matching in
a roommates instance is NP-hard.

1 Introduction
Let G = (A∪ B,E) be a bipartite graph on n vertices and
m edges where A is called the set of applicants, B is called
the set of jobs, and every vertex u ∈ A∪B has a preference
list ranking its neighbors in a strict order of preference.
Such a graph G is also referred to as an instance of the
stable marriage problem with strict and possibly incomplete
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preference lists. Moreover, a utility function w : E → Q is
given, where w(a,b) is the utility of matching applicant a
with job b. Our goal is to match applicants to jobs such that
this matching is popular and has the maximum utility among
all popular matchings, where the utility w(M) of a matching
M is the sum of utilities of all edges in M.

The notion of popularity was introduced by
Gärdenfors [18] in 1975. For any two matchings M
and M′ in G, let φ(M,M′) be the number of vertices that
prefer M to M′, where we say a vertex u ∈ A∪ B prefers
matching M to matching M′ if either u is matched in M and
unmatched in M′ or u is matched in both the matchings and
M(u) ranks better than M′(u) in u’s preference list. We say
M is more popular than M′ if φ(M,M′)> φ(M′,M).

DEFINITION 1. A matching M is popular if φ(M,M′) ≥
φ(M′,M) for every matching M′ in G, i.e., ∆(M,M′) ≥ 0
where ∆(M,M′) = φ(M,M′)−φ(M′,M).

Thus a popular matching never loses an election (where
vertices cast votes) and so a popular matching can be con-
sidered to be “globally stable” since an election cannot force
a migration from a popular matching to any other matching.
The notion of popularity is naturally appealing and is less
demanding than the notion of stability. A matching is stable
if it has no blocking edges: an edge (a,b) blocks matching
M if both a and b prefer each other to their respective as-
signments in M. The existence of stable matchings and the
Gale-Shapley algorithm [16] to find one are classical results
in algorithms. It is easy to show that every stable matching
is popular [18].

There are many polynomial time algorithms to compute
a max-utility stable matching in G [12, 13, 15, 22, 33, 36, 37]
– several of these use linear programming on the stable
matching polytope SG, which is the convex hull of the 0-1
edge incidence vectors of stable matchings in G. The utility
of a max-utility popular matching could be much more than
that of a max-utility stable matching; for instance, when all
utilities are 1, a max-utility popular matching is the same as
a max-size popular matching and a stable matching is a min-
size popular matching [20].

Mixed matchings. A mixed matching is a probability
distribution over matchings, i.e., a mixed matching Π =
{(M0, p0), . . . ,(Mk, pk)}, where M0, . . . ,Mk are matchings in
G and ∑

k
i=0 pi = 1, pi ≥ 0 for all i, and the utility of Π

is ∑
k
i=0 pi · w(Mi). Our objective is to find a max-utility



matching under the constraints of popularity — so as to
achieve highest utility, what we seek should be a popular
mixed matching rather than a popular (pure) matching.

In economics, mixed matchings are called random as-
signments and they are used in the design of mechanisms
to guarantee various desirable properties, such as efficiency,
fairness, and strategy-proofness (see [7, 23] and the refer-
ences therein). The function φ(M,M′) defined earlier eas-
ily extends to φ(Π,M′) as follows: φ(Π,M′) = ∑

k
i=0 pi ·

φ(Mi,M′), where Π = {(M0, p0), . . . ,(Mk, pk)}. The defini-
tion of φ(M′,Π)) is analogous.

DEFINITION 2. A mixed matching Π is popular if
φ(Π,M′) ≥ φ(M′,Π) for all matchings M′ in G, i.e.,
∆(Π,M′)≥ 0, where ∆(Π,M′) = φ(Π,M′)−φ(M′,Π).

Suppose Λ = {(N0,q0), · · · ,(Nh,qh)} is another mixed
matching. Let ∆(Π,Λ) = ∑

h
j=0 q j ·∆(Π,N j). Then it follows

easily from Definition 2 that if Π is popular then ∆(Π,Λ)≥ 0
for all mixed matchings Λ in G. Thus a popular mixed
matching never loses to any integral or mixed matching.
As an allocation mechanism, a popular mixed matching has
several nice properties, such as population-consistency and
composition-consistency. We refer the reader to [5] for
details.

A popular mixed matching need not be a probability
distribution over popular matchings in G. Such an example
was shown in [25] and we show a much simpler example
here in Fig. 1. Let A = {a0,a1,a2}, B = {b1,b2}, and
E = A× B. The preference list of every applicant is the
same: b1 � b2, i.e., b1 is the top choice and then b2; the
preference list of every job is the same: a1 � a2 � a0. This
instance admits exactly one popular matching: this is the
stable matching S = {(a1,b1),(a2,b2)} (the blue matching in
Fig. 1). Consider the mixed matching Π = {(S, 1

2 ),(M, 1
2 )}

where M = {(a1,b2),(a2,b1)} (the red matching in Fig. 1).
Note that Π is outside the convex hull of popular matchings
– we will show in Section 2 that Π is popular. Whenever
w(a1,b2)+w(a2,b1) is larger than w(a1,b1)+w(a2,b2), the
utility of Π is higher than that of S. Thus the utility of a max-
utility popular mixed matching can be much higher than that
of a popular matching.

Mixed matchings are closely related to fractional match-
ings. A fractional matching ~x = (xe)e∈E in G is a point in
Rm
≥0 that satisfies ∑e∈E(v) xe ≤ 1 for every vertex v, where

E(v) is the set of edges incident on vertex v. In a bipartite
graph, a fractional matching is equivalent to a mixed match-
ing (Birkhoff-von Neumann theorem).

The polytope PG ⊆ Rm of all popular fractional match-
ings in G = (A∪B,E) involves possibly exponentially many
constraints (one for each matching in G). However a com-
pact extended formulation of this polytope was given in [26].
Thus a max-utility popular mixed matching can be computed
in polynomial time via linear programming on this polytope.
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Figure 1: The blue matching S = {(a1,b1),(a2,b2)} is
the only popular matching here. The red matching M =
{(a1,b2),(a2,b1)} is not popular as {(a0,b2),(a1,b1)} is
more popular than M.

However a potential drawback of generalizing from
matchings to mixed matchings is that the optimal solution
has become more complex to describe and more difficult to
implement. A mixed matching can be interpreted as either a
lottery over matchings or a time-sharing arrangement (when
the mixed matching is viewed as a fractional matching) [30]:
in the former case, we need access to several random bits to
implement a lottery and the latter case involves sub-dividing
jobs and assigning several fractional jobs to an applicant.
Thus we may need to deal with an unstructured optimal
solution. Our first result is the following.

THEOREM 1.1. Given an instance G = (A ∪ B,E) with
strict preference lists and a utility function w : E → Q,
G always has a max-utility popular mixed matching Π =
{(M0,

1
2 ),(M1,

1
2 )} where M0 and M1 are matchings in G.

Moreover, if G admits a perfect stable matching, i.e., a stable
matching where no vertex is unmatched, then Π = {(M,1)}
for some matching M in G, i.e., Π is pure.

Thus our result implies that to achieve max-utility, we
just need a single random bit to implement the lottery or
we can find a time-sharing arrangement that is simple and
organized—every vertex has at most two partners and spends
the same amount of time with each. Hence we can find a
max-utility popular mixed matching that is highly structured.
Note that it was already known how to compute a max-utility
popular half-integral matching in G in polynomial time [25].
However it was not known whether this was a max-utility
popular fractional matching or not.

Our main contribution is to show that this is so by
proving that the polytope PG is half-integral. Moreover, PG
is integral when G admits a perfect stable matching (i.e.,
|A| = |B| and say, preference lists are complete). Also the
linear program that we solve in order to find a max-utility
popular half-integral matching is simpler than the linear
program used in [25] to find a max-utility popular half-



integral matching.
Note that it is necessary that preference lists of vertices

in G are strict, otherwise the half-integrality of PG need not
hold. Consider the instance in Fig. 1 and let the prefer-
ence list of every applicant be the same as discussed ear-
lier, i.e., b1 is preferred to b2 by each of a0,a1,a2. In the
preference lists of both b1 and b2, let us now say that the
3 applicants a0,a1,a2 are tied together. It is easy to check
that that there is no popular matching here. In fact, there is
no popular mixed matching of the form {(M0,

1
2 ),(M1,

1
2 )}

for any matchings M0,M1 in G. However there is a popu-
lar mixed matching Π = {(M0,

1
3 ),(M1,

1
3 ),(M2,

1
3 )} where

M0 = {(a0,b1),(a1,b2)}, M1 = {(a1,b1),(a2,b2)}, M2 =
{(a2,b1),(a0,b2)}. Thus the polytope of popular fractional
matchings is not half-integral here.

The complexity of finding a max-utility popular match-
ing in G = (A∪B,E) with strict preference lists is currently
unknown. In this paper we also consider the max-utility pop-
ular matching problem in a roommates instance G with strict
preference lists, i.e., G is a general graph (not necessarily
bipartite), and show the following result.

THEOREM 1.2. Given G = (V,E) where each vertex has a
strict preference list over its neighbors and a utility function
w : E → Q, the problem of computing a max-utility popular
matching in G is NP-hard.

It is known that the max-utility stable matching problem
in a roommates instance is also NP-hard, as shown by
Feder [12]. In this paper we also show that it is UGC-hard to
design a polynomial time O(1)-approximation algorithm for
the max-utility popular matching problem in a roommates
instance with non-negative edge utilities.

We consider the problem of computing a max-utility
popular half-integral matching in a roommates instance. As
before, a fractional matching ~x = (xe)e∈E in G is a point
in Rm

≥0 that satisfies ∑e∈E(u) xe ≤ 1 for every vertex u. A
half-integral matching is a fractional matching ~q where
qe ∈ {0, 1

2 ,1} for every e ∈ E. Unlike the equivalence be-
tween fractional matchings and mixed matchings in bipartite
graphs, a fractional matching need not be a mixed matching
in a non-bipartite graph G. For instance, let G be the trian-
gle on 3 vertices a,b,c and let ~x be the fractional matching
that sets x(a,b) = x(b,c) = x(c,a) =

1
2 ; ~x is not a convex com-

bination of matchings in G. However a fractional matching
is always a convex combination of half-integral matchings in
any graph.

The function ∆(Π,Λ) defined earlier for mixed match-
ings easily generalizes to fractional matchings by summing
up the (fractional) votes cast by all the vertices for one frac-
tional matching versus another (Section 5 has these details).
Thus two fractional matchings can be compared with re-
spect to popularity and a fractional matching ~x is popular
if ∆(~x,~y) ≥ 0 for all fractional matchings ~y in G. Since a

fractional matching is a convex combination of half-integral
matchings, a fractional matching ~x is popular if ∆(~x,~q) ≥ 0
for all half-integral matchings~q in G.

We show that when there is a utility function w : E→Q,
there is a polynomial time algorithm to compute a max-
utility popular half-integral matching ~q in G and in fact,
~q is also a max-utility popular fractional matching in G.
There was no polynomial time algorithm known so far for
computing a max-utility popular half-integral matching in a
roommates instance.

1.1 Our Techniques. Let G = (A∪B,E) be an instance
of the stable marriage problem with strict preference lists
where |A ∪ B| = n and |E| = m. The polytope PG of
popular fractional matchings in G has a compact extended
formulation P ′G ⊆ Rm+2n and in this paper, we analyze the
linear program that gives rise to P ′G and discover an unusual
property of this linear program. This LP is self-dual, i.e., it
is exactly identical to its dual program.1 To the best of our
knowledge, this seems to be the first time a natural problem
has an LP with this property and our proof on the structure
of PG uses this self-duality crucially. Prior to our result, the
only linear program that had a somewhat similar property
is the one used by Roth, Rothblum, and Vande Vate [30]
to describe the stable matching polytope SG. Every stable
fractional matching is an optimal solution to their original
LP there but also gives rise to an optimal solution in its dual.
In the original words of Roth et al. [30]: “We know of no
similarly rich class of linear programs whose primal and
dual solutions are related in this way.”

We add n new variables for the extended formulation
and by setting these to 0, the description of P ′G reduces to the
description of SG. This formulation of SG is not independent
of other descriptions of this polytope [30, 36], however it
has a novel and intuitive interpretation where stability is
interpreted as the “sum of votes” of any adjacent pair of
vertices for each other being at most 0 (see constraint (2.4)
in Section 2).

Our technique to prove the integrality of PG in the spe-
cial case when G = (A∪B,E) admits a perfect stable match-
ing is inspired by the one used by Teo and Sethuraman [36]
to show the integrality of SG. However as the description
of the extended popular fractional matching polytope P ′G is
more general than that of SG, our task is more involved here.
We use the fact that G admits a perfect stable matching to
first conclude that for any integral matching M in G, there is
a witness (αu)u∈A∪B ∈ {±1}n to the popularity of M, where
the αu’s are the n new variables that were added for the ex-
tended formulation.

For any (~x,~α) ∈ P ′G, where ~x is a popular fractional

1We remark that the same LP was introduced in [26]. However, its self-
duality is observed and explicitly used for the first time in the present work.



matching in G and ~α its witness, in order to find popular
matchings in G whose convex hull contains ~x, we use the
following new idea: for any vertex u, use the value of αu
to divide into two sub-arrays the ordered array of partners
that u gets assigned in ~x and swap these two sub-arrays to
get a reordered array. We obtain from these reordered arrays
the popular matchings M1, . . . ,Mk such that ~x = ∑

k
i=1 piMi

where ∑
k
i=1 pi = 1 and pi ≥ 0 for all i. The popularity of

these matchings will be proved by assigning an appropriate
witness ~αi ∈ {±1}n to each Mi and showing that each Mi
along with its witness~αi belongs to P ′G.

The half-integrality of PG for the general case (when G
has no perfect stable matching) and for non-bipartite graphs
follows from the integrality of PG in this special case. For
non-bipartite graphs, we show a simple reduction from the
vertex cover problem to show that it is NP-hard to compute
a max-utility popular matching in a roommates instance.

1.2 Background and related work. As mentioned ear-
lier, popular matchings were introduced by Gärdenfors [18]
in bipartite graphs with two-sided preferences, i.e., vertices
on both sides of the graph have preferences over their neigh-
bors. For one-sided preferences (i.e., vertices of only one
side have preferences over their neighbors), similar notions
have been suggested by Kreweras [28] and Fishburn [14].
Popular matchings need not always exist in this setting and
an efficient algorithm was given in [2] to determine if the
given instance admits a popular matching or not. It was
shown in [26] that popular mixed matchings always exist
here and such a mixed matching can be efficiently computed.
Popular mixed matchings as an allocation mechanism have
been studied in [3, 4, 5].

In the domain of two-sided preferences, when prefer-
ence lists involve ties, the problem of determining if G =
(A∪B,E) admits a popular matching or not is NP-hard [6, 9].
When preference lists are strict, popular matchings always
exist in G and efficient algorithms for computing a max-
size popular matching were given in [20, 24]. A subclass
of max-size popular matchings called dominant matchings
were studied in [10]. The convex hull of the {0, 1

2 ,1}-edge
incidence vectors of popular half-integral matchings in G
was described in [25] – this was done via the stable matching
polytope of a larger graph G∗ that was constructed using G.

Stable matchings have been extensively studied and
there are several monographs [19, 27, 29, 34] on this subject.
Roth [31, 32] discusses how stable matchings compare in
practice with other types of matchings in the two-sided
matching markets. The first description of the polytope SG
for G = (A∪B,E) was given by Vande Vate [37] in 1989
and several descriptions of SG are now known [11, 15, 30,
33, 36].

Stable matchings need not always exist in the room-
mates problem and efficient algorithms to determine if a

roommates instance G = (V,E) admits a stable matching or
not were given in [21, 36]. Stable half-integral matchings al-
ways exist in G [35] and it was shown in [1] that the polytope
of all stable fractional matchings in G is half-integral.

Organization of the paper. Section 2 describes the ex-
tended popular fractional matching polytope P ′G and shows
the self-duality of the LP that gives rise to this descrip-
tion. Section 3 shows the integrality of the popular fractional
matching polytope PG when G is bipartite and admits a per-
fect stable matching. Section 4 shows the half-integrality of
PG in any instance G = (A∪B,E). Section 5 shows the half-
integrality of PG in a roommates instance G = (V,E) with
strict preference lists and Section 6 shows the NP-hardness
of the max-utility popular matching problem in G = (V,E).

2 The extended popular fractional matching polytope
Our input instance is G = (A∪ B,E) on n vertices and m
edges. Let~x be any fractional matching in G, that is, x∈Rm

≥0
and ∑e∈E(u) xe ≤ 1 for every vertex u. It will be convenient
for us to assume that each vertex is fully matched in any
fractional matching. So for each vertex u, a new vertex `(u)
called u’s last resort neighbor will be added at the bottom of
u’s preference list.

In the fractional matching ~x, we will set x(u,`(u)) =
1−∑e∈E(u) xe for each vertex u. Let Ẽ denote the edge set
E ∪{(u, `(u)) : u ∈ A∪B} and let Ẽ(u) be the set of edges in
Ẽ that are incident on u. Let MG be the matching polytope
of G: so MG = {x ∈ Rm+n

≥0 : ∑e∈Ẽ(u) xe = 1 ∀u ∈ A∪B.}
The popular fractional matching polytope of G is:

(2.1) PG = {~x ∈MG : ∆(~x,M)≥ 0 ∀matchings M in G},

where ∆(~x,M) = ∆(Π,M) and Π is a mixed matching cor-
responding to the fractional matching ~x (recall that in a bi-
partite graph, a fractional matching is equivalent to a mixed
matching). Alternately, ∆(~x,M) = ∑u∈A∪B voteu(~x,M(u)),
where M(u) is u’s partner in M and the function voteu(v,v′)
is defined as follows:

voteu(v,v′) =


1 if u prefers v to v′,
−1 if u prefers v′ to v,
0 otherwise (i.e., v = v′).

This extends by linearity to voteu(~x,v′) as follows:

voteu(~x,v′) = ∑
v

x(u,v) voteu(v,v′)

= ∑
v:v�u v′

x(u,v)− ∑
v:v≺u v′

x(u,v),

where {v : v �u v′} consists all neighbors of u that are ranked
better than v′ in u’s preference list and the set {v : v ≺u v′}
consists of all those who are ranked worse; the vertex `(u) is
a member of the latter set.



The description of PG in (2.1) above involves possibly
exponentially many constraints – one for each matching in G.
Hence we will use the extended popular fractional matching
polytope P ′G of G (from [26]) that uses n new variables αu
for u ∈ A∪B along with the m+ n variables xe for e ∈ Ẽ.
Note that the edge utilities given in the input instance G play
no part in the description of either PG or P ′G.

The graph G̃x. The graph G̃x is the graph G augmented
with last resort vertices and with edge set Ẽ where the
weight of edge (a,b) (denoted by wtx(a,b)) is equal to
votea(b,~x) + voteb(a,~x), where voteu(v,~x) = −voteu(~x,v′)
for any (u,v) ∈ Ẽ. Thus

wtx(a,b) = ∑
b′:b′≺a b

x(a,b′) − ∑
b′:b′�a b

x(a,b′)

+ ∑
a′:a′≺b a

x(a′,b) − ∑
a′:a′�b a

x(a′,b).

For any u ∈ A∪B, the weight of the edge (u, `(u)) is

wtx(u, `(u)) = voteu(`(u),~x) = − ∑
v∈Nbr(u)

x(u,v),

where Nbr(u) is the set of neighbors of u in the original G,
so `(u) /∈ Nbr(u). For any matching M in G̃x that matches
all vertices in A∪B, observe that the weight of M in G̃x is
exactly the same as ∆(M,~x).

So~x∈MG is popular if and only if the maximum weight
of a matching in the graph G̃x that matches all vertices in
A∪B is at most 0. Note that this value cannot be less than
0 since the weight of the fractional matching ~x in G̃x is 0.
Thus~x ∈MG is popular if and only the maximum weight of
a matching in the graph G̃x that matches all vertices in A∪B
is exactly 0.

The maximum weight matching problem in the graph
G̃x that matches all vertices in A∪B is the following linear
program in variables ye, for e ∈ Ẽ.

maximize ∑
e∈Ẽ

wtx(e)ye

∑e∈Ẽ(u) ye = 1 ∀u ∈ A∪B

ye ≥ 0 ∀e ∈ Ẽ.

Consider the dual program (in variables αu for u∈A∪B)
to the above primal program. This is LP1 described below.

(LP1) minimize ∑
u∈A∪B

αu

αa +αb ≥ wtx(a,b) ∀(a,b) ∈ E

αu ≥ wtx(u, `(u)) ∀u ∈ A∪B.

For any point~x∈PG, the optimal primal value is 0 (since
~x is a popular fractional matching) and hence by LP-duality,
the optimal dual value is also 0. So there is an optimal
solution ~αx = (αx

u)u∈A∪B to LP1 such that ∑u∈A∪B αx
u = 0.

We will regard~αx as the witness to the popularity of~x.
For example, consider the instance in Fig. 1 with

the half-integral matching ~q = (IS + IM)/2 where S =
{(a1,b1),(a2,b2)} and M = {(a1,b2),(a2,b1)}, where IX is
the 0-1 edge incidence vector of matching X for X ∈ {S,M}.
The fractional matching ~q is popular as witnessed by the
following α-values: αa0 = αa1 = αb2 = 0, αa2 = −1, and
αb1 = 1. We have αa0 +αa1 +αa2 +αb1 +αb2 = 0.

Instead of fixing a particular fractional matching ~x and
regarding LP1 as a linear program in the n variables αu, for
u ∈ A∪B, we could regard LP1 as a linear program in the
m+ 2n variables xe, for e ∈ Ẽ, and αu, for u ∈ A∪B. This
yields the following LP (where wtx(a,b) and wtx(u, `(u))
have been explicitly written in terms of xe’s).

(LP2) minimize ∑
u∈A∪B

αu

αa +αb ≥ ∑
b′:b′≺ab

x(a,b′)− ∑
b′:b′�ab

x(a,b′)

+ ∑
a′:a′≺b a

x(a′,b)− ∑
a′:a′�b a

x(a′,b) ∀(a,b) ∈ E

αu ≥ − ∑
v∈Nbr(u)

x(u,v) ∀u ∈ A∪B

∑
e∈Ẽ(u)

xe = 1 ∀u ∈ A∪B and xe ≥ 0 ∀e ∈ Ẽ.

The polytope P ′G is the set of optimal solutions to LP2.
Hence ∑u∈A∪B αu = 0 for all the points (~x,~α) in P ′G and thus
the description of P ′G consists of the following constraints:

∑
u∈A∪B

αu = 0

αa +αb ≥ votea(b,~x)+voteb(a,~x) ∀(a,b) ∈ E

αu ≥ voteu(`(u),~x) ∀u ∈ A∪B

∑
e∈Ẽ(u)

xe = 1 ∀u ∈ A∪B and xe ≥ 0 ∀e ∈ Ẽ.

Observe that the description of P ′G involves just O(m+
n) constraints, far fewer than the exponentially many con-
straints in the description of PG. The description of P ′G and
the above formulation of LP2 were given in [26]. In this pa-
per we show a very interesting and special property of LP2.

LEMMA 2.1. LP2 is its own dual program, i.e., LP2 is self-
dual.

Proof. Consider the dual program corresponding to LP2.
The dual variables are non-negative ye for each e ∈ Ẽ and
βu for each u ∈ A∪B. This linear program is:



(LP3) maximize ∑
u∈A∪B

βu

βa + βb + ∑
b′:b′≺ab

y(a,b′) − ∑
b′:b′�ab

y(a,b′)

+ ∑
a′:a′≺b a

y(a′,b) − ∑
a′:a′�b a

y(a′,b) ≤ 0 ∀(a,b) ∈ E

βu − ∑
v∈Nbr(u)

y(u,v) ≤ 0 ∀u ∈ A∪B

∑
e∈Ẽ(u)

ye = 1 ∀u ∈ A∪B and ye ≥ 0 ∀e ∈ Ẽ.

Let us substitute γu = −βu for each u ∈ A∪B. This makes
LP3 exactly the same as LP2: the objective function is
minimize ∑u∈A∪B γu and in the constraints, the variable γu
has replaced αu for each u ∈ A∪B and the variable ye has
replaced xe for each e ∈ Ẽ . 2

Thus LP2 is self-dual and this property will be crucial to
us (see Lemma 3.2). We now show the relationship between
P ′G and the stable matching polytope SG.

The typical formulation of SG contains the constraints
that ∑e∈Ẽ(u) xe = 1 for all u ∈ A∪B and xe ≥ 0 for all e ∈ Ẽ
along with the stability constraint for each edge (a,b) ∈ Ẽ.
The stability constraint for the edge (a,b) in the description
of SG from [30] is given by constraint (2.2) below and the
stability constraint for the edge (a,b) in the description of
SG from [36] is given by constraint (2.3) below.

∑
b′:b′�ab

x(a,b′) + x(a,b) + ∑
a′:a′�ba

x(a′,b) ≥ 1.(2.2)

∑
b′:b′≺ab

x(a,b′) + x(a,b) + ∑
a′:a′≺ba

x(a′,b) ≤ 1.(2.3)

In fact, the above two stability constraints are not indepen-
dent and one can be derived from the other. This is because
we can obtain (2.3) from (2.2) by replacing ∑b′:b′�ab x(a,b′)
with 1− x(a,b)−∑b′:b′≺ab x(a,b′) and ∑a′:a′�ba x(a′,b) with 1−
x(a,b)−∑a′:a′≺ba x(a′,b) (since ∑e∈Ẽ(u) xe = 1 for all u∈A∪B).

By subtracting (2.2) from (2.3), we get the following
constraint which is equivalent to either of these two (by an
appropriate substitution):(

∑
b′:b′≺ab

x(a,b′)− ∑
b′:b′�ab

x(a,b′)

)
(2.4)

+

(
∑

a′:a′≺ba
x(a′,b)− ∑

a′:a′�ba
x(a′,b)

)
≤ 0.

Thus constraint (2.4) for each edge (a,b)∈ Ẽ along with
the constraints that ∑e∈Ẽ(u) xe = 1 for all u∈ A∪B and xe ≥ 0

for all e∈ Ẽ is a description of SG. Observe that the first term
in constraint (2.4) is votea(b,~x) and the second term there is
voteb(a,~x).

Thus the description of P ′G is a natural generalization of
the description of SG where we have αa+αb on the right side
of constraint (2.4) for (a,b) ∈ E and we have only αu on the
right side in the constraint corresponding to (u, `(u)) for any
u ∈ A∪B; P ′G also has the constraint that the sum of all αu’s
has to be 0. So SG = {~x : (~x,~0) ∈ P ′G}. While SG is integral,
we know that PG is not integral (as shown by the example in
Fig. 1). However we will be able to show in Section 3 that
PG is integral in an important special case.

3 Integrality of PG in a special case
We will prove the following theorem in this section.

THEOREM 3.1. Let G = (A ∪ B,E) be an instance of the
stable marriage problem with strict preference lists such that
G admits a perfect stable matching. Then PG is integral.

Our assumption that G admits a perfect stable matching
implies that every stable matching S in G is perfect [17],
i.e., every u ∈ A∪B is matched in S. In fact, this implies
that every popular matching in G has to be perfect – this
is due to the fact that a stable matching is a minimum-size
popular matching in G (see Corollary 1 in [20]). Also, this
extends to all popular fractional matchings as well. That is,
if ~x ∈ PG, then ~x has to fully match every vertex in A∪B
to genuine neighbors, otherwise we have ∆(~x,S) < 0 where
S is any stable matching2, contradicting the popularity of ~x.
Lemma 3.1 shows an important property satisfied by popular
matchings in G that are perfect.

For any edge (a,b) ∈ E, we will refer to the con-
straint αa +αb ≥ votea(b,~x) + voteb(a,~x) (similarly, αu ≥
voteu(`(u),~x) for any u ∈ A∪B) in the description of P ′G as
the covering constraint for edge (a,b) (resp., (u, `(u))).

LEMMA 3.1. If M is a popular matching in G = (A∪B,E)
such that M is perfect, then M has a witness~αM ∈ {±1}n to
its popularity.

Proof. A popular matching that is perfect is a dominant
matching in G, i.e., a popular matching M with the property
that M is strictly more popular than every larger matching
in G. It was shown in [10] that every dominant matching
allows a partition A0∪A1 of A and B0∪B1 of B such that the
following two properties are satisfied:

(1) every blocking edge with respect to M is present in
A0×B1

2~x ∈MG, so ~x is a convex combination of some matchings M′1, . . . ,M
′
t

in G and if some M′j is not perfect, then it means ∆(M′j,S)< 0 and we also
have ∆(M′i ,S)≤ 0 for all matchings M′i by the popularity of S, so this implies
∆(~x,S)< 0.



(2) if (a,b) is an edge in A1×B0 then both a and b prefer
their respective partners in M to each other.

We will define ~αM as follows: set αM
u = 1 for each

u ∈ A0∪B1 and set αM
u =−1 for each u ∈ A1∪B0. Observe

that the covering constraints of all edges in E get satisfied
by properties (1) and (2) given above. Also αu ≥ −1 =
voteu(`(u),M(u)) for each u ∈ A∪ B since each vertex is
matched in M to a genuine neighbor and so u’s vote for `(u)
versus M(u) is -1.

We also have ∑u∈A∪B αM
u =∑(a,b)∈M (αM

a +αM
b ) since M

is a perfect matching and αM
a +αM

b = 0 for each (a,b) in M
by our assignment of αM-values. Thus (IM,~αM) ∈ P ′G where
IM is the 0-1 edge incidence vector of M, in other words, the
vector~αM witnesses M’s popularity. 2

Let~x ∈ PG. We seek to express~x as a convex combina-
tion of some popular (integral) matchings M1, . . . ,Mk in G.
We know from LP1 that there exists a witness~αx to the pop-
ularity of~x. Since~x has to fully match every vertex in A∪B
to genuine neighbors, the covering constraint for (u, `(u)) in
the description of P ′G becomes αx

u ≥ −1. So αx
u ≥ −1 for

each u ∈ A∪B. It can also be shown that αx
u ≤ 1 for each

u ∈ A∪B. Before we prove this, we need the following very
useful lemma.

LEMMA 3.2. For every (a,b) ∈ E, if x(a,b) > 0 then the
covering constraint in P ′G for (a,b) is tight. That is, we have:

α
x
a +α

x
b = ∑

b′:b′≺ab
x(a,b′)− ∑

b′:b′�ab
x(a,b′)

+ ∑
a′:a′≺b a

x(a′,b)− ∑
a′:a′�b a

x(a′,b).

Proof. This follows directly from Lemma 2.1 which proved
that LP2 is self-dual. So (~x,~αx) which is an optimal solution
to LP2 is also an optimal solution to its dual. Thus the
following condition is implied by complementary slackness:
if x(a,b) > 0 then the constraint in LP2 for x(a,b) is tight. That
is,

α
x
a +α

x
b = ∑

b′:b′≺ab
x(a,b′)− ∑

b′:b′�ab
x(a,b′)

+ ∑
a′:a′≺b a

x(a′,b)− ∑
a′:a′�b a

x(a′,b).

2

LEMMA 3.3. For every vertex u ∈ A∪B, we have αx
u ≤ 1.

Proof. Let {v1,v2, . . . ,vd} be the set of all neighbors of u
such that x(u,vi) > 0. Let vd be the least preferred neighbor of
u in this set. If x(u,vd) = δ, then voteu(vd ,~x) = −(1− δ).
We will now show an upper bound for votevd (u,~x). We
know that ∑u′:u′≺vd u x(u′,vd) +∑u′:u′�vd u x(u′,vd) = 1− δ. So

votevd (u,~x) = ∑u′:u′≺vd u x(u′,vd)−∑u′:u′�vd u x(u′,vd) is at most
1−δ.

Lemma 3.2 tells us that the covering constraint for edge
(u,vd) is tight. So αx

u +αx
vd
= voteu(vd ,~x)+votevd (u,~x) and

we have shown that the right side is at most −(1−δ)+(1−
δ) = 0. Since αx

vd
≥−1, it follows that αx

u ≤ 1. 2

Thus there exists a witness~αx = (αx
u)u∈A∪B ∈ [−1,1]n to

the popularity of~x. We will use~αx as follows:

• for each a ∈ A: determine the value ra such that ra ·1+
(1− ra) · (−1) = αx

a, i.e., 2ra−1 = αx
a.

• for each b ∈ B: determine the value rb such that rb ·
(−1)+(1− rb) ·1 = αx

b, i.e., 1−2rb = αx
b.

The values ra and rb. The interpretation of ra is as
follows: we would like to come up with popular matchings
M1, . . . ,Mk whose convex hull contains ~x. We know from
Lemma 3.1 that every popular matching M in G has a witness
vector ~αM ∈ {±1}n and so for any a ∈ A, we have αM

a ∈
{±1}. Suppose ra fraction of these k matchings assign a’s
α-value to 1 and so 1− ra of these assign a’s α-value to -1.
Then ra ·1+(1− ra) · (−1) = 2ra−1 = αx

a.
Let Xa denote the array containing a’s assignment in ~x:

each cell in the array Xa corresponds to a neighbor b of a
such that x(a,b) > 0. These neighbors of a are arranged in Xa
in increasing order of a’s preferences and the cell containing
b has length x(a,b). Thus the total length of Xa is 1. We use
the value ra to partition Xa into a positive sub-array and a
negative sub-array as defined below.

DEFINITION 3. For any a ∈ A, the initial ra fraction of Xa
(i.e., the least preferred ra fraction of Xa) will be called
the positive sub-array of Xa and the remaining part (i.e.,
the most preferred 1− ra fraction of Xa) will be called the
negative sub-array of Xa.

α =−1α = 1

α =−1 α = 1

Xa

ra 1− ra

ra1− ra

X ′a

Figure 2: We will reorder Xa (the array on the left) by
swapping the positive and negative sub-arrays as shown
above. The reordered array will be called X ′a.

In Fig. 2, the array on the left is Xa and the positive sub-
array of Xa is colored blue and the negative sub-array of Xa



is colored red. We will assume that the positive sub-array of
Xa has a’s α-value set to 1 and the negative sub-array of Xa
has a’s α-value set to -1.

Our main idea here is the following: reorder Xa as
shown in Fig. 2. That is, we cut Xa at the end of its
positive sub-array and move its entire negative sub-array (in
the same order) to the left of its positive sub-array. Note that
neither the order within the positive sub-array nor within the
negative sub-array is changed by this. The reordered array
is shown on the right on Fig. 2, call this array X ′a. In case
the line cutting Xa into these 2 sub-arrays went through a
cell, that cell is now split into 2 cells (one negative and one
positive). Thus each cell in X ′a is either positive or negative.
Recall that each negative cell corresponds to a’s α-value
being -1 and each positive cell corresponds to a’s α-value
being 1.

Similar to the interpretation of ra, the interpretation of rb
is that if we assume rb fraction of the matchings M1, . . . ,Mk
assign b’s α-value to -1 and so (1− rb) of them assign b’s
α-value to 1, then rb · (−1)+(1− rb) ·1 = 1−2rb = αb. As
done for each a ∈ A, here also we form the array Xb which
is b’s assignment in ~x, however here the neighbors of b are
arranged in decreasing order of b’s preference.

DEFINITION 4. For any b ∈ B, the initial rb fraction of Xb
(i.e., the most preferred rb fraction of Xb) will be called
the negative sub-array of Xb and the remaining part (i.e.,
the least preferred 1− rb fraction of Xb) will be called the
positive sub-array of Xb.

α =−1 α = 1

α = 1 α =−1

rb 1− rb

1− rb rb

Xb

X ′b

Figure 3: The array on the left is Xb (b’s neighbors in ~x in
decreasing order of b’s preference) and the array on the right
is X ′b.

Refer to Fig. 3 – in the array on the left, the red part is
the negative sub-array of Xb and the blue part is the positive
sub-array of Xb. As before, we will assume that the negative
sub-array of Xb has b’s α-value set to -1 and the positive sub-
array of Xb has b’s α-value set to 1. We will cut Xb at the end
of its negative sub-array and move its entire positive sub-
array to the left of its negative sub-array as shown in Fig. 3.
Call this reordered array X ′b.

3.1 Finding the popular matchings whose convex hull
contains ~x. Form the table T whose rows are the reordered
arrays X ′u, for u ∈ A∪B. The table T has width 1 and the
number of cells in u’s row is at most deg(u) + 1, where
deg(u) is u’s degree in the original G. For any t ∈ [0,1),
define the set Mt ⊆ E as follows:

• draw the vertical line Lt at distance t from the left end
of T ;

• the line Lt intersects or touches the left boundary of
some cell in X ′u (call this cell cu(t)) for each u ∈ A∪B;

Mt = {(u,v) : u ∈ A∪B and v is in cell cu(t)}.

We will show in Theorem 3.2 that Mt is a matching, i.e.,
if b is in the cell in X ′a at distance t from the left end of T , then
a has to be in the cell in X ′b at distance t from the left. We
first show the following simple lemma which will be used in
the proof of Theorem 3.2.

LEMMA 3.4. For any (a,b) ∈ E, we have:

x(a,b)+ ∑
b′≺ab

x(a,b′)+ ∑
a′≺b a

x(a′,b) ≤ ra +(1− rb).

Moreover, if x(a,b) > 0 then this constraint is tight.

Proof. We know by the covering constraint in P ′G that for
any (a,b) ∈ E:

α
x
a +α

x
b ≥ ∑

b′≺ab
x(a,b′)− ∑

b′�ab
x(a,b′)

+ ∑
a′≺b a

x(a′,b)− ∑
a′�b a

x(a′,b).

Rewrite the above constraint in a simpler form by substi-
tuting ∑b′�ab x(a,b′) = 1− x(a,b)−∑b′≺ab x(a,b′) and similarly
substitute ∑a′�b a x(a′,b) = 1− x(a,b)−∑a′≺b a x(a′,b). Replace
αx

a with 2ra−1 and αx
b with 1−2rb. This results in the fol-

lowing simpler looking constraint:

x(a,b)+ ∑
b′≺ab

x(a,b′)+ ∑
a′≺b a

x(a′,b)(3.5)

≤ 1+ ra− rb = ra +(1− rb).

Note that it follows from Lemma 3.2 that when x(a,b) > 0,
(3.5) is tight. Thus we have shown the lemma. 2

We are now ready to show that Mt is a valid matching
in G. For any edge (a,b), if x(a,b) > 0, we need to show that
the cell containing b in X ′a and the cell containing a in X ′b are
perfectly aligned in the vertical direction.

THEOREM 3.2. Mt is a matching in G.



Proof. Let (a,b) be any edge such that x(a,b) > 0. Recall
that in X ′a, a’s increasing order of preference of partners in
~x begins from the start of its positive sub-array (the blue
region) in a left to right orientation and it wraps around.
Suppose ∑b′≺ab x(a,b′) ≥ ra. Let d = ∑b′:b′≺ab x(a,b′) − ra.
Then after traversing length d from the start of X ′a (refer to
Fig. 4), we reach the cell in X ′a that contains b – this is the
darkened red cell in X ′a in Fig. 4 and it has length x(a,b).

X ′a

X ′b

ra
d

d′

b’s
incr. order

1− rb

Figure 4: The top array is X ′a and the darkened cell there
contains b. The cell exactly below this in the blue sub-array
of X ′b contains a.

Similarly in X ′b, b’s increasing order of preference of
partners in ~x begins from the end of its positive sub-array
or the blue region and this order is from right to left (as in-
dicated by the arrow in Fig. 4). Let d′ = ∑a′:a′≺ba x(a′,b). Af-
ter traversing length d′ from this vertical line in X ′b (mark-
ing the end of the positive sub-array) from right to left,
we reach the cell that contains a. This cell is within the
positive sub-array of X ′b since d′ + x(a,b) ≤ 1− rb because
∑b′≺ab x(a,b′)+d′+x(a,b) = ra+(1−rb) (by Lemma 3.4) and
we are in the case where ∑b′≺ab x(a,b′) ≥ ra.

Refer to Fig. 4, where the cell in X ′b that contains a
is the darkened blue cell and it has length x(a,b). Since
d + x(a,b)+ d′ = 1− rb, it follows that the cell containing a
in X ′b and the cell containing b in X ′a are exactly aligned with
each other in the vertical direction.

The picture is absolutely symmetric when
∑a′≺b a x(a′,b) ≥ (1 − rb). Then the cell containing b is
in the positive sub-array of X ′a (its blue region) and the
cell containing a is in the negative sub-array of X ′b (its red
region).

The only case left is when ∑b′≺a b x(a,b′) < ra and
∑a′≺b a x(a′,b) < (1− rb). Using Lemma 3.4, it is easy to
see that in this case we also have the following inequalities:
∑b′�a b x(a,b′) < 1− ra and ∑a′�b a x(a′,b) < rb. In other words,
the line separating the positive sub-array from the negative
sub-array in Xa went through the cell containing b and simi-
larly, the line separating the negative sub-array from the pos-
itive sub-array in Xb went through the cell containing a. Let
d0 = ∑b′≺a b x(a,b′) and d1 = ∑a′≺b a x(a′,b) (see Fig. 5).

Let the length of the rightmost cell in X ′a be x0
(a,b) and
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incr. order
b’s

a’s incr. order

d1
d0

ra

1− rb

X ′b

X ′a

Figure 5: Both the leftmost (the dashed red) cell and the
rightmost (the dashed blue) cell in X ′a contain b. Symmet-
rically both the leftmost (the dashed blue) cell and the right-
most (the dashed red) cell in X ′b contain a.

let the length of the leftmost cell in X ′b be x1
(a,b). So x0

(a,b) =

ra− d0 and x1
(a,b) = (1− rb)− d1. Lemma 3.4 tells us that

x(a,b)+d0 +d1 = ra +(1− rb). Hence x(a,b) = x0
(a,b)+ x1

(a,b).
We know that the length of the cell containing b in Xa is
x(a,b). So is the length of the cell containing a in Xb. Hence
the length of the leftmost cell in X ′a is x(a,b)− x0

(a,b) = x1
(a,b)

and the length of the rightmost cell in X ′b is x(a,b)− x1
(a,b) =

x0
(a,b). Thus in this case as well we have perfect alignment

between the two cells in X ′a that contain b and the two cells
in X ′b that contain a. So no matter which of these cells is
intersected by the line Lt , we have exact alignment between
the cell containing a in X ′b and the cell containing b in X ′a.

Thus we can conclude that if b belongs to cell ca(t), then
a has to belong to cell cb(t). Hence for each vertex u∈ A∪B,
there is exactly one edge (u,v) ∈Mt that is incident on u. So
Mt is a matching in G. 2

The popularity of matching Mt . We now need to show that
Mt is a popular matching in G. We do this by showing a
witness vector ~αt such that ~α = ~αt and ~x = IMt satisfy the
constraints of P ′G, where IMt is the 0-1 edge incidence vector
of Mt . We define ~αt as follows. Recall that we defined the
matching Mt via the vertical line Lt that intersected table T .

• For each u ∈ A∪B do: if the cell intersected by Lt is in
the negative sub-array of X ′u, then set αt

u =−1; else (the
cell is in the positive sub-array of X ′u) set αt

u = 1.

Observe that αt
a+αt

b = 0 for each edge (a,b)∈Mt . This
is because it follows from the proof of Theorem 3.2 that, for
each edge (a,b) ∈ Mt , either b’s cell is in the negative sub-
array of X ′a and a’s cell is in the positive sub-array of X ′b or
vice-versa. Since Mt is a perfect matching, Corollary 3.1
follows.

COROLLARY 3.1. ∑u∈A∪B αt
u = 0.



We now need to show that ~αt and IMt also satisfy
the “covering constraints” in P ′G. Refer to Fig. 6. The
vertical line in X ′a (with the left to right arrow adjacent to
it) denotes the start of a’s preference order of its partners in
~x in increasing order and this wraps around. Similarly, the
vertical line in X ′b (with the right to left arrow adjacent to it)
denotes the start of b’s preference order of its partners in~x in
increasing order and this also wraps around.

a

b

X ′b

X ′a

ra

1− rb

Figure 6: The rightwards arrow in X ′a denotes a’s increasing
order. The leftwards arrow in X ′b denotes b’s increasing order
(this is from right to left).

Recall that we used the symbol cu(t) to denote the cell
in X ′u that is intersected by line Lt , for any u ∈ A∪B. Using
Lemma 3.4, it is easy to make the following observations:

(I) suppose x(a,b) = 0: so ∑b′≺ab x(a,b′) +∑a′≺b a x(a′,b) ≤
ra + (1− rb). Note that ra + (1− rb) is the sum of
lengths of positive sub-arrays in X ′a and X ′b. Hence for
both a and b to be matched in Mt to worse partners than
each other, both ca(t) and cb(t) must be in their respec-
tive positive sub-arrays. So if only one of ca(t),cb(t)
is in its positive sub-array, then at least one of a,b is
matched in Mt to a better partner than the other.

(II) suppose both ca(t) and cb(t) are in their respective
negative sub-arrays: then we claim that both a and b
get matched in Mt to better partners than each other.
This is because x(a,b)+∑b′≺ab x(a,b′)+∑a′≺b a x(a′,b) ≤
ra +(1− rb) and ra +(1− rb) is the sum of the lengths
of the positive sub-arrays in X ′a and in X ′b.

LEMMA 3.5. For each (a,b) ∈ E, we have αt
a + αt

b ≥
votea(b,Mt(a))+voteb(a,Mt(b)).

Proof. Let (a,b) ∈ E and let the line Lt intersect cell ca(t)
in X ′a and cell cb(t) in X ′b. There are three possible cases
regarding the “signs” of the cells ca(t) and cb(t):

(1) Both ca(t) and cb(t) are positive: so αt
a = αt

b = 1 and
thus αt

a+αt
b = 2; hence the covering constraint for edge

(a,b) holds because the right side of this constraint is
always at most 2.

(2) One of ca(t),cb(t) is positive and the other is negative:
so (αt

a,α
t
b) is either (−1,1) or (1,−1). We know from

Observation (I) and the proof of Theorem 3.2 that when
exactly one of the cells is positive, either (i) at least one
of a,b is matched in Mt to a better partner or (ii) a and
b are matched to each other. Thus the edge (a,b) is
covered in both these sub-cases.

(3) Both cells ca(t) and cb(t) are negative: so αt
a = αt

b =
−1. We know from Observation (II) that when both
ca(t) and cb(t) are negative, then both a and b are
matched in Mt to better partners than each other. Thus
here also the edge (a,b) is covered.

Thus~αt and IMt together satisfy the covering constraints
in P ′G for all edges (a,b) in E. For each u ∈ A ∪ B, we
have αt

u ≥ −1 and so the covering constraint for the edge
(u, `(u)) is also satisfied because voteu(`(u),Mt(u)) is -1.
We have also shown that ∑u αt

u = 0. Thus we can conclude
that (IMt ,~α) ∈ P ′G, i.e., Mt is a popular matching in G. 2

We are now ready to express~x as a convex combination
of popular matchings: these matchings are obtained by
sweeping a vertical line from the left end to the right end
of table T . Whenever a new cell begins in some row in
T (say, at distance t from the left end of T ), we define a
new matching Mt as described above. The leftmost cell in
T begins at distance 0 from the left end of T , let the second
leftmost cell in T begin at distance t1 from the left side of T ,
and so on, i.e., let the i-th leftmost cell in T begin at distance
ti−1 from the left side of T . Thus we construct matchings
M0,Mt1 , . . . ,Mtk−1 . So we have:

~x = t1 · I0 +(t2− t1) · I1 + · · ·+(1− tk−1) · Ik−1,

where I0, I1, . . . , Ik−1 are the 0-1 edge incidence vectors of the
matchings M0,Mt1 , . . . ,Mtk−1 , respectively.

The total number of matchings k that we construct here
is at most m+ |A| since m+ |A| = ∑a∈A (deg(a)+ 1) is an
upper bound on the total number of distinct cells in T . Thus
every popular fractional matching in G can be expressed as a
convex combination of at most m + n/2 popular matchings
in G (since |A|= |B|= n/2 in this section). This finishes the
proof of Theorem 3.1, i.e., if G = (A∪B,E) admits a perfect
stable matching then the polytope PG is integral.

4 Half-integrality of PG in any bipartite instance G

In this section we are in the general case: we have an instance
G = (A∪ B,E) with strict preference lists and G need not
admit a stable matching that matches all vertices. We know
that PG need not be integral in such an instance. We will
show the following theorem.

THEOREM 4.1. The popular fractional matching polytope
PG in G = (A∪B,E) is half-integral.



We will show the above theorem with the help of
Theorem 3.1. Using the given instance G, we will construct
a new instance H = (V ∪V ′,E ′) as follows: let V = A0∪B1
and let V ′ = B0∪A1, where Ai = {ai : a ∈ A} and Bi = {bi :
b ∈ B}, for i = 0,1 (see Fig. 7).

A0

B1

V V ′

B0

A1

Figure 7: The vertex set of the graph H is two copies of
vertex set of the graph G.

The edge set of H is E ′=E0∪E1∪{(u0,u1) : u∈A∪B},
where Ei = {(ai,bi) : (a,b)∈E}, for i= 0,1. For i= 0,1 and
for each vertex ui in H, ui’s preference list is the same as it
was in G, with a subscript i added to each of its neighbors (in
the same order of preference) along with u1−i added as ui’s
least preferred neighbor in H.

LEMMA 4.1. H admits a perfect stable matching.

Proof. Let S be a stable matching in H. Let S0 = S∩E0 and
S1 = S ∩ E1. By ignoring the subscripts of their vertices,
both S0 and S1 become stable matchings in G. Since all
stable matchings in G match exactly the same vertices [17],
it follows that u0 is left unmatched in S0 if and only if u1 is
left unmatched in S1. Thus S = S0 ∪ S1 ∪{(u0,u1) : u is an
unstable vertex in G}. So S is a perfect matching. 2

We can now use Theorem 3.1 to conclude that PH (the
popular fractional matching polytope of H) is integral. The
rest of this section will use the integrality of PH to prove
that PG is half-integral. In order to do this, we define a
mapping f from PG to the set of fractional matchings in
H. Let ~x ∈ PG, where ~x = (xe)e∈Ẽ ; we know that there
exists a witness ~αx = (αx

v)v∈A∪B such that ~x and ~αx satisfy
the constraints of P ′G.

Define the vector f (~x) =~z = (ze)e∈E ′ as follows: for
every edge (a,b) ∈ E, let z(a0,b0) = z(a1,b1) = x(a,b) and for
every u ∈ A∪B, let z(u0,u1) = x(u,`(u)). It is easy to see that~z
is a fractional matching in H.

LEMMA 4.2. For any popular fractional matching ~x in G,
the vector f (~x) is a popular fractional matching in H.

Proof. We need to show a witness vector ~β = (βv)v∈V∪V ′

such that~β and f (~x) satisfy the constraints in P ′H . We define

~β as follows: for each u ∈ A∪B, let βu0 = βu1 = αx
u. Let

(a,b) ∈ E. Given the fact that ~x and ~αx satisfy the covering
constraints in P ′G for (a,b), it immediately follows that f (~x)
along with the vector ~β satisfies covering constraints in P ′H
for the edges (a0,b0) and (b1,a1).

Consider the edge (u, `(u)) in G for any u ∈ A ∪ B:
we have αx

u ≥ x(u,`(u)) − 1. In the graph H, the right side
of the edge covering constraint for the edge (u0,u1) is
voteu0(u1, f (~x))+ voteu1(u0, f (~x)) = 2(x(u,`(u))−1). As the
left side of this constraint is βu0 + βu1 = αx

u +αx
u = 2αx

u, it
follows that the covering constraint for the edge (u0,u1) is
also satisfied by f (~x) and~β. Thus the covering constraints in
the description of P ′H for all edges in E ′ are satisfied by f (~x)
and ~β. Since βui = αx

u ≥ −1, the covering constraint in P ′H
for the edge (ui, `(ui)) is trivially satisfied for all u ∈ A∪B
and i = 0,1. 2

Our goal now is to define a mapping h from PH to PG
so that h◦ f (~x) =~x for any popular fractional matching~x in
G. Thus h is the inverse of f , when restricted to fractional
matchings that are in the image of f . Let ~z = (ze)e∈E ′ be
any popular fractional matching in H. We define h(~z) =~y =
(ye)e∈Ẽ as given below and note that h ◦ f (~x) = ~x for any
x ∈ PG.

y(a,b) = (z(a0,b0)+ z(b1,a1))/2 for every (a,b) ∈ E

y(u,`(u)) = z(u0,u1) for every u ∈ A∪B.

LEMMA 4.3. For any popular fractional matching ~z in H,
the vector h(~z) is a popular fractional matching in G.

Proof. Let ~y = h(~z). We will now show that ~y ∈ PG. For
this to be true, it is necessary that ~y satisfies ∑e∈Ẽ(u) ye = 1
for each u ∈ A∪B. Since ∑e∈E ′(v) ze = 1 for each vertex v
in H, it is simple to see that the above constraint is satisfied.
We will now show that ~y and an appropriate witness vector
~α satisfy the other constraints defining P ′G.

We know that there exists a witness vector (βv)v∈V∪V ′

that is a witness to~z’s popularity in H. For each u∈ A∪B, let
αu = (βu0 +βu1)/2. Since ∑u∈A∪B (βu0 +βu1) = 0, we have
∑u∈A∪B αu = 0. Using the fact that~β and~z satisfy covering
constraints for all edges in E ′, it is straightforward to show
that ~α and ~y satisfy covering constraints for all edges in Ẽ.
Thus (~y,~α) ∈ P ′G, i.e.,~y ∈ PG. 2

Theorem 4.1 follows from Lemma 4.4. Thus the poly-
tope PG is half-integral.

LEMMA 4.4. Let ~x ∈ PG. Then ~x = ∑
r
i=1 λi~qi, where

~q1, . . . ,~qr are popular half-integral matchings in G and λi ≥
0 for 1≤ i≤ r along with ∑i λi = 1.

Proof. Let ~x ∈ PG and let ~z = f (~x). We know from
Lemma 4.2 that~z ∈ PH . Since PH is integral, it follows that



~z=∑
r
i=1 λi IMi , where M1, . . . ,Mr are popular matchings in H

and IM1 , . . . , IMr their respective edge incidence vectors, and
for each i, we have λi ≥ 0 along with ∑i λi = 1.

We know that h(~z) =~x. So ~x = h(~z) = ∑
r
i=1 λi · h(IMi).

Since IM1 , . . . , IMr belong to PH , it follows from Lemma 4.3
that h(IM1), . . . ,h(IMr) belong to PG. Since each coordinate
in the vectors IM1 , . . . , IMr is either 0 or 1, it follows from the
definition of h that h(IM1), . . . ,h(IMr) are half-integral. Thus
~x is a convex combination of popular half-integral matchings
in G. 2

Our results imply that we can compute a max-utility
popular half-integral matching in G = (A ∪ B,E) with a
utility function w : E → Q by solving a linear program
to maximize ∑e∈E we xe and with the description of P ′G
as the set of constraints. The previous polynomial time
algorithm for computing a max-utility popular half-integral
matching [25] in G involved solving a linear program in
4m variables with 8m+ 4n constraints, where |E| = m and
|A|+ |B|= n. In contrast, the description of P ′G uses m+n−1
(independent) variables and has 2m+2n constraints.

5 Half-integrality of PG in a roommates instance
The input instance here is a graph G=(V,E) (not necessarily
bipartite) with strict preferences. Note that popular match-
ings need not always exist in such an instance. Consider the
instance G on 3 vertices a,b, c with cyclic preferences, i.e.,
a prefers b to c while b prefers c to a, and c prefers a to b. It
is easy to see that G has no popular matching.

Let G = (V,E) be any roommates instance with strict
preferences on m edges and n vertices. We define the
fractional matching polytope FMG of G below.

FMG = {~x ∈ Rm
≥0 : ∑

e∈E(u)
xe ≤ 1 ∀u ∈V}.

It is known that FMG is the convex hull of half-integral
matchings in G. As done in Section 2, it will be convenient
to assume that each vertex is fully matched in any fractional
matching. So we augment the edge set E with the edges
(v, `(v)) for all vertices v (where `(v) is v’s last resort
neighbor) and let Ẽ = E ∪{(v, `(v)) : v ∈ V}. So we have
∑e∈Ẽ(v) xe = 1 for all v ∈ V and we will continue to use~x to
denote the revised~x in [0,1]m+n.

In order to compare two fractional matchings with re-
spect to popularity, we define ∆(~x,~y) for fractional matchings
~x and~y below.

(5.6) ∆(~x,~y) = ∑
u∈V

∑
(u,v)∈Ẽ(u)
(u,v′)∈Ẽ(u)

x(u,v) y(u,v′) voteu(v,v′).

Note that when G is bipartite, the above definition coincides
with the definition of ∆(Π,Λ) given in Section 1 where Π

and Λ are the mixed matchings that correspond to ~x and ~y,
respectively.

A fractional matching ~x is popular if ∆(~x,~y) ≥ 0 for all
~y ∈ FMG. The polytope PG is the set of all popular fractional
matchings in G, that is

PG = {~x ∈ FMG : ∆(~x,~y)≥ 0 ∀~y ∈ FMG}.

Since the polytope FMG is half-integral, PG can also be
defined as the set of points ~x ∈ FMG such that ∆(~x,~q) ≥ 0
for all half-integral matchings ~q in G. Our goal now is to
show that the polytope PG is half-integral.

We will prove this via the extended formulation P ′G
of PG in Rm+2n whose description involves O(m+ n) con-
straints. We give a brief sketch of how we arrive at this de-
scription of P ′G below – this is totally analogous to the dis-
cussion in Section 2 for bipartite instances.

Let ~x ∈ PG. We consider the max-weight half-integral
matching problem that matches all vertices in V in the
augmented graph G̃x: for any edge (u,v) ∈ E, its weight
in G̃x is voteu(v,~x) + votev(u,~x) and the weight of edge
(u, `(u)) for any u ∈V is voteu(`(u),~x).

The dual LP to the max-weight half-integral matching
linear program in G̃x that matches all vertices in V is LP1 in
Section 2. By regarding LP1 as a linear program in m+ 2n
variables, we get LP2. The polytope P ′G is the set of optimal
solutions to LP2. Thus we get the same description of P ′G as
we obtained in Section 2: covering constraints for all edges
in Ẽ = E ∪{(u, `(u)) : u ∈V} along with the constraints that
∑u∈V αu = 0,~x≥ 0, and ∑e∈Ẽ(u) xe = 1 for all u ∈V .

We will use the above set of constraints to prove the
half-integrality of PG as done in Section 4. Corresponding
to G = (V,E), we define the bipartite graph H = (V ∪V ′,E ′)
where V is the vertex set of G and V ′ = {v′ : v ∈V}. So V ′ is
another copy of V . The edge set of H is E ′ = {(u,v′),(v,u′) :
(u,v) ∈ E}∪{(v,v′) : v ∈V}.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

V V ′

a′

b′

c′c

b

a
a

cb

Figure 8: To the left is the graph G which is the triangle on
a,b, c. To the right is the graph H which is the 6-cycle a-b′-
c-a′-b-c′-a along with the edges (a,a′),(b,b′),(c,c′).

Thus H has two edges (u,v′) and (v,u′) for every edge
(u,v) in G, along with the edges (v,v′) for all v ∈ V . Fig. 8



has an example where the graph H on the right is the bipartite
graph corresponding to the graph G on the left.

The preference lists of vertices in the graph H are as
follows: for any vertex v ∈ V , if the preference list of v in
G was u0 � u1 � ·· · � uk then the preference list of v in H
is u′0 � u′1 � ·· · � u′k � v′ and symmetrically, the preference
list of v′ in H is u0 � u1 � ·· · � uk � v.

Let us define twin(v) = v′ and twin(v′) = v for each v ∈
V ; thus v and twin(v) are each other’s last choice neighbors
in H.

LEMMA 5.1. H admits a perfect stable matching.

Proof. For any edge e = (u,v′) in H, let e′ = (v,u′): it
follows from the definition of the edge set E ′ of H that e′

is also an edge in H. For any matching M in H, we define a
“mirror image” matching M′ in H as follows: M′ = {e′ : e ∈
M}. It is easy to see that if M is stable then M′ is also stable.
This is because an edge e is a blocking edge to M′ only if e′

is a blocking edge to M.
Let S be a stable matching in H, then S′ is also a

stable matching in H. Suppose S leaves a vertex u ∈ V ∪V ′

unmatched. Then S′ leaves twin(u) unmatched, where the
function twin has been defined above. Since all stable
matchings in H leave the same vertices unmatched, it follows
that S leaves both u and twin(u) unmatched. Then the edge
(u, twin(u)) is a blocking edge to S, contradicting its stability.
Thus S is a perfect matching. 2

Hence we can conclude that the popular fractional
matching polytope PH of H is integral (by Theorem 3.1).
As done in Section 4, we define the function f on PG as fol-
lows: f (~x) =~z = (ze)e∈E ′ where z(u,v′) = z(v,u′) = x(u,v) for
every edge (u,v) ∈ E and z(v,v′) = x(v,`(v)) for any v ∈V . It is
easy to see that~z is a fractional matching in H.

LEMMA 5.2. For any popular fractional matching x in G,
the vector f (~x) is a popular fractional matching in H.

Lemma 5.2 states that f is a function from PG to PH .
Its proof is analogous to the proof of Lemma 4.2 given in
Section 4.

We now define a mapping h from PH to PG such that
h ◦ f (~x) = ~x for any popular fractional matching ~x in G.
Let ~z = (ze)e∈E ′ be any popular fractional matching in H.
We define h(~z) = ~y = (ye)e∈Ẽ as follows: y(v,`(v)) = z(v,v′)
for every v ∈ V and y(u,v) = (z(u,v′) + z(v,u′))/2 for every
(u,v) ∈ E. It is easy to see that h(~z) is a fractional matching
in G and Lemma 5.3 below states that h(~z) is a popular
fractional matching in G.

LEMMA 5.3. For any popular fractional matching ~z in H,
the vector h(~z) is a popular fractional matching in G.

Lemma 5.3 can be proved in the same way that we
proved Lemma 4.3 in Section 4: use the witness vector ~β

for~z’s membership in P ′H to construct a witness vector~α for
h(~z)’s membership in P ′G. That is, let αv = (βv +βv′)/2 for
each v ∈ V . It is straightforward to show that h(~z) and ~α
satisfy all the constraints in P ′G.

Lemma 5.4 proves the half-integrality of PG. Its proof
is the same as the proof of Lemma 4.4 given in Section 4.

LEMMA 5.4. Let ~x ∈ PG. Then ~x = ∑
r
i=1 λi~qi, where

~q1, . . . ,~qr are popular half-integral matchings in G and λi ≥
0 for 1≤ i≤ r along with ∑i λi = 1.

For any stable fractional matching ~x in G, we have ~x ∈
PG. This is because~x ∈ FMG and~x satisfies constraint (2.4)
for all edges in G, so (~x,~0) ∈ P ′G. It is known that stable
half-integral matchings always exist in G [35] and so PG is
always non-empty. In order to find a max-utility popular
fractional matching in G, we solve a linear program to
maximize ∑e∈E wexe along with the description of P ′G as the
set of constraints. Since PG is half-integral, we can conclude
Theorem 5.1.

THEOREM 5.1. Given an instance G = (V,E) with strict
preference lists and a utility function w : E → Q, there
is always a max-utility popular fractional matching ~q ∈
{0, 1

2 ,1}
m in G, and~q can be computed in polynomial time.

6 Hardness of max-utility popular matching in
roommates instances

In this section we show the NP-hardness of the max-utility
popular matching problem in a roommates instance. Let H =
(VH ,EH) be an instance of VERTEX COVER on n vertices.
Based on H, we will construct a roommates instance G =
(V,E) with a utility function w : E → {1,2}. We will show
that H has a vertex cover of size at most k if and only if G
has a popular matching M such that w(M) ≥ 4n− 2k. This
reduction will show that the max-utility popular matching
problem in a roommates instance is NP-hard.

Let VH = {1, . . . ,n}. We now describe the roommates
instance G. The vertex set V of G consists of 4n vertices:
4 vertices i0, i1, i2, i3 corresponding to each vertex i where
i ∈ [n]. For each i ∈ [n], we describe the preference lists of
the vertices i0, i1, i2, i3 below (note that NbrH(i) denotes the
set of neighbors of vertex i in H):

i0 : i1 � π( j0 : j ∈ NbrH(i))� i2 � i3 � π(· · ·)
i1 : i0 � i2 � i3 � π(· · ·)
i2 : i1 � i0 � i3 � π(· · ·)
i3 : i1 � i2 � i0 � π(· · ·)

In order to describe the preference lists of vertices in
G in a compact manner, we used the following symbols:
π( j0 : j ∈ NbrH(i)) denotes an arbitrary permutation of the
vertices j0,k0, . . . where j,k, . . . are i’s neighbors in H and
π(· · ·) denotes an arbitrary permutation of all neighbors of it



in G not explicitly listed so far in the preference list of it , for
0≤ t ≤ 3.

We define edge utilities in G as follows: w(i0, i2) =
w(i1, i3) = 2 for every 1 ≤ i ≤ n; for every other edge e
we set w(e) = 1. The instance G has a stable matching
S = {(i0, i1),(i2, i3) : i ∈ [n]} and w(S) = 2n.

Since G is a complete graph on 4n vertices, every popu-
lar matching in G has to be perfect. Given a perfect match-
ing M in G, we need a method to prove the popularity
of M. For this, we will use the characterization of pop-
ular matchings from [20] that uses edge labels on edges
outside M: more precisely, (u,v) in E \M gets the label
(voteu(v,M(u)),votev(u,M(v)).

All edges with the label (1,1) are blocking edges to
M. Let GM be the graph obtained by deleting all edges
labeled (−1,−1) from G. It was shown in [20] that a perfect
matching M is popular in G if and only if the following two
conditions hold in GM .

(i) There is no alternating cycle with respect to M that
contains a blocking edge.

(ii) There is no alternating path with respect to M that
contains two or more blocking edges.

We are now ready to show one side of the reduction.

LEMMA 6.1. Let C ⊆ [n] be a vertex cover of size k in H.
Then there exists a popular matching M in G such that
w(M) = 4n−2k.

Proof. We construct a matching M in G according to the
vertex cover C in H as follows: start with M = /0; for i = 1 to
n do:

• if i ∈C, then add (i0, i1) and (i2, i3) to M;

• if i /∈C, then add (i0, i2) and (i1, i3) to M.

The utility of M is (1+1)k+(2+2)(n− k) = 4n−2k.
So what we need to show is that M is a popular matching
in G. We will prove this by showing that conditions (i) and
(ii) stated above (from [20]) hold in the graph GM . We will
understand the structure of the graph GM now.

In the graph GM , for any i ∈ [n], only the vertex i0
(among the 4 vertices i0, i1, i2, i3 corresponding to i) has
edges connecting it to the “outside world”. Such an edge
is of the form (i0, j0) where (i, j) ∈ EH . Since C is a vertex
cover of H, one of i, j has to be in C. When both i and j are
in C, the edge (i0, j0) gets the label (−1,−1) and so it is not
present in GM .

Observe that the graph GM consists of the following
edges (refer to Fig. 9 and Fig. 10):

1. edges in M.

2. the edges (i0, i2),(i1, i2),(i1, i3) for every i ∈C: each of
these edges has the label (−1,1).
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Figure 9: The vertices and edges in GM corresponding to a
vertex i /∈ C: the bold edges are in M and the red dashed
edges are blocking edges.

3. the edges (i0, i1) and (i1, i2) for every i /∈ C: each of
these is a blocking edge to M.

4. the edge (i0, j0) where (i, j) ∈ EH , and exactly one of
i, j is in C: such an edge is labeled (1,−1) or (−1,1).
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Figure 10: The vertices and edges in GM corresponding to a
vertex i ∈C. The bold edges are in M. There is no blocking
edge here.

We are now ready to show that M is a popular matching
in G. The only blocking edges to M in GM are (i0, i1) and
(i1, i2) for i /∈C. It is easy to see that there is no alternating
cycle with respect to M in GM with a blocking edge. This
is because any alternating cycle ρ in GM that contains a
blocking edge has to contain either (i0, i1) or (i1, i2) for some
i /∈C. This means the vertex i3 (being the matched partner of
i1) has to belong to ρ. However i3 has degree 1 in GM (see
Fig. 9) and thus cannot belong to any cycle. Thus there is no
such alternating cycle ρ.

Consider any alternating path ρ with respect to M in
GM that contains either (i0, i1) or (i1, i2) for i /∈C. Our first
observation is that ρ cannot contain both (i0, i1) and (i1, i2) as
there is no such alternating path in GM . So for ρ to contain
more than one blocking edge, some edge (i0, j0) has to be
present in ρ as that is the only way to get out of the set
{i0, i1, i2, i3}.

Since i /∈ C and (i, j) ∈ EH , the vertex j ∈ C. So j0’s
partner in M is j1 and as j1 has only two neighbors j2 and
j3 in GM , it is easy to see that this alternating path ρ will get
“trapped” inside the vertices corresponding to j (see Fig. 10).
As there is no blocking edge incident on any of the vertices



j0, j1, j2, j3 and since this alternating path ρ cannot continue
on to other vertices in GM , it follows that ρ has at most one
blocking edge. Thus there is no alternating path in GM with
two or more blocking edges. So conditions (i) and (ii) stated
earlier hold for M in GM and thus M is popular in G. 2

Our goal now is to show that if G has a popular matching
with utility at least 4n−2k, then H has a vertex cover of size
at most k. The following lemma will be useful to us.

LEMMA 6.2. Let M be a popular matching in G. Then M
has no edge (is, jt) where i 6= j and 0≤ s, t ≤ 3.

Proof. We will prove this lemma by case analysis. Our first
observation is that M has to be a perfect matching in G since
G is a complete graph on 4n vertices. Suppose an edge (is, jt)
belongs to M where i 6= j.
Case 1. Let s, t ∈ {0,1}. Then both (i0, i1) and ( j0, j1) are
blocking edges to M and thus we get an alternating path of
length 3 with 2 blocking edges (i0, i1) and ( j0, j1) and the
matching edge (is, jt) in between them; this is a contradiction
to the popularity of M by condition (ii) stated earlier.
Case 2. Let s ∈ {0,1} and t = 2. If ( j1, j3) /∈ M, then
there is an alternating path i1−s-is- j2- j3 in GM with two
blocking edges (i0, i1) and ( j2, j3). If ( j1, j3)∈M, then there
is another alternating path i1−s-is- j2- j0 with two blocking
edges (i0, i1) and ( j0, j2). Observe that ( j0, j2) is a blocking
edge to M because we have already established in Case 1 that
j0 cannot be matched in M to any k0 and so j0 is matched in
M to some neighbor worse than j2.
Case 3. Let s ∈ {0,1} and t = 3. If j2 is matched to neither
j0 nor j1, then i1−s-is- j3- j2 has two blocking edges (i0, i1)
and ( j2, j3). If j2 is matched to jr where r ∈ {0,1}, then
i1−s-is- j3- j1−r has two blocking edges (i0, i1) and ( j3, j1−r).

So we have established that for any i∈ [n], neither i0 nor
i1 can be matched in M to any vertex in { j0, j1, j2, j3} where
j 6= i.
Case 4. Let s, t ∈ {2,3}. So either i2 or i3 is matched to an
“outside vertex”, i.e., a vertex jt where i 6= j. Then it has to
be the case that both i2 and i3 are matched to outside vertices.
Otherwise we have 3 out of the 4 vertices i0, i1, i2, i3 that have
to be matched to each other in M, which is not possible.

Thus i2 is matched to an outside vertex (say, jt where
t ∈ {2,3}) and i3 is also matched to an outside vertex. So
(i2, i3) is a blocking edge to M. By the same reasoning,
( j2, j3) is also a blocking edge to M. Thus we have an
alternating path of length 3 that consists of two blocking
edges (i2, i3) and ( j2, j3) with the matching edge (i2, jt) in
between them. This contradicts the popularity of M. 2

LEMMA 6.3. Suppose M is a popular matching in G.

(i) For the vertices i0, i1, i2, i3 in G: either
{(i0, i1),(i2, i3)} ⊆M or {(i0, i2),(i1, i3)} ⊆M.

(ii) If (i, j) ∈ EH , then either {(i0, i1),(i2, i3)} ⊆ M or
{( j0, j1),( j2, j3)} ⊆M (or possibly both).

Proof. We know from Lemma 6.2 that for any i ∈ [n], the
vertices i0, i1, i2, i3 have to be matched to each other in M.
So there are 3 possibilities: (1) M contains (i0, i1) and (i2, i3),
(2) M contains (i0, i2) and (i1, i3), (3) M contains (i0, i3) and
(i1, i2).

However if M contains (i0, i3) and (i1, i2), then there
is an alternating cycle i0-i3-i2-i1-i0 in GM that contains a
blocking edge (i0, i1) and this contradicts the popularity of
M by condition (i) stated earlier. Thus options (1) and (2)
above are the only possibilities. This proves the first part of
the lemma.

We now show the second part. Suppose (i, j) ∈ EH
and M contains the 4 edges (i0, i2), (i1, i3), ( j0, j2), and
( j1, j3). Then there is an alternating path i1-i2-i0- j0 in GM
with two blocking edges (i1, i2) and (i0, j0): this contradicts
the popularity of M by condition (ii) stated earlier. 2

We are now ready to show the following lemma that
completes our reduction.

LEMMA 6.4. If M is a popular matching in G with w(M)≥
4n−2k then there is a vertex cover C in H with |C| ≤ k.

Proof. We know from Lemma 6.3 (i) that for every i ∈ [n]:
either {(i0, i1),(i2, i3)} ⊆ M or {(i0, i2),(i1, i3)} ⊆ M. We
will construct a vertex cover C in H as follows:

C = {i ∈ [n] : M contains the edges (i0, i1) and (i2, i3)}.

It follows from Lemma 6.3 (ii) that the set C is indeed a
vertex cover in H. If |C|= n0 then w(M) = (1+1)n0 +(2+
2)(n− n0) = 4n− 2n0. We are given that w(M) ≥ 4n− 2k,
hence n0 ≤ k. 2

The NP-hardness of the max-utility popular matching
problem follows from Lemmas 6.1 and 6.4. In fact, our
reduction shows the following stronger result.

THEOREM 6.1. It is NP-hard to compute a max-utility pop-
ular matching in a roommates instance G = (V,E), even
when all preferences are strict and complete, each edge util-
ity is either 1 or 2, and G admits a stable matching.

6.1 An inapproximability result. We will now show that
there is no polynomial time O(1)-approximation algorithm
for the max-utility popular matching problem in a room-
mates instance unless the unique games conjecture fails and
this is the case even when all preferences are strict and com-
plete. Let H = (VH ,EH) be an instance of the VERTEX
COVER problem on n vertices and we assume that H admits a
perfect matching. It is known that VERTEX COVER is hardest
to approximate in such instances [8].



Using H, we will construct a roommates instance G =
(V,E) as done at the beginning of Section 6. So Lemmas 6.2
and 6.3 hold. The only change that we make from the
description of G given earlier is with respect to the edge
utility function w in G. Our new function has w(i0, i2) =
w(i1, i3) = 1 for all i ∈ [n] and w(e) = 0 for all other edges.

As before, G has a stable matching S = {(i0, i1),(i2, i3) :
i ∈ [n]} and now w(S) = 0. Lemmas 6.1 and 6.4 now yield
the following conclusion: there is a vertex cover in H of size
≤ k if and only if there is a popular matching in G of utility
≥ 2n− 2k. Also, given a popular matching in G of utility
at least 2n− 2k, we can easily find a vertex cover of size at
most k in H (as done in the proof of Lemma 6.4).

THEOREM 6.2. There is no polynomial time O(1)-
approximation algorithm to compute a max-utility popular
matching in a roommates instance with non-negative edge
utilities unless the unique games conjecture fails.

Proof. Consider the vertex cover instance H on n vertices.
Recall that we assumed H to contain a perfect matching. Let
opt be the size of an optimal vertex cover in H, so opt≥ n/2
(due to the perfect matching in H).

Suppose there is a polynomial time ε-approximation
algorithm for the max-utility popular matching problem in
G, for some constant ε > 0. We will compute a matching M
in G by this approximation algorithm and using M, we will
obtain a valid vertex cover C in H (as done in the proof of
Lemma 6.4). We will now bound the size of C.

If opt ≤ (1 + ε)n/2 then there is a popular matching
in G with utility ≥ 2n− (1+ ε)n = (1− ε)n. So w(M) ≥
ε(1−ε)n and this implies |C| ≤ (2−ε+ε2)n/2 (since given
a matching with utility ≥ 2n−2k in G, we can find a vertex
cover in H of size ≤ k). By assumption n/2 ≤ opt, so we
have a vertex cover in H of size at most (2− ε+ ε2)opt.

The case left is when opt ≥ (1 + ε)n/2. However in
this case even if C =VH , the approximation factor would be

n
(1+ε)n/2 ≤ 2(1−ε+ε2). Thus we always have a vertex cover

of size at most (2−ε+ε2)opt. Since ε is a constant in (0,1),
this will break the unique games conjecture. 2

Conclusions and Open problems. Given a bipartite in-
stance G = (A∪B,E) with strict preference lists, we showed
that its popular fractional matching polytope PG is half-
integral (and in the special case where a stable matching in
G is a perfect matching, the polytope PG is integral). Thus
when there are edge utilities in G, there is always a max-
utility popular fractional matching in G that is half-integral.
The main open problem here is to settle the complexity of
the max-utility popular matching problem in G.

When G is a roommates instance, (i.e., the graph need
not be bipartite), we showed that it is NP-hard to find a max-
utility popular matching in G. We showed a polynomial
time algorithm to compute a max-utility popular half-integral

matching in a roommates instance G = (V,E) with a utility
function w : E → Q. A popular matching need not always
exist in a roommates instance and the main open problem is
to settle the complexity of the popular matching problem in
a roommates instance, i.e., given an instance G = (V,E) with
strict preferences lists, does G admit a popular matching?
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