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Abstract
Given a graph with weights on the edges and a matroid imposed on the vertices, our problem is to
choose a subset of vertices that is independent in the matroid, with the objective of maximizing the
total weight of covered edges. This problem is a generalization of the much studied max k-vertex
cover problem, where the matroid is the simple uniform matroid, and it is also a special case of
maximizing a monotone submodular function under a matroid constraint.

In this work, we give a Fixed Parameter Tractable Approximation Scheme (FPT-AS) when the
given matroid is a partition matroid, a laminar matroid, or a transversal matroid, Precisely, if k

is the rank of the matroid, we obtain (1 − ε) approximation using
(

1
ε

)O(k)
nO(1) time for partition

and laminar matroids and using
(

1
ε

+ k
)O(k)

nO(1) time for transversal matroids. This extends a
result of Manurangsi for uniform matroids [26]. We also show that these ideas can be applied in the
context of (single-pass) streaming algorithms.

Our FPT-AS introduces a new technique based on matroid union, which may be of independent
interest in extremal combinatorics.
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1 Introduction

Let G = (V, E) be a graph. A weight w(e) is associated with each edge e ∈ E. By convention
we set n = |V | and m = |E|. For a vertex v ∈ V we define δ(v) the set of edges that are
incident to v. The degree of a vertex v ∈ V , denoted deg(v), is the size of δ(v), and we define
the weighted degree of a vertex v ∈ V as the sum degw(v) =

∑
e∈δ(v) w(e). For two sets of

vertices S, T ⊆ V in a graph G, we denote EG(S, T ) =
∑

e∈E,e∩S ̸=∅,e∩T ̸=∅ w(e) the sum of
the weights of the edges that have one endpoint in S and one endpoint in T . Then EG(S, S),
abbreviated EG(S), denotes the sum of the weights of the edges that are covered by S (i.e.
having at least one of its endpoints in S).

Let M = (V, I) be a matroid on the ground set V . Recall that M = (V, I) is a matroid
if the following three conditions hold: (1) ∅ ∈ I, (2) if X ⊆ Y ∈ I, then X ∈ I, and (3) if
X, Y ∈ I, |Y | > |X|, there exists an element e ∈ Y \X so that X ∪ {e} ∈ I. The sets in I
are the independent sets and the rank k of the matroid M is defined as maxX∈I |X|. For
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more details about matroids, we refer the reader to [33]. In this paper, given a set S ⊆ V

and v ∈ V , we will denote S ∪ {v} by S + v and S\{v} by S − v for conciseness.
The problem that we consider in this paper is to choose an independent set of vertices

S ∈ I, with the objective of maximizing EG(S), namely, the total weight of the edges covered
by S.

Let us put our problem in a larger picture. When the given matroid M is a uniform
matroid (see below for a formal definition), our problem reduces to the max k-vertex-cover
problem, where we want to choose k arbitrary vertices so as to maximize the total weight
of covered edges. This is a classical problem with a long history: the greedy heuristics
is known to give 1 − 1/e approximation as shown by Hochbaum and Pathria [23]. Ageev
and Sviridenko [1] propose an LP-based approach and the technique of pipage rounding to
obtain 3/4 approximation. Using SDP, Feige and Langberg [14] improve this ratio to 3/4 + δ

for some small constant δ > 0. The current best approximation ratio is 0.92, achieved by
Manurangsi [26]. For some special cases of the problem, different ratios are also obtained,
e.g. see [4, 21, 22]. On the hardness side, to our knowledge, the best inapproximability ratio
is due to Austrin and Stankovic [2], which is 0.929.

The max k-vertex-cover has also been studied through the lens of fixed-parameterized-
tracability. Guo et al. [19] show the problem to be W [1]-hard with k as parameter, thus
showing the unlikelihood of getting an exact solution in FPT time. Nonetheless, Marx [28]
shows that it is possible to get a near-optimal solution in FPT time. Precisely, he gives
an FPT approximation scheme (FPT-AS), that delivers a (1 − ε)-approximate solution
in (k/ϵ)O(k3/ϵ)nO(1) time. This running time is later improved by Gupta et al. [20] and
Manurangsi [26].

Here we recall the definition of an FPT-AS [28]:

▶ Definition 1. Given a parameter function κ associating a natural number to each instance
x ∈ I of a given problem, a Fixed-Parameter Tractable Approximation Scheme (FPT-AS) is
an algorithm that can provide a (1− ε) approximation in f(ε, κ(x)) · |x|O(1) time.

In our case, the instances are made of a graph and a matroid, and the parameter of an
instance is the rank k of its matroid.

Regarding the more general case of an arbitrary matroid of rank k, one can obtain 3/4
approximation in polynomial time by combining known techniques.1 This is also a special
case of maximizing a submodular function (more precisely, a coverage function) under matroid
constraint, for which a 1− 1/e approximation can be achieved in polynomial time [6, 18].
In this work, we try to do better than this ratio for some special cases of matroids, in the
context of fixed-parameter algorithms. We also show that the ideas developed here can be
applied in the streaming setting [31]. In streaming, maximizing of a submodular function
under a general matroid constraint has received much attention recently [8, 10, 16].

1 Ageev and Sviridenko [1] show that, for the case of a uniform matroid, the optimal fractional solution x∗

of the LP has at least 3/4 of the optimal value. They then use the pipage rounding to transform it into
an integral solution with value no less than x∗. The same LP approach can be generalized for arbitrary
matroids. The optimal fractional solution can be obtained by Ellipsoid algorithm: even though the
linear program to describe the independent sets of an arbitrary matroid may use exponentially many
constraints, we can design a separation oracle using an algorithm of Cunningham [12]. What remains is
just the pipage rounding with a general matroid—this is already known to be do-able by Calinescu et
al. [7]. We thank Pasin Manurangsi for communicating to us this method.
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1.1 Our Contribution
Let us recall some definitions. A uniform matroid of rank k is a matroid where the independent
sets are the sets S of cardinality at most k. A partition matroid is a matroid where we are
given a partition V1, . . . , Vr of the ground set V and bounds k1, . . . , kr such that a set S is
independent if for all 1 ≤ i ≤ r, |S ∩Vi| ≤ ki. A laminar matroid is given as a laminar family
V1, . . . Vr of V , i.e. given Vi ̸= Vj , then either Vi ∩ Vj = ∅, or Vi ⊂ Vj , or Vj ⊂ Vi, along with
bounds k1, . . . , kr. A set S ⊆ V is independent if for all 1 ≤ i ≤ r, |S ∩ Vi| ≤ ki. Finally, a
transveral matroid is given in a family V1, . . . , Vk ⊆ V , where Vis are not necessarily disjoint,
and a set S = {u1, · · · , ut} is independent if and only if for each element ui, there exists a
distinct ϕ(i) so that ui ∈ Vϕ(i). These simple types of matroid have been extensively studied
in a large variety of contexts.

A uniform matroid is a special case of a partition matroid, which is again a special case
of a laminar or a transversal matroid. However, laminar matroids and transversal matroids
are not inclusive of each other [32]. Transversal matroids were introduced in the 60s, by
Edmonds and Fulkerson [13] and by Mirsky and Perfect [30]. They unified many results in
transversal theory and are generally considered an important class of matroids, e.g. see [35].
Laminar matroids receive much attention recently in the community of theoretical computer
science, especially in the context of matroid secretary problem, e.g., see [3, 9, 15, 24, 34].
Our results involve these kinds of matroids.

▶ Theorem 2. For every ε > 0, we can extract an approximate kernel V ′ ⊆ V in polynomial
time so that a (1 − ε)-approximate solution is contained in V ′. The size of the kernel V ′

depends on the type of the given matroid M.
(i) |V ′| ≤ k

ε when M is a partition matroid;
(ii) |V ′| ≤ 2k

ε when M is a laminar matroid;
(iii) |V ′| ≤ k

ε + k(k − 1) when M is a transversal matroid.

Furthermore, by a brute force enumeration, we can find the desired 1− ε approximation
in
( 1

ε

)O(k)
nO(1) time for partition and laminar matroids and

( 1
ε + k

)O(k)
nO(1) time for

transversal matroids.

In addition, by a straightforward modification of our proofs in Section 2 (see Appendix A),
we can show the following corollary.

▶ Corollary 3. Suppose that we are given a hypergraph G = (V, E) with edge size bounded by
a constant η ≥ 2. We can compute a (1− (η− 1) · ε) approximation using

( 1
ε

)O(k)
nO(1) time

for partition and laminar matroids and
( 1

ε + k
)O(k)

nO(1) time for transversal matroids.

Put slightly differently, when G is a hypergraph with edge size at most η, we can obtain
1 − ε approximation in

(
η
ε

)O(k)
nO(1) or

(
η
ε + k

)O(k)
nO(1) time, depending on the type of

matroid. To see the interest of this corollary, we recall that recently Manurangsi [27] showed
that if η is unbounded, one cannot obtain an approximation ratio better than 1− 1/e + ε,
assuming GAP-ETH, in FPT time (where the matroid rank k is the parameter). This
result holds even for the simplest uniform matroid. Thus Corollary 3 implies that one can
circumvent this lower bound by introducing another parameter η, even for more general
matroids.

Our algorithm is inspired by that of Manurangsi [26] for the case of uniform matroid. So
let us briefly summarize his approach: an approximate kernel2 V ′ is first extracted from V ,

2 In the rest of the paper, we will just say kernel, dropping the adjective. The interest for this kind of
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where V ′ is simply made of the k/ε vertices with the largest weighted degrees. Let O be an
optimal solution. Apparently, a vertex of O is either part of the kernel V ′, or its weighted
degree is dominated by all vertices in V ′\O. To recover the optimal value, we can potentially
use the vertices in V ′\O to replace the vertices in O\V ′. However, there is a risk in doing
this: an edge among the vertices in V ′\O can be double-counted, if both of its endpoints are
chosen to replace the vertices in O\V ′. To circumvent this issue, Manurangsi uses a random
sampling argument to show that in expectation such double counting is negligible. Therefore,
by the averaging principle, there exists a (1− ε)-approximate solution in the kernel V ′, which
can be found using brute force.

To generalize the approach of Manurangsi for more general matroids, one has to answer
the quintessential question: how does one guarantee that the sampled vertices, along with
O ∩ V ′, are independent in M? To overcome this difficulty, we introduce a new technique.
We take the union of some number τ of matroids M. Such a union is still a matroid, which
we denote as τM. We then apply a greedy algorithm on τM (based on non-increasing
weighted degrees) to construct an independent set V ′ in τM. We show that such a set V ′

is “robust” (see Definition 4) in the sense that we can sample vertices from V ′ so that they,
along with O ∩ V ′, are always independent and in expectation cover edges of weight at least
1− ε times that of O.

We note that the value of τ automatically gives an upper bound on the kernel size V ′,
which is τk. Theorem 6 shows the required scale of τ , depending on the type of the given
matroid. We leave as an open question whether for matroids more general than considered
in the paper, a larger τ can always yield the kernel.

In the last part of this work, we consider the problem in the semi-streaming model [31].
In that context, the edges in E arrive over time but we have only limited space (for instance,
O(n · polylog(n)) = o(m)) and cannot afford to store all edges in E. In this context we can
also obtain a (1− ε) approximation using O( nk

ε ) space in a single pass.3 The idea of using
(parameterized) kernels for streaming algorithms has recently been introduced, for instance
in [11, 29]. We also show that a FPT-streaming algorithm can be derived from our ideas to
get a (1− ε) approximation for a special form of maximization of a coverage function with
bounded frequency (see Theorem 14, Remark 15 and Appendix B for details).

2 Kernelization Framework

In this section, we give a general framework to construct the kernel by a greedy procedure
and show how such a kernel contains a (1− ε)-approximate solution.

▶ Definition 4. Let M = (V, I) be a matroid with weights ω : V → R+. We say V ′ ⊆ V is
t-robust if given any base O ∈ I, there is a bijection from the elements u1, · · · , ut ∈ O\V ′ to
subsets Uu1 , · · · , Uut

⊆ V ′\O so that
(i) the Uuis are mutually disjoint and |Uui | = t,
(ii) all elements in Uui

have weights no less than ui,
(iii) by taking an arbitrary element u′

i ∈ Uui
for all i, (V ′ ∩O) ∪ {u′

i}t
i=1 is a base in M.

We next recall the definition of matroid union.

kernel has risen recently in the community [17, 25].
3 Here we assume that the matroid is given in the form of oracle, in which the algorithm has access

freely—this is a standard assumption in the streaming setting when matroids are involved.
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▶ Definition 5. Suppose that M = (V, I) is a matroid. Then we can define τM = (V, Iτ )
as the union of τ matroids M, as follows: S ∈ Iτ if S can be partitioned into S1 ∪ · · · ∪ Sτ

so that each Si ∈ I.

Recall that the union of matroids is still a matroid and here the rank of τM is at most τ

times the rank of M. e.g. see [33, Chapter 42]. We can now state our main theorem.

▶ Theorem 6. Let M = (V, I) be a matroid with weights ω : V → R+ and rank k. Consider
the following greedy procedure on τM = (V, Iτ ) to construct V ′: initially V ′ = ∅. Process
the elements in V by non-increasing weights ω. For each element u, if V ′ + u ∈ Iτ , add u

into V ′, otherwise, ignore it. The final V ′ is t-robust
(i) if M is a partition matroid and τ ≥ t,
(ii) if M is a laminar matroid and τ ≥ 2t,
(iii) if M is a transversal matroid and τ ≥ t + k − 1.

Notice that the rank of the matroid τM gives an upper-bound on the size of V ′. The
next section will give the proof of this theorem for each type of matroid considered. In the
following we show how it can be used to construct the 1− ε approximation.

Let the weight ω : V → R+ be the weighted degrees in the graph G = (V, E), that is,
ω(u) = degw(u). Apply Theorem 6 by setting t = 1

ε . Then V ′ is 1
ε -robust. Note that we

suppose that 1
ε is an integer, otherwise we could take t = ⌈ 1

ε⌉.
Based on V ′, we create a new graph G′ = (V ′, E′), where an original edge e = {u, v} is

retained in E′ if both of its endpoints are in V ′. In case only one endpoint, say u is in V ′,
we add a self-loop to u in E′ to represent this edge.

▶ Lemma 7. Suppose that V ′ is the constructed set that is 1
ε -robust. Then V ′ contains a set

S such that S ∈ I and EG(S) ≥ (1− ε)EG(O) where O denotes an optimal solution of the
problem.

Proof. Let O ∈ I be an optimal solution. We denote Oin = O ∩ V ′, Oout = O\Oin. Then
by 1

ε -robustness, we have mutually disjoint sets Uv ⊆ V ′\O for each v ∈ Oout, each of size
1
ε . We set U = ∪v∈OoutUv. We construct a set S ⊆ V ′ as follows: S is initialized as Oin.
Then from each set Uv, for all v ∈ Oout, pick an element at random and add it into S. By
definition of 1

ε -robustness, S is independent in M.
Next we will show that

E[EG(S)] ≥ (1− ε) · E[EG(O)].

Let U∗ = S\Oin, i.e. those elements that are added into S randomly. First, we have that:

EG(S) = EG(Oin) + EG(U∗)− EG(Oin, U∗).

We bound E[EG(Oin, U∗)] as follows. By construction, P[u ∈ U∗] = ε for all u ∈ U . Then,

E[EG(Oin, U∗)] =
∑
u∈U

∑
v∈Oin

w({u, v}) · P[u ∈ U∗] = ε
∑
u∈U

∑
v∈Oin

w({u, v}) ≤ ε · EG(Oin).

Furthermore, the value E[EG(U∗)] can be rearranged as follows:

E[EG(U∗)] = E

∑
u∈U∗

degw(u)− 1
2

∑
v∈U∗\{u}

w({u, v})



SWAT 2022
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=
∑
u∈U

degw(u) · P[u ∈ U ]− 1
2

∑
v∈U\{u}

w({u, v}) · P[u ∈ U∗ ∧ v ∈ U∗]


≥
∑
u∈U

degw(u) · ε− 1
2

∑
v∈U\{u}

w({u, v}) · ε2

 ≥ ε(1− ε/2)
(∑

u∈U

degw(u)
)

,

where the first inequality comes from the fact that P[u ∈ U∗∧v ∈ U∗] ≤ P[u ∈ U∗] ·P[v ∈ U∗].
Recall that by robustness, for all u ∈ Oout, the elements of Uu have weighted degrees no

less than that of u. Therefore,

E[EG(U∗)] ≥ ε(1− ε/2)
( ∑

u∈Oout

∑
v∈Uu

degw(v)
)
≥ ε(1− ε/2)

( ∑
u∈Oout

1
ε
· degw(u)

)
≥ (1− ε/2) · EG(Oout).

As a result, we get:

E[EG(S)] ≥ EG(Oin) + (1− ε/2) · EG(Oout)− ε · EG(Oin) ≥ (1− ε) · EG(O).

By averaging principle, there exists S ⊆ V ′ such that S ∈ I and EG(S) ≥ (1−ε) ·EG(O). ◀

3 Proof of Theorem 6

3.1 Partition Matroids
Consider a partition matroid M = (V, I) defined by a partition V1, . . . , Vr of V and bounds
k1, . . . , kr. Given t ∈ N, we take in each set Vi of the partition the min{|Vi|, t · ki} elements
having the largest weighted degrees. We denote these extracted sets as V ′

i and their union as
V ′. Clearly, this is the same as the greedy algorithm stated in Theorem 6 applied on tM.

To see that V ′ is t-robust, let O ∈ I be a base. We denote Oin = O ∩ V ′, Oout = O\Oin,
Oi = O ∩ Vi, Oin

i = O ∩ V ′
i , Oout

i = Oi\Oin
i , and we set U i ⊆ V ′

i \Oin
i as an arbitrary subset

of cardinality t · |Oout
i |, for 1 ≤ i ≤ r (it is possible as Oi ̸= Oin

i implies that |V ′
i | = t · ki).

We then partition U i into U1
i , . . . , U

|Oout
i |

i , each one of size t. It is easy to verify that the
generated sets {U j

i }i,j satisfy the three conditions stated in Definition 4.

3.2 Laminar Matroids
Recall that a laminar matroid M = (V, I) is given as a laminar family V1, . . . , Vr along with
bounds k1, . . . , kr. Without loss of generality, we can assume that V = V0 with bound k0 = k

(being the rank ofM) is a member in the family. Furthermore, we can also assume that each
vertex v ∈ V by itself is also a member Vi = {v} with bound ki = 1 in this family.

Such a laminar matroid M can be naturally associated with a laminar tree T where
the each tree node Ti = (Vi, ki) corresponds to Vi, and the structure of the tree reflects the
inclusion relationship of the members Vi in the laminar family. In such a tree T0 = (V, k)
corresponds to the root of the tree.

For ease of our study, we will assume that such a tree T is binary (so in total T contains
2n− 1 nodes, with n = |V |). Such an assumption can be easily justified by adding more sets
Vi into the laminar family with the appropriately defined bounds ki.

In the following, the elements of {Ti = (Vi, ki)}0≤i≤2n−2 will be referred as “nodes”,
whereas the elements of V will be referred as “vertices”. We are given t ∈ N. To choose the
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vertices that are to be added into the kernel, we employ the following greedy procedure. We
process the vertices in non-increasing order with respect to their weighted degrees. At the
beginning, V ′ is empty. When we consider a new vertex v, if for all i such that v ∈ Vi, we
have |V ′ ∩ Vi| < 2t · ki, then v is added to V ′, otherwise v is simply ignored. This procedure
is equivalent to the greedy algorithm described in described in Theorem 6 applied on 2tM.

A node Tj of the tree {Ti = (Vi, ki)}0≤i≤2n−2 is called saturated if |V ′ ∩ Vj | = 2t · kj .
Let O be an arbitrary solution. As in the previous subsection we will use the notations
V ′

i = Vi ∩ V ′, Oin = V ′ ∩O, and Oout = O\V ′. In the following, we say that a vertex or a
set of vertices is “contained” in a tree node Ti if they are part of V ′

i (equivalently, the leaves
corresponding to these elements of V ′ are in the subtree of root Ti).

For every element v ∈ V , there exists a leaf Tiv in the laminar tree such that Viv = {v},
and we have a unique path from the root T0 to Tiv

. If a vertex v ∈ O is not in V ′, it
means that some node along the path from T0 to Tiv was already saturated when v was
processed: the blocking node of v is the deepest saturated node along this path. For each
node Ti, we denote by Bi the set of vertices of O that are blocked by the node Ti, and we
set bi = |Bi|. Then, bi = 0 when Ti is not saturated. Moreover, the Bis are mutually disjoint
and

⋃
Bi = Oout.

Then for each vertex v ∈ Oout, we construct a set Uv of at least t vertices drawn from V ′.
Then an arbitrary subset Uv ⊆ Uv of t vertices is retained. We will argue that the generated
sets Uvs ensure the robustness.

Constructing the sets Uvs for all v ∈ Oout

We want the constructed sets Uvs to satisfy the following three properties.

(i) The sets Uvs are mutually disjoint and are drawn from V ′\Oin.
(ii) For each v ∈ Oout and each u ∈ Uv, degw(u) ≥ degw(v).
(iii) Choosing an arbitrary v ∈ Uv for each v ∈ Oout, the set S = Oin ∪ {v}v∈Oout is

independent in the laminar matroid M.

The formal algorithm for constructing the sets {Uv}v∈Oout is given in Algorithm 1. Here
we give the intuition behind it.

To guarantee Property (i), we first mark all elements in Oin as unusable. Then, each
Uv is chosen among the usable vertices. Once a set Uv is allocated, all its vertices will be
marked as unusable.

To guarantee Property (ii), first recall that each vertex v ∈ Oout has a corresponding
blocking node Ti (and v ∈ Bi). By our greedy procedure to build the kernel V ′, we know that
there exist 2t ·ki vertices u in the set V ′

i , all of whom contained in Ti and degw(u) ≥ degw(v).
What we do is to choose a deepest blocking node Ti and to process one of its vertex v ∈ Bi

(Lines 6-7). As we will show later (Claim 10), such a blocking node must contain at least 2t

usable vertices. We climb down the tree from the blocking node Ti until we reach a node Tj

neither of whose child nodes contains more than t usable vertices (Lines 9-10). Recall that
our tree is binary, as a result, the number of usable vertices contained in Tj is between t and
2t− 2. All these usable vertices constitute a new set Uv and then are marked as unusable.

How to guarantee Property (iii) is the most tricky part of our algorithm. Recall that we
will choose an arbitrary vertex from Uv to construct a solution S stated in (iii). Apparently
we have no control over the choice of the arbitrary vertex from Uv, nonetheless, we need to
ensure that S does not violate any of the rank constraints ki. What we do is to associate a
variable si with each tree node Ti. This variable indicates how many vertices contained in Ti

will certainly be part of S, according to Oin and the sets Uvs that have been constructed so

SWAT 2022
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far. Once si is set to ki, it is a warning that we should not use any more remaining usable
vertices contained in Ti to construct the future sets Uv.

Initially, si = |V ′
i ∩ Oin|. Each time that we have decided on a tree node Tj to form

a new set Uv (Lines 9-12), we increase the value of sj from Tj all the way up to the root
(Lines 13-14). If any node Tj has its variable sj = kj , we say such a node is full-booked and
we mark all its (remaining) usable vertices as unusable (Lines 15-16).

Algorithm 1 Algorithm constructing the sets Uv

1: ∀v ∈ O\V ′, Uv ← ∅
2: ∀1 ≤ i ≤ 2n− 2, si ← |V ′

i ∩Oin|
3: the elements of V ′\Oin are marked as usable
4: the elements of Oin are marked as unusable
5: while there exists a set Bi which is not empty do
6: let Ti be one of the deepest nodes such that Bi ̸= ∅
7: let v ∈ Bi be an arbitrary vertex
8: Bi ← Bi − v

9: while Ti has a child Tj containing at least t usable vertices in V ′
j do

10: i← j

11: set Uv as the set of usable elements in V ′
i

12: mark all the elements of Uv as unusable
13: for all nodes Tj on the path from Ti to the root of the tree do
14: sj ← sj + 1
15: if sj = kj then ▷ in that case, we say that Tj is fully-booked
16: mark all the elements of V ′

j as unusable

We want to show that Algorithm 1 manages to build the sets Uvs of size at least t

satisfying the aforementioned properties.

▷ Claim 8. At any time during the execution of Algorithm 1, for a saturated node Ti that
is not a descendant of a fully-booked node (no node above it is fully-booked), the number of
usable vertices in V ′

i is at least 2t · (ki − si).

Proof. As Ti is saturated, V ′
i contains exactly 2t · ki vertices. The unusable vertices in V ′

i

fall into three categories:
(i) the vertices in V ′

i ∩Oin (see Line 4), but that are not contained in any fully booked
descendent node of Ti,

(ii) the vertices made unusable during the allocation of a set Uv (see Line 12), but that are
not contained in any fully booked descendent node of Ti,

(iii) the vertices that are contained in a fully-booked descendent node of Ti (see Line 16).
The vertices v1, . . . , vl1 in the first category each has a contribution of +1 in the value of si.
Then, we can observe that an allocated set Uv is either entirely contained in a fully-booked
node or has no element at all in any fully-booked node. Let us denote Uv1 , . . . , Uvl2

the
allocated sets contained in Ti that are not contained in any fully-booked node. In addition,
by construction, each set Uvj

contains at most 2t− 2 vertices (otherwise we would be able
to go deeper in the binary tree for the allocation, see Lines 9-10, because at least one child
would contain at least t usable elements). Each set Uvj

has a contribution of +1 in the
value of si. Finally, among the fully-booked nodes in the subtree of root Ti, we consider
the nodes Ti1 , . . . , Til3

that are inclusion-wise maximal (i.e. the roots of the fully-booked
parts of the subtree). A fully-booked subtree of root Tj has to bring a +kj contribution
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to si (otherwise it would not be fully-booked, and observe that a set Uv is included in at
most one such fully-booked maximal node), and is making at most 2t · kj vertices of V ′

i

unusable (the worst case being that Tj was also a saturated node). We also have the equality
si = l1 + l2 +

∑l3
j=1 kij . As a result, we have at most l1 + (2t− 2) · l2 +

∑l3
j=1 2t · kij ≤ 2t · si

unusable vertices in V ′
i . ◁

▷ Claim 9. At any time during the execution of the algorithm, for all i ∈ J1, 2n− 2K, we
have ki ≥ si + bi +

∑
Tj below Ti

bj as an invariant.

Proof. As O ∈ I, these inequalities hold at the beginning of Algorithm 1. To see this, note
that si = |Vi ∩Oin| and bi +

∑
Tj below Ti

bj ≤ |Vi ∩Oout|. For the induction step, observe
that Line 6 guarantees that the node Ti selected is the only one with a non-zero bi value in
the subtree of root Ti. As a result, when the set Uv is allocated, for the nodes Tj between Ti

and the allocated node, the augmentation by one of the value s is not an issue because these
nodes are chosen to be non-fully-booked, i.e. kj > sj . For the nodes Tj above Ti, the value sj

are increased by one but as bi was decreased by one, the total value sj + bj +
∑

Tj′ below Tj
bj′

remains unchanged. ◁

▷ Claim 10. If Bi ≠ ∅, Ti contains at least 2t usable vertices. Consequently, Algorithm 1
(Lines 6-11) always build the set Uv of size at least t.

Proof. In fact, as Bi ≠ ∅, bi is still non-zero, and by Claim 9 we get ki − si ≥ bi, so V ′
i

contains at least 2t usable vertices because of Claim 8. Then the set Uv can be built as
required, containing at least t elements. ◁

The above claim lower-bounds the size of each Uv. The fact that the constructed Uvs
are mutually disjoint follows from the algorithm (Line 12). Now we want to show that the
Uvs have the desired properties regarding independence and weighted degrees.

▷ Claim 11. At any time during the execution of Algorithm 1, if we build a set S by
taking the elements of Oin and one arbitrary element in each set Uv that has already been
constructed, then S is independent. Moreover, for a node Ti that does not contain only
unusable vertices in V ′

i , any arbitrary choice of elements in the Uvs will lead to the equality
|S ∩ V ′

i | = si.

Proof. We proceed by induction. These properties are clearly satisfied at the beginning of
the algorithm (because then S = Oin). Now suppose that these properties hold at some
time, and then we allocate a new set Uv′ for some v′ ∈ Oout. Let S be made of Oin and an
arbitrary choice for the Uvs that were constructed so far (excluding Uv′). By the induction
hypothesis, S ∈ I. The vertices of Uv′ are supposed to be usable, so the nodes containing
them are not fully-booked and these nodes contain usable vertices. By induction on the
second part of the claim, a usable element in such a node Tj can be selected, as any choice
for the other Uvs will use exactly sj < kj vertices of the laminar constraint of that node.
Therefore any vertex u ∈ Vv′ added to S does not cause any constraint to be violated, and
S ∪ {u} ∈ I. Let Ti be the node used for the allocation at Line 11 of Algorithm 1. All the
nodes in the subtree of root Ti will be subsequently ignored by the algorithm, as all the
nodes inside it are marked as unusable. The values sj of the nodes Tj in that subtree are
not updated by the algorithm, but it is not an issue given that the second part of the claim
does not affect them. The nodes above Ti are updated, and it is true that for any vertex
chosen in Uv′ , that vertex will count in the laminar inequalities for these nodes as a +1.
This concludes the induction. ◁
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▷ Claim 12. For all v ∈ O\V ′, for all u ∈ Uv, it holds that degw(u) ≥ degw(v).

Proof. By construction, Uv ⊆ V ′
i where Ti is the blocking node of v. As Ti is the blocking

node of v, all the elements in V ′
i have a larger weighted degree than v. ◁

Finally we construct the sets Uvs by choosing arbitrarily t vertices from Uv. By
Claims 10, 11, and 12, they satisfy the properties of robustness in Definition 4.

3.3 Transversal Matroids
Recall that a transversal matroid M = (V, I) can be represented as a bipartite graph
G = (A ∪ V, E) and A = {A1, · · · , Ak}. A subset V ′ ⊆ V is independent in M if and only
if there is a matching where all of V ′ are matched to some subset of A. Let t ∈ N. The
matroid union (t + k − 1)M can be regarded as making the capacity of each vertex Ai in A

increased to t + k − 1 (equivalently, create t + k − 1 copies of each Ai and modify the edge
set E accordingly). Our algorithm is as follows. Again process the vertices in non-increasing
order of their weighted degrees. We start with an empty matching, and we maintain a
matching throughout the execution of the algorithm. For each new vertex v ∈ V , try to find
an augmenting path so that it can be matched. If we cannot find such a path, v is discarded.
At any time during the execution of the algorithm, the current kernel V ′ ⊆ V is simply the
set of vertices in V that are matched in the current matching. We can observe that a vertex
in V ′ cannot be evicted once it belongs to V ′. In the following, we write V ′

i ⊆ V ′ to denote
the vertices in V that are matched to Ai in the current kernel V ′.

First we argue that our procedure is the same as the greedy described in Theorem 6
applied on (t + k − 1)M. We need to show that a vertex v, if discarded, is spanned by
vertices in V ′ that arrived earlier than it. To see this, observe that, at the moment v arrives,
V ′ is independent in (t + k− 1)M. Moreover, as we cannot find an augmenting path when v

is added to V ′, is means that V ′ + v is not independent, i.e. v is spanned by V ′ and this
holds until the end of the algorithm.

Now let us consider the robustness. Let O = {o1, . . . , ok} be an arbitrary base in M.
We can assume that oi is assigned to Ai for all i in the corresponding matching. For an
element oi ∈ O\V ′, when it was discarded, some V ′

i ⊆ V ′ elements (exactly t + k − 1) that
arrived earlier were already assigned to Ai. As no augmenting path could go through Ai

when oi was discarded, the set of elements assigned to Ai would not have changed till the
end: otherwise, that would mean that at some point an augmenting path passed through Ai,
which is not possible as oi was discarded because no augmenting path passing through Ai

was found at that point. As a result the t + k − 1 elements of V ′
i assigned to Ai are all of

weighted degrees larger than that of oi. As |V ′
i ∩O| ≤ |V ′ ∩O| < k there remains at least t

elements of V ′
i that can be used to build a set Uoi

of cardinality t as stated in Definition 4.

4 Steaming Algorithms

In this section, we turn our algorithms into streaming form.
First, we show that it is easy compute a (1 − ε) approximation in two passes, using

O(n + τ2) space (τ depends on the type of matroids involved, as defined in Theorem 6). In
the first pass, we compute the weighted degrees degw(v) of all vertices v to define the kernel
V ′ ⊆ V . This requires O(n) space. In the second pass, we retain a subset of edges E′ ⊆ E,
those both of whose end-points are in V ′. Easily |E′| = O(τ2). Using E′, we can compute
the exact value EG(S) =

∑
v∈S degw(v)−

∑
e∈(S×S)∩E′ w(e) for each feasible independent

set S ⊆ V ′. Then an enumeration of all such sets gives the desired (1− ε) approximation.
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We now explain how to achieve the same goal in one pass, at the expense of higher space
requirement.

▶ Theorem 13. In the edge arrival steaming model (each edge appearing exactly once in the
stream), one can extract a (1− ε)-approximate solution of the matroid-constrained maximum
vertex cover using O( nk

ε ) variables for uniform, partition, laminar, and transversal matroids.

Proof. Let ε > 0. During the streaming phase, we keep track of the weighted degrees of all
the vertices, as well as for each vertex v the set of the 2k

ε edges incident to v that have the
largest weight. We denote the set of memorized edges as E′.

Then, we can choose, depending on the type of matroid, the value τ corresponding to
the right type of matroid (as prescribed in Theorem 6) for the parameter ε

2 and we build
the kernel V ′ that is supposed to contain a (1− ε

2 ) approximation of the maximum cover.
However, we do not know all the edges between the elements in V ′, as only the 2k

ε heaviest
incident edges are known for each vertex.

We will compute the value of S pretending that the edges in ((S × S) ∩ E)\E′ are not
present. Precisely, for each set S ⊆ V , we define

ẼG(S) =
∑
v∈S

degw(v)−
∑

e∈(S×S)∩E′

w(e) = EG(S) +
∑

e∈((S×S)∩E)\E′

w(e).

Notice that ẼG(S) ≥ EG(S). Let S∗ ⊆ V ′ be the independent set reaching the maximum
ẼG(S∗). This set S∗ will be our final output. We next lower-bound its real value EG(S∗).

Let O denote the original optimal solution (with respect to the entire graph), and S′

denote the optimal vertex cover in the kernel V ′ (also with respect to the entire graph), so
that S′ ⊆ V ′, S′ ∈ I, and EG(S′) ≥ (1− ε

2 ) · EG(O). Then

ẼG(S∗) ≥ ẼG(S′) ≥ EG(S′) ≥
(

1− ε

2

)
· EG(O).

To compare the real value of EG(S∗) with ẼG(S∗), we just need to compute the total
weight of the edges in ((S∗ × S∗) ∩ E)\E′:

∑
(u,v)∈((S∗×S∗)∩E)\E′

w(u, v) = 1
2
∑

v∈S∗

 ∑
u∈S∗:(u,v)∈E\E′

w(u, v)


≤ 1

2
∑

v∈S∗

k · degw(v) · ε

2k

= ε

4
∑

v∈S∗

degw(v) ≤ ε

2 · ẼG(S∗),

where the first inequality comes from the fact that the edges that are not among the 2k
ε

heaviest edges incident on v must be of weight at most degw(v) · ε
2k . Therefore the real value

EG(S∗) is at least (1− ε
2 ) · ẼG(S∗) ≥ (1− ε

2 )2 · EG(O) ≥ (1− ε) · EG(O). ◀

Next we consider a particular kind of stream of edges, where each edge appears twice:
given an arbitrary order of the vertices, for each vertex, all its incident edges are given in a
row. For this incidence streaming model [5] (sometimes called adjacency list model [29]), the
next theorem shows that we can use much less space with just a single pass.

▶ Theorem 14. In the incidence streaming model, one can extract a (1−ε)-approximate solu-
tion using O(( k

ε )2) variables for uniform, partition, laminar, and O(( k
ε + k)2) for transversal

matroids.
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Proof. Let ε > 0. Given the type of the matroid M, choose the corresponding value of τ as
prescribed in Theorem 6. Start with an empty kernel V ′ = ∅. Through the execution of the
algorithm, V ′ will contain the largest independent set in τM with respect to the sum of the
weighted degrees. When we process a vertex v (i.e. its set of incident edges) we can compute
its weighted degree degw(v) and store the edges linking v to elements of V ′. If V ′ + v is not
independent in τM, consider the element with the smallest weighted degree u in the circuit
formed in V ′ + v. Then, set V ′ ← (V ′ + v)− u. If v is added into V ′, we keep in memory all
the edges linking v to other vertices of V ′. When an element is discarded or evicted from
V ′, all its incident edges are deleted. As a result, at any time during the execution of the
algorithm, only O(τ2) edges are stored, so the the overall memory consumption is O(τ2).

In the end, we obtain exactly the approximate kernels described in the previous sections,
and because we know all the values of the weighted degrees of V ′ as well as the weights of the
edges between them we can find the largest vertex cover in that kernel using bruteforce. ◀

▶ Remark 15. This model has an interesting interpretation in the context of coverage function4

maximization in the streaming setting— here the sets arrive over time in such a way that
the values of singletons f({v}), for v ∈ V , are revealed one by one. In case where a coverage
function has bounded frequency larger than 2, we also present in Appendix B a streaming
algorithm.

5 Conclusion and Open Questions

Theorem 6 allows us to generalize the cardinality constraint to some special cases of matroid
constraints, and these ideas could be useful for other kernelization algorithms. Regarding
the bounds of Theorem 6, tight examples can be built to show that the values of τ provided
are the best possible for partition and laminar matroids. For transversal matroids it is less
clear whether the bound for τ can be improved or not. The most important open question is
obviously whether Theorem 6 can be generalized to other types of matroids.
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A An FPT-AS for Hypergraphs

Suppose that we are given a hypergraph G = (V, E) with edge size bounded by a constant
η ≥ 2. We proceed as in Section 2. First, notice that:

EG(S) = EG(Oin) + EG(U∗)− EG(Oin, U∗).

We bound E[EG(Oin, U∗)] as follows. By construction, P[u ∈ U∗] = ε for all u ∈ U . Then,

E[EG(Oin, U∗)] =
∑

e∈E,e∩Oin ̸=∅

w(e) · 1[e ∩ U∗ ̸= ∅] ≤
∑

e∈E,e∩Oin ̸=∅

w(e) · (η − 1) · ε

= ε · (η − 1) · E[EG(Oin)].

using union bound and the fact that at most η − 1 endpoints can be in U . Furthermore, the
value E[EG(U∗)] can be rearranged as follows:

E[EG(U∗)] = E

∑
u∈U∗

degw(u)−
∑

e∈δ(u)

w(e) · |e ∩ U∗| − 1
|e ∩ U∗|


≥E

∑
u∈U∗

degw(u)−
∑

e∈δ(u)

w(e) · η − 1
η
· 1[e ∩ U∗\{u} ≠ ∅]


≥E

∑
u∈U

degw(u) · 1[u ∈ U∗]−
∑

e∈δ(u)

w(e) · η − 1
η
· 1[u ∈ U∗ ∧ e ∩ U∗\{u} ≠ ∅]


≥E

∑
u∈U

degw(u) · ε− η − 1
η

∑
e∈δ(u)

w(e) · (η − 1) · ε2


≥ ε · (1− ε · (η − 1))

(∑
u∈U

degw(u)
)

.

Recall that by robustness, for all u ∈ Oout, the elements of Uu have weighted degree no
less than the one of u. Therefore,

E[EG(U∗)] ≥ ε(1− ε · (η − 1))
( ∑

u∈Oout

∑
v∈Uu

degw(v)
)
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≥ ε(1− ε · (η − 1))
( ∑

u∈Oout

1
ε
· degw(u)

)
≥ (1− ε · (η − 1)) · EG(Oout).

As a result, we get:

E[EG(S)] ≥ EG(Oin) + (1− ε · (η − 1)) · EG(Oout)− ε · (η − 1) · EG(Oin)
≥ (1− ε · (η − 1)) · EG(O).

By averaging principle, there exists a set S ⊆ V ′ such that S ∈ I and such that EG(S) ≥
(1− (η − 1) · ε) · EG(O).

B Streaming Algorithm for Hypergraphs

Here we suppose that we are given a hypergraph G = (V, E) with edge size bounded by a
constant η ≥ 2 as an adjacency list stream. Using the idea of Theorem 14 and the result of
Appendix A, one can get in the incidence streaming model a (1− (η − 1) · ε) approximation
using O(τη) memory, where τ depends on the type of matroid, as prescribed in Theorem 6.
In fact, we can maintain through the execution of the algorithm for each subset of at most η

elements S ⊆ V ′ the sum of the weight of the hyper-edges e such that e ∩ V ′ = S (just like
in the proof of Theorem 14 where we keep track of these values for pairs in V ′). For instance,
for a uniform, a partition, or a laminar matroid, we could get a (1− ε) approximation using
O(( 2η·k

ε )η) variables. This shows that for the special matroids that we studied of rank k,
a weighted coverage function with bounded frequency η can be (1 − ε) approximated in
streaming. This extends a result of [29] to matroids.
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