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Abstract In this paper, we propose new exact and approximation algorithms for the
weighted matroid intersection problem. Our exact algorithm is faster than previous
algorithms when the largest weight is relatively small. Our approximation algorithm
delivers a (1 − ϵ)-approximate solution with a running time significantly faster than
most known exact algorithms.

The core of our algorithms is a decomposition technique: we decompose an in-
stance of the weighted matroid intersection problem into a set of instances of the
unweighted matroid intersection problem. The computational advantage of this ap-
proach is that we can make use of fast unweighted matroid intersection algorithms as
a black box for designing algorithms. Precisely speaking, we prove that we can solve
the weighted matroid intersection problem via solving W instances of the unweighted
matroid intersection problem, where W is the largest given weight. Furthermore, we
can find a (1− ϵ)-approximate solution via solving O(ϵ−1 log r) instances of the un-
weighted matroid intersection problem, where r is the smallest rank of the given two
matroids.

Our algorithms are simple and flexible: they can be adapted to special cases of
the weighted matroid intersection problem, using unweighted matroid intersection
algorithms. In this paper, we will show the following results.

A preliminary version of this paper appears in the proceeding of ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2016.
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CNRS, École Normale Supérieure, Paris, France.
E-mail: cchuang@di.ens.fr

Naonori Kakimura
Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.
E-mail: kakimura@global.c.u-tokyo.ac.jp

Naoyuki Kamiyama
Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan.
E-mail: kamiyama@imi.kyushu-u.ac.jp



2 Chien-Chung Huang et al.

1. Given two general matroids, using Cunningham’s algorithm, we can solve the
weighted matroid intersection problem exactly in O(τWnr1.5) time and (1− ϵ)-
approximately in O(τϵ−1nr1.5 log r) time, where n is the size of the ground set
and τ is the time complexity of an independence oracle call.

2. Given two graphic matroids, using the algorithm of Gabow and Xu, we can solve
the weighted matroid intersection problem exactly in O(W

√
rn log r) time and

(1− ϵ)-approximately in O(ϵ−1
√
rn log2 r) time.

3. Given two linear matroids (in the form of two r-by-n matrices), using the algo-
rithm of Cheung, Kwok, and Lau, we can solve the weighted matroid intersection
problem exactly in O(nr log r∗ + Wnrω−1

∗ ) time and (1 − ϵ)-approximately in
O(nr log r∗+ϵ−1nrω−1

∗ log r∗) time, where ω is the exponent of the matrix mul-
tiplication time and r∗ is the maximum size of a common independent set.

Finally, we give a further application of our decomposition technique. We use our
technique to solve efficiently the rank-maximal matroid intersection problem, a prob-
lem motivated by matching problems under preferences.

Keywords Matroid Intersection, Exact Algorithms, Approximation Algorithms

1 Introduction

In the classical weighted matroid intersection problem, we are given two matroids
M1 = (S, I1),M2 = (S, I2) and a weight function w : S → Z≥0, where Z≥0 is
the set of non-negative integers. Then, the goal is to find a maximum-weight com-
mon independent set I of M1 and M2, i.e., I ∈ I1 ∩ I2 with

∑
e∈I w(e) being

maximized. This problem was introduced by Edmonds [11, 13] and solved by Ed-
monds [11, 13] and others [1, 27, 35, 36] in 1970s. This problem is a common gen-
eralization of various combinatorial optimization problems such as bipartite match-
ings, packing spanning trees, and arborescences in a directed graph. In addition, it
has many applications, e.g., in electric circuit theory [42, 48], rigidity theory [48],
and network coding [9]. The fact that two matroids capture the underlying common
structures behind a large class of polynomially solvable problems has been impres-
sive and motivated substantial follow-up research (see, e.g., [16,49]). Techniques and
theorems developed surrounding this problem have become canon in contemporary
combinatorial optimization literature.

Since 1970s, quite a few algorithms have been proposed for matroid intersection
problems, e.g., [2, 8, 14, 17, 51], with better running time and/or simpler proofs. See
Table 1 for a summary. Throughout the paper, n is the size of the ground set S, r is
the smallest rank of the two given matroids, and W is the largest given weight. The
oracle to check the independence of a given set has the running time of τ .

1.1 Our Contribution

We propose both exact and approximation algorithms for the weighted matroid in-
tersection problem. Our exact algorithm is faster than known algorithms when the
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Table 1 Matroid intersection algorithms for general matroids. See also [11, 13, 45]. The complexity is
measured by the number of independence oracle calls. In case the original algorithms (Fujushige–Zhang
and Gabow–Xu) use (co-)circuit oracles, each call of such oracles is replaced by n independence calls in
the table.

Algorithm Weight Time complexity
Aigner–Dowling [1] Unweighted O(τnr2)
Cunningham [8], Gabow–Xu [21] Unweighted O(τnr1.5)
Lawler [35, 36], Iri–Tomizawa [27] Weighted O(τnr2)
Frank [14] Weighted O(τn2r)
Brezovec–Cornuéjols–Glover [2] Weighted O(τnr2)
Fujishige–Zhang [17], Shigeno–Iwata [51], Gabow–
Xu [21]

Weighted O(τn2√r log rW )

Lee-Sidford-Wong [38] Weighted O(τn2 lognW )

This paper Weighted O(τWnr1.5)
(1− ϵ approximation) Weighted O(τϵ−1nr1.5 log r)

largest given weight W is relatively small. Our approximation algorithm delivers a
(1 − ϵ)-approximate solution for every fixed ϵ > 0 in times substantially faster than
known exact algorithms in most cases. Our algorithms and their analysis are surpris-
ingly simple. Moreover, these algorithms can be specialized for particular classes of
matroids.

The core of our algorithms is a decomposition technique. We show that a given
instance of the weighted matroid intersection problem can be decomposed into a
set of unweighted versions of the same problem. To be precise, we can solve the
weighted problem exactly by solving W unweighted ones. Furthermore, we can solve
the weighted problem (1 − ϵ)-approximately by solving O(ϵ−1 log r) unweighted
ones.

Our decomposition technique not only establishes a hitherto unclear connection
between the weighted and unweighted problems, but also leads to computational
advantages: the known unweighted matroid intersection algorithms are significantly
faster than their weighted counterparts. Thus, we can make use of the former to de-
sign faster algorithms. It may be expected that in the future, there will be even more
efficient unweighted matroid intersection algorithms, and that would imply our algo-
rithms will become faster as well.

We summarize the complexity of our exact algorithms below. For comparison of
our algorithms with previous results, see Tables 1–3.

General matroids. Given two general matroids, using the unweighted matroid inter-
section algorithm of Cunningham [8], we can solve the weighted matroid inter-
section problem in O(τWnr1.5) time. This algorithm is faster than all known
algorithms when W = o(min{

√
r, n log r

r }) and r = O(
√
n). A slightly different

analysis shows that the same algorithm has the complexity1 of O(τ(
∑

e∈S w(e))r1.5).
Graphic matroids. Given two graphic matroids, using the unweighted graphic ma-

troid intersection algorithm proposed by Gabow and Xu [20], we can solve the
weighted matroid intersection problem in O(W

√
rn log r) time. This is faster

1 This complexity is superior to the previous one only when the given weights are very “unbalanced.”
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Table 2 Matroid intersection algorithms for graphic matroids.

Algorithm Weight Time complexity
Gabow–Stallman [19] Unweighted O(

√
rn) if n = Ω(r3/2 log r)

Unweighted O(rn2/3 log1/3 r) if n = Ω(r log r) & n =
O(r3/2 log r)

Unweighted O(r4/3n1/3 log2/3 r) if n = O(r log r)
Gabow–Xu [20] Unweighted O(

√
rn log r)

Gabow–Xu [20] Weighted O(
√
rn log2 r log(rW ))

This paper Weighted O(W
√
rn log r)

(1− ϵ approximation) Weighted O(ϵ−1√rn log2 r)

Table 3 Linear matroid intersection algorithms.

Algorithm Weight Time complexity
Cunningham [8] Unweighted O(nr2 log r)

Gabow–Xu [21] Unweighted O(nr
5−ω
4−ω log r)

Harvey [24] Unweighted O(nrω−1)

Cheung, et al. [4] Unweighted O(nr log r∗ + nrω−1
∗ )

Gabow–Xu [21] Weighted O(nr
7−ω
5−ω log

ω−1
5−ω r lognW )

Harvey [23] Weighted Õ(W 1+ϵnrω−1)

This paper Weighted O(nr log r∗ +Wnrω−1
∗ )

(1− ϵ approximation) Weighted O(nr log r∗ + ϵ−1nrω−1
∗ log r∗)

than the current fastest algorithm when W = o(log2 r). If the graph is relatively
dense, that is, n = Ω(r1.5 log r), then we can use the algorithm of Gabow and
Stallman [19] to solve the problem in O(W

√
rn) time.

Linear matroids. Given two linear matroids (in the form of two r-by-n matrices), us-
ing the unweighted linear matroid intersection algorithm of [4], we can solve the
weighted matroid intersection problem in O(nr log r∗ + Wnrω−1

∗ ) time, where
ω is the exponent of the matrix multiplication time and r∗ ≤ r is the maximum
size of a common independent set. This is faster than all known algorithms when

W = o(r
ω2−7ω+12

5−ω ) (if ω ≈ 2.37 [7, 22, 55], it is when W = o(r0.41)).

The graphic and linear matroid intersection problems arise in various branches
in engineering. For example, the intersection of graphic matroids has applications
in determining the order of complexity of an electrical network [26] and the unique
solvability of open networks [47]; the intersection of linear matroids has applications
in the analysis of systems of linear differential equations [42, 43].

A recent trend in research is to design fast approximation algorithms for funda-
mental optimization problems, even if they are in P. Examples include maximum
weight matching [10], shortest paths [53], and maximum flow [6, 33, 39, 50]. Us-
ing the algorithms of [4, 8, 20], our decomposition technique delivers a (1 − ϵ)-
approximate solution in (1) O(τϵ−1nr1.5 log r) time with two general matroids, (2)
O(ϵ−1

√
rn log2 r) time with two graphic matroids, and (3) O(nr log r∗+ϵ−1nrω−1

∗ log r∗)
time with two linear matroids.
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Our approximation algorithms are significantly faster than most exact algorithms.
Prior to our results, there is only a simple greedy 1/2-approximation algorithm [29,
34] dated in 1970s. It should be noted that, by scaling weights to small integers, i.e.,
rounding W to O( rϵ ) (cf. Lemma 5), exact algorithms deliver a (1− ϵ)-approximate
solution (this is used in [5] for the linear matroid parity). Ours improve on such simple
scaling significantly. We note that for general matroids, very recently, Chekuri and
Quanrud [3] improved on our results: they can obtain a (1− ϵ)-approximate solution
in O(τnrϵ−2 log2 ϵ−1) time.

For a generalization of the matroid intersection, called the matroid matching prob-
lem (which is known to be intractable in an independence oracle model [30,40]), there
are PTASes for the unweighted case [37] and a special class of the weighted case [52].

1.2 Our Technique

The idea of reducing a weighted optimization problem into unweighted ones has
been successfully applied in the context of maximum-weight matching in bipartite
graphs [31] and in general graphs [25, 46]. Roughly speaking, these matching algo-
rithms proceed iteratively as follows: in each round, in a subgraph with only edges of
the largest (updated) weights, a maximum-cardinality matching and its correspond-
ing optimal dual are computed; the latter is then used to update the edge weights. The
optimality of the solution is shown via the complementary slackness condition.

The difficulty of extending this approach to the matroid intersection setting lies in
the dual part. In the matching problem, the dual variables have a clear graph-theoretic
interpretation: they correspond to the potential of the vertices and the odd sets. This
makes manipulating the interaction between the primal and the dual problems rela-
tively easy. However, in the more general and abstract matroid intersection setting,
the dual variables are harder to reason with and to control in subsequent iterations.

For overcoming the aforementioned difficulty,2 we make use of Frank’s weight-
splitting approach [14,15]. Frank [14,15] shows that the dual variables used in primal-
dual schema can be replaced by a much simpler weight-splitting w = w1 + w2 of
the element weights. The complementary slackness condition for optimality can also
be replaced by weight-optimality in w1 and w2. Harvey [23] also makes use of the
weight splitting to solve the weighted linear matroid intersection in an algebraic way.

Our main insight is that the split weights w1 and w2 can also be used to re-define
two new matroids for subsequent operations. This is analogous to using the dual
optimal solution to update the edge weights in the maximum-weight matching [25,
31, 46].

Our exact algorithms can be briefly summarized as follows. In each round, (1) a
pair of new matroids are defined based on the current weight splitting w1 and w2. (2)
A maximum-cardinality common independent set of the two new matroids is com-
puted using the previously found independent set. (3) Based on the computed inde-
pendent set, the weights w1 and w2 are re-adjusted. The correctness of our algorithms
boils down to arguing that the maintained common independent set always satisfies

2 Here we assume the readers are familiar with matroid literature. Readers unfamiliar with the technical
terms in the following discussion can find their formal definitions in Section 2.
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a relaxed optimality condition, called (w1, w2)-near-optimality (see Definition 1 in
Section 3), during the iteration.

Another technical obstacle in the above approach is the second step: we need to
find a maximum-cardinality common independent set satisfying the (w1, w2)-near-
optimality. This has to be done without resorting to reduction to weighted matroid in-
tersection (that would defeat the entire purpose). As we show in Section 5, this step is
in fact not too difficult: If the previous common independent set is already (w1, w2)-
near-optimal, we can compute a maximum-cardinality one by augmentation-type un-
weighted matroid intersection algorithms. For the linear matroid case, we can use a
faster algebraic algorithm [4, 24] with slight modification.

Our approximation algorithms use a scaling technique of [10] for approximating
maximum-weight matching. Again, we exploit the weight splitting w1 and w2 as dual
variables. In each phase, w is rounded to multiples of a parameter δ. We then apply
the three steps in our exact algorithms, with the difference that the amount of weights
adjusted is δ. We repeat this while changing δ (in fact halved in each phase). Through-
out the algorithm, we maintain (w1, w2)-near-optimality, while the weights w1 and
w2 only approximate the original weight w. To maintain (w1, w2)-near-optimality,
we need to make some extra weight adjustment when the phase transitions.

1.3 Relation to Other Algorithms

It may be worthwhile contrasting our exact algorithms with Frank’s algorithm [14].
Frank’s algorithm is designed for two general matroids, using a modified auxiliary
graph. The weights w1 and w2 are used to “suppress” some edges in the original aux-
iliary graph. It can be shown that the modified auxiliary graph in his algorithm would
be identical to the auxiliary graph of our matroids defined in each round. Frank [14]
augments the current independent set I repeatedly in the modified auxiliary graph,
preserving the condition that I is a maximum-weight common independent set with
size |I|. On the other hand, our algorithm only maintains the relaxed optimality con-
dition, and dramatically augments I with the aid of unweighted matroid intersection
algorithms.

Since the weighted bipartite matching problem is a special case of the weighted
matroid intersection problem, we can apply our exact algorithm to the special case.
Then our algorithm would behaves similarly to the one by Kao et al. [31] with the
same running time, though the data structures used are different. It is also worth
contrasting these two algorithms with the scaling algorithm of Gabow and Tarjan [18]
for the weighted bipartite matching problem. In the former two, the augmentation is
done “in a batch”; the updating of the duals (or the weight-splitting) happens after
the batch-augmentation. On the other hand, in the algorithm of Gabow and Tarjan,
the augmentation and the dual-updating go hand in hand.

We mentioned earlier that Chekuri and Quanrud [3] have further improved the
running time of our approximation algorithm for general matroids. Their speeding-
up is achieved by a more sophisticated weight-adjusting. In particular, in Step 2,
instead of finding a maximum-cardinality common independent set as we have done



Exact and Approximation Algorithms for Weighted Matroid Intersection 7

(this takes O(nr1.5τ) time), they only compute a common independent set whose
size (1− ϵ)-approximate the former (thus they only need Õ(nrϵ−1τ) time).

1.4 Application: rank-maximal matroid intersection

We here consider a variation of the weighted matroid intersection problem, called
the rank-maximal matroid intersection problem. Suppose that instead of a weight
function w, a rank function λ : S → {1, 2, . . . , R} is given, where R is some positive
integer. The goal is to find a common independent set so that it has the maximum
number of elements e with rank 1, and subject to that, it has the maximum number
of elements e with rank 2 and so on. The problem is a generalization of the rank-
maximal matching problem, introduced by [28] in the context of matching problems
with preference lists, and the capacitated rank-maximal matching problem [44].

As pointed out in [28], similar to the rank-maximal matching problem, the rank-
maximal matroid intersection problem can be reduced to the weighted matroid in-
tersection problem by assigning huge weights, say Ω(nR−i), to elements of rank i.
Thus this problem can be solved in polynomial time. However, such an approach
would require large space and time complexity. Using the customary assumption that
a numerical value of order O(n) can be accessed in constant time, we need O(nR)
space to store all the weights and each access of the weight takes O(R) time. For
instance, consider the general matroid. If we use the algorithm of Brezovec et al.,
the running time will be O(nr2τ + nr2R), where τ is the time needed to check the
independence of given matroids. The term nr2R comes from the fact that Brezovec
et al.’s algorithm accesses weights O(nr2) times.

In this paper, we show how to modify our exact algorithm to decompose the
problem into R unweighted matroid intersection problems. In particular, we solve the
rank-maximal matroid intersection problem using O(Rnr1.5) independence oracle
calls. Moreover, if the given two matroids are graphic or linear, the running times are
reduced to O(R

√
rn log r) and O(Rnrω−1) times, respectively. We note that such

decomposition approach has been successfully applied in finding a rank-maximal
matching in bipartite graphs [28, 32, 41].

1.5 Outline

The rest of the paper is organized as follows. In Section 2, we give definitions and
basic properties of matroids. Our exact and approximation algorithms are presented
in Sections 3 and 4, respectively. Implementation details about finding a maximum-
cardinality common independent set are described in Section 5. The result of the
rank-maximal matroid intersection problem are in Section 6.
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2 Preliminaries

2.1 Matroids

A matroid is a pair M = (S, I) of a finite set S and a family I of subsets of S
satisfying the following three conditions.

(I0) I ̸= ∅.
(I1) If I ⊆ J and J ∈ I, then I ∈ I.
(I2) If I, J ∈ I and |I| < |J |, then there is e ∈ J \ I such that I + e ∈ I.3

A set in I is said to be independent, and a maximal independent set is called a base.
In addition, a minimal non-independent subset C of S is called a circuit. A circuit of
size one is a loop. Throughout the article, we assume that the given matroids have no
loops.

Let M = (S, I) be a matroid and X a subset of S. The restriction of M to X is
defined by M|X = (X, I|X) with I|X = {I ∈ I | I ⊆ X}. The contraction of M
with respect to X is defined as M/X = (S \X, I/X) with I/X = {I ⊆ S \X |
I ∪B ∈ I for some base B of M|X}. The direct sum of matroids M1 = (S1, I1)
and M2 = (S2, I2), denoted by M1 ⊕ M2, is defined to be (S1 ∪ S2, I ′), where
I ′ = {I1 ∪ I2 | I1 ∈ I1, I2 ∈ I2}.

Given a matroid M = (S, I) and a weight function w : S → Z≥0, a set I ∈ I is
said to be w-maximum, if its weight

∑
e∈I w(e) is maximum among all independent

sets in I. A base is called a w-maximum base, if its weight is maximum among all
bases. Using the family of w-maximum bases of M = (S, I), one can define a new
matroid Mw = (S, Iw), where

Iw = {I | I ⊆ B for some w-maximum base B of M}.

It is well known that Mw is a matroid (see e.g., [12]).
The following lemma states some important properties of such a derived matroid

Mw. Notice that parts (i) and (ii) are well-known (e.g. see [54]).

Lemma 1 Assume that we are given a matroid M = (S, I) and a weight function
w : S → {0, 1, . . . ,W}. We define Z(t) = {e ∈ S | w(e) ≥ t} for each integer
t ≥ 0.

(i) Mw =
⊕W

t=0(M|Z(t))/Z(t+ 1).
(ii) A set I ∈ I is w-maximum if and only if I ∩ Z(t) is a base of M|Z(t) for every

t = 1, 2, . . . ,W .
(iii) Suppose that a set I ∈ I satisfies the condition that I ∩Z(t) is a base in M|Z(t)

for every integer t with (mine∈S w(e))+1 ≤ t ≤ W , and I+e0, where e0 ∈ S\I ,
contains a circuit C ′ of Mw. Then, every element in C ′ has weight equal to w(e0).
Furthermore, there exists a circuit C ⊇ C ′ in I + e with respect to M, and each
element in C \ C ′ has weight greater than w(e0).

3 We use the shorthand I + e and I − e to stand for I ∪ {e} and I \ {e}, respectively.
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Proof Let M be the matroid defined on the right-hand side of (i). For proving (i), it
is sufficient to prove that the family of bases of Mw and that of M are the same.

Let B be a base of Mw. We show that B is a base of M by arguing that B∩(Z(t)\
Z(t + 1)) is a base of (M|Z(t))/Z(t + 1) for every integer t in {0, 1, . . . ,W + 1}.
We prove this by induction on t. The base case where t = W + 1 is trivial. The
induction hypothesis states that given an integer δ ≤ W +1, B∩ (Z(t)\Z(t+1)) is
a base of (M|Z(t))/Z(t+ 1) for every integer t, δ ≤ t ≤ W + 1. For the induction
step, we prove that B ∩ (Z(δ− 1) \Z(δ)) is a base of (M|Z(δ− 1))/Z(δ). Suppose
not, i.e., B ∩ (Z(δ − 1) \ Z(δ)) is not a base of (M|Z(δ − 1))/Z(δ). The induction
hypothesis implies that B ∩ Z(δ) is a base of M|Z(δ). Furthermore, since B is an
independent set of M, B ∩ Z(δ − 1) is an independent set of M. These imply that
B ∩ (Z(δ − 1) \ Z(δ)) is an independent set of (M|Z(δ − 1))/Z(δ). Thus, there
exists an element e in (Z(δ − 1) \ Z(δ)) \B such that (B ∩ (Z(δ − 1) \ Z(δ))) + e
is an independent set of (M|Z(δ − 1))/Z(δ). Since B ∩ Z(δ) is a base of M|Z(δ),
(B ∩ Z(δ − 1)) + e is an independent set in M|Z(δ − 1). As B is a base of M,
B+ e contains a unique circuit C of M. Since (B ∩Z(δ− 1))+ e is an independent
set of M|Z(δ − 1), C ̸⊆ ((B ∩ Z(δ − 1)) + e). Thus, C contains an element f in
B \ Z(δ − 1). As w(e) > w(f) and B + e − f is still independent in M , we infer
that B is not a w-maximum base, a contradiction. This proves the induction step.

For the other direction, let B be a base of M. We argue that B is a w-maximum
base in M (thus also a base in Mw). To see that B is a base in M , observe that by
definition, B∩Z(t) is a base of M|Z(t), given any t ∈ {0, 1, . . . ,W}. As Z(0) = S,
we have that B is a base in M . Next let B′ an arbitrary base of M. Since B ∩Z(t) is
a base of M|Z(t) and B′ ∩ Z(t) is an independent set of M|Z(t) for every integer t
in {0, 1, . . . ,W}, |B∩Z(t)| ≥ |B′∩Z(t)| for every integer t in {0, 1, . . . ,W}. This
implies that there exists a bijective mapping φ : B → B′ such that w(e) ≥ w(φ(e))
for every element e in B. Thus, B is a w-maximum base. This completes the proof
of (i).

For proving (ii), the sufficiency direction is straightforward. For proving the ne-
cessity direction, observe that a w-maximum independent set I can be extended to a
w-maximum base B. It is well known that a greedy algorithm finds a w-maximum
base, and moreover, there exists a (non-increasing) order of elements such that the
greedy algorithm returns B. This implies that B∩Z(t) is a base of M|Z(t) for every
integer t = 0, 1, . . . ,W . As e ∈ B \ I has w(e) = 0, I ∩ Z(t) is a base of M|Z(t)
for every integer t = 1, 2, . . . ,W .

For (iii), it follows from (i) that Mw is equivalent to M. Now (iii) follows from
the definitions of restriction, contraction, and direct sum operations. ⊓⊔

2.2 Matroid Intersection

Suppose that we are given a pair of matroids M1 = (S, I1) and M2 = (S, I2) on
the same ground set S. A subset I of S is called a common independent set, if I is in
I1∩I2. The goal of the matroid intersection problem is to find a maximum-cardinality
common independent set.



10 Chien-Chung Huang et al.

Given M1 and M2, the auxiliary graph is a directed graph GM1,M2
(I) = (S,E1∪

E2), where

E1 = {ef | I + e ̸∈ I1, I + e− f ∈ I1},
E2 = {fe | I + e ̸∈ I2, I + e− f ∈ I2}.

In the auxiliary graph GM1,M2
(I), we also define

X1 = {e ∈ S \ I | I + e ∈ I1},
X2 = {e ∈ S \ I | I + e ∈ I2}.

In the auxiliary graph, a directed path from X2 to X1 is an augmenting path. Let P be
a shortest augmenting path. Define I△P = (I \P )∪ (P \ I). It is known (e.g. [54])
that I△P is another common independent set, whose size is one larger than I . If
there is no augmenting path in the auxiliary graph, then I is already a maximum-
cardinality common independent set. Thus, we can find a maximum-cardinality com-
mon independent set in a polynomial number of oracle calls; starting with a common
independent set I ∈ I1 ∩ I2 (I can be ∅), we repeatedly augment the current com-
mon independent set I to a larger one by finding an shortest augmenting path in
GM1,M2(I). The algorithm constructs an auxiliary graph in each iteration, which
takes O(nr) independence oracle calls. Since the number of augmentation is at most
r, it runs in O(nr2τ) time.

Cunningham [8] improves the running time to O(nr1.5τ) by finding a maxi-
mal number of disjoint augmenting paths in each iteration. For graphic matroids,
we can obtain augmentation-type algorithms running in O(

√
rn log r) time [20], and

O(
√
rn) time if n = Ω(r1.5 log r) [19].

Given two matroids Mℓ = (S, Iℓ) (ℓ = 1, 2) and a weight function w : S → Z≥0,
the weighted matroid intersection problem is to find a common independent set with
maximum weight. A pair of functions wℓ : S → Z≥0 for ℓ = 1, 2 is a weight-
splitting of w if w(e) = w1(e) + w2(e) for every e ∈ S. Frank gave two different
proofs [14, 15] to the following min-max theorem. Note that our result (Theorem 2)
gives an alternative proof of Theorem 1, as our algorithm does not rely on Theorem
1.

Theorem 1 Let M1 = (S, I1) and M2 = (S, I2) be two matroids and w : S → Z≥0

a weight function. Then the maximum weight of a common independent set is equal
to

min
w1,w2:weight-splitting

r̂1(w1) + r̂2(w2),

where r̂ℓ(wℓ) denotes the weight of the wℓ-maximum independent set of Mℓ for ℓ =
1, 2.

3 Exact Algorithm

In this section, we present an exact algorithm for the weighted matroid intersection.
Let W = maxe∈S w(e).
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Our algorithm runs in W rounds. For ease of presentation, our algorithm starts
from Round W and down to Round 1. In Round i, the subset S′ ⊆ S of elements e
with w(e) ≥ i is the ground set of the two matroids.

We maintain a pair of weight functions w1 and w2 as a weight splitting of the
original weight w. We define a new pair of matroids M′

1 and M′
2 as the restrictions

of Mw1
1 and Mw2

2 to S′. In each round, the algorithm finds a maximum-cardinality
common independent set I between M′

1 and M′
2 using I ′, where I ′ is the com-

mon independent set found in the previous round. As we will show in Section 5, the
augmentation-type algorithm described in Section 2.2 can be used to obtain I with ad-
ditional property called near-optimality (see Definition 1). Then update w1, w2 based
on the auxiliary graph GM′

1,M
′
2
(I). Below we first present the algorithm and then

elaborate the details.

Algorithm 1: Exact algorithm
Input: two matroids M1 = (S, I1) and M2 = (S, I2), a weight function w : S →
Z≥0, and W = maxe∈S w(e).

Output: I ∈ I1 ∩ I2 where I is the maximum-weight common independent set of
M1 and M2.

Step 1. Set i := W , w1 := 0, w2 := w, and I ′ := ∅.
Step 2. While i > 0 do the following steps.

(2-1) Set S′ := {e ∈ S | w2(e) ≥ i}.
(2-2) Set M′

ℓ = (S′, I ′
ℓ) to be Mwℓ

ℓ |S′ for ℓ = 1, 2.
(2-3) Unweighted Matroid Intersection (I ′)

Construct I so that
(i) I is a maximum-cardinality common independent set of M′

1 and M′
2, and

(ii) I is (w1, w2)-near-optimal in S′.
(2-4) Update Weight

(2-4-1) Let T ⊆ S′ be the set of elements reachable from X2 in GM′
1,M

′
2
(I).

(2-4-2) For each e ∈ T , let w1(e) := w1(e) + 1, w2(e) := w2(e)− 1.
(2-5) Set i := i− 1 and I ′ := I .

Step 3. Return I .

Note that in Step (2-3), Unweighted Matroid Intersection takes I ′, which is
the common independent set computed in the previous round, to construct I . The
implementation details (depending on the type of given matroids) are deferred to
Section 5.

3.1 Analysis

The final goal of our algorithm is to find a common independent set that is w1-
maximum in M1 and w2-maximum in M2, which would imply that I is w-maximum
if w = w1 + w2. For each integer t, let

Z1(t) = {e ∈ S | w1(e) ≥ t},
Z2(t) = {e ∈ S | w2(e) ≥ t}.
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Lemma 1(ii) implies that I being w1-maximum in M1 and w2-maximum in M2 is
equivalent to

1. I ∩ Z1(t) is a base of M1|Z1(t) for every integer t ≥ 1, and
2. I ∩ Z2(t) is a base of M2|Z2(t) for every integer t ≥ 1.

Such a common independent set I of M1,M2 is called (w1, w2)-optimal.
We relax the above condition as follows. We here define Z ′

ℓ(t) = Zℓ(t) ∩ S′ for
each subset S′ ⊆ S and ℓ = 1, 2.

Definition 1 A common independent set I of M1 and M2 is (w1, w2)-near-optimal
in a subset S′ ⊆ S if

1. I ∩ Z ′
1(t) is a base of M1|Z ′

1(t) for every integer t ≥ 1, and
2. I ∩ Z ′

2(t) is a base of M2|Z ′
2(t) for every integer t ≥ α + 1, where α =

mine∈S′ w2(e).

Note that if α = 0 and S′ = S, a (w1, w2)-near-optimal common independent set in
S′ is (w1, w2)-optimal.

In what follows, we will prove that, during the execution of our algorithm, the
current set I is always (w1, w2)-near-optimal in S′. To prove this, we analyze the two
procedures Unweighted Matroid Intersection and Update Weight used in Steps
(2-3) and (2-4).

In Unweighted Matroid Intersection of Step (2-3), if we only want a maximum-
cardinality common independent set I of M′

1 and M′
2, the step is trivial. The diffi-

culty is how to guarantee that I is also (w1, w2)-near-optimal in S′ without resorting
to weighted matroid intersection. We show that if the previous common independent
set I ′ is (w1, w2)-near-optimal in S′, then we can construct I satisfying the two stated
conditions in Step (2-3) using unweighted matroid intersection algorithms. The de-
tails are deferred to Section 5. We use a lemma to summarize the outcome of Step
(2-3). Recall that we denote M′

ℓ = Mwℓ

ℓ |S′ for ℓ = 1, 2.

Lemma 2 Suppose that I ′ is (w1, w2)-near-optimal in a subset S′. Then we can
construct another common independent set I , using known unweighted matroid in-
tersection algorithms, that is simultaneously (i) a maximum-cardinality common in-
dependent set of M′

1 and M′
2, and (ii) (w1, w2)-near-optimal in S′.

We next prove that, if the maximum-cardinality common independent set I of
M′

1 and M′
2 is (w1, w2)-near-optimal in S′, then we can modify w1 and w2 at Step

(2-4) so that I is still (w1, w2)-near-optimal in S′.

Lemma 3 Suppose that all weights of w1 and w2 are nonnegative integers, and there
are some integers p1 and p2 such that w1(e) ≤ p1 and w2(e) ≥ p2 for every e ∈
S′. In addition, suppose that I is (i) a maximum-cardinality common independent
set of M′

1 and M′
2, and (ii) (w1, w2)-near-optimal in S′. Then, after the procedure

Update Weight, we have

(1) I ∩ Z ′
1(t) is a base of M1|Z ′

1(t) for every integer t with 1 ≤ t ≤ p1 + 1, and
(2) I ∩ Z ′

2(t) is a base of M2|Z ′
2(t) for every integer t ≥ p2.
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It should be noted that Lemma 3 implies that after Step (2-4), I is still (w1, w2)-
near-optimal in S′, since then maxe∈S′ w1(e) ≤ p1+1 and mine∈S′ w2(e) ≥ p2−1.

Proof We only prove (1), since (2) follows symmetrically. To avoid confusion, let
Z̃ ′
1(t) denote the set Z ′

1(t) after the weights w1 and w2 are updated. Observe that, for
every integer t with 1 ≤ t ≤ p1 + 1,

Z̃ ′
1(t) = Z ′

1(t) ∪ ((Z ′
1(t− 1) \ Z ′

1(t)) ∩ T ),

where we note that Z ′
1(p1 + 1) = ∅ and Z ′

1(0) = S′.
As I ∩Z ′

1(t) is a base of M1|Z ′
1(t), we argue that given an element e ∈ ((Z ′

1(t−
1) \ Z ′

1(t)) ∩ T ) \ I:

(∗) I + e ̸∈ I1|S′, and
(∗∗) the circuit of I + e in M1|S′ is contained in Z̃ ′

1(t).

This will establish that I∩Z̃ ′
1(t) is a base of M1|Z̃ ′

1(t) for every t = 1, 2, . . . , p1+1.
To see (∗), observe that in GM′

1,M
′
2
(I), e is not part of X1. Otherwise, there

would be an augmenting path, contradicting to the assumption that I is a maximum-
cardinality common independent set in M′

1 and M′
2. Thus, I + e contains a circuit

C ′ in M′
1. Furthemore, by Lemma 1(iii) applied to M1|S′ (as the assumption is that

I ∩ Z ′
1(t) is a base of M1|Z ′

1(t) for every t = 1, 2, . . . , p1), I + e also has a circuit
C ⊇ C ′ in M1|S′. Thus, (∗) is proved.

To see (∗∗), consider an element e′ in C ′ − e. Then, e′ is contained in Z ′
1(t −

1) \ Z ′
1(t) by Lemma 1(iii). Since e′ ∈ C ′, in GM′

1,M
′
2
(I), there is an arc from e to

e′. Thus, e′ is part of T . This implies that C ′ is a subset of (Z ′
1(t− 1) \ Z ′

1(t)) ∩ T ,
which in turn, by Lemma 1(iii), implies that the circuit C ⊇ C ′ in I + e with respect
to M1|S′ is a subset of Z ′

1(t) ∪ ((Z ′
1(t− 1) \ Z ′

1(t)) ∩ T ) = Z̃ ′
1(t). Then, we prove

(∗∗). ⊓⊔

By induction on i with Lemmas 2 and 3, we show that the current set I is always
(w1, w2)-near-optimal.

Lemma 4 In Round i with 1 ≤ i ≤ W , the following holds.

(1) w = w1 + w2,
(2) After Step (2-4), I ∩Z ′

1(t) is a base of M1|Z ′
1(t) for every integer t with 1 ≤ t ≤

W − i+ 1, and
(3) After Step (2-4), I ∩Z ′

2(t) is a base of M2|Z ′
2(t) for every integer t with i ≤ t ≤

W .

Proof (1) can be easily seen. We prove (2) and (3) by induction on i.
For the base case of i = W , since Z ′

1(1) = ∅ and Z ′
2(W + 1) = ∅ hold,

I ′ = ∅ is (w1, w2)-near-optimal in S′, and thus Lemma 2 implies that we can ob-
tain a maximum-cardinality common independent set I of M′

1 and M′
2 satisfying the

condition that I ∩ Z ′
1(1) is a base of M1|Z ′

1(1) and I ∩ Z ′
2(W + 1) is a base of

M2|Z ′
2(W + 1). Now applying Lemma 3 (with p1 = 0 and p2 = W ), we have that

I ∩ Z ′
1(1) is a base of M1|Z ′

1(1) and I ∩ Z ′
2(W ) is a base of M2|Z ′

2(W ).
For the induction step i < W , let I ′ be the common independent set obtained in

Round i + 1. By induction hypothesis, I ′ ∩ Z ′
1(t) is a base of M1|Z ′

1(t) for every
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integer t with 1 ≤ t ≤ W − i and I ′ ∩ Z ′
2(t) is a base of M2|Z ′

2(t) for every integer
t with i + 1 ≤ t ≤ W . Notice that when Round i begins, only elements e with
w1(e) = 0 and w2(e) = i are added to S′. Hence the two conditions remain true
after Step (2-1).

By these facts, as w2(e) ≥ i for e ∈ S′, Step (2-3) can be correctly applied by
Lemma 2, and we obtain the new independent set I satisfying the two conditions
stated in Step (2-3). The proof now follows by applying Lemma 3 (with p1 = W − i
and p2 = i). ⊓⊔

Theorem 2 The common independent set I returned by Algorithm 1 is a maximum-
weight common independent set of M1 and M2.

Proof By Lemma 4, after the last round when i = 1, as S′ = S, I∩Z1(t) is a base of
M1|Z1(t) for every t = 1, 2, . . . ,W , and I ∩ Z2(t) is a base of M2|Z2(t) for every
t = 1, 2, . . . ,W . Thus, it follows from Lemma 1(ii) that I is wℓ-maximum in Mℓ for
every ℓ = 1, 2. Then, for every common independent set J , we have

w(J) = w1(J) + w2(J) ≤ w1(I) + w2(I) = w(I).

Thus, I is a maximum-weight common independent set. This completes the proof.
⊓⊔

The algorithm clearly runs in O(W (Tu+Td)) time, where Tu and Td are the run-
ning times for executing Unweighted Matroid Intersection and Update Weight,
respectively. Note that Tu and Td depend on the representation of the given matroids.
Their complexities are discussed in Section 5.

4 Approximation Algorithm

In this section, we will design a (1 − ϵ)-approximation algorithm for the weighted
matroid intersection. Let W be the maximum weight. First of all, we show that we
can round weights to small integers, and bound W from above.

Lemma 5 We can reduce a given instance of the weighted matroid intersection prob-
lem to one with integral weights whose maximum weight is at most 2r∗/ϵ, where
r∗ ≤ r is the maximum size of a common independent set.

Proof Set η = ϵW/2r∗, and define w′(e) = ⌊w(e)/η⌋ for each e ∈ S. Then, a
(1− ϵ/2)-approximate solution I ′ for the weight w′ is a (1− ϵ)-approximate solution
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for the weight w. Indeed, since w(e)− η ≤ ηw′(e) ≤ w(e) for every e ∈ S, we have

w(I ′) ≥ ηw′(I ′)

≥ η(1− ϵ/2)w′(I ′opt)

(I ′opt is an optimal solution for w′)

≥ η(1− ϵ/2)w′(Iopt)

(Iopt is an optimal solution for w)
≥ (1− ϵ/2)(w(Iopt)− η|Iopt|)
≥ (1− ϵ/2)(w(Iopt)− ηr∗)

= (1− ϵ/2)(w(Iopt)− ϵW/2)

≥ (1− ϵ)w(Iopt),

where the last inequality follows because we assume that a matroid has no loop, and
thus w(Iopt) ≥ W . Thus it suffices to solve the problem for w′, whose max weight
is at most W/η ≤ 2r∗/ϵ. ⊓⊔

During the algorithm, the weight w is split so that w ≈ w1 + w2; furthermore,
we will guarantee that all weights of w1 and w2 are nonnegative multiples of some
integer δ > 0, where δ may change in different phases of the algorithm. At the end,
we find a common independent set that is w1-maximum in M1 and w2-maximum in
M2, which would imply that I is a (1− ϵ)-approximate solution if w ≤ w1 + w2 ≤
(1 + ϵ)w.

For simplicity, we assume that the bound W and ϵ are both powers of 2. Then,
our algorithm runs in 1+log2 ϵW phases. In every phase, we apply a number (roughly
O(ϵ−1)) of Unweighted Matroid Intersection and Update Weight operations. Note
that log2 ϵW = O(log r) by Lemma 5.

Let δ0 = ϵW . For each integer i with 1 ≤ i ≤ log2 ϵW , define δi = δ0/2
i.

The term δi will be the amount of change in the weights w1 and w2 during Phase
i every time Update Weight is invoked. For each e ∈ S and each integer i with
0 ≤ i ≤ log2 ϵW , define wi(e) to be the truncated weight of element e in Phase i,
i.e., wi(e) = ⌊w(e)/δi⌋δi. Notice that wi+1(e) = wi(e) or wi+1(e) = wi(e)+ δi+1.
The algorithm is presented below; it would return a ( 1

1+4ϵ )-approximate solution.

Algorithm 2: Approximation algorithm
Input: two matroids M1 = (S, I1) and M2 = (S, I2), a weight function w : S →
Z≥0, and W = maxe∈S w(e).

Output: I ∈ I1 ∩ I2 where w(I) ≥ w(Iopt)
1+4ϵ .

Step 1. Set i := 0, w1 := 0, w2 := w0, I ′ := ∅, and h := W .
Step 2. Applying Algorithm 1:

While i ≤ log2 ϵW , do the following steps.
(2-0) Set L := W

2i+1 if i < log2 ϵW , and L := 1 if i = log2 ϵW .
(2-1) While h ≥ L, do the following steps.

(2-1-1) Set S′ := {e ∈ S | w2(e) ≥ h}.
(2-1-2) Set M′

ℓ = (S′, I ′
ℓ) to be Mwℓ

ℓ |S′ for each ℓ = 1, 2.
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(2-1-3) Unweighted Matroid Intersection
Construct I using I ′ so that
(i) I is a maximum-cardinality common independent set of M′

1 and M′
2,

and
(ii) I is (w1, w2)-near-optimal in S′.

(2-1-4) Update Weight
(i) Let T ⊆ S′ be the set of elements reachable from X2 in GM′

1,M
′
2
(I).

(ii) For each e ∈ T , let w1(e) := w1(e) + δi, w2(e) := w2(e)− δi.
(2-1-5) Set h := h− δi and I ′ := I .

(2-2) Weight Adjustment:
If i < log2 ϵW , do the following.
(2-2-1) ∀e ∈ I ′, let w2(e) = w2(e) + δi+1.
(2-2-2) ∀e ∈ S\I ′ where wi+1(e) = wi(e)+δi+1, let w2(e) = w2(e)+δi+1.
(2-2-3) Set h := h+ δi+1.

(2-3) Set i := i+ 1.
Step 3. Return I .

The outer loop Step 2 corresponds to a phase. We use a counter h to keep track
of the progress of the algorithm. Initially h = W . In Phase i, the weights are always
kept as nonnegative multiples of δi. In Step (2-1), the two matroids M′

1 and M′
2 are

defined on the common ground set S′ = {e ∈ S | w2(e) ≥ h}, and the two proce-
dures Unweighted Matroid Intersection and Update Weight are invoked as was
done in the exact algorithm (Algorithm 1) in Section 3. The counter h is decreased
by the amount of δi each time after Update Weight is invoked in Step (2-1).

Each time h is halved, we make ready to move to the next phase, except in the
last phase: in Phase log2 ϵW , we stop when h goes down to 1. The reason that we
adjust the w2-weights at Step (2-2) is that we want to ensure that in the beginning of
the next phase, the weights w1 and w2 still approximate the next weight wi+1 (see
Lemma 9). In particular, we increase the w2-weights of all elements in the current
common independent set I ′. This is to make sure that I ′ is still w2-maximum in the
beginning of the next phase (with respect to the newly-defined set S′ in Step (2-1)).

4.1 Analysis

We first observe the number of iterations in the algorithm.

Lemma 6 (1) During Phase i with 0 ≤ i ≤ log2 ϵW , w1 and w2 are nonnegative
multiples of δi, except in Step (2-2).

(2) Step (2-1) is executed at most ϵ−1

2 times in Phase i with 0 ≤ i < log2 ϵW . In the
last phase, Step (2-1) is executed ϵ−1 + 1 times.

(3) The total number of iterations in Step (2-1) is O(ϵ−1 log r).

Proof (1) can be easily verified. For (2), observe that in Phase 0, Step (2-1) is exe-
cuted

W −W/2

δ0
=

ϵ−1

2
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times. For Phase i ≥ 1, in the beginning of that phase, h = W
2i − δi. Hence, if

i < log2 ϵW , Step (2-1) is executed

(W/2i − δi)−W/2i+1

δi
≤ ϵ−1

2

times, and if i = log2 ϵW , Step (2-1) is executed

W/2i − δi
δi

≤ ϵ−1

times. (3) now immediately follows from (2). ⊓⊔

We say an element e ∈ S joins in Phase j if in Phase j, element e becomes a part
of the ground set S′ in Step (2-1-1) the first time.

Lemma 7 Suppose that an element e ∈ S joins in Phase j for some integer j with
j < log2 ϵW . Then the following holds.

(1) wj(e) ≥ W
2j+1 =

δj
2ϵ .

(2) In every phase i ≥ j, wi(e) ≤ w1(e) + w2(e) ≤ wi(e) + 2δj .
(3) If e ∈ S joins in the last phase j = log2 ϵW , then w1(e) + w2(e) = wj(e).

Proof Notice that immediately before e joins in Phase j, we have w1(e) + w2(e) =
wj(e). This follows from the observation that unless e is part of I when Step (2-2-1)
is executed, the weight splitting w1(e) and w2(e) is exact with respect wj′(e) for
j′ ≤ j. (3) follows easily from this observation. In the case that j < log2 ϵW , we
have that wj(e) ≥ w2(e) ≥ W

2j+1 . Thus (1) is proved.
(2) follows from the fact the difference between the sum of w1(e) and w2(e) and

the truncated weight wj′(e) grows larger only when Step (2-2-1) is executed in Phase
j′ ≥ j and e is part of the common independent set I in that step. Hence it holds that

wi(e) ≤ w1(e) + w2(e) ≤ wi(e) +

i∑
s=j

δs

≤ wi(e) + 2δj .

This completes the proof. ⊓⊔

Since all weights of w1, w2 are nonnegative multiples of δi and we modify w1 and
w2 by δi at Update Weight, we have the following lemma, which can be obtained
similarly to Lemma 3 by dividing all the values by δi.

Lemma 8 Suppose that all weights of w1 and w2 are nonnegative multiples of δ, and
there are some integers p1 and p2 such that w1(e) ≤ p1 and w2(e) ≥ p2 for every
e ∈ S′. In addition, suppose that I is (i) a maximum-cardinality common independent
set of M′

1 and M′
2, and (ii) (w1, w2)-near-optimal in S′. Then after the procedure

Update Weight, we have

(1) I ∩ Z ′
1(t) is a base of M1|Z ′

1(t) for every integer t with 1 ≤ t ≤ p1 + δ, and
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(2) I ∩ Z ′
2(t) is a base of M2|Z ′

2(t) for every integer t ≥ p2.

Note that the lemma implies that the current independent set I is still (w1, w2)-
near-optimal in S′ after Step (2-1-4).

We finally see that Weight Adjustment maintains I ′ (w1, w2)-near-optimal in
S′.

Lemma 9 In Phase i, after Step (2-1) terminates, we have the following.

(1) I ′ ∩ Z ′
1(t) is a base of M1|Z ′

1(t) for every integer t ≥ 1.
(2) I ′ ∩ Z ′

2(t) is a base of M2|Z ′
2(t) for every integer t ≥ h+ δi.

Proof We first prove the following claim.

Claim In each phase, if (1) and (2) hold before the first iteration of Step (2-1) starts,
we have (1) and (2) after the final iteration of Step (2-1) terminates.

Proof We prove the claim by induction on the number of times Step (2-1) is invoked.
For the base case, we have (1) and (2) in the beginning by the assumption.

Suppose that we have (1) and (2) for the previous set I ′ at the beginning of the
current iteration in Step (2-1). At Step (2-1-1), some elements may be added into S′.
However, all such elements have w1(e) = 0 and w2(e) = h. Thus, I ′ still satisfies (1)
and (2), and thus it is (w1, w2)-near-optimal in S′ since w2(e) ≥ h for every e ∈ S′.
By Lemma 2, Step (2-1-3) can be correctly implemented, and we obtain a maximum-
cardinality common independent set I of M′

1 and M′
2 that is (w1, w2)-near-optimal

in S′. After Step (2-1-4), by Lemma 8 (by setting δ = δi, p1 = maxe∈S′ w1(e), and
p2 = h), I satisfies (1) and that I ∩ Z ′

2(t) is a base of M2|Z ′
2(t) for any integer

t ≥ h. Since h is decreased by δi in Step (2-1-5), we have (1) and (2) at the end of
the current iteration. This proves the claim. ⊓⊔

We prove the lemma by induction on the number of phases. For the base case, as
in the beginning of the algorithm, h = W and I ′ = ∅, the set I ′ is (w1, w2)-near-
optimal in S′. This means that we have (1) and (2) for I ′, and hence Claim 4.1 implies
that we have (1) and (2) after the iterations of Step (2-1) terminates in Phase 0.

For the induction step, suppose that currently the algorithm is in Phase i, and
that (1) and (2) are satisfied after Step (2-1) are done. We argue that after the weight
adjustment done in Step (2-2), I ′ still satisfies (1) and (2).

To avoid confusion, let Z̃ℓ(t) (ℓ = 1, 2) denote the sets after w2-weights are
modified in Steps (2-2-1) and (2-2-2), and let h̃ be the value of h after Step (2-2-3),
i.e., h̃ = h+ δi+1.

By Lemma 6(1), all w1 and w2 weights are multiples of δi in Phase i before Step
(2-2). Therefore, after Step (2-1), the fact that I ′ satisfies (2) implies

(⋆) I ′ ∩ Z ′
2(t) is a base of M2|Z ′

2(t) for every integer t ≥ h+ δi+1.

To see this, note that I ′ satisfying (2) only guarantees this property for t ≥ h+δi.
We can subtract δi+1 further because there is no element with w2-weight of the form
aδi + δi+1 for some integer a ≥ 0. Hence the range of t starts from h+ δi − δi+1 =
h+ δi+1.

As we increase the w2-weights of all elements in I ′ and a subset of elements in
S′ \ I ′, while leaving the w1-weights unchanged, we have
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(i) Z̃1(t) = Z1(t) for all t ∈ Z≥0.
(ii) I ∩ Z̃ ′

1(t) is a base of M1|Z̃ ′
1(t) for every integer t ≥ 1.

(iii) I ∩ Z̃ ′
2(t) is a base of M2|Z̃ ′

2(t) for every integer t ≥ h̃+ δi+1.

(i) and (ii) are easy to see, since w1-weights are unchanged and (1) holds before
Step (2-2). For (iii), consider any integer t ≥ h̃ + δi+1 = h + 2δi+1. We have that
I ′ ∩ Z̃ ′

2(t) = I ′ ∩Z ′
2(t− δi+1), where the latter is a base of M2|Z ′

2(t− δi+1) by (⋆).
As Z̃ ′

2(t) ⊆ Z ′
2(t− δi+1), we infer that I ′ ∩ Z̃ ′

2(t) is still a base of M2|Z̃ ′
2(t).

Therefore, at the beginning of Phase i + 1, we have (1) and (2), and hence the
proof follows from Claim 4.1. This completes the proof. ⊓⊔

Lemma 10 The common independent set I returned by Algorithm 2 is a maximum-
weight common independent set with the weight function w1 + w2 in the end.

Proof After the last time Step (2-1-5) is executed, by Lemma 9 and the fact that
S′ = S, I ∩ Z1(t) is a base of M1|Z1(t) for every integer t ≥ 1, and I ∩ Z2(t) is a
base of M2|Z2(t) for every integer t ≥ δlog2 ϵW . Since δlog2 ϵW = 1, it follows from
Lemma 1(ii) that I is w1-maximum in M1 and w2-maximum in M2. Therefore, for
every common independent set J , we have

w1(J) + w2(J) ≤ w1(I) + w2(I).

The proof follows. ⊓⊔

Theorem 3 Let I be the common independent set returned by Algorithm 2. Then I is
a 1− 4ϵ approximation.

Proof For every e ∈ S, if it joins in Phase j < log2 ϵW , then by Lemma 7(2),

wlog2 ϵW (e) ≤ w1(e) + w2(e) ≤ wlog2 ϵW (e) + 2δj

≤ (1 + 4ϵ)wlog2 ϵW (e),

where the last inequality holds since δj ≤ 2ϵwj(e) ≤ 2ϵwlog2 ϵW (e) by Lemma 7(1).
If j = log2 ϵW , then wlog2 ϵW (e) = w1(e)+w2(e) by Lemma 7(3). Since wlog2 ϵW (e) =
w(e), we conclude that, for each e ∈ S,

w(e) ≤ w1(e) + w2(e) ≤ (1 + 4ϵ)w(e).

Thus, letting Iopt be the maximum-weight common independent set, Lemma 10
implies

w(Iopt) ≤ w1(Iopt) + w2(Iopt) ≤ w1(I) + w2(I)

≤ (1 + 4ϵ)w(I).

The proof follows. ⊓⊔
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5 Implementation of Unweighted Matroid Intersection

In this section, we discuss how to implement the procedure Unweighted Matroid Intersection
and the actual complexities of our algorithms for various weighted matroid intersec-
tion problems.

Let M1 and M2 be two matroids, and w1 and w2 be weights. Suppose that a
common independent set I ′ of M′

1 and M′
2 is (w1, w2)-near-optimal in a subset

S′ ⊆ S (recall that M′
ℓ = Mwℓ

ℓ |S′ for ℓ = 1, 2). We consider finding a maximum-
cardinality common independent set I between M′

1 and M′
2 that is (w1, w2)-near-

optimal in S′.

5.1 General Matroids

In [8], Cunningham shows how to find a maximum-cardinality common independent
set, using O(nr1.5) independence oracle calls. This is done by repeatedly finding an
augmenting path in the auxiliary graph, as described in Section 2.2. We argue that if
we apply his algorithm to M′

1 and M′
2 with I ′ as the initial common independent set,

each new independent set resulted from augmentation will satisfy the same property
as I ′.

Lemma 11 Suppose that I ′ is (w1, w2)-near-optimal in S′, and let P be the shortest
path from X2 to X1 in GM′

1,M
′
2
(I ′). Then, the set I = I ′△P is also (w1, w2)-near-

optimal.

Proof By Lemma 1(iii), in GM′
1,M

′
2
(I ′), an element e ∈ (Z1(t) \Z1(t+1)) \ I ′ has

outgoing arcs to only other elements in Z1(t) \ Z1(t + 1) for every integer t ≥ 1.
Similarly, an element e ∈ (Z2(t) \ Z2(t + 1)) ∩ I ′ has only outgoing arcs towards
other elements in (Z2(t) \ Z2(t + 1)) \ I ′ for every integer t ≥ p + 1, where p =
mine∈S′ w2(e).

These two facts imply that along the augmenting path P in GM′
1,M

′
2
(I ′), the

number of elements in (Z1(t) \Z1(t+1)) \ I ′ is the same as the number of elements
in (Z1(t) \Z1(t+1))∩ I ′ for every integer t ≥ 1. Similarly, the number of elements
in (Z2(t) \ Z2(t + 1)) ∩ I ′ is the same as that in (Z2(t) \ Z2(t + 1)) \ I ′ for every
integer t ≥ p + 1. Thus, |I ∩ Z1(t)| = |I ′ ∩ Z1(t)| for every integer t ≥ 1, and
|I ∩ Z2(t)| = |I ′ ∩ Z2(t)| for every integer t ≥ p+ 1. The proof follows. ⊓⊔

Thus, the maximum-cardinality common independent set of M′
1 = (S′, I ′

1) and
M′

2 = (S′, I ′
2) obtained by Cunningham’s algorithm is (w1, w2)-near-optimal if so

is the initial set. To apply Cunningham’s algorithm [8] to M′
1 and M′

2, we need an
independence oracle for M′

1 and M′
2 to find an augmenting path. More specifically,

for ℓ = 1, 2, we need to test whether I ′ + e ∈ I ′
ℓ and whether I ′ + e − f ∈ I ′

ℓ for
a given independent set I ′, and given elements e ∈ S′ \ I ′ and f ∈ I ′. This can be
implemented by an independence oracle for M1 and M2 as follows. It follows from
Lemma 1(iii) that if I ′+e /∈ I ′

ℓ, then I ′+e−f ∈ I ′
ℓ if and only if I ′+e−f ∈ Iℓ and

wℓ(e) = wℓ(f). In addition, I ′ + e ∈ I ′
1 if and only if I ′ + e ∈ I1 and w1(e) = 0,

and I ′ + e ∈ I ′
2 if and only if I ′ + e ∈ I2 and w′

2(e) = mine∈S′ w2(e). Thus
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Unweighted Matroid Intersection can be implemented in O(nr1.5) independence
oracle calls for M1 and M2.

We can perform Update Weight in O(nr) independence oracle calls. Therefore,
we have the following theorem for two general matroids.

Theorem 4 For two general matroids, we can solve the weighted matroid intersec-
tion problem exactly in O(τWnr1.5) time, and (1−ϵ)-approximately in O(τϵ−1nr1.5 log r)
time, where τ is the running time to check the independence of given matroids.

For the exact algorithm, a slight sharpening in the running time is possible. Ob-
serve that in Round i, Cunningham’s algorithm takes O(τ |S′|r1.5) time, where S′ =
{e ∈ S | w(e) ≥ i}. Since

W∑
i=1

|{e ∈ S | w(e) ≥ i}| =
∑
e∈S

w(e),

the total running time is O(τ(
∑

e∈S w(e))r1.5). This is superior to the previous one
only when the given weights are very “unbalanced.”

5.2 Graphic Matroids

Suppose that M1 and M2 are graphic matroids. That is, Mℓ = (S, Iℓ) (ℓ = 1, 2)
is represented by a graph Gℓ = (Vℓ, S) so that Iℓ is the family of edge subsets in
S that are forests in Gℓ. Note that the number of edges in Gℓ is n = |S|, and the
number of vertices is O(r), since we may assume that there is no isolated vertex.
Gabow and Xu [20] designed an algorithm that runs in O(

√
rn log r) time for the

unweighted graphic matroid intersection. Their algorithm is an augmentation-type
algorithm, that is, repeatedly finds an augmenting path in the auxiliary graph.

It is well known that, if Mℓ is graphic, then so is M′
ℓ = Mwℓ

ℓ |S′ for a subset S′

and ℓ = 1, 2. Indeed, for a subset X ⊆ S, the restriction of Gℓ to X (the subgraph
induced by an edge subset X), denoted by Gℓ|X , represents Mℓ|X . Moreover, the
graph obtained from Gℓ by contracting X , denoted by Gℓ/X , represents Mℓ/X .
Then, by Lemma 1(i), M′

ℓ = Mwℓ

ℓ |S′ has a graph representation G′
ℓ|S′, where G′

ℓ is
in the form of

G′
ℓ =

W⊕
t=0

(Gℓ|Zℓ(t))/Zℓ(t+ 1),

i.e., G′
ℓ is the disjoint union of graphs (Gℓ|Zℓ(t))/Zℓ(t + 1) obtained by restriction

and contraction. Note that the numbers of vertices and edges in G′ are O(r) and n,
respectively.

We apply Gabow and Xu’s algorithm [20] for the unweighted problem to M′
1

and M′
2 with I ′ as the initial common independent set. Since I ′ is (w1, w2)-near-

optimal, it follows from Lemma 11 that the obtained maximum-cardinality com-
mon independent set is (w1, w2)-near-optimal in S′. Thus the running time of Un-
weighted Matroid Intersection is O(

√
rn log r). Since the reachable set T in the

procedure Update Weight can be found in the end of Gabow and Xu’s algorithm,
we can perform Update Weight in linear time. Therefore, we have the following.



22 Chien-Chung Huang et al.

Theorem 5 For two graphic matroids, we can solve the weighted matroid intersec-
tion exactly in O(W

√
rn log r) time, and (1−ϵ)-approximately in O(ϵ−1

√
rn log2 r)

time.

5.3 Linear Matroids

In the case that M1 and M2 are linear, we can use a faster algorithm by Harvey [24]
instead of the augmentation-type algorithm. His algorithm is an algebraic one for
finding a common base of two linear matroids. We reduce our instance to the problem
of finding a common base, that corresponds to a (w1, w2)-near-optimal maximum-
cardinality common independent set.

We first describe basic properties of a linear matroid M = (S, I) of rank r. We
assume that M is represented by an r × n matrix A whose column set is S and row
set is denoted by R. We denote by A[I, J ] the submatrix consisting of row set I and
column set J . For a set X , we denote the complement by X .

It is known that the restriction and contraction of the linear matroid M are both
linear. Indeed, for a subset X ⊆ S, M|X has the matrix representation A|X =
A[R,X]. Moreover, taking a nonsingular submatrix of maximum size in A[R,X],
denoted by A[Y, Z], we have the matrix representation A/X of the contraction M/X
in the form of

A/X = A[Y ,X]−A[Y ,Z]A[Y, Z]−1A[Y,X].

The row set of A/X is Y = R \ Y . See e.g., [23] for more details. The direct sum of
linear matroids M1 and M2 is also linear, whose matrix representation is the block
diagonal matrix arranging the two matrices for M1 and M2 on the diagonal.

Suppose that we are given a weight function w : S → {0, 1, . . . ,W}. Then, by
Lemma 1(i), Mw is also linear, and its matrix representation Aw is in the form of

Aw =

W⊕
t=0

(A|Z(t))/Z(t+ 1), (1)

where we recall Z(t) = {e ∈ S | w(e) ≥ t} for t = 0, . . . ,W +1. The size of Aw is
the same as A; the ground set of Mw is S, and the row set of Aw is also R. We denote
by Y (t) the set of the nonzero rows in Aw[R,Z(t)] for t = 0, . . . ,W . Thus Aw is
a block-diagonal matrix whose blocks are Aw[Y (t) \ Y (t+ 1), Z(t) \ Z(t+ 1)] for
t = 0, . . . ,W , where Y (W + 1) = ∅. Note that Aw can be computed in O(nrω−1)
time, since this can be obtained by Gaussian elimination (see [23]).

We now go back to the weighted matroid intersection. For ℓ = 1, 2, let Mℓ be
a linear matroid of rank rℓ on S, whose matrix representation is given by an rℓ × n
matrix Aℓ with the same field. We also denote by Rℓ the row set of Aℓ for ℓ = 1, 2.
Then the following proposition is known in [24].

Proposition 1 Two linear matroids M1 and M2 have a common base if and only if
the matrix N = −A1D

−1A⊤
2 is nonsingular, where D is a diagonal matrix of order

n such that the set of the diagonal entries is algebraically independent.
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Note that N can be computed in O(nrω−1) time (see [24]).
Let us consider the procedure Unweighted Matroid Intersection. Given a weight-

splitting w1 and w2 of w, recall Zℓ(t) = {e ∈ S | wℓ(e) ≥ t} for t = 0, . . . ,W + 1
and ℓ = 1, 2. Let Yℓ(t) be the set of the nonzero rows in Awℓ

ℓ [Rℓ, Zℓ(t)] for t =
0, . . . ,W . For a subset S′, let Z ′

ℓ(t) = Zℓ(t) ∩ S′.

Lemma 12 For two linear matroids, suppose that I ′ is (w1, w2)-near-optimal in a
subset S′. Then we can construct a common independent set I , in O(nrω−1) time,
that is simultaneously (i) a maximum-cardinality common independent set of M′

1 and
M′

2, and (ii) (w1, w2)-near-optimal in S′.

Proof We denote A′
ℓ = Awℓ

ℓ [Rℓ, S
′], which is a matrix representation of M′

ℓ|S′, for
ℓ = 1, 2. We first show the following claim on (w1, w2)-near-optimality.

Claim A set J is (w1, w2)-near-optimal in a subset S′ if and only if there exists
Uℓ ⊆ Rℓ (ℓ = 1, 2) with Y1(1) ⊆ U1 and Y2(p+1) ⊆ U2, where p = mine∈S′ w2(e),
such that J is a common base of A′

1[U1, S
′] and A′

2[U2, S
′].

Proof Suppose J is (w1, w2)-near-optimal in S′. Then it follows from (1) that J ∩
Z ′
1(t) is a base of M1|Z ′

1(t) for every integer t ≥ 1 if and only if each submatrix
A′

1[Y1(t), J ∩ Z ′
1(t)] is nonsingular for every integer t ≥ 1. Since A′

1[Y1(1), J ∩
Z ′
1(1)] is nonsingular, we can take U1 ⊆ R1 with |U1| = |J | such that A′

1[U1, J ]
is nonsingular and Y1(1) ⊆ U1. Similarly, there exists U2 ⊆ R2 with |U2| = |J |
such that A′

2[U2, J ] is nonsingular and Y2(p+1) ⊆ U2. Thus J is a common base of
A′

1[U1, S
′] and A′

2[U2, S
′].

Conversely, suppose that we have row subsets U1 and U2 satisfying the condi-
tions. Since A′

1[R1 \ Y1(1), Z
′
1(1)] is a zero matrix, the base J has a nonsingular

submatrix A′
1[Y1(1), J ∩Z ′

1(1)]. Since the submatrix is block-diagonal, this is equiv-
alent to that J ∩ Z ′

1(t) is a base of M′
1|S′ for every t ≥ 1. The case for A′

2 is
analogous. ⊓⊔

By the assumption that I ′ is (w1, w2)-near-optimal in S′, there exist U1 and U2

such that Y1(1) ⊆ U1, Y2(p + 1) ⊆ U2, and A′
1[U1, S

′] and A′
2[U2, S

′] have a com-
mon base. Among such U1 and U2, we take U∗

1 and U∗
2 with maximum size. We

can find a common base I for A′
1[U

∗
1 , S

′] and A′
2[U

∗
2 , S

′] by Harvey’s algorithm
in O(nrω−1) time [24]. Since I satisfies the conditions of the above claim, I is
(w1, w2)-near-optimal with maximum size in S′. Thus I is a desired set.

It remains to show that we can find such maximum U∗
1 and U∗

2 in O(nrω−1)

time. Construct N = −A′
1D

−1A′⊤
2 in O(nrω−1) time, which has the row set R1

and column set R2. By Proposition 1, for U1 ⊆ R1 and U2 ⊆ R2, both A′
1[U1, S

′]
and A′

2[U2, S
′] have a common base if and only if N [U1, U2] is nonsingular, which

follows from the fact that N [U1, U2] = −A′
1[U1, S

′]D−1(A′
2[U2, S

′])⊤. Therefore,
it suffices to find U∗

1 ⊆ R1 and U∗
2 ⊆ R2 with maximum size such that Y1(1) ⊆ U∗

1

and Y2(p+1) ⊆ U∗
2 and N [U∗

1 , U
∗
2 ] is nonsingular. This can be done in O(rω) time,

since the rank of N is at most r. ⊓⊔

Since Update Weight can be performed in O(nrω−1) time, we can solve the
weighted matroid intersection exactly in O(Wnrω−1) time and approximately in
O(ϵ−1nrω−1 log r) time.
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Furthermore, using a preprocessing technique by Cheung, Kwok, and Lau [4],
we can improve the computational time. Given a positive integer k, their algorithm
reduces an r × n matrix A to an O(k) × n matrix A′ such that, if a column set in
A′ of size at most k is independent then it is independent in A with high probability.
This can be done in O(nr) time.

We simply use this algorithm where k is set to be the maximum size r∗ ≤ r
of a common independent set of M1 and M2. The size r∗ can be computed in
O(nr log r∗ + nrω−1

∗ ) time [4]. After we obtain two O(r∗) × n matrices by their
method, apply our algorithm to obtain a maximum-weight common independent set.
This takes O(Wnrω−1

∗ ) time for an exact algorithm and O(ϵ−1nrω−1
∗ log r∗) time

for an approximation algorithm.
Therefore, we have the following theorem.

Theorem 6 For two linear matroids, we can solve the weighted matroid intersection
exactly in O(nr log r∗+Wnrω−1

∗ ) time and (1− ϵ)-approximately in O(nr log r∗+
ϵ−1nrω−1

∗ log r∗) time, where r∗ is the size of a common independent set.

It should be noted that our algorithm is simple in the sense that it involves only a
constant matrix and does not need to manipulate a univariate-polynomial matrix.

6 Rank-Maximal Matroid Intersection

In this section, we deal with the rank-maximal matroid intersection problem. As men-
tioned in the introduction, this problem can be reduced to the weighted matroid in-
tersection problem whose weight w is drawn from {1, n, n2, . . . , nR−1}. More gen-
erally, we consider the case where the weight w is drawn from a geometric series
{1, u, u2, . . . , uR−1}, where u ≥ 2. Let dk be the difference of two consecutive
weights, i.e., dk = uk − uk−1 for k = R,R − 1, . . . , 1. For convenience, we also
define d0 = 1.

Our algorithm for the geometric-series weight case is described as follows, where
the only difference from our exact algorithm (Algorithm 1 in Section 3) is in the dual
update Step (2-4): we update w1 and w2 with large weight dk.

Algorithm 3: Exact algorithm for geometric-series weights
Input: two matroids M1 = (S, I1) and M2 = (S, I2), a weight function w : S →
{1, u, u2, · · · , uR−1}, where u ≥ 2.

Output: I ∈ I1 ∩ I2 where I is the maximum-weight common independent set of
M1 and M2.

Step 1. Set k := R− 1, w1 := 0, w2 := w, and I ′ := ∅.
Step 2. While k > 0 do the following steps.

(2-1) Set S′ := {e ∈ S | w2(e) ≥ uk}.
(2-2) Set M′

ℓ := Mwℓ

ℓ |S′ for each ℓ = 1, 2.
(2-3) Unweighted Matroid Intersection (I ′)

Construct I so that
(i) I is a maximum-cardinality common independent set of M′

1 and M′
2, and

(ii) I is (w1, w2)-near-optimal in S′.
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(2-4) Update Weight at one time
(2-4-1) Let T ⊆ S′ be the set of elements reachable from X2 in GM′

1,M
′
2
(I).

(2-4-2) For each e ∈ T , let w1(e) := w1(e) + dk, w2(e) := w2(e)− dk.
(2-5) Set k := k − 1 and I ′ := I .

Step 3. Return I .

In the following, we prove the correctness of Algorithm 3 by showing that it
would have the same outcome as if we had run Algorithm 1 in Section 3 instead. For
the purpose, we first need a technical lemma, whose proof exploits the property that
each weight is at least double the previous weight in the given geometric series of
weights w.

Lemma 13 At Step (2-1) of Round k (k = R−1, R−2, . . . , 1), we have the following
for e and f in S′.

(i) If w1(e) ̸= w1(f), then |w1(e)− w1(f)| ≥ dk+1.
(ii) If w2(e) ̸= w2(f), then |w2(e)− w2(f)| ≥ dk+1.

Proof We prove (i) by induction on k. When k = R−1, all elements have w1-weights
0. So (i) holds trivially. For the induction step with k < R − 1, if w1(e) ̸= w1(f),
then at least one of them, say e, is part of S′ in the last round (i.e., Round k + 1).
To avoid confusion, the set S′ in the last round is denoted by S

′
. Also w1 and w2

at Step (2-1) of the last round are denoted by w1 and w2, respectively. Consider two
possibilities.

Case 1. Suppose that f ∈ S
′
. By induction hypothesis, either |w1(e)−w1(f)| ≥

dk+2, or w1(e) = w1(f). In the former case, the difference between the w1-weights
of e and f is changed by at most dk+1 in the last round. Therefore, we have

|w1(e)− w1(f)| ≥ dk+2 − dk+1 ≥ dk+1,

where the last inequality holds because u ≥ 2. In the latter case, either w1(e) =
w1(f) (if both w1(e) and w1(f) are updated or unchanged in the last round), or
|w1(e)− w1(f)| = dk+1 (if exactly one of them is updated).

Case 2. Suppose that f ̸∈ S
′
. Then w1(f) = 0. If w1(e) has not been updated

so far, then w1(e) = 0. Otherwise, since w1(e) is increased at Round s for some
s ≥ k + 1, we have w1(e) ≥ ds ≥ dk+1. The induction step is completed.

(ii) can be proved symmetrically. ⊓⊔

To avoid confusion, let i be the index of the rounds when we apply Algorithm 1
in Section 3, and J i be the independent set obtained in Round i. Let k be the index
of the rounds when we apply Algorithm 3, and Ik be the independent set obtained at
Round k of Algorithm 3.

Lemma 14 Define ik = uk for k = R−1, R−2, . . . , 1. For k = R−1, R−2, . . . , 1
and ℓ = 1, 2, the weights wℓ at Round ik of Algorithm 1 are the same as the weights
wℓ at Round k of Algorithm 3. Thus, for k = R−1, R−2, . . . , 1, the auxiliary graph
in Round k of Algorithm 3 coincides with one in Round ik of Algorithm 1.
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Proof We prove by induction in k. When k = R−1 and ik = uR−1, the lemma holds
easily. For the induction step when k < R − 1, we argue that the update of the w1-
and w2-weights done in Round k+1 of Algorithm 3 are the same as the accumulated
updates of the w1- and w2-weights done in Algorithm 1 from Round ik+1 down to
Round ik + 1. To be more precise, in Round k + 1 in Algorithm 3, all elements in
S′ ∩ T have their w2-weights decrease by the amount of dk+1 and their w1-weights
increase by the same amount. We show that from Round ik+1 down to Round ik + 1
in Algorithm 1, the same set of elements have their w2- and w1-weights updated (and
each round by the amount of one). This would prove the induction step.

For simplicity, we often denote ik+1 − t with (t) for t = 0, 1, . . . , dk+1 − 1. Let
G(t) be the auxiliary graph at Round ik+1 − t in Algorithm 1, and T (t) be the reach-
able set in G(t) found in Step (2-4) of Round ik+1 − t. We will show the following
properties for Algorithm 1.

(1) The ground set S(t) is the same as S(0).
(2) The reachable set T (t) is the same as T (0).
(3) The independent set J (t) is the same as J (0).

To see (1), observe that, in Algorithm 1, all elements e not in S(0) have w
(0)
2 (e) ≤

uk+1 − 1. Since w
(0)
2 (e) is equal to w(e), we see w

(0)
2 (e) ≤ uk for e ̸∈ S(0) by

the definition of w. Hence e is not contained in S(t), as w(t)
2 (e) = w

(0)
2 (e) ≤ uk <

uk+1 − t for 0 ≤ t ≤ dk+1 − 1. Therefore, S(0) = S(t).
To see (2), we first show T (t) ⊇ T (0). Note that, by Lemma 1(iii), for an arc

ef in G(0), their w1-weights w(0)
1 (e) and w

(0)
1 (f) must be the same if e ̸∈ J (0) and

f ∈ J (0), and their w2-weights w
(0)
2 (e) and w

(0)
2 (f) must be the same if e ∈ J (0)

and f ̸∈ J (0). Then, if both e and f are in T (0) or neither of them is in T (0), their
w2-weights (respectively w1-weights) remain the same in the subsequent rounds, and
hence the arc ef appears in G(t). Thus T (t) ⊇ T (0).

To prove T (t) ⊆ T (0), it suffices to show that, in the auxiliary graph G(t), there
exists no new arc from an element e in T (0) to an element f not in T (0). Note that,
by the definition of T (0), there exists no arc from e to f in G(0).

First suppose that e ̸∈ J (0) and f ∈ J (0). Then w
(0)
1 (e) < w

(0)
1 (f) holds if the

arc ef appeared in G(t). It follows from the induction hypothesis of the lemma that
G(0) coincides with GM′

1,M
′
2
(Ik+1) at Round k+ 1 of Algorithm 3. This implies by

Lemma 13 that w(0)
1 (f)−w

(0)
1 (e) ≥ dk+2. Hence, for any t = 0, 1, . . . , dk+1 − 1, it

holds that

w
(t)
1 (f)− w

(t)
1 (e) ≥ w

(0)
1 (f)− (w

(0)
1 (e) + t)

≥ dk+2 − dk+1 + 1 > 0,

where the last inequality follows from u ≥ 2. Therefore, we always have w
(t)
1 (f) >

w
(t)
1 (e) for 0 ≤ t ≤ dk+1 − 1, and thus the arc ef never appears in G(t). Similarly,

if e ∈ J (0) and f ̸∈ J (0), then w
(0)
2 (e) − w

(0)
2 (f) ≥ dk+2 by Lemma 13. Hence we

have w
(t)
2 (e)− w

(t)
2 (f) > 0 for t = 0, 1, . . . , dk+1 − 1. Therefore, (2) follows.
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Finally, (3) follows from the fact that in each round, there is no augmentation
happening, as G(0) has no augmenting path and by (1) and (2) neither does G(t).
This completes the proof. ⊓⊔

Theorem 7 The independent set I returned by Algorithm 3 is an optimal solution.

Therefore, using Cunningham’s algorithm for the unweighted matroid intersec-
tion problem as a subroutine, we have the following theorem.

Theorem 8 The rank-maximal matroid intersection problem can be solved using
O(Rnr1.5) independence oracle calls.

We note that even though the actual weights used in Algorithm 3 can be exponen-
tially large, there is indeed no need to store them explicitly (otherwise, we incur the
extra cost in time and space). We discuss in Section 6.1 the implementations details.

In addition, if given two matroids are graphic or linear, then we can solve the
problem fast.

Theorem 9 The rank-maximal graphic matroid intersection problem can be solved
in O(R

√
rn log r) time.

Theorem 10 The rank-maximal linear matroid intersection problem can be solved
in O(Rnrω−1) time.

6.1 Implementation of Rank-Maximal Matroid Intersection

We discuss how to avoid storing the actual numerical values of the weights when
implementing Algorithm 3 presented in Section ??. As discussed in Section 3, we
need to draw an arc in the auxiliary graph properly and to do this, we just need
to know that given any two elements e and f in S′, whether wℓ(e) is larger than,
equivalent to, or smaller than wℓ(f) for ℓ = 1, 2. There is no need to know the actual
values.

It is easy to see that, at Round k, we have w1(e) = 0 +
∑R−1

t=k+1 dt · 1e∈T t and
w2(e) = w(e)−

∑R−1
t=k+1 dt ·1e∈T t , where T t is the reachable set found in Step (2-4)

of Round t. Using this fact, Lemma 13, and the definition of dk, we have

Lemma 15 At Step (2-1) of Round k (k = R−1, R−2, . . . , 1), we have the following
for e and f in S′.

(i) If w1(e) > w1(f), then, in Round h = k − 1, k − 2, . . . , 1, w1(e) > w1(f).
(ii) If w2(e) > w2(f), then, in Round h = k − 1, k − 2, . . . , 1, w2(e) > w2(f).

Below we only discuss how to compare the w1-weight of the elements, since the
w2-weight can be handled symmetrically.

In Round k, we can divide the elements according to their weights w1. There
can be only O(n) such groups, gk(1), gk(2), . . ., ordered by their increasing weights.
Inside each group gk(i), in the next round (Round k−1), the elements can be split into
two subgroups, if a strict subset of the elements in gk(i) belongs to the reachable set
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T k in Step (2-4). However, by Lemma 15, in the next round, we know that elements
belonging to these two subgroups of gk(i) will still have weights w1 smaller than the
elements from the subgroups derived from gk(i + 1), gk(i + 2), . . ., and larger than
the elements from the subgroups derived from gk(i − 1), gk(i − 2), . . .. Finally, for
the elements e newly-added in Round k − 1, we have w1(e) = 0. These elements
can be either added into the existing group with the smallest weight, or we can create
a new group for them (and such a group necessarily has the smallest weight). The
maintenance of such data structure as described can be easily done in O(n) time in
each round of the algorithm.
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