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Abstract. In this paper, we consider the problem of maximizing a
monotone submodular function subject to a knapsack constraint in the
streaming setting. In particular, the elements arrive sequentially and at
any point of time, the algorithm has access only to a small fraction of
the data stored in primary memory. For this problem, we propose a
(0.4 − ε)-approximation algorithm requiring only a single pass through
the data. This improves on the currently best (0.363 − ε)-approximation
algorithm. The required memory space depends only on the size of the
knapsack capacity and ε.
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1 Introduction

A set function f : 2E → R+ on a ground set E is submodular if it satisfies
the diminishing marginal return property, i.e., for any subsets S ⊆ T � E and
e ∈ E \ T ,

f(S ∪ {e}) − f(S) ≥ f(T ∪ {e}) − f(T ).

A set function is monotone if f(S) ≤ f(T ) for any S ⊆ T . Submodular func-
tions play a fundamental role in combinatorial optimization, as they capture
rank functions of matroids, edge cuts of graphs, and set coverage, just to name
a few examples. Besides their theoretical interests, submodular functions have
attracted much attention from the machine learning community because they
can model various practical problems such as online advertising [1,24,35], sensor
location [25], text summarization [30,31], and maximum entropy sampling [28].

Many of the aforementioned applications can be formulated as the maximiza-
tion of a monotone submodular function under a knapsack constraint. In this
problem, we are given a monotone submodular function f : 2E → R+, a size
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function c : E → N, and an integer K ∈ N, where N denotes the set of positive
integers. The problem is defined as

maximize f(S) subject to c(S) ≤ K, S ⊆ E, (1)

where we denote c(S) =
∑

e∈S c(e) for a subset S ⊆ E. Note that, when c(e) = 1
for every item e ∈ E, the constraint coincides with a cardinality constraint.
Throughout this paper, we assume that every item e ∈ E satisfies c(e) ≤ K as
otherwise we can simply discard it.

The problem of maximizing a monotone submodular function under a knap-
sack or a cardinality constraint is classical and well-studied [20,37]. The problem
is known to be NP-hard but can be approximated within the factor of 1−e−1 (or
1 − e−1 − ε); see e.g., [3,15,21,26,36,38].

In some applications, the amount of input data is much larger than the main
memory capacity of individual computers. In such a case, we need to process
data in a streaming fashion (see e.g., [32]). That is, we consider the situation
where each item in the ground set E arrives sequentially, and we are allowed
to keep only a small number of the items in memory at any point. This setting
effectively rules out most of the techniques in the literature, as they typically
require random access to the data. In this work, we assume that the function
oracle of f is available at any point of the process. Such an assumption is standard
in the submodular function literature and in the context of streaming setting
[2,13,39].

Our main contribution is to propose a single-pass (2/5 − ε)-approximation
algorithm for the problem (1), which improves on the previous work [23,39] (see
Table 1). The space complexity is independent of the number of items in E.

Table 1. The knapsack-constrained problem. The algorithms [16,36] are not for the
streaming setting. See also [15,26].

Approx. ratio #passes Space Running time

Ours 2/5− ε 1 O
(
Kε−4 log4 K

)
O

(
nε−4 log4 K

)

Huang et al. [23] 4/11− ε 1 O
(
Kε−4 log4 K

)
O

(
nε−4 log4 K

)

Yu et al. [39] 1/3− ε 1 O
(
Kε−1 logK

)
O

(
nε−1 logK

)

Huang et al. [23] 2/5− ε 3 O
(
Kε−4 log4 K

)
O

(
nε−4 log4 K

)

Huang-Kakimura [22] 1/2− ε O
(
ε−1

)
O

(
Kε−7 log2 K

)
O

(
nε−8 log2 K

)

Ene and Nguy˜̂en [16] 1− e−1 − ε — — O
(
(1/ε)O(1/ε4)n logn

)

Sviridenko [36] 1− e−1 — — O
(
Kn4

)

Theorem 1. There exists a single-pass streaming (2/5−ε)-approximation algo-
rithm for the problem (1) requiring O

(
Kε−4 log4 K

)
space.
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Our Technique. Let us first describe approximation algorithms for the knapsack-
constrained problem (1) in the offline setting. The simplest algorithm is a greedy
algorithm, that repeatedly takes an item with maximum marginal return. The
greedy algorithm admits a (1 − 1/

√
e)-approximation, together with taking one

item with the maximum return, although it requires to read all the items K
times. Sviridenko [36] showed that, by applying the greedy algorithm from each
set of three items, we can find a (1 − 1/e)-approximate solution. Recently, such
partial enumeration is replaced by a more sophisticated multi-stage guessing
strategies (where fractional items are added based on the technique of multilinear
extension) to improve the running time in nearly linear time [16]. However, all
of them require large space and/or a large number of passes to implement.

In the streaming setting, Badanidiyuru et al. [2] proposed a single-
pass thresholding algorithm that achieves a (0.5 − ε)-approximation for the
cardinality-constrained problem. The algorithm just takes an arriving item e
when the marginal return exceeds a threshold and the feasibility is maintained.
However, this strategy gives us only a (1/3−ε)-approximation for the knapsack-
constrained problem. This drop in approximation ratio comes from the fact that,
while we can freely add an item as long as our current set is of size less than K
for the cardinality constraint, we cannot take a new item if its addition exceeds
the capacity of the knapsack.

To overcome this issue, in [23] a branching technique is introduced, where one
stops at some point of the thresholding algorithm and use a different strategy
to collect subsequent items. The ratio of this branching algorithm depends on
the size of the largest item o1 in the optimal solution; when o1 is overly large,
other strategies must be employed. Overall, the proposed approach of [23] gives
a (4/11 − ε)-approximation.

How does one improve the ratio further when c(o1) is large? One can certainly
guess the size c(o1) and the f -value f({o1}) beforehand and in the stream pick
the item of similar size and f -value. The difficulty lies in how to pick such an item
that, together with the rest of the optimal solution (excluding o1), guarantees a
decent f -value. Namely, we need a good substitute of o1. In [23], a single-pass
procedure, called PickOneItem, is designed to find such an item (see Sect. 2 for
details). Once equipped with such an item, it is not difficult to collect other
items so as to improve the approximation ratio to 2/5−ε. The down-side of this
approach is that one needs multiple passes.

In this paper, we introduce new techniques to achieve the same ratio without
the need to waste a pass to collect a good substitute of o1. Depending on the
relative size of o1 and o2 (second largest item in the optimal solution), we combine
PickOneItem with the thresholding algorithm in two different ways. The first one
is to perform both of them dynamically, that is, each time we find a candidate e
for an approximation of o1, we perform the thresholding algorithm starting from
e with the current set. In contrast, the other runs both of them in a parallel
way; we perform the thresholding algorithm and PickOneItem independently for
some subset of items, and combine their results in the end. The details of these
algorithms are described in Sects. 3.2 and 3.3, respectively.
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Related Work. Maximizing a monotone submodular function subject to various
constraints is a subject that has been extensively studied in the literature. We
do not attempt to give a complete survey here and just highlight the most rele-
vant results. Besides a knapsack constraint or a cardinality constraint mentioned
above, the problem has also been studied under (multiple) matroid constraint(s),
p-system constraint, multiple knapsack constraints. See [9,11,12,15,19,26,29]
and the rences therein.

In the streaming setting, single-pass algorithms have been proposed for the
problem with matroid constraints [10,18] and knapsack constraint [23,39], and
without monotonicity [13,34]. Multi-pass streaming algorithms, where we are
allowed to read a stream of the input multiple times, have also been stud-
ied [3,10,22,23]. In particular, Chakrabarti and Kale [10] gave an O(ε−3)-pass
streaming algorithms for a generalization of the maximum matching problem
and the submodular maximization problem with cardinality constraint. Huang
and Kakimura [22] designed an O(ε−1)-pass streaming algorithm with approx-
imation guarantee 1/2 − ε for the knapsack-constrained problem. Other than
the streaming setting, recent applications of submodular function maximization
to large data sets have motivated new directions of research on other compu-
tational models including parallel computation model such as the MapReduce
model [6,7,27] and the adaptivity analysis [4,5,14,17].

The maximum coverage problem is a special case of monotone submodular
maximization under a cardinality constraint where the function is a set-covering
function. For the special case, McGregor and Vu [33] and Batani et al. [8] gave
a (1 − e−1 − ε)-approximation algorithm in the multi-pass streaming setting.

2 Preliminaries

For a subset S ⊆ E and an element e ∈ E, we use the shorthand S + e and S − e
to stand for S ∪ {e} and S \ {e}, respectively. For a function f : 2E → R+, we
also use the shorthand f(e) to stand for f({e}). The marginal return of adding
e ∈ E with respect to S ⊆ E is defined as f(e | S) = f(S + e) − f(S). Thus the
submodularity means that f(e | S) ≥ f(e | T ) for any subsets S ⊆ T � E and
e ∈ E \ T .

In the rest of the paper, let I = (f, c,K,E) be an input instance of the
problem (1). Let OPT = {o1, . . . , o�} denote an optimal solution with c(o1) ≥
c(o2) ≥ · · · ≥ c(o�). We denote ri = c(oi)/K for i = 1, 2, . . . , �. Let v be an
approximated value of f(OPT) such that v ≤ f(OPT) ≤ (1 + ε)v.

In the following sections, we review the previous results: the thresholding
algorithm and the procedure PickOneItem.

2.1 Thresholding Algorithms

In this section, we present a thresholding algorithm with a single pass [2,23,39].
The algorithm just takes an arriving item e when the marginal return exceeds a
threshold. That is, when a new item e arrives, we decide to add e to our current
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set S if c(S + e) ≤ K and f(e | S) ≥ α c(e)
K v, where α is a parameter. The

performance is due to the following fact, which follows from submodularity.

Lemma 1. Let S = {e1, e2, . . . , es}. Suppose that f(ei | {e1, e2, . . . , ei−1}) ≥
α c(ei)

K v for each i = 1, . . . , s. Then it holds that f(S) ≥ α c(S)
K v.

By setting α = 1/2, the algorithm finds a set S such that f(S) ≥ v/2 with a
single pass for the cardinality-constrained problem [2]. Setting α = 2/3, together
with taking a singleton with maximum return in parallel, we can find a set S
such that f(S) ≥ v/3 with a single pass [23].

2.2 Guessing the Large Item

We here consider a procedure to approximate the largest item o1 in OPT. It is
difficult to correctly identify o1 among the items in E, but we can nonetheless
find a reasonable approximation of it by a single pass. This procedure is used
to design multi-pass streaming algorithms [22,23]. Recall that we are given an
approximated value v of f(OPT) such that v ≤ f(OPT) ≤ (1 + ε)v.

We first present the following fact.

Lemma 2 ([23]). Let E1 ⊆ E such that e∗ ∈ E1∩OPT. Suppose that θ satisfies
θv/(1 + ε) ≤ f(e∗) ≤ θv. For a number t with t > 1

θ − 2, define

λ = 2
(

θ

t + 1
− 1

(t + 1)(t + 2)

)

. (2)

Suppose that a set X = {e1, e2, . . . , ex} ⊆ E1 satisfies that f(ei |
{e1, e2, . . . , ei−1}) ≥ (θ − λ(i − 1))v for each i = 1, . . . , x. Then the following
holds:

(i) If x = t+1, then at least one item e ∈ X guarantees that f(OPT−e∗ +e) ≥
Γ(θ)v − O(ε)v.

(ii) If x < t+1 and f(e∗ | X) < (θ−λx)v, then at least one item e ∈ X satisfies
f(OPT − e∗ + e) ≥ Γ(θ)v − O(ε)v.

Here Γ is the function defined by

Γ(θ) =
t(t + 3)

(t + 1)(t + 2)
− t − 1

t + 1
θ. (3)

This lemma suggests the following procedure to approximate o1, which we
call PickOneItem. Suppose that we are given approximations r1, r1 of r1 such
that r1 ≤ r1 ≤ r1 and r1 ≤ (1 + ε)r1. Define E1 = {e ∈ E | r1K ≤ c(e) ≤
r1K, θv/(1+ε) ≤ f(e) ≤ θv}. Then we see that o1 ∈ E1. In a single pass, starting
from X = ∅, we decide to add an item e ∈ E1 to X if f(e | X) ≥ (θ − λ|X|)v.
We stop this decision when |X| = t + 1. Then, in each step, X always satisfies
the assumption in Lemma 2, that is, X = {e1, e2, . . . , ex} ⊆ E1 satisfies that
f(ei | {e1, e2, . . . , ei−1}) ≥ (θ − λ(i − 1))v for each i = 1, . . . , x.
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We claim that the output X contains an item e ∈ X such that f(OPT−o1 +
e) ≥ Γ(θ)v−O(ε)v. Indeed, we consider the situation just before o1 arrives. If the
current set X has size t+1, then Lemma 2 (i) implies that there exists e ∈ X such
that f(OPT − o1 + e) ≥ Γ(θ)v − O(ε)v. If X has size less than t + 1, then either
o1 is put in X, or there exists e ∈ X such that f(OPT−o1 + e) ≥ Γ(θ)v −O(ε)v
by Lemma 2 (ii). Hence, in any case, at least one item e ∈ X guarantees that
f(OPT − o1 + e) ≥ Γ(θ)v − O(ε)v.

By choosing an optimal value t for a given θ, we can obtain Γ(θ) ≥ 2/3. More
specifically, we have the following theorem.

Theorem 2 ([23]). Let E1 ⊆ E such that e∗ ∈ E1 ∩ OPT. Suppose that θ
satisfies θv/(1 + ε) ≤ f(e∗) ≤ θv. Define t to be

t =

⎧
⎪⎨

⎪⎩

1 if θ ≥ 1
2

2 if 1
2 ≥ θ ≥ 2

5

3 if 2
5 ≥ θ ≥ 0.

(4)

Then, with a single pass and O(1) space, we can find a set X ⊆ E1 such that
there exists e ∈ X such that f(OPT − e∗ + e) ≥ Γ(θ)v − O(ε)v, where

Γ(θ) ≥

⎧
⎪⎨

⎪⎩

2
3 if θ ≥ 1

2
5
6 − θ

3 if 1
2 ≥ θ ≥ 2

5
9
10 − θ

2 if 2
5 ≥ θ ≥ 0.

3 Single-Pass (2/5 − ε)-Approximation Algorithm

In this section, we present a single-pass (2/5 − ε)-approximation algorithm for
the problem (1). We first show that, if c(o1) is at most K/2 or more than 2/3K,
then the algorithm in [23] can be used. So we focus on the case when c(o1)
is in [K/2, 2/3K]. For this case, we develop two algorithms by combining the
technique in Sect. 2.2 into the thresholding algorithm in Sect. 2.1. The first one
is useful when c(o2) is at most K/3, while the other is applied when c(o2) is
more than K/3. Some proofs are omitted due to the page limitation.

In what follows, we often assume that we know in advance approximations of
r1 and r2. That is, we are given r�, r� such that r� ≤ r� ≤ r� and r� ≤ (1+ε)r� for
� ∈ {1, 2}. These values can be guessed from a geometric series of some interval.

3.1 Algorithm When c(o1) is Small

It is known that when c(o1) ≤ K/2, we can improve the thresholding algorithm
so that we can find a (2/5 − ε)-approximate solution in O(Kε−4 log4 K) space
with a single pass.

Theorem 3 ([23]). Suppose that c(o1) ≤ K/2. We can find a (2/5 − ε)-
approximate solution with a single pass for the problem (1). The space complexity
of the algorithm is O(Kε−4 log4 K).
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The above theorem can be extended to the case where we aim to find a set
S of items that maximizes f(S) subject to the relaxed constraint that the total
size is at most pK, for a given number p ≥ 1. We say that a set S of items is a
(p, α)-approximate solution if c(S) ≤ pK and f(S) ≥ αf(OPT), where OPT is
an optimal solution of the original instance.

Theorem 4 ([23]). For a constant number p ≥ 2r1, there is a
(
p, 2p

2p+3 − ε
)
-

approximation streaming algorithm with a single pass. The space complexity of
the algorithm is O(Kε−3 log3 K).

With the aid of this algorithm, we can find a (2/5 − ε)-approximate solution
for some special cases even when c(o1) ≥ K/2.

Corollary 1. If c(o1) > 2/3K, then we can find a (2/5−ε)-approximate solution
with a single pass. The space complexity of the algorithm is O(Kε−3 log3 K).

Corollary 2. Suppose that c(o1) > K/2. If f(o1) ≤ 3/10f(OPT) then we can
find a (2/5 − ε)-approximate solution with a single pass. The space complexity
of the algorithm is O(Kε−3 log3 K).

3.2 Algorithm for Small c(o2)

By Theorem 3 and Corollary 1, we may assume that c(o1) is in [K/2, 2/3K]. In
this section, we describe a single-pass algorithm that works well when c(o2) is
small.

Suppose that we know in advance the approximate value v of f(OPT), i.e.,
v ≤ f(OPT) ≤ (1 + ε)v. This assumption can be removed with dynamic update
technique using O(ε−1 log K) additional space in a similar way to [2,23,39].

In addition, we suppose that we are given θ1 such that θ1v/(1 + ε) ≤
f(o1) ≤ θ1v, which is an approximation of f(o1). Define E1 = {e ∈ E | c(e) ∈
[r1K, r1K], f(e) ∈ [θ1v/(1+ε), θ1v]}. We can assume that E is the disjoint union
of E1 and E1 = {e | c(e) ≤ r2K}, as we can discard the other items. We note
that o1 ∈ E1 and OPT − o1 ⊆ E1.

We propose a single-pass streaming algorithm, where the target approxima-
tion ratio is β = 2/5. The algorithm description is given in Algorithm 1.

In the algorithm, we basically run the thresholding algorithm for E1 to collect
a set S of items. In the same pass in parallel, we try to find a subset X ⊆ E1 that
contains a good approximation of o1, based on Lemma 2. That is, when an item e
in E1 arrives, we add e to X if |X| < t+1 and f(e | X) ≥ (θ1−λ|X|)v. Each time
an item e is added to X, since e may be a good approximation of o1, we create
a new feasible set S + e, and start to run the thresholding algorithm to S + e in
parallel. Thus a feasible set is generated for each e in X, and the family of these
feasible sets is maintained as T in the algorithm. We remark that, to guarantee
the approximation ratio of the algorithm starting from S + e, we need to satisfy
the thresholding condition for e in X as well (Line 7): f(e | S) ≥ α c(e)

K v for the
current set S. Thus the above algorithm performs dynamically the thresholding
algorithm to E1 and E1 + e for each e ∈ X.
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Algorithm 1.
1: procedure Dynamic(v)
2: S := ∅; T := ∅; X := ∅.
3: α := β 1

1−r2
.

4: Define t and λ from θ1 by (4) and (2).
5: while item e is arriving do � First phase
6: if e ∈ E1 then
7: if |X| < t + 1 and f(e | X) ≥ (θ1 − λ|X|)v and f(e | S) ≥ α c(e)

K
v then

8: T := T ∪ {S + e} and X := X + e.

9: else
10: if f(e | S) ≥ α c(e)

K
v and c(S + e) ≤ K then S := S + e.

11: for each T ∈ T do
12: if f(e | T ) ≥ α c(e)

K
v and c(T + e) ≤ K then T := T \ {T} ∪ {T + e}.

13: if c(S) ≥ (1 − r1 − r2)K then S′
0 := S and break.

14: S′ := S′
0.

15: while item e is arriving do � Second phase
16: if e ∈ E1 then
17: if f(S′) < f(S′

0 + e) then S′ := S′
0 + e.

18: else
19: if f(e | S) ≥ α c(e)

K
v and c(S + e) ≤ K then S := S + e.

20: for any T ∈ T do
21: if f(e | T ) ≥ α c(e)

K
v and c(T + e) ≤ K then T := T \ {T} ∪ {T + e}.

return the best one among {S, S′} ∪ T .

However, the above strategy does not work when the size of S becomes large.
Indeed, as we perform the thresholding algorithm to S + e for each e ∈ X, it is
necessary that S+e is feasible, that is, c(S) ≤ K−c(e) when e arrives. Moreover,
since we have the additional condition f(e | S) ≥ α c(e)

K v to pick an item to X,
we may throw away an approximation of o1 when f(e | S) is small (even if
Lemma 2 is applicable). To avoid them, we adopt another strategy when c(S)
becomes large. Let S′

0 be the set we have the first time when c(S) is at least
(1 − r1 − r2)K. It follows from Lemma 1 that f(S′

0) is relatively large as (6)
below. Moreover, since c(S) is at most (1 − r1)K, we can add any item in E1

to S′
0. In the rest of a stream, we just take one item e ∈ E1 that maximizes

f(S′
0 + e). At the same time, we continue to run the thresholding algorithm to

S and every set in T . In the end, the algorithm returns the best one among all
the candidates.

Theorem 5. Suppose that v ≤ f(OPT) ≤ (1+ε)v. Then Algorithm Dynamic(v)
returns a set S such that c(S) ≤ K and

f(S) ≥ min
{

β, 1 − β
1

1 − r2
,Γ(θ) − β

1 − r1
1 − r2

}

v − O(ε)v. (5)

The space complexity is O(K).

Let S̃ be the final set of S, and S̃′ be the output obtained by adding one item
in E1 to S′

0 (Line 17). Let T̃e be the final set in T containing an item e ∈ X.
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We remark that the sets S̃ and T̃e are obtained by adding an item satisfying the
thresholding condition repeatedly. Also, S̃′ and T̃e contain exactly one item e in
E1.

It is not difficult to see that all the obtained sets are of size at most K. We
note that c(S′

0) < (1 − r1)K, since S′
0 is the set the first time the size exceeds

(1 − r1 − r2)K by adding an item of size at most r2K.
In the rest of this subsection, we will show (5). We first claim that, by

Lemma 1, we have
f(S′

0) ≥ α(1 − r1 − r2)v, (6)

since c(S′
0) ≥ (1 − r1 − r2)K. Let X̃ be the final set of X.

Lemma 3. At the end of the algorithm, one of the following holds.

– There exists an item e ∈ X̃ such that f(OPT − o1 + e) ≥ Γ(θ)v − O(ε)v.
– It holds that f(o1 | S̃) < αr1v.
– It holds that f(S̃′) ≥ βv.

Proof. Suppose that o1 arrives during the first while-loop. Let X = {e1, e2, . . . ,
ex} be the set just before o1 arrives such that items are sorted in the ordering
of the addition. Then X satisfies that f(ei | {e1, e2, . . . , ei−1}) ≥ (θ − λ(i − 1))v
for each i = 1, . . . , x. Note that, when o1 will be contained in X, clearly the first
statement holds. Thus we may assume that o1 does not satisfy the condition
in Line 7, that is, one of the following three conditions holds: |X| = t + 1,
f(o1 | X) < (θ − λ|X|)v, and f(o1 | S) < αc(o1)v ≤ αr1v. It follows from
Lemma 2 that, if one of the first two conditions holds, then at least one item
e ∈ X satisfies f(OPT − o1 + e) ≥ Γ(θ)v − O(ε)v. If f(o1 | S) < αr1v, then
f(o1 | S̃) ≤ f(o1 | S) < αr1v by submodularity. Thus one of the first two
statements of Lemma 3 is satisfied since X ⊆ X̃.

Next suppose that o1 arrives after constructing S′
0, and suppose that f(S̃′) <

βv. From Line 17, we see that f(S′
0 + o1) ≤ f(S̃′) < βv. Hence we have

f(o1 | S′
0) = f(S′

0 + o1) − f(S′
0) < βv − f(S′

0).

By (6), it holds that

f(o1 | S′
0) < βv − α(1 − r1 − r2)v ≤ αr1v = β

r1
1 − r2

v,

where we recall β = α(1 − r2). Therefore, by submodularity, we obtain f(o1 |
S̃) ≤ f(o1 | S′

0) ≤ αr1v. Thus the lemma follows. ��

We then show that, for each case of Lemma 3, the approximation ratio can
be bounded as below. Combining all the cases, we can prove Theorem 5.

Lemma 4. Suppose that there exists e ∈ X̃ such that f(OPT−o1+e) ≥ Γ(θ)v−
O(ε)v. Then it holds that

f(T̃e) ≥ min
{

β,Γ(θ) − β
1 − r1
1 − r2

}

v − O(ε)v.
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Lemma 5. If f(o1 | S̃) < αr1v, then we have f(S̃) ≥ min{β, 1 − α}v − O(ε)v.

It turns out from Theorem 5 that the algorithm works well when c(o2) is
small or f(o2) is small.

Corollary 3. Suppose that v satisfies v ≤ f(OPT) ≤ (1 + ε)v. If c(o1) ≥ K/2
and c(o2) ≤ K/3, then we find a set S such that c(S) ≤ K and f(S) ≥ (2/5 −
O(ε))v. The space complexity is O(Kε−3 log K).

Corollary 4. Suppose that 2K/3 ≥ c(o1) > K/2 and c(o2) > K/3. If f(o2) <
1/5f(OPT), then we can find a set S such that c(S) ≤ K and f(S) ≥ (2/5 −
O(ε))f(OPT). The space complexity of the algorithm is O(Kε−4 log3 K).

In summary, we have the following theorem, together with the dynamic
update technique to guess the approximate value v of f(OPT).

Theorem 6. If c(o1) ≥ K/2 and c(o2) ≤ K/3, then we can find a (2/5 − ε)-
approximate solution with a single pass. The space complexity is O(Kε−4 log2 K).

3.3 Algorithm for Large c(o2)

In this section, we propose our second algorithm that is efficient when c(o2)
is large. Since o1, o2 ∈ OPT, it is clear that c(o1) + c(o2) ≤ K, and hence
r2 ≤ 1−r1. We here assume that r2 ≤ 1−r1−ε, where the other case when r2 is
too large is easier as in the following lemma. Note that the assumption implies
that r1 + r2 ≤ 1.

Lemma 6. If c(o1)+c(o2) ≥ (1−ε)K, then we can find a (2/5−ε)-approximate
solution with a single pass using O(Kε−3 log3 K) space.

Similarly to the previous section, we assume that we know in advance the
approximate value v of f(OPT), i.e., v ≤ f(OPT) ≤ (1 + ε)v. This assumption
can be removed using O(ε−1 log K) additional space. We also assume that we
are given θ� such that θ�v/(1 + ε) ≤ f(o�) ≤ θ�v for � ∈ {1, 2}. Define E� =
{e ∈ E | c(e) ∈ [r�K, r�K], f(e) ∈ [θ�v/(1 + ε), θ�v]} for � ∈ {1, 2}. Then o� ∈ E�

holds. We can assume that E is the union of E1, E2 and E = {e | c(e) ≤ r2K},
as we can discard the other items.

In the algorithm, we perform the thresholding algorithm and the procedure
PickOneItem in Sect. 2.2 in parallel. We apply PickOneItem to both E1 and E2

to obtain approximations of o1 and o2. Then X� includes an approximation of
o� for � = 1, 2. While finding X1 and X2, we check in Line 11 whether there
exists a pair of items each from X1 and X2, respectively, whose f -value is more
than βv. In parallel, we run the thresholding algorithm with α� to E to obtain
a set S�, where α� := β

1−r�
, for � = 1, 2. If the output S� has large size, then

Lemma 1 guarantees that f(S�) is large. Otherwise, c(S�) is small, meaning that
there is a room for adding an item from X�. The algorithm returns the set that
maximizes f(S� +e) for e ∈ X� and � = 1, 2. Intuitively, the algorithm partitions
the ground set E into three parts E1, E2 and E, and then it returns the best
set that can be obtained from two of the three parts.
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Algorithm 2.
1: procedure Parallel(v)
2: S� := ∅; X� := ∅ for � = 1, 2.
3: α� := β

1−r�
for � = 1, 2.

4: Define t� and λ� from θ� by (4) and (2) for � = 1, 2.
5: while item e is arriving do
6: for each � ∈ {1, 2} do
7: if e ∈ E� then
8: if |X�| < t� + 1 and f(e | X�) ≥ (θ� − λ�|X�|)v then
9: X� := X� + e.

10: else if e ∈ E1 ∪ E2 \ E� then
11: if there exists an item ē ∈ X� such that f({ē, e}) ≥ βv then return

{ē, e}.

12: else
13: if f(e | S�) ≥ α�

c(e)
K

v and c(S� + e) ≤ K then S� := S� + e.

14: if c(S�) ≥ (1 − r�)K for some � ∈ {1, 2} then return S�.
15: else return the set that achieves max�∈{1,2},e∈X�

f(S� + e).

Theorem 7. Suppose that v ≤ f(OPT) ≤ (1 + ε)v. If r1 + r2 ≤ 1 − ε, then
Algorithm Parallelv returns a set S such that c(S) ≤ K and f(S) ≥ γv − O(ε)v,
where

γ = min
{

β,Γ(θ2) + θ2 − β
2 − 2r2 − r1

1 − r2
,Γ(θ1) + θ1 − β

2 − 2r1 − r2
1 − r1

}

. (7)

The space complexity is O(K).

Let S̃� (� = 1, 2) be the final set of S� in the algorithm. We also denote by X̃�

the final set of X�. Let S̃′
� be the set that achieves maxe∈X̃�

f(S̃� +e) for � = 1, 2.
The set S̃� is obtained by adding an item based on the thresholding condition
f(e | S�) ≥ α�

c(e)
K v.

In the algorithm, each item in E is added to S1 or S2 only when it does
not exceed the knapsack capacity. Hence c(S̃�) ≤ K for � = 1, 2. Also clearly
c(S̃′

�) ≤ K for � = 1, 2 if c(S̃�) ≤ (1 − r�)K. On the other hand, if the algorithm
terminates in Line 11, then the output has only two items each from E1 and E2,
and hence the size is at most K since r1 + r2 ≤ 1 by the assumption. Thus the
output of the algorithm is of size at most K.

From now on, we will prove (7). We consider the following two cases sepa-
rately: the case when o2 arrives before o1 and when o1 arrives before o2.

Case 1: Suppose that o2 Arrives Before o1. We consider the case when � = 2. We
may assume that the algorithm terminates in the end (not in Line 11). Moreover,
if c(S̃2) ≥ (1 − r2)K, then f(S̃2) ≥ βv by Lemma 1. Thus we may assume that
c(S̃2) < (1 − r2)K.

Let X2 = {e1, e2, . . . , ex} be the set collected just before o2 arrives. Then X2

satisfies that f(ej | {e1, e2, . . . , ej−1}) ≥ (θ2 − λ2(j − 1)) for each j = 1, . . . , x.
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When o1 arrives, we return the set {e, o1} for some e ∈ X2 if f({o1, e}) ≥ βv at
Line 11. Thus we may assume that f({o1, e}) < βv for any e ∈ X2.

Lemma 7. Suppose that c(S̃2) < (1 − r2)K and that, for any e ∈ X2, we have
f({o1, e}) < βv. There exists an item e ∈ X2 such that

f(S̃2 + e) ≥ Γ(θ2)v + θ2v − β
2 − 2r2 − r1

1 − r2
v.

Proof. By Lemma 2, we have e ∈ X2 such that f(OPT−o2+e) ≥ Γ(θ2)v−O(ε)v.
Since f({o1, e}) < βv and f(e) ≥ θ2v, we see that f(o1 | e) = f({o1, e})−f(e) <
(β − θ2)v. It then holds by submodularity that

f(OPT − o2 + e) ≤ f(e) + f(o1 | e) + f(OPT − o1 − o2 | e)
≤ (β − θ2)v + f(OPT − o1 − o2 + e).

Hence, since f(OPT − o2 + e) ≥ Γ(θ2)v − O(ε)v,

Γ(θ2)v − (β − θ2)v − O(ε)v ≤ f(OPT − o1 − o2 + e).

On the other hand, it follows from submodularity that

f(OPT − o1 − o2 + e) ≤ f(S̃2 + e) + f(OPT − o1 − o2 − S̃2 | S̃2 + e)

≤ f(S̃2 + e) + f(OPT − o1 − o2 − S̃2 | S̃2)

≤ f(S̃2 + e) + α2(1 − r1 − r2)v,

where the last inequality follows from the fact that, since c(S̃2) ≤ (1 − c(o2))K,
any item o ∈ OPT− o1 − o2 − S̃2 is discarded due to the thresholding condition,
implying f(o | S̃2) ≤ α2c(o)v. Combining them, we obtain

f(S̃2 + e) ≥ (Γ(θ2) − (β − θ2) − α(1 − r1 − r2)) v − O(ε)v

≥
(

Γ(θ2) + θ2 − β
2 − 2r2 − r1

1 − r2

)

v − O(ε)v.

��

Case 2: Suppose that o1 Arrives Before o2. Let X1 be the set just before o1
arrives. We can use the symmetrical argument to Case 1. We omit the proof.

Lemma 8. Suppose that c(S̃1) < (1 − r1)K and that, for any e ∈ X1, we have
f({o2, e}) < βv. There exists an item e ∈ X1 such that

f(S̃1 + e) ≥ Γ(θ1)v + θ1v − β
2 − 2r1 − r2

1 − r1
v.

Combining the above two lemmas, we have Theorem 7. It follows from The-
orem 7 that the algorithm admits a (2/5 − ε)-approximation when r2 ≥ 1/3.
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Corollary 5. Suppose that v ≤ f(OPT) ≤ (1 + ε)v. Consider the case when
K/2 < c(o1) ≤ 2/3K and K/3 ≤ c(o2) < (1 − r1 − ε)K. We can find a set
S such that c(S) ≤ K and f(S) ≥ (2/5 − O(ε))v. The space complexity of the
algorithm is O(Kε−2).

Theorem 8. If c(o1) ≥ K/2 and K/3 ≤ c(o2) < (1−r1−ε)K, then we can find
a (2/5 − ε)-approximate solution with a single pass using O(Kε−3 log K) space.

Theorem 1 follows from Theorem 6, Lemma 6, and Theorem 8.
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