
How to Pack Your Items When You Have to
Buy Your Knapsack

Antonios Antoniadis1,?, Chien-Chung Huang2, Sebastian Ott3, and José
Verschae4

1 Computer Science Department, University of Pittsburgh, Pittsburgh, USA
antoniosantoniadis@gmail.com

2 Chalmers University, Göteborg, Sweden villars@gmail.com
3 Max-Planck-Institut für Informatik, Saarbrücken, Germany ott@mpi-inf.mpg.de

4 Departamento de Ingenieŕıa Industrial, Universidad de Chile, Santiago, Chile
jverscha@ing.uchile.cl

Abstract. In this paper we consider a generalization of the classical
knapsack problem. While in the standard setting a fixed capacity may
not be exceeded by the weight of the chosen items, we replace this
hard constraint by a weight-dependent cost function. The objective is
to maximize the total profit of the chosen items minus the cost induced
by their total weight. We study two natural classes of cost functions,
namely convex and concave functions. For the concave case, we show
that the problem can be solved in polynomial time; for the convex case
we present an FPTAS and a 2-approximation algorithm with the run-
ning time of O(n logn), where n is the number of items. Before, only a
3-approximation algorithm was known.
We note that our problem with a convex cost function is a special case
of maximizing a non-monotone, possibly negative submodular function.

1 Introduction

The knapsack problem is a classical problem of combinatorial optimization [5].
In the standard setting we must choose a subset of items to fit into a given
knapsack. Each item comes with a weight wj and a profit pj , and the goal is
to maximize the total profit, under the constraint that the total weight of the
chosen items should not exceed the knapsack’s capacity. A natural generalization
of the knapsack problem (and backed up by applications - see discussion below)
is to assume that we can “customize” the knapsack in which we pack the selected
items. In other words, we can pay more to buy a knapsack of a larger capacity.
This motivates our problem.

Consider U to be a set of items j, each with its own positive weight wj
and positive profit pj . Let c(W) be a non-decreasing cost function c(W),
where W is the total weight of the chosen items. The function c is given

? The author was supported by a fellowship within the Postdoc-Programme of the
German Academic Exchange Service (DAAD).

by an oracle and it is not part of the input. The goal is to maximize
the net value, which is the total profit of the chosen items minus the
cost of their total weight. Precisely, we want to maximize the objective
π(A) =

∑
j∈A pj − c(

∑
j∈A wj) over all possible subsets A ⊆ U of items.

Clearly, our problem contains the standard knapsack problem as a special case,
when the cost function switches from 0 to infinity at the capacity of the knapsack.

If we allow arbitrary non-decreasing functions, the problem is inapproximable
within any factor, unless P = NP. This follows by a simple reduction from the
2-partition problem [5]; see Appendix A for details. Therefore, in this work, we
consider two natural special cases of cost functions, namely convex and concave
functions.

Our Results. Let n = |U | be the number of items. We assume that each
call of the cost function takes constant time. Suppose that the cost function is
convex. Then our problem is (weakly) NP-hard, since it contains the original
knapsack problem as a special case.

– In Section 3 we present an O(n log n) time 2-approximation algorithm.
– In Section 4, we present an FPTAS (Fully Polynomial Time Approximation

Scheme). With any ε > 0, our FPTAS returns a solution with net value at
least 1− ε fraction of the optimal solution, in O(n3/ε2) time. Our FPTAS is
only slower than the well-known FPTAS for the original knapsack problem
by a factor of 1/ε.

Suppose that the cost function is convave.

– In Section 5, we present an exact algorithm with running time O(n log n).

Applications. Applications for our problem naturally arise in many areas,
such as cloud computing or connection management in wireless access points [1].
Consider for example a data center which earns a certain amount for every job it
processes. When accepting more and more jobs, the workload increases and the
data center must run its processors at higher speed to maintain an acceptable
quality of service. This results in a higher power consumption, which typically
grows convexly with the speed of the processor (cf. the cube-root rule for CMOS
based processors [2]). Consequently, the data center wants to select the most
profitable set of jobs, taking into account the energy costs, which depend on
the total volume of accepted jobs. This directly translates into our generalized
knapsack problem with a convex cost function.

The study of concave cost functions is motivated by the economies of scale
principle [10]. This principle states that the cost per unit decreases if the total
number of units increases, because efficiency increases and fixed costs are spread
over more units.

Related Work. The standard knapsack problem is well known to be NP-
hard, but one can approximate it within any factor greater than 1 in polynomial
time [8]. Our generalized problem has been studied before under a convex cost
function, by Barman et al. [1]. There the authors consider an online setting,

2

where items arrive over time in random order and the algorithm must make an
irrevocable accept/reject decision as soon as a new item arrives. They assume
a convex cost function and develop an online algorithm which is constant com-
petitive in expectation. In addition they also study the problem under several
feasibility constraints. Even though their focus is on the online version, they
also present a result for our offline setting, namely a greedy algorithm which
achieves a 3-approximation. To the best of our knowledge, this was the best
known approximation ratio for this problem so far.

We note that in the convex costs setting, our problem amounts to maximizing
a non-monotone, possibly negative submodular function. Submodular function
maximization in general is a very active area of research that has recently at-
tracted much attention [3, 4, 9], and many other special cases (e.g. several graph
cut problems [6, 7]) have been investigated. Not much is known for other prob-
lems where the submodular function is non-monotone and can take negative
values. Our results can be regarded as a first step in understanding this type of
problems.

Challenges and Techniques. A tricky aspect of our problem is that the
objective, i.e. the net value, can be very small and even negative. In this situa-
tion, the design and analysis of approximation algorithms often becomes more
challenging. Although the usual dynamic program by Ibarra and Kim [8] can be
easily adapted for our more general case, the rounding technique is troublesome.
The reason is that our goal is to maximize the difference between the profit and
the cost. It could happen that both values are very large and almost coincide
in the optimal solution, resulting in a rather small net value. Thus, a relatively
small error in the rounding of profit and/or weight would cascade into a large
mistake in the final outcome. The same problem prevents us from guessing the
weight of the optimal solution, and then applying known algorithms for the
classic knapsack problem.

Our 2-approximation algorithm for convex costs does not resort to any round-
ing or guessing. Informally speaking, we use the optimal solution of a relaxed
version of our problem, where the items can be fractionally added into the col-
lection, to upper bound the net value of the original (non-fractional) problem.
However, this idea has to be carefully applied since the gap between the cost of
a fractional solution and an integral one can be arbitrarily large. We show that
this gap is bounded if the contribution (defined appropriately) of a job to the
optimal solution is bounded. Turning these ideas into a greedy algorithm we can
achieve the claimed result.

As just said, rounding the profits as for the usual knapsack problem might
decrease the objective by an arbitrarily large factor. Therefore our FPTAS can-
not rely on this technique. To overcome this difficulty, we use two crucial ideas.
First, we observe that the convexity of the cost function implies the following
fact: if A is an optimal subset of items, and A′ ⊆ A, we can assume that A′ has
minimum weight among all subsets of (U \A)∪A′ with net value at least π(A′).
This indicates the use of a specially crafted dynamic programming tableau that
is indexed by the achievable net value. Secondly, instead of rounding the prof-

3

its/weights, we merge several entries of the tableau into one. Intuitively, this
corresponds to rounding the objective function so that it takes polynomially
many different values.

2 Preliminaries and Notations

The input is given by a set U of items, each having a positive weight wj and
positive profit pj , together with a non-decreasing cost function c = c(W) that
denotes the cost of selecting items with total weight W . We assume that c is
given by an oracle which can be called in constant time, and that c(0) = 0.
Our goal is to find a set A ⊆ U of items that maximizes the total net value
π(A) =

∑
j∈A pj−c(

∑
j∈A wj). W.l.o.g. we assume the weights wj to be positive

integers (otherwise we can multiply them with their least common denominator
τ and use the modified cost function c′(W) = c(W/τ)).

Throughout the paper we consider a fixed optimal solution OPT. We slightly
abuse notation by letting OPT denote both the set of items and the net value
of this solution. Furthermore, let WOPT denote the total weight of all items
in OPT. More generally we use WS to denote the total weight of all items in a
given set S.

For any item j, we define the density dj as the profit per unit of weight, i.e.
dj := pj/wj . Furthermore, it will sometimes be helpful to consider fractional
items, i.e. we pick only w < wj units of an item j and assume this fraction has
profit w · dj . Finally, we define δwj (W) := w · dj − c(W + w) + c(W) for every
item j and w ≥ −W . The intuitive meaning of δwj (W) is the change in the net
value when adding w units of item j to a knapsack with current total weight W .
Note that we also allow negative w, which then describes the change in the net
value when removing |w| units of item j.

It is easy to see, that the function δwj (W) satisfies the following property if
c is convex.

Proposition 1. Let c be a convex function. Then δwj (W) = w ·dj − c(W +w) +

c(W) is non-increasing in W , and δ−wj (W) = −w · dj − c(W − w) + c(W) is
non-decreasing in W , for any item j and w ≥ 0.

3 2-Approximation for Convex Costs

In this section we present a 2-approximation with running time O(n log n) for
the case of a convex cost function c. The main idea of the algorithm is as follows.
We try every item individually and compare their net values to the outcome of a
greedy procedure, which adds items in order of non-increasing densities. During
the procedure, we add an item j only if δ1j (WA+wj−1) ≥ 0, i.e. adding the last
unit of j does not decrease the net value. Thus, we may discard certain items
from the sorted list, but possibly continue to add further items with smaller
densities at a later point of time. The details of the algorithm are presented in
Figure 1.

4

Algorithm:

Initialize a set of candidate solutions C := {∅}, and an empty solution A := ∅.
For every item j ∈ U do: C := C ∪

{
{j}

}
.

Sort the items in U by non-increasing densities, and let i1, i2, . . . in be the
items in this sorted order.

For k from 1 to n, do:

If δ1ik (WA + wik − 1) ≥ 0, then A := A ∪ {ik}.
Set C := C ∪ {A}.
Output a set B ∈ C with maximum net value π(B).

Fig. 1. A 2-approximation with running time O(n logn).

It is easy to see that the running time of the proposed algorithm is dominated
by the sorting of the items, which can be done in O(n log n) time. We now turn
to proving the claimed approximation ratio of 2.

Theorem 1. The set B returned by the algorithm in Figure 1 satisfies π(B) ≥
1/2 ·OPT.

The high-level idea of the proof of Theorem 1 is as follows. First, we divide the
items into two categories: heavy and light (see Definition 1). In Lemma 1 we show
that each heavy item in the optimal solution, by itself, is a 2-approximation. On
the other hand, if there is no heavy item in OPT, in Lemma 3 we show that the
greedy procedure results in a 2-approximation. Then Theorem 1 follows easily
from the two lemmas.

Definition 1. An item j ∈ U is called heavy if one of the following is true:

• wj > WOPT

• wj ≤WOPT and δ
−wj

j (WOPT) < −1/2 ·OPT (removing j from a knapsack
with total weight WOPT decreases the net value by more than 1/2 ·OPT)

Items which are not heavy are called light. We denote the set of heavy items by
H := {j|j is heavy}.

We remark that this definition is only used in the analysis of our algorithm and
never in the algorithm itself.

Lemma 1. Assume OPT contains some heavy item j. Then π({j}) > 1/2·OPT.

Proof. First of all, observe that any heavy item in OPT satisfies the second
condition of Definition 1, because its weight cannot be more than the total weight
of OPT. Thus we have δ

−wj

j (WOPT) < −1/2 · OPT. Furthermore it holds that

δ
−wj

j (wj) ≤ δ
−wj

j (WOPT) by Proposition 1. Therefore δ
−wj

j (wj) < −1/2 ·OPT,

and since π({j}) + δ
−wj

j (wj) = 0, we get π({j}) > 1/2 ·OPT. ut

5

We now consider the case that OPT does not contain any heavy item. Our first
step is to define a family of fractional solutions, which will serve as an upper
bound on OPT. To this end, consider the items in U \D, where D is a given set
of items that were discarded by the algorithm in the second for loop, and sort
them by non-increasing densities (breaking ties in the same way as the algorithm
does). We regard these items as a continuous “stream”, i.e. a sequence of unit-size
item fractions.

Definition 2. We denote by FD(W) the (fractional) solution obtained by pick-
ing the first W units from the described stream.

Note that FD(W) contains only complete (non-fractional) items, plus at most
one fractional item. The next lemma summarizes a number of useful properties
satisfied by FD(W).

Lemma 2. The following three statements are true for any set of items D and
integer weights W and W ′:

(1) π
(
FD(W − 1)

)
≤ π

(
FD(W)

)
⇒ π

(
FD(W ′)

)
≤ π

(
FD(W)

)
∀W ′ ≤W

(2) π
(
FD(W − 1)

)
> π

(
FD(W)

)
⇒ π

(
FD(W ′)

)
< π

(
FD(W)

)
∀W ′ > W

(3) OPT ∩D = ∅ ⇒ π
(
FD(WOPT)

)
≥ OPT

Proof. Observe that π
(
FD(W)

)
−π
(
FD(W − 1)

)
= d− c(W) + c(W − 1), where

d is the density of the W th unit in the stream. Since the items in the stream are
ordered by non-increasing densities, and c is convex, it follows that π

(
FD(W)

)
−

π
(
FD(W − 1)

)
is non-increasing in W . This immediately proves statements (1)

and (2).
For statement (3), note that FD(W) maximizes the net value among all

(possibly fractional) solutions with total weight W , that do not contain any
item from D. This is clearly true, because the cost is the same for all those
solutions (= c(W)), and FD(W) maximizes the profit by choosing the units
with the highest densities. Statement (3) follows. ut

Using these properties, we can now prove the following lemma, which is the main
technical contribution of this section.

Lemma 3. If OPT ∩ H = ∅, then the candidate A constructed by the greedy
procedure achieves π(A) ≥ 1/2 ·OPT.

Proof. The algorithm starts the construction of A with an empty set A0 = ∅,
and then iterates through the sorted list of items to augment A0. During the
iteration, some items are added to A0, while others are discarded. We restrict our
attention to the moment t, when it happens for the first time that a light item
z gets discarded. If this never happens, t is just the time when the iteration is
finished and all items have been considered. Let Dt be the set of items discarded
up to this point (excluding z), and let At be the solution constructed until now.
Then Dt ⊆ H, while OPT ∩H = ∅. Thus Dt ∩OPT = ∅, and hence

π
(
FDt

(WOPT)
)
≥ OPT (1)

6

by Lemma 2 (3). In the remaining part of the proof, our goal is to show the
following inequality:

π
(
FDt

(WAt
)
)
≥ π

(
FDt

(WOPT)
)
− 1/2 ·OPT. (2)

Together with (1) this proves the lemma for the following reason. First of all,
observe that At is exactly the same set of items as FDt(WAt), and therefore (1)
and (2) imply π(At) ≥ 1/2 ·OPT. As the iteration proceeds, the algorithm may
add further jobs to At, but for each such job j we know that δ1j (Wcur+wj−1) ≥ 0,
where Wcur is the total weight of A before j is added. Therefore adding item j
changes the net value by

δ
wj

j (Wcur) =

wj−1∑
r=0

δ1j (Wcur + r) ≥ wj · δ1j (Wcur + wj − 1) ≥ 0,

where the second inequality holds by Proposition 1. Thus every further job which
is added to At does not decrease the net value, and hence the final candidate A
satisfies π(A) ≥ π(At) ≥ 1/2 ·OPT.

For the proof of (2), we distinguish two cases. Let us first assume that
WOPT ≤ WAt

. Clearly (2) is satisfied when WOPT = WAt
, so we can assume

WOPT < WAt . Then at least one item has been added to A0 during the iteration
up to time t. Let k be the last item that was added on the way from A0 to At.
Since the algorithm decided to add k, we have 0 ≤ δ1k(WAt

−1). Now observe that
π
(
FDt

(WAt
)
)
−π
(
FDt

(WAt
−1)

)
= dk−c(WAt

)+c(WAt
−1) = δ1k(WAt

−1) ≥ 0.

Hence we can apply Lemma 2 (1) to obtain π
(
FDt(WAt)

)
≥ π

(
FDt(WOPT)

)
.

We are left with the case that WOPT > WAt
. In this case there must indeed

be a light item z which gets discarded at time t, because if the iteration was
finished at t and all light items were accepted, we would have OPT ⊆ At,
implying WOPT ≤WAt , a contradiction.

The reason for the rejection of z is that 0 > δ1z(WAt + wz − 1), where the
latter is equal to π

(
FDt

(WAt
+wz)

)
−π
(
FDt

(WAt
+wz−1)

)
. We claim that this

implies WOPT ≤WAt
+wz. To see this, suppose for the sake of contradiction that

WOPT > WAt
+wz. Then Lemma 2 (2) yields π

(
FDt

(WOPT)
)
< π

(
FDt

(WAt
+ wz)

)
,

and together with (1) we obtain π
(
FDt

(WAt
+ wz)

)
> OPT. However, FDt

(WAt
+

wz) is a feasible (non-fractional) solution, which contradicts the optimality of
OPT. Therefore we have

WAt < WOPT ≤WAt + wz. (3)

We continue by comparing the solutions FDt
(WAt

) and FDt
(WOPT). Using (3),

we see that both solutions differ only by some non-zero fraction of z, namely by
∆w := WOPT −WAt units of z. In terms of the net value, we have

π
(
FDt

(WAt
)
)

= π
(
FDt

(WOPT)
)

+ δ−∆wz (WOPT).

So all we need to show for completing the proof of (2), is that

δ−∆wz (WOPT) ≥ −1/2 ·OPT.

7

As z is a light item, we already know that δ−wz
z (WOPT) ≥ −1/2 · OPT. Now

consider the function f(x) := x · dz − c(WOPT + x) + c(WOPT) and observe that
f is concave. Clearly, f(0) = 0 and f(−wz) = δ−wz

z (WOPT) ≥ −1/2 · OPT. By
the concavity of f we can conclude that f(x) ≥ −1/2 ·OPT for all −wz ≤ x ≤ 0.
Therefore −1/2 ·OPT ≤ f(−∆w) = δ−∆wz (WOPT). This completes the proof of
(2), and hence the proof of the entire lemma. ut

Now Theorem 1 follows from Lemmas 1 and 3.

4 FPTAS for Convex Costs

In this section we describe an FPTAS for our problem if the cost function is
convex. The main idea of the FPTAS is to build up a tableau of polynomial size
using dynamic programming. Although obtaining a dynamic program of pseudo-
polynomial size is a relatively straightforward task, designing one that can be
effectively rounded is significantly more involved. To this end, we exploit the
convexity of the objective function to obtain a tableau that is indexed by the
net value achievable by sub-solutions. We will show that we can reduce the size
of this tableau to make it polynomial. In this process we again exploit convexity.
For the sake of conciseness we describe directly the tableau with polynomial size.

Before defining the dynamic program, we use the 2-approximation algorithm
from the previous section to obtain an upper bound UB on OPT, s.t. OPT ≤
UB ≤ 2OPT. Further, for all k ∈ {0, . . . , n} and N ∈ [0,UB], we define T ∗(k,N)
to be the minimum weight achievable by a subset of items A ⊆ {1, . . . , k} whose
net value is at least N , i.e.,

T ∗(k,N) := min{WA |π(A) ≥ N,A ⊆ {1, . . . , k}}.

If no subset A ⊆ {1, . . . , k} with π(A) ≥ N exists, we let T ∗(k,N) :=∞.
To elaborate the details of the FPTAS, let us fix an error bound ε > 0, and let

`max := d(n+ 1)/εe and C := UB/`max. Using dynamic programming, we build
up a table T (k, l), where k ∈ {0, . . . , n} and ` ∈ {0, . . . , `max}. Intuitively, T (k, `)
compacts all values of T ∗(k,N) for N ∈ [`C, (` + 1)C) into one entry. We now
describe the dynamic program. Initially, we set T (0, 0) := 0 and T (0, `) := ∞
for all ` 6= 0. The remaining entries are computed by the recursive formula

T (k, `) := min
{
T (k − 1, `), (4)

min
`′≥0
{T (k − 1, `′) + wk | `′C + δwk

k

(
T (k − 1, `′)

)
≥ `C}

}
.

Intuitively, the first term in the recursive formula corresponds to the case in
which item k does not belong to the set A in arg min{WA : π(A) ≥ `C,A ⊆
{1, . . . , k}}. The second term is when k belongs to this set A. In this case we
need to check for the best choice among all T (k − 1, `′) for 0 ≤ `′.

In the following lemma we show that unless T (k, `) =∞, there always exists
a set A ⊆ {1, . . . , k} with weight T (k, `) and net value at least `C.

8

Lemma 4. If T (k, `) < ∞, then there exists A ⊆ {1, . . . , k} such that WA =
T (k, `) and π(A) ≥ `C.

Proof. We show this by induction on k. The base case for k = 0 holds trivially.
If T (k, `) = T (k − 1, `) then the claim is trivially true. Otherwise, let `′ be such
that T (k, `) = T (k− 1, `′) +wk and `′C + δwk

k

(
T (k− 1, `′)

)
≥ `C. By induction

hypothesis, we have that there exists A′ ⊆ {1, . . . , k−1} with WA′ = T (k−1, `′)
and π(A′) ≥ `′C. Then taking A := A′ ∪ {k} yields a set satisfying WA =
T (k, `′)+wk = T (k, `) and π(A) = π(A′)+δwk

k (WA′) ≥ `′C+δwk

k

(
T (k−1, `′)

)
≥

`C. ut

The next lemma shows that the table T provides, in an appropriate fashion,
a good approximation for T ∗. In the following we denote by x+ := max{x, 0}
for all x ∈ R.

Lemma 5. For all k ∈ {0, . . . , n} and N ∈ [0,UB] it holds that

T
(
k, (`N − k)+

)
≤ T ∗(k,N), where `N =

⌊
N

C

⌋
.

Before showing this lemma we show why it implies an FPTAS for our prob-
lem.

Theorem 2. If the function c is convex, our problem admits a (1 − ε)-approx-
imation algorithm with running time O(n3/ε2) for any ε > 0.

Proof. Using the proposed dynamic program, we fill the table T and search
for the largest ` such that T (n, `) < ∞. For proving correctness, take N :=
OPT and k := n in our previous lemma. It follows that T (n, (`OPT − n)+) ≤
T ∗(n,OPT) <∞. Then, by Lemma 4, there exists a set of items A with

π(A) = (`OPT − n)+C ≥ (

⌊
OPT

C

⌋
− n)C ≥ (

OPT

C
− n− 1)C = OPT− C(n+ 1)

≥ OPT− εUB ≥ OPT− 2εOPT.

This set A can be easily computed by back-tracking. Thus, redefining ε as ε/2
yields a (1 − ε)-approximation. The table has O(n2/ε) many entries, and each
entry takes O(n/ε) time to compute. This implies the claimed running time. ut

It remains to show Lemma 5. In order to do that we need the following technical
property.

Proposition 2. For all k and `1 ≤ `2 it holds that T (k, `1) ≤ T (k, `2).

Proof. We argue by induction on k. If k = 0 then the proposition holds im-
mediately. By induction hypothesis, we assume that the proposition holds for
k − 1 and all `1 ≤ `2. Let us fix a value for `1 and `2 with `1 ≤ `2. By (4) we
have that either T (k, `2) = T (k− 1, `2), or T (k, `2) = T (k− 1, `′) +wk for some
`′ ≥ 0 such that `′C + δwk

k (T (k − 1, `′)) ≥ `2C. If the first case holds, then (4)

9

implies that T (k, `1) ≤ T (k − 1, `1), and the induction hypothesis yields that
T (k − 1, `1) ≤ T (k − 1, `2) = T (k, `2). We conclude that T (k, `1) ≤ T (k, `2) in
this case.

For the second case, where T (k, `2) = T (k−1, `′)+wk, it is enough to notice
that T (k, `1) ≤ T (k − 1, `′) + wk = T (k, `2). Indeed, this follows from (4), by
noting that

`′C + δwk

k (T (k − 1, `′)) ≥ `2C ≥ `1C.

ut

Proof (Lemma 5). We show the lemma by induction on k. For k = 0, the claim
follows directly from the initial conditions for T . We now assume that the claim
is true for k − 1 and all N ∈ [0,UB]. For the induction step, let us fix a value
N . If T ∗(k,N) = ∞, the claim is obviously true. Otherwise there exists a set
of items A ⊆ {1, . . . , k}, such that π(A) ≥ N and WA = T ∗(k,N). We consider
two cases.
Case 1. k 6∈ A.

In this case we have that T ∗(k − 1, N) = T ∗(k,N). Therefore it holds that

T
(
k, (`N − k)+

)
≤ T

(
k − 1, (`N − k)+

)
≤ T

(
k − 1, (`N − k + 1)+

)
≤ T ∗(k − 1, N) = T ∗(k,N).

Here, the first inequality follows from (4), the second by the previous proposition,
and the third one by the induction hypothesis.
Case 2. k ∈ A.

For this case we consider the value N ′ := π(A\{k}), and we use the convexity
of the cost function to show the following property.
Claim. It holds that T ∗(k − 1, N ′) = WA\{k}.

We show the claim by contradiction. Let us assume that there exists a set
A∗ ⊆ {1, . . . , k−1} with π(A∗) ≥ N ′ and WA∗ < WA\{k}. Then WA∗∪{k} < WA,
and

π(A∗ ∪ {k}) = π(A∗) + δwk

k (WA∗)

≥ N ′ + δwk

k (WA∗)

≥ N ′ + δwk

k (WA\{k}) = π(A),

where the last inequality follows from Proposition 1 and WA∗ < WA\{k}. This
implies that T ∗(k,N) < WA, which contradicts the definition of A. The claim
follows.

Using this claim we can conclude

N ′ + δwk

k

(
T ∗(k − 1, N ′)

)
≥ N. (5)

To simplify notation, let us call r := (`N ′ − k + 1)+. Our goal is to prove

T (k, (`N − k)+) ≤ T (k − 1, r) + wk. (6)

10

Then

T (k − 1, r) + wk ≤ T ∗(k − 1, N ′) + wk = WA\{k} + wk = T ∗(k,N),

where the first inequality follows from the induction hypothesis, and the subse-
quent equality holds by the above claim, completes the induction step. To see
that (6) holds, note that

r · C + δwk

k

(
T (k − 1, r)

)
≥ N ′ − kC + δwk

k

(
T (k − 1, r)

)
≥ N ′ − kC + δwk

k

(
T ∗(k − 1, N ′)

)
≥ N − kC ≥ (`N − k)C.

In this computation, the first inequality holds by the definition of `N ′ . The
second one follows by Proposition 1, and since the induction hypothesis implies
that T (k − 1, r) ≤ T ∗(k − 1, N ′). The third inequality is implied by (5).

This chain of inequalities implies (6), as long as `N − k = (`N − k)+, since
`′ = r is one possible choice in (4). On the other hand, if (`N − k)+ = 0, then
(6) also holds. Indeed, it is enough to notice that T (0, 0) = 0, and that applying
(4) iteratively implies that T (k, 0) = 0. This completes the proof. ut

5 Concave Costs

In this section we consider the problem under a concave cost function c.

Lemma 6. Let OPT be an optimal solution of maximal weight. Then OPT is
comprised of exactly the items that have density at least c(WOPT+1)−c(WOPT).

Proof. Let P be the total profit and C the total cost of OPT. We prove the
lemma by contradiction.

First, assume that there exists an item i ∈ OPT with di < c(WOPT + 1) −
c(WOPT). It follows that pi < wi(c(WOPT+1)−c(WOPT)). The solution OPT\{i}
has cost

C ′ = C − (c(WOPT)− c(WOPT − wi))

= C −
wi∑
k=1

(c(WOPT − k + 1)− c(WOPT − k))

≤ C − wi(c(WOPT + 1)− c(WOPT)),

where the last inequality holds because every addend in the sum is at least
c(WOPT + 1)− c(WOPT) by concavity of c. The profit of OPT \ {i} is given by
P ′ = P − pi. The total net value of OPT \ {i} is therefore

π(OPT \ {i}) = P ′ − C ′ ≥ P − pi − C + wi(c(WOPT + 1)− c(WOPT)) > OPT.

This contradicts the optimality of OPT and shows therefore that no item of
density less than c(WOPT +1)−c(WOPT) can be included in an optimal solution
of total weight WOPT.

11

Assume now that there exists an item i 6∈ OPT, with di ≥ c(WOPT + 1) −
c(WOPT). It follows that pi ≥ wi(c(WOPT + 1) − c(WOPT)). We show that
π(OPT ∪ {i}) ≥ OPT, which again contradicts our assumptions for OPT. The
solution OPT ∪ {i} has profit P ′ = P + pi, and total cost

C ′ = C + (c(WOPT + wi)− c(WOPT))

= C +

wi∑
k=1

(c(WOPT + k)− c(WOPT + k − 1))

≤ C + wi(c(WOPT + 1)− c(WOPT)),

where the last inequality holds because every addend in the sum is at most
c(WOPT + 1)− c(WOPT) by concavity of c. Therefore

π(OPT ∪ {i}) ≥ P + pi − C − wi(c(WOPT + 1)− c(WOPT))

= π(OPT) + pi − wi(c(WOPT + 1)− c(WOPT))

≥ OPT.

ut

Lemma 6 directly suggests the algorithm in Figure 2.

Algorithm:

Initialize a solution A := ∅, and a candidate solution D := ∅.
Sort the items in U by non-increasing densities, and let i1, i2, . . . in be the
items in this sorted order.
For j from 1 to n, do:

D := D ∪ {ij}.
If π(D) ≥ π(A), then

A := D.

Output set A.

Fig. 2. An optimal algorithm for the concave costs setting.

It is easy to see that this algorithm returns an optimal solution, since it
selects the best prefix of the sorted items, and Lemma 6 implies that OPT is
such a prefix. The running time of the algorithm is dominated by the sorting
of the items. Note that by storing some additional information, π(D) can be

computed in constant time in each iteration, because π(D) = π(D′) + δ
wij

ij
(W ′),

where D′ corresponds to the candidate solution of the previous iteration, and
W ′ to its weight. Therefore we obtain the following theorem.

Theorem 3. For concave cost functions, an optimal solution can be computed
in time O(n log n).

12

6 Conclusion

In this paper, we study a generalization of the classical knapsack problem, where
the “hard” constraint on the capacity is replaced by a “soft” weight-dependent
cost function. An interesting direction for further study is to impose certain
restrictions on the set of chosen items. In Barman et al. [1], they show that if
a matroid constraint is imposed on the items, i.e. the chosen items must be an
independent set in the matroid, they can achieve a 4-approximation for the case
of a convex cost function. An obvious question is whether this can be further
improved.

References

1. Barman, S., Umboh, S., Chawla, S., Malec, D.L.: Secretary problems with convex
costs. In: Czumaj, A., Mehlhorn, K., Pitts, A.M., Wattenhofer, R. (eds.) ICALP
(1). Lecture Notes in Computer Science, vol. 7391, pp. 75–87. Springer (2012)

2. Brooks, D., Bose, P., Schuster, S., Jacobson, H.M., Kudva, P., Buyuktosunoglu,
A., Wellman, J.D., Zyuban, V.V., Gupta, M., Cook, P.W.: Power-aware microar-
chitecture: Design and modeling challenges for next-generation microprocessors.
IEEE Micro 20(6), 26–44 (2000)

3. Buchbinder, N., Feldman, M., Naor, J., Schwartz, R.: A tight linear time (1/2)-
approximation for unconstrained submodular maximization. In: FOCS. pp. 649–
658. IEEE Computer Society (2012)

4. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular
functions. In: FOCS. pp. 461–471. IEEE Computer Society (2007)

5. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman (1979)

6. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM
42(6), 1115–1145 (1995)

7. Halperin, E., Zwick, U.: Combinatorial approximation algorithms for the maximum
directed cut problem. In: Kosaraju, S.R. (ed.) SODA. pp. 1–7. ACM/SIAM (2001)

8. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum
of subset problems. J. ACM 22(4), 463–468 (1975)

9. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Non-monotone submodular
maximization under matroid and knapsack constraints. In: Mitzenmacher, M. (ed.)
STOC. pp. 323–332. ACM (2009)

10. O’Sullivan, A., Sheffrin, S.: Economics: Principles in Action. Pearson Prentice Hall
(2003)

13

A Inapproximability of Our Problem with Arbitrary
Cost Functions

Lemma 7. If the cost function c is arbitrary, it is NP-hard to decide if OPT = 0
or OPT = 1.

Proof. Consider an instance of the 2-Partition problem defined by a1, . . . , an ∈
Z>0 and A =

∑n
i=1 ai. It is known [5] that it is NP-hard to decide whether there

exists a subset I ⊆ {1, . . . , n} such that
∑
i∈I ai = A/2. We define an instance

of our problem where each item i ∈ {1, . . . , n} has profit and weight equal to ai.
The cost function is defined by c(W) = W if W 6= A/2, and c(A/2) = A/2− 1.
Thus, the net value of a subset S of items equals 1 if WS = A/2 and 0 otherwise.

ut

14

