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ABSTRACT
We present an algorithm to solve the GROUP MUTUAL EXCLUSION
problem in the cache-coherent (CC) model. For the same prob-
lem in the distributed shared memory (DSM) model, Danek and
Hadzilacos presented algorithms of O(n) remote memory refer-
ences (RMR) and proved a matching lower bound, where n is the
number of processes. We show that in the CC model, using regis-
ters and LL/SC variables, our algorithm achieves O(min(log n, k))
RMR, where k is the point contention, which is so far the best.
Moreover, given a recent result of Attiya, Hendler and Woelfel
showing that exclusion problems have a Ω(log n) RMR lower bound
using registers, comparison primitives and LL/SC variables, our al-
gorithm thus achieves the best theoretical bound.

Categories and Subject Descriptors
D [Software]: Programming Techniques—Concurrent Program-
ming
General Terms: Algorithms, Design, Performance, Theory
Keywords: Mutual Exclusion, Group Mutual Exclusion, Remote
Memory Reference (RMR), Synchronization

1. INTRODUCTION
MUTUAL EXCLUSION is a classical problem in distributed com-

puting introduced by Dijkstra in 1965 [12]. In MUTUAL EXCLU-
SION, processes repeatedly cycle through four sections of code–
REMAINDER SECTION, TRYING SECTION, CRITICAL SECTION
(CS), and EXIT SECTION, and the problem consists of designing
the code for the TRYING SECTION and the EXIT SECTION such
that no two processes are in the CS as the same time (Mutual Ex-
clusion Property). To ensure liveness, it is often required to sat-
isfy an additional property called starvation-freedom; if no process
stays in the CS forever, then any process which enters the TRYING
SECTION eventually enters the CS.

The GROUP MUTUAL EXCLUSION problem (GME), introduced
by Joung [22], generalizes MUTUAL EXCLUSION. In GME, n pro-
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cesses request sessions and demand to enter the CRITICAL SEC-
TION (CS). Only processes requesting the same sessions (belong-
ing to the same “group") are allowed to be in the CS at the same
time. More precisely, in GME, each process cycles through the fol-
lowing four sections: REMAINDER SECTION, TRYING SECTION,
CRITICAL SECTION (CS), and EXIT SECTION. When in the RE-
MAINDER SECTION, a process picks a session number (possibly
different each time), and then executes the other three sections in
order. The execution of these three sections is an attempt. Once an
attempt is finished, the process again is in the REMAINDER SEC-
TION. A process is called active if it is in one of its attempts. Two
active processes are in conflict if their sessions differ, otherwise,
they are fellow processes. We assume that processes crash only in
the REMAINDER SECTION

An algorithm purporting to solve the GME problem should de-
sign codes for the TRYING SECTION and the EXIT SECTION so as
to satisfy the following properties:

(P1). Mutual Exclusion: If two active processes are in the CS at
the same time, then they are fellow processes.

(P2). Starvation Freedom: If no process stays in the CS forever,
then any process that enters the TRYING SECTION eventually
enters the CS.

(P3). Bounded Exit: If a process enters the EXIT SECTION, it en-
ters the REMAINDER SECTION within a bounded number of
its own steps.

(P4.) Concurrent Entering: There exists a bound b given by the al-
gorithm, such that, a process in the TRYING SECTION takes
at most b steps in the absence of conflicting processes before
entering CS.

The property of concurrent entering, informally stated by Joung
[22], and made precise by Hadzilacos [15], is a critical property of
GME. Without it, any ordinary mutual exclusion algorithm solves
GME easily. Its intent is to ensure concurrency, that is, active pro-
cesses of the same session, in the absence of other conflicting pro-
cesses, should be able to enter the CS without unnecessary syn-
chronization among themselves.

It is natural to aim for designing “fast” exclusion (MUTUAL EX-
CLUSION, GME) algorithms. However, for these algorithms, it is
not proper to measure the time complexity simply by the number
of variable accesses. Researchers have reached the consensus that
a more suitable measurement of complexity is the the number of
remote memory references (RMRs) (see the survey [4]). In Dis-
tributed Shared Memory (DSM) machines, a reference to a shared
variable X is considered remote if X is at a memory module of a
different processor; in Cache Coherent (CC) machines, a reference
to X by a process p is considered remote if X is not in p’s cache.



Research in exclusion algorithms and RMRs has led to design
of many algorithms [1, 2, 5, 6, 10, 14, 17, 19, 25, 26, 29], lower
bounds [3, 7, 11, 13], and an understanding of the limitations of
various shared memory primitives [7, 11].

For GME, in the DSM model, Danek and Hadzilacos [16] pre-
sented two O(n) algorithms and showed a matching lower bound.
Remarkably, in the CC model, they presented an O(log n log m)
RMR algorithm, where m is the total number of possible sessions,
thereby demonstrating a remarkable complexity separation for these
two models. Is it possible to improve on this O(log n log m) upper
bound? And if it is, by how much?
In a recent paper [7], Attiya, Hendler and Woelfel proved a Ω(log n)
RMR lower bound for the mutual exclusion problem in both DSM
and CC models, under the assumption that the algorithms use regis-
ters, comparison primitives, LL/SC variables. For the ordinary mu-
tual exclusion problem, Yang and Anderson [29] gave an O(log n)
algorithm, hence, the best theoretical upper and lower bounds match
in mutual exclusion. As mutual exclusion is a special case of GME,
we know that even in the CC model, the lower bound of GME is
Ω(log n)1. A natural question is whether it is possible to achieve
this RMR for GME?

Our Main Contribution
We give a positive answer to the above question by presenting an
O(min(log n, k)) algorithm for GME in the CC model, where k is
the point contention, thereby achieving the best possible theoreti-
cal bound. Our algorithm uses registers and load-link (LL)/ store-
conditional (SC) variables. Besides our present algorithm, to our
knowledge, the only algorithms achieving sublinear (in n) RMR
are Danek and Hadzilacos’ O(log n log m) algorithm and Keane
and Moir’s O(log n) algorithm [23]. The former algorithm relies
on the additional assumption that a failed compare-and-swap oper-
ation does not invalidate the local cached copies in the processes.
We do not make this assumption. The latter algorithm, unfortu-
nately, fails to satisfy concurrent entering, but instead satisfies a
weaker property, called concurrent occupancy.2

Besides the basic properties P1-P4, our algorithm also satisfies
other properties that we believe to be natural and intuitive. These
additional properties are presented in the next section.

Fairness and Concurrency in GME
In GME, fairness and concurrency are two desirable, but unfortu-
nately, incompatible, goals. On the one hand, we wish to enforce a
certain order, that is “fair,” among the conflicting processes to enter
the CS; on the other hand, to enhance concurrency, under certain
circumstances, we should allow processes bypass other conflicting
processes to enter the CS without waiting. Obviously, whether fair-
ness or concurrency should be more emphasized depends on the
application. Previous work [15, 21] have stressed more on the side
of fairness. In this work, we will instead emphasize concurrency,
while still trying to maintaining a reasonable degree of fairness.

We first review how fairness is defined in the literature. The
TRYING SECTION is conventionally divided into two parts: Door-
way and Waiting Room. A process can execute the Doorway in a
bounded number of its own steps. The time interval of a process

1More precisely, we note that this lower bound holds for the case
that m ≥ n. It is still open whether it is possible to beat this lower
bound when m is small.
2Concurrent occupancy states the following: if a process p re-
quests a session and no process requests a different session, then
p eventually enters the CS (even if other processes do not leave the
CS). For the subtlety regarding the definitions of concurrent enter-
ing/occupancy, we refer the readers to [15].

executing its doorway then is used to impose a partial order among
all active processes.

DEFINITION 1. Let p and q be two active processes. If in p’s
current attempt, p finishes its doorway before q’s current attempt
begins its doorway, then p doorway-precedes q.

The following fairness property for GME is formulated by Hadzi-
lacos [15], which is generalized from a fairness property introduced
by Lamport [24] for the original mutual exclusion problem.

(P5). FCFS (first-come-first-served): If process p doorway-precedes
process q and the two processes request different sessions,
then q does not enter the CS before p.

Previous works [15, 16, 21] have designed algorithms satisfying
P5. However, for the sake of enhancing concurrency, we will not try
to satisfy P5. Imagine the following scenario. A process p is in the
CS with session s and another process q with a conflicting session
s′ is still in the Waiting Room. Furthermore, q doorway-precedes a
large number of processes requesting session s. By P5, these latter
processes cannot enter the CS before q (and q also has to wait until
p leaves the CS, due to P1). For the sake of concurrency, it may
be argued whether it is more desirable to let these late processes of
session s to bypass q and enter the CS directly—while p is still in
the CS.

(P6). Pulling: Suppose that process p requests session s and is in
the CS at time t. Furthermore, p doorway-precedes all con-
flicting processes. If a process q also requests session s and
is in the waiting room at t, then, q can enter the CS in a
bounded number of its own steps.

The intuition here is that if a process doorway-precedes all con-
flicting processes, then its session has a clear precedence over all
other sessions. Then its presence there in the CS should justify its
fellow processes to join the CS directly.

Unlike the fairness requirement, which has been formulated as
P5, the concurrency requirement is never precisely defined in the
literature. Earlier works [16, 22, 23] have proposed the so-called
“capturing mechanisms” to boost concurrency. Roughly speaking,
these mechanisms allow a process to check whether other active
processes are its fellow processes before it enters the CS itself, and
if so, to help them enter. These mechanisms, however, do not fulfill
any particular exact concurrency property, and in our context, also
do not help to satisfy P6.

We remark that P6 is obviously incompatible with P5.3 In view
of this incompatibility, it would be desirable to relax P5 so that a
reasonable property of fairness can still be maintained.

(P5’). Relaxed FCFS: If processes p and q request different ses-
sions and p doorway-precedes q, then q does not enter the CS
before p, unless there exists another active process r, whose
current attempt overlaps with q’s current attempt and which
is a fellow process of q, and r is not doorway-preceded by p.

The intuition behind P5’ is the following: even if process q is
doorway-preceded by p, as long as q has some fellow process which
3We note that P5 is also incompatible with another property for-
mulated by Jayanti et al. [21], called strong concurrent entering:
if process p doorway-precedes all active processes that request a
different session, then p enters the CS within a bounded number of
its own steps. If an algorithm satisfies P6, one can easily construct
scenarios where it violates strong concurrent entering.



RMR (CC model) P4 P5 P5’ P6 Hardware used
Joung[22] ∞ Yes No No No Read/Write
Keane & Moir [23] O(log n) No No No No Read/Write
Hadzilacos [15] O(n) Yes Yes Yes No Read/Write
Jayanti & Petrovic & Tan [21] O(n) Yes Yes Yes No Read/Write
Danek & Hadzilacos [16] (“fair”) O(n) Yes Yes Yes No CAS, fetch&add
Danek & Hadzilacos [16] (“highly-concurrent”) O(n) Yes No Yes No CAS, fetch&add
Danek & Hadzilacos [16] O(log n log m) Yes No No No CAS, fetch&add
This work O(min(log n, k)) Yes No Yes Yes CAS

Table 1: Summary of results. All algorithms satisfy P1, P2, and P3.

is not doorway-preceded by p, then q has some justification in by-
passing p to enter the CS first. On the other hand, if at the time
when q begins its doorway, not only q, but also all its active fellow
processes are doorway-preceded by p, then q has no claim at all in
by-passing p.

Observe that P5’ reduces to the original FCFS of Lamport in the
context of ordinary mutual exclusion (i.e., when every process has
its own unique session). Note that the highly concurrent algorithm
of Danek and Hadzilacos [16] also satisfies P5’. We now summa-
rize all the specifics of our algorithm.

THEOREM 1. In the cache coherent model, suppose that the to-
tal number of sessions is a bounded number m. We can design a
group mutual exclusion algorithm, shown in Figure 3, that satis-
fies (P1)-(P4), (P5’), and (P6). In this algorithm, each attempt of
a process takes O(min(log n, k)) RMR, where n is the number of
processes and k is the point contention. The algorithm uses O(mn)
number of shared variables that support LL/SC and read/write op-
erations.

Hardware Support
We assume that the hardware provides variables supporting read/write
and LL/SC operations. The definition of LL/SC operations are
given as follows:

• The operation LL(O) returns O’s value.

• The operation SC(O, v) by a process “succeeds” if and only
if no process has performed a successful SC on O since p’s
latest LL operation onO. If SC(O, v) succeeds,O is changed
to v and returns true, otherwiseO’s value remains unchanged.

There are many practical implementations of LL/SC using com-
pare&swap [20, 27, 28]. As a result our algorithm can be run on
all modern architectures using compare&swap. In comparison the
algorithms by Danek and Hadzilacos required both compare&swap
and fetch&add [16].

Our algorithm makes use of some powerful objects such as the
a priority process-queue and the counters. A priority process-queue
supports enqueue, dequeue and find-min (Min) operations. A counter
supports read and increment (inc) operations. These objects are
implemented using the f -array introduced by Jayanti [18]. The fol-
lowing two theorems from [18] state the efficiency of implementing
these objects using LL/SC.

THEOREM 2. A linearizable, wait-free implementation of a
counter, shared by n processes, is possible from registers and LL/
SC words. The time complexity of read is O(1) and the time com-
plexity of inc(d) is O(min(log n, k)), where k is the point con-
tention during the increment operation. The space complexity is
O(n).

THEOREM 3. A linearizable, wait-free implementation of a pri-
ority process-queue, shared by n processes, is possible from regis-
ters and LL/SC words. The time complexity of Min is O(1) and
of a matching pair of operations–enqueue followed by dequeue—is
O(min(log n, k)), where k is the point-contention during the exe-
cution of enqueue. The space complexity is O(n).

Related Work
Table 1 summarizes the various properties of the GME algorithms
for the CC model in the literature. For the DSM model, Danek
& Hadzilacos showed that a 2-session local spin GME algorithm
satisfying P1-P4 requires Ω(n) RMR. They also gave the first GME
algorithm to achieve O(n) RMR in this model [16].

In the next two sections, we present our algorithm and give a
sketch of the proof.

2. THE ALGORITHM
We begin by explaining the high-level ideas of our algorithm.

We allow each session s to have two “sides”: side 0 and side 1.
Processes of session s, in the TRYING SECTION, should decide
which side it should join. The CS, at any point of time, belongs to
a session and to one of its sides. If the current session of CS is s and
is of side 0, only those processes of s who choose to join side 0 can
get into the CS, while those of s who choose to join side 1 should
wait. When all of the former have left the CS, if they find some
conflicting processes of session s′ (of whichever side) are waiting,
some of them should take the responsibility of switching the current
session in the CS to s′ (with the proper side) and notifying those
waiting processes of s′ to enter.

The reason of introducing two different sides for the same ses-
sion is, roughly speaking, to enforce certain liveness and fairness
properties. If the ongoing session s is of side 0 and there are some
conflicting processes that have been waiting long enough, then the
new processes of session s should not join side 0. Instead, they
should join side 1 and wait until next time.

How do we decide the relative order among all active processes
(that is, the timing of their entering the TRYING SECTION)? And
how do processes find out which active process has waited the
longest and should enter the CS next? For the first question, we can
use the notion of time-stamps. We have a global counter and every
entering process increases it by 1, and then reads its value. This
value serves as its time-stamp for this attempt. The second ques-
tion is trickier. To find out the longest waiting process, a process
can check the time-stamps of all processes, but this might entail
Ω(n) RMR if implemented naively.

We make use of the following two objects in our algorithm,
both of which can be implemented using the f -array introduced
by Jayanti [18].

• Global Counter G: a linearizable counter that supports inc



Gmutex-Lock (s) Inc-Get-dir(s)

REMAINDER SECTION 1.1 inc(C[s, 0], 1)
1 d ←Inc-Get-Dir (s) 1.2 inc(C[s, 1], 1)
2 inc (G, 1) 1.3 d← In[s]

3 tm← Read(G) 1.4 inc(C[s, d],−1)
4 Enqueue(Q, [p, s, d , tm]) 1.5 return d
5 Promote(s)
6 wait till Out[s] = d
CRITICAL SECTION Promote(s)

7 Dequeue(Q, [p, s, d , tm]) 5.1 (sc, dc)← LL(S)
8 if Min(Q) 6= (s,−) 5.2 (sh, dh)← Min(Q)

9 In[s]← d 5.3 if C[sc, dc] = 0 ∧ sh 6∈ {sc,⊥}
10 inc(C[s, d ],−1) 5.4 if SC(S, (sh, dh))
11 Promote(s) 5.5 Out[sh]← dh

Figure 1: First Attempt

(G, d) and read(G) operations. The former increases the cur-
rent value of G by the amount of d while the latter returns the
current value of G. Its initial value is 0.

• Priority process-queue Q: a data structure supporting enqueue,
Min and dequeue operations, with the following restrictions:
(i) an element can be dequeued only by the process that en-
queued it, and (ii) after a process p enqueues an element, p
must dequeue it before enqueuing a new one. The Min(Q)
operation returns the “smallest” element (whose meaning will
be explained immediately) in Q. Initially Q is empty.

In our algorithm, a process p in the TRYING SECTION en-
queues the element [p, s, d, tm], where s and d are its session
number and the side it decides to join, and tm its time-stamp.
Given two elements, [p, s, d, tm] and [p′, s′, d′, tm′], the for-
mer is smaller if either (1) tm < tm′, or (2) tm = tm′ and
p < p′. The Min(Q) operation then returns the pair (s, d),
which is drawn from the smallest element [p, s, d, tm]. If
there is no element in Q, Min(Q) operation returns (⊥,⊥).

We note that the inc(G, d) and the three operations of Q take
O(min(log n, k)) RMR, which thus form the bottleneck of our al-
gorithm. In the following discussion, the process whose element
is the smallest in Q is the highest priority process and its intended
session is the highest priority session. Note that since both G and
Q are implemented using f -arrays, they require LL/SC variables.

Besides the above two objects, we also use the following shared
variables:

• S = (s, d), recording the ongoing session information in the
CS. The first parameter indicates the session number s and
the second its side d. This is a LL/SC variable. Initially
S = (s′, 0), where s′ is some arbitrary session.

• In[s], a binary register. It tells the new coming processes of
session s which side of s they should join. Initially, In[s] =
1 for all sessions s.

• Out[s], a binary register. It serves the purpose of the spin-
ning lock, i.e., the processes of session s, immediately before
entering the CS, should busywait on this variable. Initially,
Out[s] = 0 for all sessions s.

• C[s, 0], C[s, 1], two counters, implemented using f -arrays.
They indicate the number of processes of session s which
are currently in the side 0 and side 1 respectively. Initially,
C[s, 0]=C[s, 1] = 0 for all sessions s.

We have introduced all of the necessary ingredients. We now
explain how to design algorithms based on them.

2.1 First Attempt
We first present a simple, though incorrect (violating P2 and P4),

algorithm. It nonetheless contains many of our basic ideas. See
Figure 1 for the code of our first algorithm, which shares similar
ideas of the mutual exclusion algorithms of Jayanti [18, 21]. We
give an informal description here. Once a process p of session s
leaves the REMAINDER SECTION, it invokes the Inc-Get-Dir
procedure to decide which side of s it should join. Inside this
procedure, it first indiscriminately joins both sides (Lines 1.1 and
1.2). Then it checks the In[s] variable to find out which side is the
“right” side. Then it removes itself from the wrong side (Line 1.4)
and returns.

Once process p decides which side of s to join, it increases the
global counter (Line 2), gets a time-stamp (Line 3), and enqueues
itself in the queue Q (Line 4). Then p invokes the Promote pro-
cedure. This procedure serves the purpose of updating the ongoing
session in the CS if necessary. It is invoked in both the TRYING
SECTION and the EXIT SECTION (Lines 5 and 12). In Promote,
p checks whether the current session in the CS is “over” by looking
at the counter C[sc, dc] (Lines 5.1 and 5.3). If it is, then p finds out
the highest priority session sh (Line 5.2). If sh is different from the
current session sc, p performs an SC operation on S to change it to
(sh, dh), where dh is the side that the highest priority process has
decided to join. If p succeeds, it flips the Out[sh] variable to dh.

Lines 1-5 constitute the doorway. Note that if a process p doorway-
precedes another process q, the time-stamp it gets on Line 2 is
bound to be smaller than the one q gets. After process p has fin-
ished the doorway, it busywaits on the Out[s] variable until it is
flipped to its own side.

Upon leaving the CS, process p removes itself from the queue Q
(Line 7). At this point, if it discovers that its session s no longer
has the highest priority, it flips In[s] to the opposite side (of its own
current side) (Lines 8-9). This flipping informs the new processes
of session s that they should join the other side (See Line 1.3), and
wait until the next time (that the session in CS is switched back
to s again). Finally, process p decreases the counter of its session
(Line 10) to announce it is almost done for this attempt. Then it
again invokes the Promote procedure to switch the session in the
CS if necessary.

Before we explain why this algorithm fails to satisfy P2 and P4,
we point out a few of its key ideas, which will be reused and ex-
panded in our later algorithms.

1. When a session s is over and the current highest priority ses-
sion is s′ 6= s, a number of processes may try concurrently
to change the session in Promote. Due to the fact that they
employ LL/SC operations on the variable S, only one of them
will succeed; moreover, not until it has updated the variable
Out[s′] (Line 5.5) can those processes busywaiting on it en-
ter the CS.

2. We maintain the following invariant: processes of session s
who decide to join side d can be in the CS if and only if (1)
S = (s, d), and (2) Out[s] = d.4

4We will not prove this invariant here, since this algorithm is more
for illustration purpose, but the correctness of this invariant is easy
to verify.



3. Once the current session s recorded in S no longer has the
highest priority, one of the leaving processes will flip the
In[s] variable to the other side to prevent the current ses-
sion s from going on forever (since the late processes of s
will note this information in 1.3). This helps us to achieve
P2 (not entirely) and P5’.

4. Suppose the current session of S is s and is of side d. As
long as the highest-priority process p from session s remains
in the CS, no leaving processes will flip In[s] to d. Thus, the
new processes of s will choose to join side d (Line 1.3) and
enter the CS directly. This helps us to achieve P6.

We now explain the trickier scenarios that cause our first algorithm
to fail.

First Failure. Suppose that the current session is s′ in S and
there is no active process. Then a number of processes leave the
REMAINDER SECTION and choose to join session s. They then all
choose to join side 1, get time-stamps, and enqueue themselves into
Q and execute Promote. Since they are the only active processes,
they will notice that the current session s′ is over and they will
try to update it into s. However, only one of them, say process p,
will succeed in updating S and only process p is allowed to update
the Out[s] variable. All the fellow processes of p will spin on
Out[s]. If p stops taking steps (Line 5.5), then its fellow processes
cannot enter the CS in their own steps. This scenario shows why
our algorithm fails to satisfy concurrent entering.

Second Failure. Suppose that a process p of session s and of
side 0 is in the CS and no other processes are active. Then p leaves
the CS and dequeues itself from Q. As now Q is empty, p notices
this fact and flips In[s] to 1. At this point, p stops taking steps and
a new process p′, also of session s, enters the doorway, executes
the lines 1.1 up to 1.3, and thus decides to join side 1. Now process
p resumes taking steps and it will not try to update the session vari-
able S, since C[s, 0] = 1. So p simply returns to the REMAINDER
SECTION. Then process p′ starts taking steps, and when it executes
Promote, it also will not attempt to update S in Promote, since
the current highest priority session is still s (the only element in Q
being enqueued by p′ itself), and then p′ just busywaits at Line 6
and starve.

How to modify our first algorithm to achieve P2 and P4 turns out
to be a challenging task. For the two particular scenarios that we de-
scribed, there can be a number of ways of fixing them. However, in
our experience, many of these fixes are problematic, causing some
unwanted new errors to arise. Here is a simple idea that tries to fix
the second failure but unfortunately does not work.

Suppose that we change Line 8 as follows:
if Min(Q) 6∈ {(s,−), (⊥,⊥)} then.

This modification is based on the following (spurious) reasoning:
When the leaving process (of session s) notes that the queue Q is
empty, it may as well leave the In[s] as it is (the same side as
its current side), instead of flipping it, since the new processes of
s then can join its current side and go straight to the CS. Indeed,
one can observe that this change in Line 8 fixes the problematic
scenario we just described in the second failure.

However, this modification gives rise to another problematic sce-
nario. Suppose that the leaving process (which is the only active
process at this point) does not flip In[s] when detecting Q to be
empty. The process then executes Promote without modifying
the session variable S and quits. At this point, In[s] = Out[s].
Suppose now process q of session s′ enters the doorway and keeps
on taking steps. It is easy to see that it will end up in the CS. Now
suppose another process p′ of session s enters the doorway and
keeps on taking steps. Then p′ also ends up in the CS, violating
mutual exclusion.

Gmutex-Lock (s) Inc-Get-dir(s)

REMAINDER SECTION 1.1 inc(C[s, 0], 1)
1 d ←Inc-Get-Dir (s) 1.2 inc(C[s, 1], 1)
2 inc(G, 1) 1.3 d← In[s]
3 tm← Read(G) 1.4 if Min(Q) ∈ {(s,−), (⊥,⊥)}
4 Enqueue(Q, [p, s, d , tm]) 1.5 if LL(S) = (s, d,−)

5 Promote(s) 1.6 d← d

6 if LL(S) = (s, d , s) 1.7 inc(C[s, d],−1)
7 Out[s]← d 1.8 return d
8 wait till Out[s] = d
CRITICAL SECTION Promote(s)

9 Dequeue(Q, [p, s, d , tm]) 5.1 (sc, dc,−)← LL(S)
10 if Min(Q) 6= (s,−) 5.2 (sh, dh)← Min(Q)

11 In[s]← d 5.3 if C[sc, dc] = 0 ∧ sh 6∈ {sc,⊥}
12 inc(C[s, d ],−1) 5.4 if SC(S, (sh, dh, s))
13 Promote(s) 5.5 Out[sh]← dh

Figure 2: Second Attempt

2.2 Second Attempt
Our second algorithm can be found in Figure 2. Its main differ-

ence from the first one is the addition of Lines 6-7 and 1.4-1.6. We
ask the readers to ignore Lines 1.4-1.6 temporarily (as if they did
not exist).

Recall that in the scenario described in the first failure, the prob-
lem is that the process p which successfully updates the variable
S to s may fall asleep before updating Out[s]. This situation is
allowed if p itself is of a different session s′ 6= s. But if p is also
of session s, we run the risk of violating concurrent entering. A
natural thing to try is the following: if other processes of session s
find out that S is last written by one of their fellow processes, they
should be allowed to update Out[s] themselves, just in case that
that fellow process who successfully updated S has been slacking
at Line 5.5.

The above rationale suggests the following modification to the
session variable S: we include a third component, which records
the session of the process which lastly successfully updates S (See
Line 5.4). It should be clear that Lines 6-7 implement the intuition
we gave in the last paragraph, resolving the problematic scenario
in the first failure.

We now turn to Lines 1.4-1.6. Originally we used In[s] as an
absolute indicator of the side that a new process of session s should
join. Due to the second failure, we should allow certain exceptions
to this rule; when the new process executing the Inc-Get-Dir
procedure belongs to the current session recorded in S. Especially,
in that scenario, things go wrong when (1) Q is currently empty,
(2) S = (s, d), and (3) In[s] = d. When all the three conditions
hold, the system is in an ambiguous stage, in the sense that the
current session may or may not be about to change. Therefore, in
this case, the new process of s executing Inc-Get-Dir should
use extra information when deciding the side it is to join instead
of only looking at the variable In[s]. Lines 1.4-1.6 are designed
based on this idea, and it can be easily shown that the problematic
scenario in the second failure will not arise now.

There exists another scenario in the first algorithm that processes
starve: (1) the smallest element in Q is of session s, (2) S =
(s, d), and (3) In[s] = d, when the new process of s executes
Inc-Get-Dir. This scenario, though more complicated, is not



difficult to construct. Because of this scenario, in Line 1.4, we also
include the condition Min(Q) = (s,−).

The modification we have done so far help to achieve P2. How-
ever, concurrent entering turns out to be a far more difficult prop-
erty to satisfy. The addition of Lines 6-7 and the third component
of S only fix the case that we described in the first failure: when a
set of new processes enter the doorway and they all belong to the
same session. We now describe a scenario that reveals the genuine
difficulty of achieving concurrent entering.

Third Failure Suppose that process p of session s is in the CS
and a conflicting process q of session s′ is busywaiting at Line 8.
Process p then leaves the CS and keeps on taking steps until it is
poised at 5.4 (to write s′ into S). Now a new process q′, also of
session s′, enters the doorway and keeps on taking steps until it
successfully executes Line 5.4 and then it falls asleep before it ex-
ecutes Line 5.5. Then p proceeds to execute Line 5.4 and its SC
operation is bound to fail, since S has been changed by q′ since p’s
last LL operation on it. Thus p quits the EXIT SECTION. q and q′

are now the only active processes and they both belong to session
s′. As long as q′ does not execute Line 5.5, then q cannot enter the
CS in its own steps. Thus concurrent entering is violated.5

As with the first two failures, it is not difficult to slightly twist our
second algorithm to avoid the above scenario. But half-measures,
in our experience, fix one problem and cause other problems to
pop up. To achieve our goal, we need more radical changes to our
algorithm.

2.3 Final Algorithm
The scenario in the third failure illustrates the difficulty we face.

When a session is over, both the processes in the TRYING SECTION
and in the EXIT SECTION will try to update it in Promote (and
this feature cannot be forfeited, otherwise, we have troubles sat-
isfying starvation freedom). Things are fine if the leaving process
“wins” in updating S, since it will duly flip the Out variable before
it goes to the REMAINDER SECTION. However, if the process in
the TRYING SECTION wins and the process is of the same session
as the one that is just written into S, concurrent entering might be
in jeopardy.

A tempting idea to handle this situation is that if the leaving pro-
cess fails in its SC operation, then it should not just leave. Instead,
it should check one more time whether the Out variable has been
duly changed to the same side as recorded in S. But this idea brings
with itself an issue that is very “dangerous”: if we allow processes
in the TRYING SECTION and in the LEAVING SECTION to modify
the Out variables no matter they succeed in updating S or not, it
may happen that a leaving process is poised to flip Out[s] and falls
asleep even though the ongoing session in S has been changed to
sessions other than s. This situation is undesirable, since the Out
variables serve as the “gateway”—processes busywait on them be-
fore getting into the CS. We do not want processes to be poised to
change them unless the circumstances so required (i.e., it is about
time that the ongoing session should be changed).

The above idea and its subsequent concern bring in the most sub-
tle part of our design. See Figure 3 for our final, and correct algo-
rithm. Its major differences from the previous one include (1) the
separation of Promote procedure, now one for processes in the
TRYING SECTION and one for those in the EXIT SECTION, and
(2) the addition of Lines 9-12, which, roughly speaking, serve as a
second gateway (the first being the Out variables).

The Promote-Try procedure is essentially the same as Promote

5We remark that there are other scenarios of different “flavor” to
cause this algorithm to violate P4. We do not attempt to enumerate
all of them here.

in the previous algorithms. On the other hand, the Promote-Exit
procedure is a big departure, whose design is based on the idea we
gave previously. It makes use of the following variables:

1. Ex : a variable indicating the session of the processes that
may be still lingering in the EXIT SECTION. This variable is
an LL/SC variable, initialized to false .

2. Exclear [s]: a binary variable, indicating whether the pro-
cesses in the TRYING SECTION need to wait on those pro-
cesses of s which may be still lingering in the EXIT SEC-
TION. This variable is a register and is initialized to true .

We ask the readers to ignore Lines 9-12 and 16.5 and 16.14 tem-
porarily.

In Promote-Exit, a process begins by erasing whatever ses-
sion that has been recorded in the Ex variable (Line 16.2). It ap-
plies LL (Line 16.3) and SC (Line 16.9) operations on the Ex vari-
able, and only if its SC operation is successful does it proceed to
Lines 16.10-16.14. The reason of introducing Ex and using LL/SC
operations on it is because we want to guarantee that at most one
process in the EXIT SECTION can proceed to Lines 16.10-16.14 so
as to modify S and the Out variables. Moreover, note that leav-
ing processes in Promote-Exit decrease the counter of their
own session (Line 16.6) after they have LLed the Ex variable at
Line 16.3. If any of the leaving processes succeeds in Line 16.9,
no more process can perform a successful SC operation on Ex until
all processes of the current session have gone to the REMAINDER
SECTION.

If a process p succeeds in SCing its own session into Ex , p pro-
ceeds to update the session variable S (Line 16.10) based on its
knowledge of the highest priority session (Line 16.7). If it suc-
ceeds in its SC operation, it updates the Out variable of the new
session. Even if it fails in its SC operation at Line 16.10, it still
double checks S (Line 16.12). In the case that S is written by
some process q in the other procedure Promote-Try and q also
belongs to the new session, p takes the responsibility of updating
the Out variable, just in case that q falls asleep before it executes
Line 5.5. It can be seen that the above mechanism fixes the scenario
that we described in the third failure.

We now explain the purpose of Lines 9-12, 16.5, and 16.14. As
the variable Out[s] can be written by either a process in Promote
-Try or in Promote-Exit, the processes of sessions s, even
if they get past Line 8, have no clue how Out[s] is changed. In
the case that Out[s] is updated in Promote-Try, some processes
may still linger in Promote-Exit. In this case, these processes
of s should either (1) wait until the lingering processes in Promote
-Exit all leave, or (2) “invalidate” them so that in the future, even
if these lingering processes take steps, no harm will be done (i.e.,
they will not be able to modify S and the Out variables).

First ignore Lines 9 and 10. If these processes of s note that Ex
is true, then some leaving process (indeed, exactly one) must have
successfully performed an SC operation on it (Line 16.9). Then
these processes of s should wait (Line 12) until that leaving process
has really quit (Line 16.14).

To see that Lines 9 and 10 are necessary, observe that if any pro-
cess of s succeeds in SCing at Line 10, then none of the processes
in Promote-Exit will succeed in Line 16.9 and thus, we can be
sure that they will not be able to modify S or the Out variables
afterwards. On the other hand, if all processes of s fail in their SC
operations on Line 10, then we can be sure that exactly one process
in Promote-Exit has succeeded in Line 16.9. In this case, we
just let all processes of s make sure that this lingering process in
Promote-Exit has really finished before they get into the CS
(Line 12).



J is the set of all possible sessions.
Shared variables common to all sessions:
Q is a priority process-queue supports enqueue, dequeue and Min operations, initially empty.
S ∈ J × {0, 1} × J is a LL/SC variable initialized to (s, 0, s) for some s ∈ J .
Ex ∈ {J ∪ false} is a LL/SC variable initialized to false .
G ∈ N, a counter supporting inc and Read operations, initialized to 0.
Shared variables for session s ∈ J :
In[s] ∈ {0, 1}, Out[s] ∈ {0, 1} read/write variables, In[s] is initialized to 1 and Out[s] to 0.
Exclear [s] ∈ {true, false} is a read/write variable initialized to true . We also assume Exclear [false] to be always true .
C[s, 0], C[s, 1] ∈ N, counters supporting inc and Read operations, initialized to 0.

Gmutex-Lock (s) Inc-Get-dir(s) Promote-Exit(s)

REMAINDER SECTION 1.1 inc(C[s, 0], 1) 16.1 LL(Ex )
1 d ←Inc-Get-Dir (s) 1.2 inc(C[s, 1], 1) 16.2 SC(Ex , false)
2 inc(G, 1) 1.3 d← In[s] 16.3 LL(Ex )
3 tm← Read(G) 1.4 if Min(Q) ∈ {(s,−), (⊥,⊥)} 16.4 LL(S)

4 Enqueue(Q, [p, s, d , tm]) 1.5 if LL(S) = (s, d,−) 16.5 Exclear [s]← false

5 Promote-Try(s) 1.6 d← d 16.6 inc(C[s, d ],−1)

6 if LL(S) = (s, d , s) 1.7 inc(C[s, d],−1) 16.7 (sh, dh)← Min(Q)
7 Out[s]← d 1.8 return d 16.8 if C[s, d ] = 0 ∧ sh 6= ⊥
8 wait till Out[s] = d 16.9 if SC(Ex , s)
9 if ¬LL(Ex ) Promote-Try(s) 16.10 if SC(S, (sh, dh, s))

10 SC(Ex , false) 5.1 (sc, dc,−)← LL(S) 16.11 Out[sh] = dh

11 if false 6= se = LL(Ex ) 5.2 (sh, dh)← Min(Q) 16.12 if S = (s′, d′, s′′) ∧ s′ = s′′

12 wait till Exclear [se ] 5.3 if C[sc, dc] = 0 ∧ sh 6= sc 16.13 Out[s′]← d′

CRITICAL SECTION 5.4 if SC(S, (sh, dh, s)) 16.14 Exclear [s]← true
13 Dequeue(Q, [p, s, d , tm]) 5.5 Out[sh]← dh

14 if Min(Q) 6= (s,−)

15 In[s]← d
16 Promote-Exit(s)

Figure 3: The final algorithm. Lines 1-7 constitute the doorway.

3. PROOF SKETCH
In this section, we give a proof sketch for the Theorem 1. Our

proof sketch relies on the correctness of some invariants. Due to
space constraints, we present these invariants without their formal
proofs. First we give some notations and definitions required to
express these invariants.

3.1 Notations and definitions
• {H} denotes the set of processes with their program counters

from set H , where H is a set of program counter. For exam-
ple, {2− 8} denotes the set of processes with their program
counters between Lines 2 and 8.
• For a process p, p.x denotes the value of the local variable

x in context. For example, p.s and p.d denote the session s
and the side d of p.
• LS is a set of processes in {5.2−5.4}∪{16.5−16.10} such

that if p ∈ LS then no successful SC has been performed on
S since p performed the last LL on (S).
• LE is a set of processes in {16.4−16.9} such that if p ∈ LE

then no successful SC has been performed on Ex since p
performed LL(Ex ) (Line 16.3).
• When we say a process p is of side d′ if p ∈ {1.4 − 16.6}

and p.d is equal to d′ or p is at Line 1.6 and p.d = d′. Note
that if p is of session s and of side d′, then C[s, d′] > 0.
• We denote p[L] inA, as the time at which p executes Line L

in its attempt A. Whenever the attempt A is clear form the
context, we simply use p[L].

• When we say (s, d) ∈ Q, we mean that there is an element
[p, s, d, tm] ∈ Q.

Now we present the invariants used in proving the properties of the
algorithm.

Invariant 1. If there is no process from session s and side d active,
then C[s, d] = 0. Furthermore, if no process from
session s is active, then C[s, d] = C[s, d] = 0 and
(s,−) 6∈ Q.

Invariant 2. If some process p from session s is inLS, S = (sc, dc,
−) and p is about to SC (sh, dh, s) into S at time t,
then
a. there is no process from session sc and side dc at t.

b. there is some process from session sh and side dh,
but no process from session sh and side dh at t.

c. sh 6= sc

Invariant 3. If S = (s, d′, w) and Out[s] 6= d′, then there exists a
a process q ∈ {5.5, 16.11} of session w.

Invariant 4. If a process is about to set Out[s] to d (Lines 5.5, 16.11
or 16.13) at time t, then S = (s, d,−) at t.

Invariant 5. If there is a process p ∈ {9−16.6} from session s and
side d, then S = (s, d,−) and Out[s] = d.

Invariant 6. If a process p of session s and side d is at Line 12,
Exclear [Ex = se ] = false , then, there is exactly one
process at Lines 16.10-16.13 and it belongs to session
se 6= s.



Invariant 7. If some process p ∈ LE of session s and of side d is at
Line 16.9, then S = (s, d,−) and there is no process
of session s and side d.

Invariant 8. If a process p of session s and side d is at Line 8, such
that Min(Q) = (s, d), S = (s′, d′,−), C[s′, d′] = 0
and s 6= s′, then there exists a process with session s′

in the exit section, or at Lines 1.8 to 5.4.

The following lemma will be useful when we prove the main theo-
rem.

LEMMA 1. If at time t, process p of session s and of side d is in
{2−8} and S = (s, d,−), then at t, there is a process q ∈ {5−8}
from session s′ 6= s such that q.tm < p.tm. Furthermore, there is
no process in the CS at t which door-way precedes q.

PROOF. The following two claims will be used to prove this
lemma. Throughout these proofs, when we say p executes Line L,
we mean p executes Line L in its attempt active at t.

CLAIM 1. p did not execute Line 1.6 in its current attempt.

PROOF. Suppose, for a contradiction, that p did execute Line
1.6. As p does not change its side after Line 1.6 and p is of side
d at t, it means that p found S equal to (s, d,−) at Line 1.5. But
S = (s, d,−) at t, it means that some process SCed (s, d,−) into
S during the interval (p[1.5], t). But note that p is of side d in
the interval (p[1.5], t]. The previous two facts together contradict
Invariant 2.

CLAIM 2. When p executes Line 1.4, Min(Q) = (s′,−,−),
where s 6= s′.

PROOF. By the previous claim one can see that p is from side d
throughout the interval (p[1.4], t]. As S is equal to (s, d,−) at t,
by Invariant 2 (b), S = (s, d,−) through (p[1.4], t]. Hence, if p
executed Line 1.5 it would have executed Line 1.6, which contra-
dicts the previous claim. This shows that when p executes Line 1.4,
Min(Q) = (s′,−,−), where s 6= s′.

By the previous claim one can see that request of some process q
(of session s′ 6= s) is in Q at p[1.4]. As a process only removes
its request from Q at Line 13. By Invariant 5 and the fact that
S = (s, d,−) in the interval (p[1.4], t], it means that q’s request is
still in Q at t and q ∈ {5−8} at t. As p will get a bigger time-stamp
than q, it also means that q.tm < p.tm at t.

Also note that if there is some process p′ from session s in the CS
at t and doorway precedes q, then p′.tm < q.tm and (p′, s) ∈ Q
throughout the interval [p[1.4], t]. But this contradicts the previous
claim.

3.2 Proof of Theorem 1
It is easy to see the algorithm satisfies Bounded exit (P3). Mu-

tual exclusion (P1) follows easily from Invariant 5. We defer the
proof of Relaxed FCFS (P5’) to the full version. In this subsection
we will prove that the algorithm satisfies Concurrent Entering
(P4), Starvation freedom (P2), Pulling (P6) and has O(min(log n,
k)) RMR complexity.

LEMMA 2 (Concurrent Entering). If process p is in the TRY-
ING SECTION, it performs at most b steps in absence of any ac-
tive conflicting processes before entering the CS, where b is some
bound.

The proof of this lemma follows from Claims 3 and 5 below.

CLAIM 3. At time t, if a process p of session s and of side d
is at Line 8 and no conflicting processes are active at time t, then
Out[s] = d at t.

PROOF. As no processes conflicting with p are active at time t,
by Invariant 1 and the fact that Q 6= φ (because Q has the request
(s, d) from p), Min(Q) = (s,−) at t. By Invariants 1 and 8 and
the fact that Min(Q) = (s,−), one can see that S = (s, d′, w),
for some d′ ∈ {0, 1}. Also, as p (from side d) is at Line 8, by
Lemma 1 one can see that d′ = d, hence S = (s, d, w) at t.

Now we will prove this claim by contradiction, i.e., say Out[s] 6=
d at t. By Invariant 3, there exists a process at Lines 5.5 or 16.11
of session w. If w 6= s, then some conflicting process is active
at t, which is a contradiction. So the interesting case is at time t,
S = (s, d, s). (Recall that for this particular case we introduced
Ex and Exclear variables in final correct algorithm). The follow-
ing claim will be crucial to complete the proof of Claim 3.

CLAIM 4. If S = (s, d, s) and Out[s] 6= d at t, then there is
some process q of session s′ 6= s such that the following hold :

(a) q executes Line 16.6 in the interval (p[5.1], t).

(b) C[s′′,−] = 0 ∧ Min(Q) = (s, d),∀s′′ 6= s throughout the
interval (q[16.6], t].

(c) S changes exactly once in the interval (q[16.6], t).

PROOF. We will prove part (a) by contradiction. As C[s′′,−] =
0,∀s′′ 6= s at t, if there is no process conflicting with p which
performs Line 16.6 in the interval (p[5.1], t), then C[s′′,−] =
0,∀s′′ 6= s throughout the interval (p[5.1], t). Hence, in the in-
terval (p[5.1], t), C[s′′,−] = 0 ∧Min(Q) = (s, d),∀s′′ 6= s.

Now we will prove that S = (s, d, s) at p[6]. We will prove this
by further two cases depending upon the value of S at p[5]. Say
S = (s,−,−) at p[5]. As S = (s, d, s) at t, we first claim that
S = (s, d, s) throughout the interval (p[5.1], t). This is true be-
cause for S to change at some time during the interval (p[5.1], t),
by Invariant 2c, S will have to change to (s∗,−,−) first, where
s∗ 6= s. But this contradicts Invariant 2b because in the inter-
val (p[5.1], t), C[s∗,−] = 0. Now consider the case when S =
(s′′,−,−) and s′′ 6= s at p[5]. As in the interval (p[5.1], t),
C[s′′,−] = 0 ∧ Min(Q) = (s, d),∀s′′ 6= s. So p (or some other
fellow process) will set S = (s, d, s) in Promote-try.

Hence, S = (s, d, s) at p[6]. This means that p will execute Line
6 and set Out[s] = d at Line 7. Hence, Out[s] = d when p moves
to Line 8. As Out[s] 6= d at t, so some process changes Out[s]
at some time t′ ∈ (p[7], t). Also by Invariant 4, S = (s, d,−)
at t′. But this means that S was changed from S = (s, d, s) to
S = (s, d,−) while p is at side d which contradicts Invariant 2a.
Hence, part (a) is proved. Now, as there exists some process with
session different than s that executes Line 16.6 (inc(C[s, d ],−1 ))
in the interval [p[5.1], t], let q be the last such process and say it is
from session s′. Then the proof of part (b) simply follows for this
process q.

By Invariant 5, S = (s′,−,−) at q[16.6] and by our assump-
tions S = (s,−,−) at t. As all the processes in the interval
(16.6, t) are of session s and of side d. By Invariant 2, S can
change at most once in the interval (q[16.6], t) and that also to
(s, d, s). Hence, we get the the part (c).

Now we concentrate on steps taken by q before it leaves the exit
section (and note that these steps must be taken before t, as there
is no active process conflicting with p at t). When q starts execut-
ing beyond Line 16.6, it would find C[s′, d′] = 0 and Min(Q) =
(s, d). Then q tries to SC s′ into Ex (Line 16.9), it can succeed or
fail.

If it succeeds, it will go on to Line 16.10. As we know that
S = (s, d, s) at t and by part (c) of the claim above, one can see



that SC by q at Line 16.10 will fail and S = (s, d, s) at Line 16.12.
Hence q will set Out[s] = d before leaving the exit section.

If q fails at Line 16.9 then it means that some process performed
a successful SC on Ex since q[16.6]. If the successful SC was per-
formed by some process at Line 16.9, then by Invariant 7 one can
see that this process (which is of session s′) performs Line 16.9 af-
ter q[16.6]. Hence, the same arguments as applied when q succeeds
at Line 16.9 hold. If the successful SC was performed some process
at Line 10, then by Invariant 5, one can see that Out[s] = d. Hence
we have shown a contradiction for all the cases and complete the
proof of Claim 3.

CLAIM 5. If a process p of session s and side d is at Line
12 at time t, and no conflicting processes are active at t, then
Exclear [se ] = true .

PROOF. This claim is just a consequence of Invariant 6.

LEMMA 3 (Starvation Freedom). If a process is in the TRY-
ING SECTION, then it eventually enters the CS.

PROOF. We will prove by contradiction. Suppose that a non-
empty set of processes ST are in the TRYING SECTION forever. As
processes take an ever-increasing time stamps at Line 3, one can see
that eventually Min(Q) = (s, d) forever, where s and d is session
and side of a process p in ST . We will prove that p eventually
enters the CS, which contradicts our assumption that ST is non-
empty. We first consider the case where p is looping at Line 12
forever.

CLAIM 6. If a process p is at Line 12, then eventually Exclear
[se] = true . Furthermore, once Exclear [se ] is set to true , it is not
changed to false while p is at Line 12.

PROOF. The first part is a straightforward consequence of In-
variant 6. Also by Invariant 6, se 6= s. We will prove the second
part of this claim by contradiction. Say a process q sets Exclear [se ]
to false at Line 16.5 while p is at Line 12. By Invariant 5, when
a process q from session se sets Exclear [se ] to false at Line 16.5,
the variable S = (se,−,−). But this contradicts the Invariant 5 as
p from session s 6= se is at Line 12.

So if p is in TRYING SECTION forever, it will loop at Line 8
forever. The following two claims together also rule out this possi-
bility. We first prove that eventually S = (s, d,−) forever.

CLAIM 7. If Min(Q) = (s, d) for all time after t, then eventu-
ally S = (s, d,−) at some time t′ ≥ t.

PROOF. We will prove this claim by contradiction. Suppose that
S 6= (s, d,−) for all times after t. By Lemma 1 and the fact that
Min(Q) = (s, d), one can see that S 6= (s, d,−) for all time after
t. Hence by the above assumptions, we get, S 6= (s,−,−) for all
times after t.

First we claim that S changes at most once after t. We prove this
claim as follows. Say that S is changed for the first time after t at
t′ ≥ t, i.e., some successful SC was performed on S at t′. Then
for any process r to change S after t′ at Line 5.4 (respectively,
16.10), r has to perform the LL(S) at Line 5.1 (respectively, 16.4)
after t′. After the LL(S) at Line 5.1 (respectively, 16.4), r will
find Min(Q) = (s, d) at Line 5.2 (respectively, 16.7), hence it can
change S only to (s, d,−), which is a contradiction. So this means
S is fixed to (s′, d′,−) forever after some time t′ ≥ t and for some
s′ 6= s.

Now we will concentrate on the processes from session s′ and
side d′. First by Invariant 3 and Invariant 4, one can see that even-
tually Out[s′] = d′ forever. Hence, we know that for all times after

some time ts ≥ t′ ≥ t, Min(Q) = (s, d),S = (s′, d′,−), Out[s′] =
d′, where s′ 6= s. Now we claim that if a process q from session s′

and side d′ is in the CS at time tq ≥ ts, and if q attempts for CS
again from session s′, it will attempt from side d′. More precisely
when q again executes Line 2 after tq with session s′, its local vari-
able d will be set to d′. This is true because when q executes Line
15 for the first time after tq , as Min(Q) = (s, d) it will set In[s′]
to d′ (Line 16). The next time it executes Line 1.3 with session s′,
it will get d′ from In[s] and it will also not go into Lines 1.5-1.6 as
Min(Q) = (s, d). Hence when q reaches Line 2, it will have side
d′.

Also note that because Out[s′] = d′ forever, if a process of
session s′ and side d′ is in TRYING SECTION beyond Line 1.8,
then it will eventually enter the CS. Combining the previous two
facts, and the facts that there are only finitely many processes in
the system and processes only crash in remainder section, one can
see that, eventually C[s′, d′] = 0 and all the active processes of
session s′ have side d′ and are looping at Line 8 forever. More
formally, there is a time t′′ ≥ ts such that for all times after t′′,
Min(Q) = (s, d),S = (s′, d′,−), C[s′, d′] = 0 and if there is any
active process from session s′, it is at Line 8. So we arrive at a
contradiction to Invariant 8 and a proof of our claim.

CLAIM 8. If a process p from session s and side d is at Line
8 and S = (s, d,−) then eventually Out[s] is set to d by some
process. Furthermore, once Out[s] is set to d, it is not changed
while p is at Line 8.

PROOF. The first part is follows trivially from Invariants 3 and 4.
For the second part, again by Invariant 4, when a process executes
any of the Lines 5.5, 16.11, 16.13 to change Out[s] to d′, the S
variable at that point is (s, d′,−). But by Invariant 2(a), S does not
change from (s, d,−) while p is at Line 8.

LEMMA 4 (Pulling). If at time t a process p of session s and
of side d is at Lines 8-12 and some process q from session s is in the
CS, such that q doorway precedes all active processes conflicting
with p at t, then p takes a bounded number of steps to enter the CS.

PROOF. We prove this lemma by proving the following two claims.

CLAIM 9. If p is at Line 8 at time t, then Out[s] = d.

PROOF. As q is in the CS, by Invariant 5, S = (s, d′,−) and
Out[s] = d′ where d′ is the side of q. Also, as q door-way precedes
all active conflicting processes and p is at Line 8, by Lemma 1, side
of p, i.e., p.d is equal to d′. Hence, Out[s] = d, and by claim 8,
Out[s] will be equal to d while p is at Line 8.

CLAIM 10. If p is at Line 12 at time t, then Exclear [Ex ] =
true .

PROOF. As q entered the CS at some time before t, it would
have found Exclear [Ex ] = true at some time t′ < t. (Note that
if Ex is equal to false at q[11], Exclear [Ex ] is still true by defi-
nition). So for some process r to set Exclear [Ex ] = false in the
interval (t′, t), r has to execute a successful SC at Line 16.9. By
Invariants 1 and 7 and the fact that S = (s, d,−) ∧ C[s, d] > 0
in the interval (t′, t), one can see that this cannot happen. Hence,
Exclear [Ex ] = true at time t. Also by claim 6, Exclear [Ex ] will
remain true while p is at Line 12.

LEMMA 5 (Remote Memory Reference). The remote mem-
ory reference of the algorithm in cache coherent architecture is
O(min(log n, k)), where n is the number of processes and k is
the point contention.



PROOF. The main complexity bottleneck of the doorway and
exit section are the inc, Enqueue, Dequeue and Min operations.
As stated in the Theorems 2 and 3, these operations when imple-
mented using f -arrays [18] take O(min(log n, k)) RMR, where n
is the number of processes and k is the point contention. As these
operations are executed only a constant number of times, to show
that the total RMR of the algorithm is also O(min(log n, k)), we
need to show that the RMR associated with the loops at Lines 8 and
12 is also O(min(log n, k)). By the Claims 6 and 8 one can see
that RMR associated with these loops is indeed just 2.

4. CONCLUSION AND OPEN PROBLEMS
In this work we present an algorithm to show that in the CC

model, the upper bound and the lower bound of RMR match in
the group mutual exclusion problem, just as in the ordinary mutual
exclusion problem. We would like to point out a few future research
directions and the limitation of our result.

Our algorithm relies on the assumption that the set of possible
sessions is known a priori (note that Danek and Hadzilacos’ al-
gorithm [16] has the same limitation). Furthermore, it uses un-
bounded counters. It would be desirable to design algorithms that
can do without these while still ensuring the same RMR.

There may be other desirable properties of GME that can be
formulated and achieved. One example is the FIFE (first-in-first-
enabled), which states that if p and p′ request the same session
and the former doorway-precedes the latter, and if the latter is in
the CS, then the former should be able to enter the CS in its own
bounded number of steps. Unlike FCFS (P5), this property is com-
patible with P6. Unfortunately, our algorithm does not satisfy this
property.

Another interesting question is whether we can further improve
the complexity by using primitives like fetch&add. We already
know that constant RMR algorithms for mutual exclusion exist [5,
14, 25]. So is it possible to design a constant RMR GME algorithm
using fethc&add ? Interestingly for a special case of GME called
the READER-WRITER PROBLEM [9], constant RMR solutions do
exist [8].
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