
Preemptive Coordination Mechanisms for
Unrelated Machines?

Fidaa Abed1 and Chien-Chung Huang2

1 Max-Planck-Institut für Informatik. fabed@mpi-inf.mpg.de
2 Humboldt-Universität zu Berlin. villars@informatik.hu-berlin.de

Abstract. We investigate coordination mechanisms that schedule n jobs
on m unrelated machines. The objective is to minimize the latest com-
pletion of all jobs, i.e., the makespan. It is known that if the mechanism
is non-preemptive, the price of anarchy is Ω(logm). Both Azar, Jain, and
Mirrokni (SODA 2008) and Caragiannis (SODA 2009) raised the ques-
tion whether it is possible to design a coordination mechanism that has
constant price of anarchy using preemption. We give a negative answer.

All deterministic coordination mechanisms, if they are symmet-
ric and satisfy the property of independence of irrelevant al-
ternatives, even with preemption, have the price of anarchy
Ω(log m

log log m
). Moreover, all randomized coordination mechanisms,

if they are symmetric and unbiased, even with preemption, have
similarly the price of anarchy Ω(log m

log log m
).

Our lower bound complements the result of Caragiannis, whose bcoord
mechanism guarantees O(log m

log log m
) price of anarchy. Our lower bound

construction is surprisingly simple. En route we prove a Ramsey-type
graph theorem, which can be of independent interest.
On the positive side, we observe that our lower bound construction crit-
ically uses the fact that the inefficiency of a job on a machine can be
unbounded. If, on the other hand, the inefficiency is not unbounded, we
demonstrate that it is possible to break the Ω(log m

log log m
) barrier on the

price of anarchy by using known coordination mechanisms.

1 Introduction

The input is a set I of jobs and a set M of machines. Each job i ∈ I has a
processing time pij on a machine j ∈ M. Each job is controlled by a selfish
player, who aims to minimize the completion time of his job while disregarding
the welfare of other players. Each machine, based on the information of the in-
coming jobs and a certain scheduling policy, decides the finishing time of each
incoming job. The scheduling policy of the machines is referred to as the coordi-
nation mechanism [4] in algorithmic game theory literature. The objective is to
minimize the latest finishing time of any job. Such an objective is conventionally
called the makespan.
? Part of this work is based on the first author’s Master thesis in Max-Planck-Institut

für Informatik.

The above scenario is very similar to the unrelated machine scheduling prob-
lem (R||Cmax) that has been extensively studied in the literature, e.g.,[11]. How-
ever, unlike the traditional setting where a central authority decides which job
is to be assigned to which machine, here we assume that each job is controlled
by a selfish player. Our setting captures certain real world situations, such as
the Internet, where there is no central authority and users are self-interested.

We assume that in the coordination mechanism, a machine is allowed to use
only the information of the incoming jobs, when deciding how to schedule them,
while the information of the other jobs and how the other machines schedule
them are irrelevant. Using the terminology of [2], such coordination mechanisms
are local policies.3

This assumption is a natural one: the machines may not be able to commu-
nicate among themselves efficiently to make a scheduling decision, especially in
a very fluid environment such as the Internet.

Coordination mechanisms can be non-preemptive or preemptive. In the for-
mer, the jobs on a machine are processed sequentially, and each job, once started,
has to be processed in an uninterrupted manner; in the latter, a machine can
interrupt an ongoing job and resume it later, or it can intentionally introduce
delays, during which the machine just lies idling.

Our focus will be on the pure Nash equilibrium (PNE), where no player
can unilaterally change his strategy, i.e., the machine, to reduce the completion
time of his job. It can be expected that given the selfishness of the players,
the makespan in a PNE can be sub-optimal. The worst ratio of the makespan
in a PNE against that in an optimal schedule is called the price of anarchy
(PoA) [10].

Coordination mechanisms PoA PNE Anonymous Characteristics
ShortestFirst [9] Θ(m) Yes No Strongly local, non-preemptive
LongestFirst [9] Unbounded No No Strongly local, non-preemptive
Makespan [9] Unbounded Yes Yes Strongly local, preemptive
RANDOM [9] Θ(m) No Yes Strongly local, non-preemptive

EQUI [5] Θ(m) Yes Yes Strongly local, preemptive
AJM-1 [2] Θ(logm) No No Local, non-preemptive

AJM-2 [2] O(log2m) Yes No Local, preemptive
ACOORD [3] O(logm) Yes No Local, preemptive

BCOORD [3] Θ(log m
log log m) ? Yes Local, preemptive

CCOORD [3] O(log2m) Yes Yes Local, preemptive

Table 1. Summary of various coordination mechanisms.

3 A more stringent assumption proposed by Azar et al. [2] is that of the strongly local
policies. In this case, a machine makes the scheduling decision only by the processing
times of the incoming jobs on it, while the processing times of these jobs on other
machines are irrelevant. Azar et al. [2] have shown that strongly local policies have
much higher lower bound in terms of the price of anarchy. In this work, we consider
only local policies.

2

It is desirable to have coordination mechanisms that have small PoA. Table 1
gives a summary of the various mechanisms that have been proposed so far in
the literature. The “PNE” column shows whether the existance of a pure Nash
equilibrium is guaranteed or not. For non-preemptive coordination mechanisms,
Azar, Jain, and Mirrokni [2] designed a mechanism that achieves O(logm) PoA.
This turns out to be optimal, since later Fleischer and Svitkina [8] showed that
all non-preemptive coordination mechanisms have Ω(logm) PoA.

Since non-preemptive mechanisms have the Ω(logm) PoA barrier, an obvious
question to ask is whether preemption can beat this lower bound. Caragiannis [3]
showed that using preemption, his bcoord mechanism achieves O(logm

log logm)
PoA. Both Azar et al. and Caragiannis raised the question whether it is possible
to achieve constant PoA by preemption. We answer in the negative. (See the
next section for the formal definitions of “symmetric”, “IIA”, and “unbiased.”)

Theorem 1. All deterministic coordination mechanisms, if they are symmet-
ric and satisfy independence of irrelevant alternatives (IIA) property, even with
preemption, have the price of anarchy Ω(logm

log logm). Moreover, all randomized
coordination mechanisms, if they are symmetric and unbiased, even with pre-
emption, have similarly the price of anarchy Ω(logm

log logm). These lower bounds
hold even for the special case of restricted assignment (B||Cmax), where each
job can go to at most 2 machines on which it has the processing time of 1.

Therefore, the bcoord mechanism of Caragiannis [3] is essentially the best
possible. We prove this theorem in Section 2.

In our proof, we use the fact that a job can be assigned to only a subset of all
machines, i.e., the restricted assignment model (B||Cmax). Let the inefficiency
of a job i on a machine j be defined as pij

minj′∈M pij′
. The restricted assignment

instances imply that the inefficiency of jobs on some machines is unbounded.
This raises the issue whether it is possible to circumvent the Ω(logm

log logm) lower
bound by assuming that inefficiency is bounded. We give a positive answer in
Section 3. We show that the inefficiency-based mechanism [2] achieves O(I) price
of anarchy, where I is the largest possible inefficiency.

1.1 Our Assumptions and Technique

In proving our lower bounds, it is critical to first state our assumptions and
definitions precisely. Recall that each job i ∈ I is associated with a load charac-
teristic pi = 〈pi1, pi2, · · · , pi|M|〉. If a job i cannot be processed at a machine j,
let pij =∞. Each job may or may not have an ID. When each job has a unique
ID, we say these jobs are non-anonymous. When jobs do not have (unique) IDs,
we say they are anonymous.

Our lower bound construction shares similar ideas to those of Azar et al. [2]
and Fleischer and Svitkina [8]. For each machine, we give a set of jobs that are
indistinguishable so as to confuse it.

Definition 1. Let j ∈M be a machine. Then two jobs i, i′ are indistinguishable
to j if the following holds.

3

1. pij = pi′j = 1,
2. there exists two different machines ji 6= ji′ , j 6∈ {ji, ji′} and piji = pi′ji′ = 1,
3. pij∗ =∞ for j∗ ∈M\{j, ji} and pi′j∗ =∞ for j∗ ∈M\{j, ji′}.

A set of jobs are indistinguishable to machine j if every two of them are
indistinguishable to j.

Definition 2. Let C be a deterministic coordination mechanism. C is said to be
symmetric if the following holds.

Let j, j′ ∈ M be two different machines. Let I1 be a set of indistinguishable
jobs to j and I2 a set of indistinguishable jobs to j′. Suppose that there exists a
one-to-one correspondence γ : I1 → I2 satisfying the following condition:

For every job i ∈ I1, there exists a job γ(i) ∈ I2 so that pij = pγ(i)j′ = 1.
Furthermore, there exists a permutation σi :M\{j} → M\{j′} so that
pij′′ = pγ(i)σi(j′′) for all j′′ ∈M\{j}.

Then the set of the finishing times t11 ≤ t12 ≤ · · · ≤ t1|I1| for I1 on machine
j and the set of the finishing times t21 ≤ t22 ≤ · · · ≤ t2|I2| for I2 on machine j′

are the same. i.e., t1l′ = t2l′ for 1 ≤ l′ ≤ |I1|.

Intuitively speaking, a coordination mechanism is symmetric, if two ma-
chines, when they are presented with two sets of jobs that look essentially the
same, then the finishing times for these two sets of jobs are the same on both
machines. All coordination mechanisms in Table 1 are symmetric.

As a clarification, the above assumption states nothing regarding the order of
the jobs to be finished on the machines. It is only about the set of their finishing
times.

Definition 3. Let C be a deterministic coordination mechanism. C is said to
satisfy the independence of irrelevant alternative (IIA) property if the following
holds.

Let j ∈ M be a machine and i, i′ be two different jobs. Let {i, i′} ⊆ I ′ ⊂ I.
If j is presented with the job set I ′ and it lets job i to be finished before i′, then
it also will let i to be finished before i′ when it is presented with a job set I ′∪{k}
for some job k ∈ I\I ′.

Informally speaking, the IIA property states that if job i is “preferred” over i′

by machine j, then this “preference” should not change because of the availability
of some other jobs k 6∈ {i, i′}. The IIA property appears as an axiom in voting
theory, bargaining theory, and logic [13].

The next lemma states that if a mechanism satisfies the IIA property, then
each machine must have some sort of “preference list” over a set of indistinguish-
able jobs. The proof of the following lemma can be found in the appendix.

Lemma 1. Let I∗(j) be a set of indistinguishable jobs to machine j. A de-
terministic coordination mechanism satisfies the IIA property iff, each machine

4

j ∈M has a strict linear order Lj over jobs in I∗(j), so that when j is presented
with a subset I ′ ∈ I∗(j) of these indistinguishable jobs, a job i ∈ I ′ has smaller
completion than i′ only when i precedes i′ in the order Lj.

Remark 1. We note that it is possible for a mechanism to satisfy the IIA property
without “explicitly” having a strict linear order Lj over indistinguishable jobs:
a machine can let all the indistinguishable jobs finish at the same time. This is
indeed what several known deterministic mechanisms would have done, including
makespan [9], bcoord [3], and ccoord [3]. In this case, the order Lj as stated
in Lemma 1 can be just an arbitrary order over these indistinguishable jobs.

An IIA-satisfying deterministic mechanism could ask a machine to let all
incoming indistinguishable jobs finish at the same time. But another possibility
is that a machine j lets the incoming indistinguishable jobs finish at different
times, when j does have an explicit linear order Lj over these indistinguishable
jobs. An obvious candidate for Lj is an order over the job IDs when all jobs
are non-anonymous. But even when jobs are anonymous, a machine still can
use machine IDs of those machines on which these indistinguishable jobs can be
processed to decide the order. To illustrate our point, assume that there are three
machines, j1, j2, and j3, and two jobs, i1 and i2. i1 has the load characteristic
〈1, 1,∞〉 while i2 has the load characteristic 〈1,∞, 1〉. Even though these two
jobs are indistinguishable to machine j1, j1 can deterministically choose to let
i1 finish first, if it prefers machine j2 over j3. By the above discussion, we make
our assumption.

Definition 4. Let C be a deterministic coordination mechanism satisfying the
IIA property. Then the linear order Lj of each machine for a set of indistin-
guishable jobs as stated in Lemma 1 can take one of the following two forms.

– Non-anonymous Case: it is the preference list of machine j over the job
IDs, or

– Anonymous Case: the preference list of machine j over the machine IDs.
In particular, given two indistinguishable jobs i and i′, i precedes i′ in Lj if
machine j prefers the machine ji to ji′ , where ji is the only other machine
on which piji = 1 and ji′ the only other machine on which pi′ji′ = 1.

Remark 2. Our assumptions stated in Definition 4 about the linear orders of
the machines over the indistinguishable jobs are the same used as those by Azar
et al. [2] and Fleischer and Svitkina [8] in their lower bound construction for
non-preemptive coordination mechanisms. Suppose that machines do not have
such preferences over the job IDs or the machine IDs, then a IIA-satisfying
deterministic mechanism can only let all indistinguishable jobs finish at the
same time (thus the linear order Lj of a machine j is an arbitrary order). We
show that the same lower bound holds easily for this case in Section 2.3.

Sections 2.1 and 2.2 deal with the non-anonymous and anonymous cases
respectively. The main technical challenge in our constructions is that the linear

5

order Lj on the machines j ∈ M can differ from machine to machine. We
need certain strategies to arrange the given set of jobs and machines so that
in a PNE, the makespan is relatively high. Our lower bound construction for
anonymous case is the most interesting part of this work. As a by-product,
we derive a Ramsey-type graph theorem that has a similar flavor to the one
obtained by Fleischer and Svitkina [8] when they proved their lower bound for
non-preemptive mechanisms. In addition, our proof does not use Erdős-type
probabilistic method; it is constructive and yields a polynomial time algorithm.

We now discuss our assumptions about randomized coordination mecha-
nisms. It seems that there is not much work done concerning randomized mecha-
nisms. The only one that we are aware of is the random mechanism of Immorlica
et al. [9], which proceeds by ordering the incoming jobs of a machine uniformly at
random and processing them non-preemptively. Cole et al. [6] used a randomized
mechanism for the minimizing the weighted sum objective.

When randomized mechanisms are used, a PNE is an assignment in which
no player can unilaterally change his machine to decrease the expected finishing
time of his job.

Definition 5. Let C be a randomized coordination mechanism.

1. C is unbiased if a machine j ∈ M, when presented with a set of indistin-
guishable jobs, lets each of them have the same expected finishing time.

2. C is symmetric if two machines j, j′ ∈M, when they are presented with the
same number of indistinguishable jobs, let these two sets of indistinguishable
jobs have the same set of expected finishing times.

1.2 Related Work

The notion of price of anarchy, first introduced by Koutsoupias and Papadim-
itriou [10], plays a central role in the field of algorithmic game theory. A spate
of papers have analyzed the PoA in various games. We refer the readers to [12]
for an (incomplete) summary of them.

Machine scheduling as a field has received sustained attention from researchers
for decades. When there is a central authority, in a classical paper, Lenstra,
Shmoys, and Tardos [11] show that it is possible to achieve 2-approximation.
Our lower bound offers an interesting contrast when jobs are controlled by self-
ish players.

The notion of coordination mechanisms was introduced by Christodoulou,
Koutsoupias and Nanavati [4] in an effort to reduce the PoA. Table 1 summarizes
of known coordination mechanisms for unrelated machine scheduling. For the
more special cases of unrelated machine scheduling, such as restricted assignment
and identical machines, better analysis of PoA for makespan mechanisms are
given by [1, 7].

Finally, we note that even though the makespan is the most common ob-
jective in machine scheduling literature, there are other natural alternative ob-
jectives and it is worthwhile designing small PoA coordination mechanisms for
them. Recently, Cole et al. [6] considered the objective of weighted sum of com-
pletion times of jobs.

6

2 Lower Bounds

All of our three lower bound constructions are based on a specific tree structure,
which we will call the equilibrium tree. In such a tree, the root has k children,
each of its k children has k−1 children, and each of these k(k−1) grandchildren
has k − 2 children and so on. Generally, a vertex whose distance to the root is
l has k − l children. See Figure 1 as an illustration for the case of k = 3. For
convenience, we will use a bit unconventional terminology by referring to the
root as the vertex in the k-th level, while its children are vertices in the (k− 1)-
st level and so on. Thus, a vertex in the l-th level has l children. We assume k
to be some arbitrary large number.

Fig. 1. The equilibrium tree with k=3

In all our constructions, a vertex in the equilibrium tree corresponds to a
machine, while an edge (j, j′) in the tree corresponds to a job i. Such a job has
processing time pij = pij′ = 1, while pij′′ = ∞ for j′′ 6∈ {j, j′}. Suppose that j
is in level t while j′ is in level t− 1, we say j is the parent machine (vertex) and
j′ is the child machine (vertex) of job i = (j, j′).

In our constructions, we will arrange the jobs and the machines corresponding
to the equilibrium tree in such a way that in an optimal solution, all jobs will
be assigned to their child machines, while in a PNE, all jobs are assigned to
their parent machines. Clearly, in the optimal solution, the makespan is 1, while
in the PNE, because there are k jobs on the root machines, the last job to be
finished on it will have completion time at least k. Observe that the number of
the vertices in the equilibrium tree is

m̃ = 1 +
k∑
l=0

l∏
s=0

(k − s) = 1 + k!(
k∑
s=0

1
s!

) < 3(
k

e
)k
√

2πk < k2k.

The function f(x) = ln x
ln ln x is strictly increasing when x ≥ ee. As we assume

k to be large, both m̃ and k2k are larger than ee. So f(m̃) < f(k2k), implying

ln m̃
ln ln m̃

<
2k ln k

ln 2 + ln k + ln ln k
<

2k ln k
ln k

< 2k.

7

Thus, if the number of the machines initially given is m and m = θ(m̃), by
the above inequality, we can conclude that the PoA in the constructed instance
is at least k = Ω(logm

log logm).

2.1 Deterministic Mechanisms: Non-Anonymous Case

In this section, we assume that jobs are non-anonymous and a machine, when
faced with a set of indistinguishable jobs, uses its preferences over the job IDs
to decide the order of these indistinguishable jobs.

Let m = m̃, i.e., all m machines given will be part of the equilibrium tree. We
assign the machines arbitrarily to the equilibrium tree and we will create m− 1
jobs corresponding to their edges. Without loss of generality, let the job IDs to
be from 1 to m − 1. Recall that each machine may have a different preference
order over these IDs. In the following, let X denote the set of job IDs that have
been used in the algorithm.

We now apply the procedure in Figure 2 to construct the instance.

Let X = ∅.
For level l from k − 1 down to 0

For each machine j in level l
Let j′ be the machine corresponding to j’s parent vertex.
Choose t to be the lowest ranking ID on j’s preference list that are not included
in X.
Create a job i with ID t and let pij = pij′ = 1 and pij′′ =∞ for j′′ ∈M\{j, j′}.
X := X ∪ {t}.

End
End

Fig. 2. An algorithm to construct the equilibrium tree in the non-anonymous case.

Observe that by the algorithm, a machine prefers all the jobs that can be
assigned to its vertices corresponding to its children in the equilibrium tree over
the job that can be assigned to its parent in the equilibrium tree. This property
will be used in the proof.

Theorem 2. In the constructed instance, the PoA is Ω(logm
log logm).

Proof. Clearly in the optimal assignment, each job should be assigned to the
child machine. We now argue that if each job is assigned to its parent machine,
we have a PNE. If this is the case, then the PoA is at least k = Ω(logm

log logm) and
we have the proof.

So suppose not. Then there exists some job i between machine j at level
l and machine j′ at level l − 1 and i has incentive to deviate from j to j′.
Before the deviation, j has l incoming jobs that are indistinguishable; after
the deviation, j′ has similarly l incoming jobs that are indistinguishable. By

8

Definition 2, the set of complete times for these l incoming jobs in both cases
are identical t1 ≤ t2 ≤ · · · ≤ tl. By our construction, job i would have the
completion time tl after its deviation since its ID ranks lower than the IDs of all
other l − 1 jobs of machine j′. Before the deviation, job i has completion time
tl′ for some 1 ≤ l′ ≤ l. Since tl′ ≤ tl, we get a contradiction. ut

2.2 Deterministic Mechanisms: Anonymous Case

In this section, we assume that jobs are anonymous and a machine, when faced
with a set of indistinguishable jobs, uses its preferences over the machine IDs to
decide the order of these indistinguishable jobs.

Assume that m machines are given, each with its own preference list over
each other. (For convenience, the preference list over machine IDs can be inter-
preted as a preference order over other machines). We will choose a subset of
machines (m̃ of them) and assign them to the equilibrium tree. Our goal is to
make sure that each machine, if assigned to be a vertex in the equilibrium tree,
ranks the machine corresponding to the parent vertex lower than all machines
corresponding to its child vertices. We will discuss later how large m has to be
(relative to m̃) so that such a construction is always possible. In the following,
when the context is clear, we use the terms vertex and machine interchangeably.

Let ns be the number of vertices in the s-th level in the equilibrium tree of
totally k levels. Then

nk = 1, and nl−1 = lnl, ∀1 ≤ l ≤ k.

We will define another sequence n′s for 0 ≤ s ≤ k. Roughly speaking, this
sequence denotes the numbers of vertices we will need in each level s in our
construction.

We now describe our algorithm. It proceeds in k − 1 iterations. In the be-
ginning of each iteration l, we maintain n′l equilibrium trees of l levels and n′l+1

equilibrium trees of (l − 1) levels. Let the roots of the former set be A and the
roots of the latter set be B. We discard all vertices of the latter set of equilibrium
trees, except for their roots, i.e., B. Let the vertices in B be v1, v2, · · · vn′l+1

and
we process them in this order. For v1, choose the l + 1 highest ranking vertices
on v1’s preference list among all vertices in A. Make v1 the parent of these roots.
(So we have an equilibrium tree of (l + 1) levels rooted at v1.) Remove these
roots from A and we process v2, v3, and so on, in the same manner. At the end,
all vertices in B are roots of equilibrium trees of l+1 levels, while the remaining
vertices in A are the roots of the equilibrium trees of l levels. Note that if we
make sure that

n′l − (l + 1)n′l+1 = n′l+2,

then in beginning of the next iteration, iteration l+1, we have the same condition
as the the current iteration: n′l+1 equilibriums trees of (l + 1) levels and n′l+2

equilibrium trees of l levels.

9

We now formally define the sequence {n′s}ks=0.
n′k = nk.

n′k−1 = kn′k.

n′k−s = (k − s+ 1)n′k−s+1 + n′k−s+2, ∀2 ≤ s ≤ k.

We choose m to be n′0 + n′1. The full algorithm is presented in Figure 3.

Out of the m given vertices, choose n′
1 arbitrary vertices and denote them as B and

the rest as A.
For each vertex v in B

Choose the highest ranking vertex v′ ∈ A.
Make v the parent of v′.
A = A\{v′}.

End // The prepartion is done.
For level l from 1 up to k − 1

Let the roots of the equilibrium trees of (l− 1) levels be B; throw away all other
vertices in these trees.
Let the roots of the equilibrium trees of l levels be A.
For each vertex v in B

Choose (l + 1) highest ranking vertices v1, v2, · · · , vl+1 among all vertices in
A on v’s preference list.
Make v the parents of v1, v2, · · · , vl+1.
A = A\{vi}l+1

i=1.
End

End

Fig. 3. An algorithm to construct the equilibrium tree in the anonymous case.

Lemma 2. The final outcome of the above algorithm is an equilibrium tree of
k levels; moreover, in such a tree, every non-leaf/non-root vertex ranks all of its
child vertices higher than its parent vertex.

Proof. We prove by establishing the following claim.

Claim 1 In the beginning of iteration l, 1 ≤ l ≤ k − 1, there are n′l equilibrium
trees of l levels and n′l+1 equilibrium trees of l− 1 levels. Moreover, each root of
the former ranks its child vertices higher than any of the roots of the latter.

Proof. We prove by induction. The base case l = 1 holds trivially based on what
the first for loop of the algorithm and the fact that n′0 − n′1 = n′2. By induction
hypothesis, in the beginning of the (l−1)-st iteration, there are n′l−1 equilibrium
trees of l−1 levels, and n′l equilibrium trees of l−2 levels. At the end of (l−1)-st
iteration, the latter set is thrown away except their roots. ln′l of the former will
be merged with these roots into n′l equilibrium trees of l levels. So there are only
n′l−1 − ln′l = n′l+1 equilibrium trees of (l− 1) levels left. This completes the first
part of the induction step. The second part of the induction step follows trivially
from the way we choose to merge the equilibrium trees. ut

10

By the first part of the above claim, in the beginning of the last iteration, we
have n′k−1 equilibrium trees of k−1 levels and n′k equilibrium trees of k−2 levels.
By the algorithm, at the end of the last iteration, we have n′k = 1 equilibrium
tree of k levels and n′k−1 − kn′k = 0 equilibrium trees of k − 1 levels. So we
are left with exactly an equilibrium tree of k levels. For the second part of the
lemma, choose any vertex v at level l. Observe that such a vertex must be a
root in the beginning of iteration l and its parent u must be one of the roots of
those equilibrium trees of l− 1 levels. By the second part of the above claim, we
conclude that v prefers its child vertices to u. The lemma follows. ut

We now bound m by establishing the following lemma.

Lemma 3. n′l < nl + n′l+1, for each 0 ≤ l ≤ k − 1.

Proof. We prove by induction. Let the base case be k − 1. Then n′k−1 = kn′k =
knk = nk−1 < nk−1 + n′k. For the induction step,

n′l = (l+1)n′l+1+n′l+2 < (l+1)(nl+1+n′l+2)+n′l+2 = nl+(l+2)n′l+2 ≤ nl+n′l+1,

where the first inequality follows from induction hypothesis. So the lemma fol-
lows. ut

Lemma 4. m̃ ≤ m ≤ 2m̃.

Proof. The first inequality holds because by Lemma 3, after throwing away some
vertices from the given m vertices, the algorithm ends up with an equilibrium
tree of k levels, whose number of vertices is exactly m̃.

For the second inequality, by the definition n′k and the previous lemma, we
know that

n′k ≤ nk
n′l ≤ nl + n′l+1 for all 0 ≤ l ≤ k − 1

Summing up the above inequalities, we have n′0 ≤
∑k
l=0 nl = m̃. The lemma

holds because

m = n′0 + n′1 < 2n′0 ≤ 2m̃.

ut

Theorem 3. In the constructed instance, the PoA is Ω(logm
log logm).

Proof. Clearly in the optimal assignment, each job should be assigned to the
child machine. We now argue that if each job is assigned to its parent machine,
we have a PNE. If this is the case, then the PoA is at least k = Ω(log m̃

log log m̃) =

11

Ω(logm
log logm), where the second equality follows from Lemma 4, and we would

have the proof.
So suppose not. Then there exists some job i between machine j at level

l and machine j′ at level l − 1 and i has incentive to deviate from j to j′.
Before the deviation, j has l incoming jobs that are indistinguishable; after
the deviation, j′ has similarly l incoming jobs that are indistinguishable. By
Definition 2, the set of complete times for these l incoming jobs in both cases
are identical t1 ≤ t2 ≤ · · · ≤ tl. By Lemma 3, machine j′ prefers all child
vertices over j, therefore, it also prefers all its other incoming jobs over i. This
implies that job i would have the completion time tl after its deviation. Before
the deviation, job i has completion time tl′ for some 1 ≤ l′ ≤ l. Since tl′ ≤ tl,
we arrive at a contradiction. ut

The following corollary follows from Lemmas 3 and 4.

Corollary 1. Let T be a tree of the following property: the root has k children,
and the vertex whose distance to the root is l has k − l children itself.

Let G = (V,E) be a graph, where each vertex in V has a strictly-ordered
preference over other vertices. Suppose that |V | ≥ 2|T |. Then we can always find
a subset of vertices V ′ ⊂ V , |V ′| = |T |, and assign these vertices to T so that a
vertex u ∈ V ′ prefers the vertices in V ′ corresponding to its children in T to the
vertex in V ′ corresponding to its parent in T .

2.3 Deterministic Mechanisms: When Machines Do Not Use Job or
Machine IDs

Suppose that machines do not use job or machine IDs to break ties when it is
faced with a set of indistinguishable jobs, then the only possibility for scheduling
these jobs is to let them finish at the same time. In this case, we can use the
same construction to get the lower bound very easily.

Let m = m̃ and assign all machines to the equilibrium tree of k levels ar-
bitrarily. For each edge (j, j′) in the tree, create a job with pij = pij′ = 1 and
pij′′ =∞ for j′′ 6∈ {j, j′}. To see that all jobs assigned to their parent machines
result in a PNE, observe that if a job deviate to its child machine, the number of
the jobs on that machine would be the same as the number of jobs on its parent
machine before its deviation, therefore the deviating job would have the same
finishing time on both machines, due to Definition 2. We can thus conclude that
the PoA in this case is also Ω(logm

log logm).

2.4 Randomized Mechanisms

Consider the same instance used in the preceding section. We argue that if
all jobs are assigned to their parent machines, the outcome would be a PNE.
Observe that if a job i deviates to its child machine in level l − 1, then this
child machine is faced with a set of l indistinguishable jobs. On the other hand,
before the deviation of i, its parent machine is also faced with a set of l indistin-
guishable jobs. Since we assume that machines are unbiased and symmetric, by

12

Definition 5, the expected completion time of job i would be identical in both
cases. We can thus conclude that the PoA in this case is also Ω(logm

log logm).

3 Upper Bound on Price of Anarchy When Inefficiency
Is Bounded

In this section, we demonstrate that the Ω(logm
log logm) lower bound on PoA can

be circumvented if the inefficiency of the jobs on the machines is bounded by I.
We analyze the upper bound of PoA of the inefficiency-based mechanism

proposed by Azar et al. [2]. Let pi = minj∈M pij , the minimum processing time of
a job on all machines. In this mechanism, each machine j ∈M non-preemptively
processes the incoming jobs based on nondecreasing order of their inefficiency
on it: that is, given two jobs i and i′, if pij

pi
<

pi′j
pi′

, then job i should be processed
before j (ties are broken by job IDs). This rather intuitive mechanism turns out
to be optimal for non-preemptive mechanism. As shown by Azar et al. [2], its
PoA is O(logm), matching the lower bound of non-preemptive mechanism.

Theorem 4. The inefficiency-based mechanism has PoA at most I+2 log I+2.

Proof. Given a PNE, let j1 be the most loaded machine, whose load is x, and
j2 be the least loaded machine, whose load is y. Furthermore, let i∗ be the last
job finished on machine j1.

Observe that

x− y ≤ pi∗j2 ≤ Ipi∗ ≤ IOPT.

The first inequality holds because if not, then job i∗ has incentive to migrate
to machine j2, a contradiction to the assumption that we are given a PNE; the
second inequality holds because of the assumption that inefficiency is bounded
by I; the third inequality holds because the makespan of the optimal assignment
can not be less than the minimum weight of job i∗. Now

x ≤ IOPT + y.

In the following, we prove that y ≤ (2 log I + 2)OPT. Thus dividing the
above inequality by OPT proves the theorem. ut

Claim 2 y ≤ (2 log I + 2)OPT.

Proof. The proof of the claim uses some ideas from [2].
Divide the interval [0, y] into k = b y

2OPTc contiguous levels, each of which has
length of 2OPT. The last part of the interval [0, y] whose length is y−kOPT <
2OPT does not belong to any level. If k = 0, then y < 2OPT and the proof
follows easily. So in the following, we assume that k ≥ 1.

Let Mkj be all jobs (and parts of jobs) that are processed on machine j that
are processed after time 2kOPT. Let Mk = ∪j∈MMjk. Let Rkj be the sum of
the minimum weight of jobs in Mkj . Precisely,

13

Rkj =
∑
i∈Mkj

pi ∗
amount of time after 2kOPT machine j processes job i

pij

(Observe that in fact there is at most one job i in Mkj whose contribution
to Rkj is less than its minimum processing time pi.)

Let Rk =
∑
j∈MRkj . Observe that

R0

m
≤ OPT, (1)

since R0 is the sum of the minimum processing times of all jobs.
Now let Ak be the “average inefficiency” of all jobs that are processed in the

interval [2(k − 1)OPT, 2kOPT], that is,

Ak =
2mOPT
Rk−1 −Rk

,

where the numerator is the total amount of work done by all the machines in the
interval [2(k − 1)OPT, 2kOPT] and the denominator is sum of the minimum
weight of all jobs that are (partially) processed during this interval. By the
definition of Rk and the assumption that all jobs have inefficiency of at most I,
we have

Ak ≤ I, (2)

Next we use a lemma proved by Azar et al. [2].

Lemma 5. [2, Lemma 4.2] Rk ≤ (1/2)Rk−1 for all k ≥ 1.

By this lemma, we have

Ak =
2mOPT
Rk−1 −Rk

>
2mOPT
Rk−1

≥ 2mOPT
R0(1/2)k−1

= 2kOPT
m

R0
. (3)

Combining Inequalities (1),(2), and (3), we have

2kOPT ≤ R0

m
Ak ≤

R0

m
I ≤ IOPT,

implying that k ≤ log I. We can thus conclude that y < (2k+2)OPT ≤ (2 log I+
2)OPT, and the proof is complete. ut

Acknowledgments

We thank Kurt Mehlhorn, Zoya Svitkina, and Reto Spöhel for their helpful
discussions.

14

References

1. Baruch Awerbuch, Yossi Azar, Yossi Richter, and Dekel Tsur. Tradeoffs in worst-
case equilibria. Theor. Comput. Sci., 361(2-3):200–209, 2006.

2. Yossi Azar, Kamal Jain, and Vahab S. Mirrokni. (almost) optimal coordination
mechanisms for unrelated machine scheduling. In SODA, pages 323–332, 2008.

3. Ioannis Caragiannis. Efficient coordination mechanisms for unrelated machine
scheduling. In SODA, pages 815–824, 2009.

4. George Christodoulou, Elias Koutsoupias, and Akash Nanavati. Coordination
mechanisms. In ICALP, pages 345–357, 2004.

5. Johanne Cohen, Christoph Dürr, and Nguyen Kim Thang. Non-clairvoyant
scheduling games. Theory Comput. Syst., 49(1):3–23, 2011.

6. Richard Cole, José R. Correa, Vasilis Gkatzelis, Vahab S. Mirrokni, and Neil Olver.
Inner product spaces for minsum coordination mechanisms. In STOC, pages 539–
548, 2011.

7. Artur Czumaj and Berthold Vöcking. Tight bounds for worst-case equilibria. ACM
Transactions on Algorithms, 3(1), 2007.

8. Lisa Fleischer and Zoya Svitkina. Preference-constrained oriented matching. In
Proceedings of the Seventh Workshop on Analytic Algorithmics and Combinatorics
(ANALCO), pages 66–73, 2010.

9. Nicole Immorlica, Li (Erran) Li, Vahab S. Mirrokni, and Andreas S. Schulz. Coordi-
nation mechanisms for selfish scheduling. Theor. Comput. Sci., 410(17):1589–1598,
2009.

10. Elias Koutsoupias and Christos H. Papadimitriou. Worst-case equilibria. Computer
Science Review, 3(2):65–69, 2009.

11. Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. Approximation algorithms
for scheduling unrelated parallel machines. Math. Program., 46:259–271, 1990.

12. N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic Game
Theory. Cambridge University Press, 2007.

13. Wikipedia. http://en.wikipedia.org/wiki/Independence of irrelevant alternatives.

A Proof of Lemma 1

The (←) direction is obvious. For the (→) direction, we create the strict linear
order Lj for machine j as follows.

For every two indistinguishable jobs i and i′ in I∗(j), if a machine j, given
any subset I ′ ⊆ I∗(j) and I ′ ⊇ {i, i′}, lets i to have smaller completion time
than i′. Let i precedes i′ in L̃i. Due to the IIA property, the precedence order
in L̃j must be transitive. So L̃j is a linear order with possibly ties. Let Lj be
derived from L̃j by breaking ties in L̃j arbitrarily.

To see that Lj satisfies the property stated in the lemma, note that if job i
has smaller completion time than i′ when machine j is faced with I ′ ⊆ I∗(j)
and I ′ ⊇ {i, i′}, then i precedes i′ in L̃j , hence also in Lj . ut

15

