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Abstract
Given a set D of n unit disks in the plane and an integer k ≤ n, the maximum area connected subset
problem asks for a set D′ ⊆ D of size k that maximizes the area of the union of disks, under the
constraint that this union is connected. This problem is motivated by wireless router deployment
and is a special case of maximizing a submodular function under a connectivity constraint.

We prove that the problem is NP-hard and analyze a greedy algorithm, proving that it is a 1
2 -

approximation. We then give a polynomial-time approximation scheme (PTAS) for this problem with
resource augmentation, i.e., allowing an additional set of εk disks that are not drawn from the input.
Additionally, for two special cases of the problem we design a PTAS without resource augmentation.
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1 Introduction

Maximizing a submodular function1 under constraints is a classical problem in computer
science and operations research [8, 23]; the most commonly studied constraints are cardinality,
knapsack and matroids constraints. A natural constraint that has received little attention is

1 Given a set X, a function f : 2X → R is submodular if given any two subsets A, B ⊆ X, f(A) + f(B) ≥
f(A ∩B) + f(A ∪B).
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32:2 Maximizing Covered Area in the Euclidean Plane with Connectivity Constraint

the connectivity constraint. In this paper, we study the following problem: given a set of
n unit disks in the plane, select a subset of k disks that maximize the area of their union,
under the constraint that this union is connected. We call this problem the Maximum Area
Connected Subset problem (MACS). Notice that the area covered by a set of disks is a
monotone submodular function.

The problem is motivated by wireless router deployment, first introduced in [14], where
the goal is to install a given number of routers to maximize the number of clients covered.
When the clients are uniformly spread in the plane, the number of clients in a region can be
approximated by the area of that region, leading to our problem.

Our Contributions

We first analyze a variant of the greedy algorithm and show that it computes a 1
2 -approxi-

mation to MACS (Theorem 3); further, the analysis is tight. In contrast, the natural
algorithm that greedily adds one disk at a time can end up with a solution with area a factor
of Ω (k) worse than the optimal solution.

To improve upon the 1
2 -approximation ratio, we turn to the resource augmentation setting

in which the algorithm is allowed to add a few additional disks that need not be drawn from
the input. We design a PTAS for the resource augmentation version of the problem using
Arora’s shifted quadtree technique (Theorem 4)2. The proof hinges on the existence of a
near-optimal solution with O (εk) additional disks and with additional structure that allows
its computation by dynamic programming.

As a corollary, we show that for two special cases of MACS we can in fact design a PTAS
without resource augmentation: i) when the Euclidean distances between centers of the input
disks are well-approximated by shortest paths in their intersection graph (Corollary 6), and
ii) when every point of the relevant region of the Euclidean plane is covered by at least one
input disk (Corollary 9).

On the other hand, via a reduction from the Rectilinear Steiner Tree problem, we show
that MACS is NP-hard (Theorem 3). We also show that MACS for the input of a set of
quadrilaterals instead of disks, the problem is APX-hard (Theorem 12). We leave open the
question whether MACS is APX-hard or admits a PTAS without resource augmentation.

Related work

Maximising a monotone submodular function under constraint(s) is a subject that has received
a large amount of attention over the years. We refer the readers to [2, 5, 6, 8, 13, 15, 23]
and the references therein. Our problem can be regarded as maximising a submodular
function under a cardinality (knapsack) constraint and a connectivity constraint. Notice that
the connectivity constraint is central to the difficulty of our problem: without connectivity
constraints, MACS admits a PTAS even in the more general case of convex pseudodisks [4].
However even without the connectivity constraint the problem remains NP-hard3.

Another motivation for studying the connectivity constraint is related to cancer genome
studies. Suppose that a vertex represents an individual protein (and associated gene), an
edge represents pairwise interactions, and each vertex has an associated set. Finding the
connected subgraph of k genes that is mutated in the largest number of samples is equivalent
to the problem of finding the connected subgraph with k nodes that maximizes the cardinality
of the union of the associated sets (see [21]).

2 We also develop an alternative algorithm using Mitchell’s m-guillotine dissection technique. See the full
version for details.

3 The reduction is from Maximum independent set problem that is NP-hard in unit-disk graphs.
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In the general (non-geometric) setting, there exists a O
(

1√
k

)
-approximation algorithm

for maximizing a monotone submodular function [14]. Our results show that when the
submodular function and the connectivity are induced by a geometric configuration, the
approximation ratio can be significantly improved.

We next consider several related problems where the connectivity constraint plays an
important role. The goal of the node-cost budget problem [20] is to find a connected set of
vertices in a general graph to collect the maximum profit on the vertices while guaranteeing
the total cost does not exceed a certain budget. Notice that in this setting the submodular
function is a simple additive function of the profits. Another related problem [3] is to assign
radii to a given set of points in the plane so that the resulting set of disks is connected and
the objective is to minimize the sum of radii.

Khuller et al. [12] study the budgeted connected dominating set problem where given a
general undirected graph, the goal is to select k vertices whose induced subgraph is connected
and that maximizes the number of dominated vertices. It was pointed out to us that their
algorithm can be used to give a 1

13
(
1− 1

e

)
-approximate solution for MACS. The authors

of [10] consider the problem of selecting k nodes of an input node-weighted graph to form a
connected subgraph, with the aim of maximizing or minimizing the selected weight.

We now turn to the geometric setting. A logarithmic-factor approximation algorithm
is known [9] for the connected sensor coverage problem in which one must select at most k
sensors in the plane forming a connected communication network and covering the desired
region, where the region covered by each sensor is convex [7, 11]. A (1− ε)-approximation
algorithm in time nO(1/ε) for the maximum independent set problem on unit disk graphs
is known [17]. The authors of [16] present a constant-factor approximation algorithm for
several problems on unit disk graphs, including maximum independent set. For the geometric
set cover problem where the goal is to cover a given set of input points with a minimum
number of given disks, a PTAS is possible [18].

2 Our results

The Euclidean distance between two points x and y is denoted by ‖x− y‖. When there
is no confusion, we will refer to a point x in the plane and the unit disk centered at x
interchangeably.

I Definition 1. Given a finite set S in the plane, the unit disk intersection graph UDG(S)
is a graph on S where {x, y} ⊆ S is an edge of UDG(S) if and only if ‖x− y‖ ≤ 2.

A set S of points in the plane are connected if UDG(S) is a connected graph.

I Definition 2. The Maximum Area Connected Subset (MACS) problem is as follows.
Input: a finite set of points X ⊆ R2 and a non-negative integer k, where k ≤ |X|.
Output: a subset S ⊆ X of size at most k such that the unit-disk graph UDG(S) of S is
connected.
Goal: maximize the area of the union of the unit disks centered at the points of S.

The optimal solution of MACS on input (X, k) is denoted by OPT (X, k).

When the context is clear, we refer to OPT (X, k) as OPT, which is also used to denote
the area covered by the optimal solution; observe that OPT is trivially upper-bounded by
πk. Any S ⊆ X with |S| 6 k for which UDG(S) is connected is called a feasible solution.

We state our main results below. All omitted proofs and figures can be found in the
appendix or in the full version.

APPROX/RANDOM 2019



32:4 Maximizing Covered Area in the Euclidean Plane with Connectivity Constraint

I Theorem 3 (Approximation). There exists a polynomial-time algorithm that computes a
1
2 -approximation for MACS (Algorithm 1).

With resource augmentation, we obtain a (1− ε)-approximation.
I Theorem 4 (Resource augmentation). Let ε > 0 be a given parameter. Given a set of points
X ⊆ R2 and a non-negative integer k, there is an algorithm (Algorithm 2) that computes, in
time nO(ε−3), a subset S ⊆ X of size at most k and a set Sadd ⊆ R2 of at most εk points,
such that UDG (S ∪ Sadd) is connected and the area of the union of the unit disks centered
at S is at least (1− ε)OPT (X, k) .

Theorem 5 can be obtained alternatively by a (deterministic) guillotine cut approach
with a faster running time. We leave that for the full version of the paper.

Let dG(x, y) denote the distance between two vertices x and y of G. A set X of points in
the plane is called α-well-distributed if UDG(X) is an α-spanner for X [19]:
I Definition 5. Given α > 0, a finite set X of points in the plane is called α-well-distributed
if for all x, y ∈ X, dUDG(X) (x, y) 6 dα · ‖x− y‖e.

I Corollary 6. There exists a PTAS for MACS on α-well-distributed inputs, where α is a
fixed constant (Algorithm 3).

I Definition 7. A set X is called pseudo-convex if the convex-hull of X is covered by the
union of the unit disks centered at points of X.

I Lemma 8. A pseudo-convex set X is 3.82-well-distributed.

I Corollary 9. MACS on pseudo-convex inputs admits a polynomial-time approximation
scheme.

We next turn to the hardness of MACS.
I Theorem 10 (Hardness). MACS is NP-hard.

I Definition 11. The quad-connected-cover is defined as follows.
Input: a set T of n convex quadrilaterals in the plane, and an integer k.
Output: a subset T of T of size k such that the intersection graph of T is connected.
Goal: Maximise the area covered by the union of quadrilaterals in T .

I Theorem 12. Quad-connected-cover is APX-hard.

3 Proof of Theorem 3: the Two-by-two algorithm

In the section we present a simple 1
2 -approximation for MACS based on a greedy approach:

we iteratively add two unit disks that maximize the area covered while maintaining feasibility.
Interestingly, the algorithm that adds disks one at a time is not a constant approximation
algorithm. See Figure 1 for an example. Moreover, trying all possible sets of s disks, for any
s ≥ 3, in the neighborhood of the current solution does not improve the approximation ratio.
This can be seen on Figure 2 where the first disk chosen by the algorithm is not x, but xs.

Let Bx denote the unit disk centered at x ∈ R2 and B(S) =
⋃
x∈S Bx denote their union.

The area covered by a set C ⊂ R2 is denoted by A(C). When C = B(S), its area is simply
written as A(S). Given a graph G, G [S] denotes the subgraph induced by a subset S of
vertices. A subset of the vertices of a graph is a dominating set if every vertex belongs to
the set or is adjacent to some vertex of it.
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Figure 1 The greedy algorithm that adds only one connected disk maximising the marginal area
covered is not a constant factor algorithm. For any k > 0 and ε > 0, consider the above input where
O = (0, 0), and yi = (2(i− 1) + ε, 0) for all i. Then, put all x1, . . . , xk evenly spaced (by an angle
α) on a circle of radius 2 around O so that none of them intersect y2. Each light grey regions are
covered by only one disk xi so the marginal gain of adding xi to any solution is at least the area
of one of these regions, say a > 0. If ε is chosen such that A(By1 \BO) < a, then if the algorithm
starts by picking disk O, it will then choose all xj , so that the area covered by the solution is
upper-bounded by the area of a radius 3 disk, 9π, while the optimal solution (disks yi) has area πk.

One can find an example similar to Figure 2 to show that optimising the initial choice of
the first disk(s) does not improve the approximation ratio.

I Theorem 3 (Approximation). There exists a polynomial-time algorithm that computes a
1
2 -approximation for MACS (Algorithm 1).

We can assume w.l.o.g. that UDG(X) is connected; otherwise we return the maximum
value over all connected components. The execution of Algorithm 1 is divided in two phases.
An iteration belongs to the first phase as long as the current solution S is not a dominating
set in the graph UDG(X).

During the first phase, in each iteration the area covered increases by at least π. During
the second phase, since the current solution is a dominating set, any disk can be added
while keeping the solution feasible. Therefore the algorithm reduces to a standard greedy
algorithm to maximize a submodular function, and the analysis is similar to the proof that
Nemhauser’s algorithm is a

(
1− 1

e

)
-approximation for classic submodular functions.

Algorithm 1 The Two-by-two algorithm for MACS.

Input: X ⊆ R2, k ≥ 0, where X is finite and k ≤ |X|.
Output: a feasible set of size k.

1 if k is even then
2 S ← any two intersecting disks of X;
3 else
4 S ← any one disk of X;
5 while |S| 6 k − 2 do
6 {x, x′} ← arg max {A(S ∪ {x, x′}) : x, x′ ∈ X, S ∪ {x, x′} is feasible };
7 S ← S ∪ {x, x′};
8 return S;

APPROX/RANDOM 2019



32:6 Maximizing Covered Area in the Euclidean Plane with Connectivity Constraint

Proof. We first analyze the even case where k = 2κ, and then we reduce the odd case to
the even one. Let Sκ = {x1, x2, . . . , x2κ} be the solution returned by the algorithm. Let
Si = {x1, . . . , x2i} be the set right before the i-th iteration and let d be the smallest integer
such that Sd is a dominating set in UDG(X). If such an integer does not exist, i.e., Sκ is
not a dominating set, then set d = κ.

B Claim 13. The area A(Sd) is at least πd.

Proof. For i < d, Si is not a dominating set. Then there exist two disks y, y′ such that
B(Si) ∩By = ∅ and S ∪ {y, y′} is connected. Adding such a pair increases the area covered
by at least A (By) = π. Since (x2i+1, x2i+2) is chosen to maximize A(Si ∪ {x, x′}) among all
feasible pairs, A(Si+1) > A(Si ∪ {y, y′}) > A(Si) + π. By induction, A(Sd) > πd. C

Note that when d = κ, Claim 13 immediately implies that A(Sκ) > OPT
2 . Also regardless of

the initial choice, the area covered by the first two disks is at least π. This observation will
be useful when we prove the case where k is odd.

B Claim 14. For all d 6 i 6 κ, A(OPT) 6 A(Si) + κ · (A(Si+1)−A(Si)) .

Proof. It is easy to check that the function A(·) satisfies the following properties for all
H ⊆ H ′ ⊆ X :

positivity: A(H) > 0.
monotonicity: A(H) 6 A(H ′).
submodularity: ∀H ′′ ⊆ X, A(H ′ ∪H ′′) 6 A(H ∪H ′′)−A(H) +A(H ′).

Let OPT = {y1, . . . , y2κ}. We have for all d 6 i 6 κ :

A(OPT) 6 A(Si ∪OPT)
= A(Si) + (A(Si ∪ {y1, y2})−A(Si)) + . . .

+ (A(Si ∪ {y1, . . . , y2κ})−A(Si ∪ {y1, . . . , y2κ−2}))
6 A(Si) + (A(Si ∪ {y1, y2})−A(Si)) + · · ·+ (A(Si ∪ {y2κ−1, y2κ})−A(Si))
6 A(Si) + κ · (A(Si ∪ {x2i+1, x2i+2})−A(Si))
= A(Si) + κ · (A(Si+1)−A(Si)) .

The first and the second inequality respectively come from monotonicity and submodularity,
while the third one follows from the fact that for i ≥ d, (x2i+1, x2i+2) is the pair of disks
maximizing A(Si ∪ {x, x′}) among all pairs (x, x′) in X. As Sd is a connected dominating
set in X, all pairs (y2j−1, y2j) for 1 6 i 6 κ are considered. C

We can now re-write Claim 14 as

For all d 6 i 6 κ : A(Si+1) >
(

1− 1
κ

)
A(Si) + OPT

κ
.

Combined with Claim 13, simple algebra yields that for d 6 i 6 κ, we have

A(Si) >
[

1−
(

1− d

2κ

)(
1− 1

κ

)i−d]
OPT.

Therefore, for i = κ we have

A(S) = A(Sκ) >
[

1−
(

1− d

2κ

)(
1− 1

κ

)κ−d]
OPT =

[
1− 1

2 (1 + t)
(

1− 1
κ

)κt]
OPT
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Figure 2 A tight example for Algorithm 1. For any ε > 0, X contains x = (0, 0) (stripe-shaded),
xi = (2(i− 1) + iε, 0) and x′

i = ((2 + ε)i, 0) for 1 6 i 6 k (blue) and yi = (−2i− ε/2, 0) for 0 6 i 6 k

(orange). Suppose that k = 1 + 2κ is odd and the algorithm starts with S0 := {x, x}. Then the
algorithm will add {xi, x

′
i} in iteration i since it covers more additional area than {y0, y1}. The

solution returned (blue disks) covers an area of π + κ(π + f(ε)) ≈ k
2π, for some function f(·) with

limε→0 f(ε) = 0, while OPT (orange disks) covers an area kπ.

where t = κ− d
κ
∈ [0, 1]. As 1 + x 6 ex for all x ∈ R, we get

A(S) >
(

1− 1
2(1 + t)e−t

)
OPT >

(
1− 1

2e
te−t

)
OPT = 1

2OPT,

concluding the proof of the case when k is an even number.
For the odd case k = 2κ− 1: in the first iteration, instead of adding two disks to S1, we

add a single disk of X to S1. This is equivalent to adding two copies of the same disk. This
iteration belongs to the first phase, and the only properties we used in the first phase is that
each iteration adds an area of π, and keeps the solution feasible; these are clearly true for
the first iteration even with one disk. J

Figure 2 shows a tight example.

4 Proof of Theorem 4: PTAS with resource augmentation

I Theorem 4 (Resource augmentation). Let ε > 0 be a given parameter. Given a set of points
X ⊆ R2 and a non-negative integer k, there is an algorithm (Algorithm 2) that computes, in
time nO(ε−3), a subset S ⊆ X of size at most k and a set Sadd ⊆ R2 of at most εk points,
such that UDG (S ∪ Sadd) is connected and the area of the union of the unit disks centered
at S is at least (1− ε)OPT (X, k) .

We first summarise the high level ideas; the details are then presented in subsequent
sections. Let (X, k) denote an input of MACS and OPT be the optimal solution of MACS
on input (X, k). When the context is clear OPT can also denote the total area covered by
the union of the unit disks centered in points of OPT.

We start by guessing a bounding box of size Θ(k) × Θ(k) that contains OPT. Next,
another square of size L× L, where L = Θ(k), is randomly shifted so that it always contains
the bounding box. We remove all disks that are outside the square. That square is then
recursively partitioned into smaller squares until they have (large) constant size. This
hierarchical dissection induces a grid.

We remove all disks that intersect the lines of the grid. In contrast, we deploy some new
disks (Xadd) in some strategic portal positions along the lines and near the boundary of all
the smallest squares.

Next, we use dynamic programming to build a solution from the smallest squares upwards.
The difficulty lies in having to guarantee the connectivity when combining solutions from
smaller squares into larger squares using additional disks, while controlling the time complexity
and the number of disks added.

APPROX/RANDOM 2019



32:8 Maximizing Covered Area in the Euclidean Plane with Connectivity Constraint

The key of our approach lies in Lemma 20, in which we argue that with constant probability,
there exists a well-structured near-optimal solution that uses at most εk additional disks.

4.1 The grid
The first step is to reduce significantly the size of the input by guessing the position of the
optimal solution.

I Lemma 15. There exists a point c ∈ X such that OPT is contained in an axis-parallel
square of side length 4k and centered in c.

Proof. For c, take any disk in OPT and recall that OPT is connected and has at most
k disks, so all the disks in OPT are contained in the square centered at c and with side
length 4k. J

Given the randomly shifted hierarchical dissection, we use the same terminology as
Vazirani [22, Chapter 11] to define the root square, the shift of the dissection, the horizontal
and vertical lines, the levels of squares and of lines of the dissection, and the portals. The
recursive dissection stops when a square has side length L0 = Θ(ε−1) (leaf square). Portals
are either at the intersection of grid lines or distributed along the grid lines (with varying
density). We make some observations here (all details and proofs are in the following section
and the appendix). First, the distance between two consecutive portals on a line at level
` is O(L/(m2`)), where m represents the density of portals on the grid. The greater this
parameter, the greater the accuracy of the solution and higher the running time. Choosing
m = Θ(ε−1 log(L/L0)) = O(ε−1 log(εk)) allows us to compute a near-optimal solution in
polynomial time.

I Observation 16. If an horizontal line of level ` crosses a vertical line of level greater than
or equal to ` then the intersection point is a horizontal portal.

We define a set P of portal disks which we position at or near the portals. If a portal
(i, j) is on exactly one line of the grid then we add the portal disk (i, j) to P. If a portal
(i, j) is at the intersection of two lines of the grid, then i) if it is a horizontal portal then we
add to P two portal disks (i, j + 2) and (i, j − 2), and ii) if it is a vertical portal then we
add to P two portal disks (i− 2, j) and (i+ 2, j).

Given a square C of the dissection, the potential portal disks of C, denoted by PC , are
the portal disks on the boundary of C.

I Observation 17. For any square, the number of potential portal disks is O(m) =
O(ε−1 log(εk)).

The border of a leaf square C, denoted as ∂C, is the set of points in C within distance 1
from C’s boundary. The remaining points of C are called the core of C, written as core(C). A
unit disk with its center in C intersects the boundary if and only if its center lies in the border.
If two disks are in the core of two different leaf squares, then they do not intersect. We refer
to the union of the core of all leaf squares as the core. In a leaf square C = [a, b]× [c, d], the
set of points formed by the boundary of the square [a + 2, b − 2] × [c + 2, d − 2] is called
the fence. We cover the fence of C by fence disks, aligned such that each corner of this
square is the center of a fence disk. See Figure 4. We denote by F the set of all fence disks
for all leaf squares. The set of portal disks and fence disks form the set of additional disks
Xadd = P ∪ F .
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4.2 Detailed construction of the grid

Let L′ be the sidelength of the box given by the Lemma 15, and set X ′ be the set of points
of X lying inside this box. Let L be the smallest power of 2 greater than 2L′. The root
square is defined to be the axis-parallel L× L square with the same left-bottom corner as
the bounding-box.

A shift is an non-negative integer a smaller than or equal to L/2. We say that the root
square is shifted by a if it is translated by the vector (−a,−a). Notice that any shifted root
square contains the bounding-box.

Given a shifted root square, we can define its dissection as a recursive partitioning into
smaller squares. The L× L root square is divided into four squares of size L/2× L/2. Each
of these squares is again divided into four L/4× L/4 squares, so forth. The process stops
when the side length of a square is equal to L0 = Θ(ε−1). Let d = log (L/L0) = O (log(εk)).
We can think of this partitioning as 4-ary tree, where each node at level ` corresponds to a
L02` × L02` square and has four children corresponding to four L02`−1 × L02`−1 squares.
The root square is at level 0 and the leaf squares are at level d. Given two squares of level `
and level `′, ` > `′, we say the former is of higher level than the latter. So the leaf square is
the one with the highest level.

This dissection defines a grid composed of 2 · (2d − 1) horizontal and vertical lines of
length L. We say that a line is at level ` ∈ {1, . . . , d} if it was added on the grid to divide a
square at level l− 1 into four squares at level `. There are 2` horizontal (resp. vertical) lines
at level `. See figure 3.

Figure 3 An illustration of the grid with
d = 3. Numbers on the top and the right
are the level of the corresponding lines and
the red, orange and yellow are respectively
the example of square of the dissection at
level 1, 2 and 3.

Figure 4 The grey and white area are respectively
the core and the border. Dotted lines are from the grid
while the orange lines represent the fence and orange
disks are the fence disks. Blue points are (vertical)
portals and blue disks are portal disks.

On each horizontal line of level ` > 1, we will place a set of vertical – notice the naming
asymmetry – portals of level `, near which (not exactly on which) we will deploy the portal
disks to facilitate the connection of disks on both sides of this line. We define a set of
horizontal portals for each vertical line in an analogous manner. Notice that it is possible
that a point is both a vertical portal and a horizontal portal. Let m = O(ε−1d) be a power
of two. Along a line of level `, there are m2` + 1 portals evenly spaced so that the distance
between two neighboring portals have distance exactly L

m2` .

APPROX/RANDOM 2019



32:10 Maximizing Covered Area in the Euclidean Plane with Connectivity Constraint

4.3 Dynamic program
The algorithm uses dynamic programming. The dynamic programming table is indexed by
configurations.

I Definition 18. A configuration is a 5-tuple C = [C, t, tadd, P,∼], where:
C is a square of the dissection.
0 ≤ t ≤ k is an integer, denoting the number of disks of S used by the solution inside C.
0 ≤ tadd ≤ εk is an integer, denoting the number of additional disks used by the solution
inside C.
P ⊆ PC is a subset of potential portal disks of C, those that are used by the solution.
∼ is a planar connectivity relation on P (described below), representing the connectivity
achieved so far by the part of the solution inside C.

In the following, to facilitate discussion, we will refer to portals disks as simply portals.
An equivalence relation ∼ on P is a planar connectivity relation if each equivalence class has
an associated tree with the portals at the leaves, and there exists a planar embedding of
those trees inside the square, such that the trees do not intersect.

The content of the dynamic programming table, the value of a configuration C =
[C, t, tadd, P,∼], denoted by A(C), is the maximum area that can be covered by a set S ⊆ X
of t disks in C ∩ core4, such that there is a set Sadd ⊆ Xadd of tadd additional disks such that
any p, p′ ∈ P with p ∼ p′ are in the same connected component induced by S ∪Sadd ∪P . We
say that p and p′ are connected in C. If such sets {S, Sadd, P} do not exist for configuration
C, the value A(C) is set to −∞.

4.4 Computing leaf entries of the dynamic programming
We first explain how to fill the entries of the table corresponding to the leaf squares. For
each leaf square C, we enumerate
1. all possible subsets S ⊆ X ′ ∩ core(C) of at most k0 disks, for a parameter k0 = O(ε−3)

(see Lemma 20).
2. all possible subsets Sf ⊆ F ∩ C,
3. all possible subsets P ⊆ PC , and
4. all possible planar connectivity relations ∼ on P .
We say that (S, Sf , P,∼) is a guess in C and that it is usable if one of the following two
conditions holds:
Case 1. if P = ∅, then S ∪ Sf is connected, otherwise
Case 2. every connected component of S ∪ Sf ∪ P contains at least one portal disk in P .

Each usable guess (S, Sf , P ) in C corresponds to a configuration C := [C, |S|, |Sf |, P,∼],
where ∼ is the planar connectivity relation on P induced by the connected components of
S ∪ Sf ∪ P .

Several usable guesses (S, Sf , P ) can potentially correspond to the same configuration C.
The value of C is computed5 as the maximum value A(S) over all such guesses S.

4 Recall that core is the union of the core(C) of all leaf squares C.
5 The area covered by the union of a set of disks is a real number that can be computed exactly. When
the desired accuracy is a fixed constant (for instance ε), one can give an approximation of this area
with the desired precision in polynomial time.
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(a) the top-left configuration
is closed while other configur-
ations are empty.

(b) there is unique connected
component independent from
the outside world.

(c) Each connected component
contains a portal in P .

Figure 5 Illustration of cases (a)-(b)-(c) of point 6. in Definition 19.

4.5 Computing all entries
It remains to show how to compute the solution of a configuration, say C = [C, t, tadd, P,∼],
for a square C at level `, by combining the solutions

[
Ci, ti, tiadd, P

i,∼i
]
of the four child

squares Ci, i = 1, 2, 3, 4, at level ` + 1. Recall that connectivity relations ∼i capture the
information about connectivity in the squares Ci. Let P = {p0, . . . , ps} be the subset of
potential portal disks. We define ∼′ as the transitive closure of all ∼i: p ∼′ p′ if and
only if there exists a sequence of squares i1, . . . , is ∈ {1, 2, 3, 4} and a sequence of portals
p = p0, . . . , ps = p′ such that for all 1 6 j 6 s, pj is a common portal of P ij−1 and P ij .
Further, pj−1 and pj must be connected in Cij . We call C empty if P = ∅ and t = 0, and
closed if P = ∅ and t > 0.

We now define the notion of compatibility of configurations.

I Definition 19. Five configurations
(
C, C1, C2, C3, C4) with C = [C, t, tadd, P,∼] and

Ci = [Ci, ti, tiadd, P i,∼i] are compatible if all the following properties are satisfied.
1. all Ci have the same level and their union is the square C.
2. P =

⋃4
i=1 P

i ∩ ∂C.
3. ∼ is the restriction of the transitive closure ∼′ of

(
∼i
)

16i64 to P .
4. t = t1 + t2 + t3 + t4 and t 6 k.
5. tadd = t1add + t2add + t3add + t4add + |

⋃4
i=1 P

i \ P | and tadd 6 εk.
6. exactly one of following three conditions holds.

(a) Ci, i ∈ {1, 2, 3, 4}, is closed and all Cj, j 6= i are empty.
(b) C is closed and there is exactly one equivalence class for ∼′.
(c) all equivalence classes of ∼′ contain a portal in P .

I Remark. By condition 2, the set P of portals used by C is obtained by removing from⋃4
i=1 P

i the portals not on the border of C. Notice that these removed portals in
⋃4
i=1 P

i \P
are now counted as additional disks (in condition 5). Condition 6 attempts to capture all
possible situations – either we have a single connected component not connected to the
“outside world”, which is a feasible solution by itself, (see Condition (6a) and Condition (6b)),
or we have several connected components, each of which must be further connected to the
outside world in a later stage (see Condition (6c)). See Figure 5. Finally, it is easy to see
that if all ∼i satisfy the connectivity relation, then so does ∼.

Let a be a shift chosen uniformly at random in
{

0, L2
}
. We consider the grid associated

to this shift and the set of additional disks on this grid as defined in the previous section.
The following lemma is essential to our main theorem. Recall that P denotes the set of
portal disks and F the set of fence disks.
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I Lemma 20 (Structural Lemma). Given a fixed parameter ε > 0, there exists a subset
S ⊆ core of input disks and a set Sadd ⊆ P ∪F of additional disks, such that with probability
at least 1/3,
(i) (feasibility) |S| 6 k and S ∪ Sadd is connected,
(ii) (bounded resource augmentation) |Sadd| 6 εk,
(iii) (near-optimality) A(S) > (1− ε)OPT,
(iv) (bounded local size) For each leaf square C, |C ∩ S| = O(ε−3).

Our dynamic programming aims at finding a solution satisfying all conditions of this
Structural Lemma. We show that such a solution can be computed in time nO(ε−3). The
bounded local size property ensures that we can try all possible configurations in the leaf
squares in polynomial time. We also prove that for any square, the number of different
planar connectivity relations is upper-bounded by the Catalan number of the number of
potential portal disks of the square. It follows from Observation 17 that this number is
polynomially bounded.

4.6 Proof of the structural Lemma
We construct S and Sadd from OPT in two steps. In the first step, we build sets S′ and Sadd
that satisfy properties (i)-(iii); and in the second step, we construct S ⊆ S′ by removing
some disks from S′ so as to satisfy property (iv) while maintaining the validity of the three
first properties.

4.6.1 Part 1: Construction of the set of additional disks
Fix any shift, consider its associated grid and dissection and the corresponding set of
additional disks Xadd = P ∪F . Let S′ be the union of disks in OPT that are located in the
core of a leaf square of the dissection, namely

S′ = OPT ∩ core.

Observe that S′ might be disconnected since we have removed from OPT all the disks
that were intersecting the grid. Letting border denote

⋃
C is leaf ∂(C), we show how to

replace the set of input disks OPT ∩ border by a subset Sadd ⊆ F ∪ P of additional disks.
Each leaf square [a, b]× [c, d] has an associated fence that is the boundary of the square

[a+ 2, b− 2]× [c+ 2, d− 2]. For each vertical (resp. horizontal) portal disk (x, y), we define
a connection line, which is {x} × [y − 2, y + 2] (resp. [x− 2, x+ 2]× {y}). The set of fences
and connection lines naturally partition the set of points which are at distance at most 2
from the lines of the grid into a set of rectangles R. See Figure 6. Notice that all connections
and fences are covered by the union of additional disks. Given a rectangle R ∈ R, we define
disk(R) ⊆ Xadd as the minimal set of additional disks that contain R.

We construct Sadd as the union of disk(R), over all rectangles R that intersect a disk
x ∈ OPT ∩ border.

Sadd =
⋃
{disk(R) : R ∈ R,∃x ∈ OPT ∩ border such that Bx ∩R 6= ∅}

Notice that each disk x ∈ OPT ∩ border intersects at most two rectangles. Furthermore,
such a disk does not intersect with any fence and can intersect at most one connection line.

B Claim 21. Sets S′ and Sadd are such that S′ ∪ Sadd is connected, S′ has size at most k
and with probability at least 1/3 : |Sadd| 6 O(εk) and A(S′) > (1−O(ε))OPT.
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Figure 6 Dotted lines are the grid lines. The bottom and top horizontal lines have respectively
level 8 and 10, and the vertical lines from left to right have level 5, 10 and 9. Grey continuous line
are the fence, and the red ones, the connection lines. Points and blue disks are portals and portal
disks. Striped orange areas illustrate some rectangles R ∈ R, and other disks are fence disks of the
corresponding sets disk(R).

The proof is in the appendix (the argument is similar to the one of Arora [1]). We
first upper-bound the expectation of |Sadd| and A(OPT)−A(S′), and then use Markov’s
inequality. To bound the expectation of |Sadd|, we observe that the number of additional
disks added in Sadd for each disk in OPT intersecting a line at level ` is O(L/(m2`)) while
the probability that a disk intersects a line at level ` is O(2`/L).

4.6.2 Part 2: Sparsification of S′

The sets S′ ∪ Sadd obtained so far may not satisfy the last property (bounded local size). In
this section, we show how to remove some disks from S′ to guarantee this property while
still maintaining the other required properties in Lemma 20.

Suppose that there exists a leaf square C such that S′C := S′ ∩ C has size greater than
k0 := (1 + β−1)L2

0 = O(ε−3), where β = min {ε/12, 1}. Then the core of C is “overcrowded”
and we show how to construct a non-overcrowded subset maintaining connectivity while
losing only an ε/2-th fraction of the covered area.

Define a set S to be initially equal to S′. Consider each overcrowded leaf square C one
by one, and define SC = S ∩ C. Start with an empty set H and for each disk x ∈ SC , add
x in H if A(H ∪ {x})−A(H) > β. Define H = SC \H as the complement of H and then
apply Claim 22 to G = UDG(S ∪ Sadd) and D = S ∪ Sadd \H to define D′ ⊆ H. Finally
update S to (S \H) ∪D′.

B Claim 22. Let G = (V,E) be a connected graph and D a dominating set with µ connected
components. There exists a subset D′ ⊆ V \D of size at most 2(µ− 1) such that G[D ∪D′]
is connected.

Proof. Let H and H ′ be two connected components in D that minimize dG(H,H ′). Then,
dG(H,H ′) 6 3. Indeed, if dG(H,H ′) > 4, then there exists a vertex x on a shortest path
from H to H ′ that is not dominated by D. This implies that we can find two vertices that
connect H and H ′. We repeat this operation until there is only one connected component.
This requires at most 2(µ− 1) vertices. C

APPROX/RANDOM 2019



32:14 Maximizing Covered Area in the Euclidean Plane with Connectivity Constraint

The following claim, together with Claim 21 ensures that sets S and Sadd built in Part 1
and Part 2 satisfy the expected properties of our structural Lemma.

B Claim 23. The constructed sets S and Sadd satisfy
(i) S ∪ Sadd is connected,
(ii) for each leaf square C, |S ∩ C| 6 k0, and
(iii) A(S) > (1− ε/2)A(S′).

This Claim might not be true if the radius of disks considered are arbitrary. The proof of
this fact follows from geometrical observations about unit disks.

Algorithm 2 PTAS for MACS with resource augmentation.

Input: X, k, ε.
Output: a real number maxi > (1− ε)OPT.

1 forall c ∈ X do
2 let B′ be the 4k × 4k square centered at c;
3 X ′ ← X ∩ B′;
4 L← the smallest power of 2 such that L > 8k;
5 forall shift a ∈ {0, . . . , L/2} do
6 Create a table tab;
7 foreach configuration C do
8 tab[C]← −∞;

/* Initialization */
9 foreach C at level d (leaf square) do

10 tab[C]← max{A(S) : (S, Sf , P ) is usable and corresponds to C};
/* Fusion */

11 foreach level 0 6 i 6 d− 1 in decreasing order do
12 foreach configuration C at level i do
13 tab[C]← max

{∑4
i=1 tab[Ci] : (C, C1, C2, C3, C4) are compatible

}
;

14 return maxi = max
configuration C
for root square

tab [C];

Notice that since the root square has no potential portals (portals are only placed on
lines at level at least 1), any configuration that corresponds to the root square has only one
connected component. We can easily add information in the table so that the algorithm also
outputs the corresponding sets S and Sadd.

Notice that Algorithm 2 tries all possible shift a. Our structural Lemma 20 ensures
that there exists at least one shift such that the output satisfies all expected properties of
Theorem 4.

I Theorem 24. Algorithm 2 has a running time nO(ε−3).

The key ingredient in order to prove that our algorithm is polynomial follows from
Observation 17. We show that the number of connectivity relations of a set of O(m) portals
corresponds to its Catalan number which is polynomial when m = O(ε−1 log(εk)).
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Algorithm 3 PTAS for MACS for well-distributed inputs.

Input: X an α-well-distributed input, k > 0, ε > 0.
Output: A feasible solution to MACS(X, k).

1 Choose ε′ > 0 and k′ 6 k such that (1− ε′)(1− 10(22α+ 4)ε′) > (1− ε) and
k′(1 + (22α+ 4)ε′) = k;

2 Let S, Sadd be the solution of Algorithm 2 on input (X, k′, ε′) ;
3 Let S′ be the set obtained from Sadd by Lemma 25;
4 return S ∪ S′;

5 A PTAS for well-distributed inputs

Let us recall the definition of well-distributed input.

I Definition 5. Given α > 0, a finite set X of points in the plane is called α-well-distributed
if for all x, y ∈ X, dUDG(X) (x, y) 6 dα · ‖x− y‖e.

Here d·e is the ceiling function. This ensures that the right-hand side is always at least
one. Notice that a well-distributed set is necessarily connected.

One intuitive view of a well-distributed input is to look at the shape of the “holes” of
the input, that are the different connected components of the complement of the union of
the input disks in the plane. The assumption of well-distribution means that these holes are
roughly fat.

One particular interesting case arises when there is no hole at all. We call these sets
pseudo-convex, and we prove that this is a particular case of well-distributed inputs.

I Definition 7. A set X is called pseudo-convex if the convex-hull of X is covered by the
union of the unit disks centered at points of X.

I Lemma 8. A pseudo-convex set X is 3.82-well-distributed.

Our Corollary 6 states that the restriction of MACS to well-distributed inputs admits a
PTAS. The algorithm works as follows. Given a parameter 0 < ε 6 1/2, and an input (X, k)
of MACS, we run Algorithm 2 on input (X, k′, ε′) for suitable values k′ and ε′ specified
below. Next, we transform the set of additional disks obtained into a set of input disks that
has roughly the same size while maintaining the connectivity of the solution. See Lemma
25 and Algorithm 3 for details. This algorithm naturally applies to pseudo-convex inputs
(Corollary 9).

I Lemma 25. Given an α-well-distributed input X and two finite sets S ⊆ X and Sadd ⊆ R2

such that UDG(S∪Sadd) is connected, there exists a set S′ ⊆ X of size at most (22α+4)|Sadd|
such that UDG(S∪S′) is connected. Moreover, such a set can be computed in polynomial time.

In the previous lemma, the set Sadd is not supposed to be a set of additional disks as
defined in Section 4.

Since ε′ = Θ(ε/α), the previous algorithm runs in polynomial time when ε and α are
fixed constants.

B Claim 26. The solution returned by Algorithm 3 on input (X, k, ε) is a feasible solution
to MACS(X, k) and covers an area at least (1− ε)OPT(X, k).

In order to prove this result we need to state the following “stability” property over
optimal solutions.

I Lemma 27. Let η < 1
2 . Then OPT(X, k) > (1− 10η) ·OPT(X, k(1 + η)).
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A Omitted proofs

Proof of Claim 21. Clearly |S′| 6 |OPT| 6 k. We now prove that S′ ∪ Sadd is connected.
Suppose that there exists a disk x ∈ OPT ∩ border such that OPT \ {x} is split into
several connected components. We know that x intersects only one rectangle R1 ∈ R or two
rectangles R1, R2 ∈ R. Since OPT is connected, and Bx is contained in the set U = R1 or
U = R1 ∪R2, each connected component intersects the boundary of U . Then, Bx intersects
a disk in disk(R1) or disk(R2). Therefore, OPT \ {x} ∪ disk(R1) ∪ disk(R2) is connected.
By doing so for each x ∈ OPT ∩ border, it follows that S′ ∪ Sadd is connected.

It remains to show that, under a uniform random shift a, with probability at least one
third we have |Sadd| 6 O(εk) and A(S′) = A(OPT ∩ core) > (1−O(ε))OPT. The proof
is very similar to Arora’s approach, we first upper-bound the expectation of |Sadd| and
A(OPT)−A(S′), and then use Markov inequality to conclude.

We first upper-bound the expected number of additional disks. For each x ∈ OPT
intersecting a line at level `, we have added at most two sets of additional disks associated
to rectangles with side length smaller than the distance between two consecutive portals
of this line. It follows that O(L/(m2`)) additional disks have been added to Sadd for each
disk in OPT intersecting a line of level `. This can be observed in Figure 7. Moreover, the
probability that a disk intersects a line at level ` is O(2`/L). Then,

E(|Sadd|) 6
∑

x∈OPT

d−1∑
`=0

P (x intersects exactly one line at level `)O( L

m2` )

=
∑

x∈OPT

d−1∑
`=0
O(2`

L
· L

m2` ) = O(dk
m

) = O(εk)

Figure 7 OPT is represented by orange disks. Disks of OPT that intersect the grid (dotted
line) are replaced by additional disks (striped blue disks). This operation maintains the connectivity
of the set.
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We now upper-bound the expectation of A(OPT)−A(S′). First we have A(OPT)−
A(S′) 6 A(OPT ∩ border), and the probability that a point p ∈ B(OPT) is in B(OPT ∩
border) is smaller that p is at distance 2 from the lines of the grid. Therefore

E (A(OPT)−A(S′)) 6 E(A(OPT ∩ border))

6
∫
p∈B(OPT)

P (p is at distance at most 4 from the grid)dp

6
∫
p∈B(OPT)

2 · 4
L0

dp

6
8 ·OPT
L0

= O(εOPT)

By choosing the constant properly in the big O notation and using the Markov inequality,
we can show that the probability of |Sadd| > O(εk) and the probability of A(OPT )−A(S) >
O(εOPT ) are both upper bounded by 1

3 . Thus, by a union bound, we conclude the proof.
C

Proof of Claim 23. For (i), we just need to argue that for each leaf square C, after H is
defined, S ∪ Sadd \H is a dominating set in UDG(S ∪ Sadd) (then the proof follows from
Claim 22). Indeed if a disk x is in H then it means that A(H ∪ {x})−A(H) < β 6 1. In
particular, it implies that there exists a disk in H ⊆ S ∪ Sadd \H that intersects x.

For (ii), observe that the size of S ∩ C is the sum of the size of the corresponding sets
H and D′ built during the “sparsification” of C. Since all disks in H increases the area
covered by at least β and are contained in a square of area L2

0, the number of disks in H
is upper-bounded by β−1L2

0. Moreover, each connected component of S ∪ Sadd \H had a
disk contained in C so that the number µ of connected component is upper-bounded by
L2

0/π < L2
0/2. Therefore |D′| < L2

0. Finally |H ∪D′| < (1 + β−1)L2
0 = k0.

For (iii), we start by observing that the union B(S′) of disks in S′ is contained in the set
B+(S), which is defined as

B+(S) := {z ∈ R2 | ∃x ∈ S such that ||z − x|| 6 1 + β}

Indeed, if there exists a point p covered by a disk x in S′ but at distance at least 1 + β

from any disk of S then adding x to S would increase the area covered by S by more that β.

Figure 8 S consists of grey disks. The boundary of B+(S) is the dotted curve. Circular sectors
are in orange while the red one represents a circular sector in B+(S).
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Therefore, we have the following inclusion

B(S) ⊆ B(S′) ⊆ B+(S), (1)

and if the following geometrical claim holds, our proof of (iii) will be complete.

B Claim 28. A(B(S)) > (1− ε/2)A(B+(S))

The result follows from the fact that B(S) is a union of unit-disks. See Figure 8. The
boundary of B(S) is made of circular arcs and each of these arcs is associated with a circular
sector θi. Circular sectors intersect with other circular sectors only on the extreme points of
their corresponding arcs, thus A(∪iθi) =

∑
iA(θi).

We can associate with each circular sector θi (of a disk of radius 1) its “dilation” θ+
i which

corresponds to the same circular sector in a disk of radius 1+β. We haveA(θ+
i ) = (1+β)2A(θi)

and can see that B+(S) \B(S) ⊆
⋃
i(θ

+
i \ θi). Then

A(B+(S))−A(B(S)) = A(B+(S) \B(S)) = A
(⋃

i

(θ+
i \ θi)

)
6
∑
i

A(θ+
i \ θi) =

∑
i

A(θ+
i )−A(θi)

6
∑
i

(1 + β)2A(θi)−A(θi)

6
∑
i

3βA(θi) = 3βA
(⋃

i

θi

)
6 3βA(B(S))

Therefore, A(B(S)) >
A(B+(S))

1 + 3β > (1 − ε/2)A(B+(S)). This concludes the proofs of
Claims 28 and 23. C

Proof of Theorem 24.

Size of tab. There exists 4i squares at level i so the total of squares is
∑d
i=0 4i = O(4d+1).

For any square C, the number of potential portal disks is at most 4m. To see this, observe
that if C is of level i, it is of size L/2i × L/2i. Furthermore, it is surrounded by lines of
level at most i and two adjacent portals on such a line has distance Ω(L/(m2i)).
Therefore, the number of possible sets P ⊆ PC is 24m, and for each set P of size r
the total number of planar connectivity relations is equal to the r-th Catalan number

: P (r) = 1
r − 1

(
2r
r

)
= O

(
1

m− 1

(
8m
m

))
and then by Stirling formula we get P (r) =

O(44m). To see that P (r) is the r-th Catalan number, we check that it satisfies the same
recurrence relation :

P (r) =
r∑

k=1
P (k − 1) · P (r − k) (2)

with P (0) = 1. Indeed, if k denotes the index of the first portal pk that is on the connected
component of the r-th portal disk pr, then the portal disk pi with 1 6 i 6 k − 1 cannot
be equivalent to a portal pj disk with k 6 j 6 n, and then the equivalence relation can be
restricted to the set {pi, 1 6 i 6 k − 1} and there are P (k − 1) possible distinct choices.
Next observe that since pn and pk are connected (i.e. pn ∼ pk), it is enough to count
the number of different equivalence relations in {pj , k + 1 6 j 6 r}, which is P (r − k).
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Finally, observe that k can be from 1 to r (k = r means that pr is alone in its connected
component.) We thus concludes (2). Therefore, creating tab in line 6 can be done in time
O(4d+1εk284m) = kO(1/ε).

Initialization. There exists 4d leaf squares and for each of them, we try all possible guesses.
This can be done in time nO(ε−3).

Fusion. Trying all possible combinations can be done in time kO(1/ε) J

Proof of Lemma 27. Let X be a set of points of the plane, k a positive integer and η 6
1/2 a parameter. We prove a stronger result. Given any solution feasible solution S to
MACS(X, k(1 + η)), there exists a subset S′ of S that is a feasible solution to MACS(X, k)
with value at least (1 − 10η)A(S). Obviously Lemma 27 follows when S is optimal. If
A(S) > k/3, then remove ηk disks from S without disconnecting S. For instance, consider a
spanning tree on UDG(S) and remove the nodes from the leaves to the root until you reach
the desired size. Let S′ denote the subset obtained.

A(S′) > A(S)− ηπk > (1− 3πη)A(S) > (1− 10η)A(S)

If A(S) < k/3, let I be a maximal independent set in S. We have |I|π = A(I) 6 A(S) < k

3 .
According to claim 22, there exists a connected dominating set I ⊆ D ⊆ S in S of size at
most 3|I| − 2 < k/π <

k

3 . Consider a set H ⊆ S \D of size k − |D| > 2
3k built by greedily

adding a disk h ∈ S \ (D ∪H) maximising the marginal area A(D ∪H ∪ {h})−A(D ∪H).
Since D is a connected dominating set, the set S′ := D ∪ H is connected. Since all disk
where added greedily in H, for all H ∈ S \ S′, we have

A(S′ ∪ {h})−A(S′)) 6 A(S)−A(D)
|H|

6
2A(S)
k

.
By submodularity, we deduce that A(S)−A(S′) 6 ηk · 2A(S)

3k . That implies A(S′) >
(1− 3

2η)A(S). This concludes the proof of lemma 27. J

Remark that this proof is constructive and it is easy to check that finding S′ from any given
set S can be done in polynomial time.

Proof of Lemma 25. Let us use the same notation as in the statement of Lemma 25. We
prove how to build S′ from Sadd such that |S′| 6 (22α+4)|Sadd| while preserving connectivity.

Let Y be a connected component of Sadd. We prove that we can find a set Y ′ ⊆ X of
input disks such that |Y ′| 6 (4 + 22α)|Y | and (Sadd \ Y ) ∪ (S ∪ Y ′) is connected. Removing
Y might split the solution into several connected components F1, . . . , Fs. For each connected
component Fi, pick one disk xi in Fi ∩X that intersects Y .
Step 1. Each additional disk y in Y is adjacent to at most 6 disks xi. We can connect the

corresponding connected component by using 20α disks of the input. Indeed, any two
xi and xj adjacent to y has a Euclidean distance at most 4. Since X is well-distributed
their distance in UDG(X) is at most 4α. Then, we can find d4α− 1e disks in X which
connect xi and xj . In order to connect all the xi that are adjacent to y, it is sufficient
to repeat this operation 5 times, which asks at most 20α disks. We can perform this
operation for each additional disk that was not already considered. Then, in total for
this first step we need to use at most 20α|Y | disks.
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Step 2. During step 1, we may have connected some disks xi, so that the number of
connected components has decreased. The number of connected components is s′ 6 s,
each of them corresponds to a disk xi, and without loss of generality we can assume that
the corresponding indexes are such that 1 6 i 6 s′. Let T be a spanning tree on UDG(Y ).
Without loss of generality, we can suppose that indexes i are such that the sequence
(x1, . . . , xs′) correspond to a T transversal. Note that after step 1, each xi can be associated
to a different y in Y . Then, we reconnect each xi to xi+1 for 1 6 i 6 s− 1. If xi and xi+1
are respectively associated to yi and yi+1, then ||xi − xi+1|| 6 2 + 2dT (yi, yi+1) and thus
dUDG(X)(xi, xi+1) 6 dα(2 + 2dT (yi, yi+1)e. Then, we can find dα(2 + 2dT (yi, yi+1)e − 1
disks in X to connect xi and xi+1. In order to connect all xi we need to use at most

s′−1∑
i=1
dα(2 + 2dT (yi, yi+1)e − 1 6 2(s′ − 1)α+ 2

s′−1∑
i=1

dT (yi, yi+1)

input disks. Since the order corresponds to a T transversal, each edge is visited at most
twice and then

∑s′−1
i=1 dT (yi, yi+1) 6 2(|Y | − 1). Therefore the total number of disks that

were added during this second step is bounded by |Y |(4 + 2α).

We proved that there exists a subset Y ′ ⊆ X of size at most (4 + 22α)|Y | such that
(S ∪ Sadd \ Y ) ∪ Y ′ is connected. By doing so for each connected component of Sadd, we get
the result claimed. J

Proof of Lemma 8. Let X be a pseudo-convex set, G its unit-disk-graph, and x and y

be any two disks in X at distance L = ‖x− y‖. We show that dG(x, y) 6 dαLe where
α = 12/π < 3.82.

If L < 2 then the two unit disks associated to x and y overlap so that dG(x, y) = 1 6 dαLe.
Otherwise suppose that L > 2. Since X is pseudo-convex, it is connected and any point in
the line segment [x, y] is covered by a disk in X. Let S = {z ∈ X | Bz ∩ [x, y] 6= ∅, ‖x− z‖ >
2 and ‖y − z‖ > 2} and let I be any maximal independent set in S ∪ {x, y}. Since S is at
distance at least 2 from x and y, we deduce that x, y ∈ I and all disks in I \ {x, y} are inside
a L × 4 rectangle and then |I| 6 4L/π. Since I is maximal, it is a dominating set in S.
Therefore, claim 22 implies that there exists a connected subset D ⊆ X such that I ⊆ D

and |D| 6 3|I| − 2 6 12L/π − 2. We deduce that dG(x, y) 6 (12L/π − 2) + 1 6 dαLe. J

Proof of Claim 26. The solution output by Algorithm 2 on input (X, k′, ε′) verifies the follow-
ing properties: S ∪ Sadd is connected, the size of S and Sadd are respectively upper-bounded
by k′ and ε′k′ and A(S) > (1− ε′)OPT(X, k′). Therefore, the set S′ given by Lemma 25
has size at most (22α+ 4)|Sadd| 6 (22α+ 4)ε′k′, and then |S ∪ S′| 6 k′ + (22α+ 4)ε′k′ 6
(1+(22α+4)ε′)k′ = k. Since S∪S′ is connected, this set is a feasible solution to MACS(X, k).

Finally, from Lemma 27 with parameter η = (22α+ 4)ε′, we get that the area covered by
this solution is

A(S ∪ S′) > A(S) > (1− ε′)OPT(X, k′) > (1− ε′)(1− 10η)OPT(X, k′(1 + η))
> (1− ε′)(1− 10(22α+ 4)ε′)OPT(X, k′(1 + (22α+ 4)ε′))
> (1− ε)OPT(X, k)

which concludes the proof. C
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