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Abstract. We investigate how collusion affects the social cost in atomic splittable routing games. Suppose
that players form coalitions and each coalition behaves as if it were a single player controlling all the flows
of its participants. It may be tempting to conjecture that the social cost would be lower after collusion,
since there would be more coordination among the players.
We construct examples to show that this conjecture is not true. Even in very simple single-source-single-
destination networks, the social cost of the post-collusion equilibrium can be higher than that of the
pre-collusion equilibrium. This counter-intuitive phenomenon of collusion prompts us to ask the question:
under what conditions would the social cost of the post-collusion equilibrium be bounded by the social cost
of the pre-collusion equilibrium?
We show that if (i) the network is “well-designed” (satisfying a natural condition), and (ii) the delay
functions are affine, then collusion is always beneficial for the social cost in the Nash equilibria. On the
other hand, if either of the above conditions is unsatisfied, collusion can worsen the social cost.
Our main technique is a novel flow-augmenting algorithm to build Nash equilibria. Our positive result
for collusion is obtained by applying this algorithm simultaneously to two different flow value profiles of
players and observing the difference in the derivatives of their social costs. Moreover, for a non-trivial
subclass of selfish routing games, this algorithm finds the exact Nash equilibrium in polynomial time.
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1 Introduction

In an atomic splittable routing game, each player controls a non-negligible amount of flow and he can
route his flow fractionally over the network. His strategy space consists of all possible ways of routing
his flow. Each edge of the network is associated with a delay function of the flow value. A player
routing his flow on an edge incurs a cost, which is the product of his flow value on that edge and
the delay of that edge, determined by the total flow value on that edge. A player’s total cost is the
sum of his cost on all edges. Players are selfish. They aim for minimizing their own total costs while
disregarding the cost of others. The social cost is the sum of all players’ costs.

Atomic splittable routing games abstract real world situations such as communication networks
and transportation, where a player can be an ISP or a freight/logistic company and he would try to
minimize the delay experienced by his customers. A special case of this setting, mentioned as early as
1952 by Wardrop [32], is where each player controls an infinitesimal amount of flow. In the scenarios
above, these players could be individual messages or drivers. A player controlling an infinitesimal
amount of flow is conventionally called a nonatomic player. Furthermore, a Nash equilibrium in
which all players are nonatomic is often called a Wardrop equilibrium.

We are interested in the social cost of a Nash equilibrium, a situation where no player can change
his strategy unilaterally to decrease his cost. It can be expected that, given the selfishness of the
players, the social cost of a Nash equilibrium would be sub-optimal. The degree of the worsening of
the social cost in Nash equilibria is measured by the price of anarchy [23], and it has been intensively
studied in recent years [12, 18, 25, 28, 30].

Life can be a bit more complex. Players form coalitions; companies merge or cooperate. So we are
concerned about the social cost of the Nash equilibrium after the collusion. There can be different
models to describe the colluding behavior among the players. The one we adopt is introduced by
Hayrapetyan, Tardos, and Wexler [22]. In this model, once a coalition is formed, its participants
care about their collective welfare. Thus this coalition would behave as if it were just a single player
controlling all the flows of its participants.

It may be tempting to conjecture that the social cost will decrease after the collusion, since
the colluding players have better coordination among themselves. In the extreme case where all
players join in a single coalition, then the resultant equilibrium would become optimal. However,
this conjecture has been shown to be false in several types of games [22]. Particularly for the atomic
splittable routing games, if the network has multiple sources and destinations, it is known that the
post-collusion equilibrium can have higher cost than the pre-collusion equilibrium [10, 12]1

But maybe in the less chaotic single-source-single-destination networks, this counter-intuitive phe-
nomenon of collusion may not occur? However, in this paper, we construct examples to show that
even in very simple single-source-single-destination networks, collusion can worsen the social cost in
the post-collusion equilibrium. These examples prompt us to investigate the following question:

In an atomic splittable routing game, suppose that all players share a common source and
destination. Under what conditions would the social cost of the post-collusion equilibrium be
bounded by the social cost of the pre-collusion equilibrium?

Our Contribution

We first introduce a class of networks, which is a main focus of this work. Let the optimal flow be the
flow that minimizes the social cost.
1 More precisely, the examples in [10, 12] show that the social cost in the post-collusion equilibrium can be higher than
in the pre-collusion Wardrop equilibrium. See the discussion in the related work for details.
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Definition 1. A single-source-single-destination network is well-designed, if as the value of the opti-
mal flow is being increased, its flow value is monotonically non-decreasing on all edges. Precisely, let
O(t) denote an optimal flow of value t, indexed over all edges e ∈ E. A single-source-single-destination
network is well-designed, if t > t′, then Oe(t) ≥ Oe(t

′) for all edges e ∈ E.

A well-designed network thus conforms to the intuition that as the total flow becomes larger, we
expect each edge to be more heavily used. In general, whether a network is well-designed depends on
both the underlying graph topology and the delay functions. But there is an exception.

Proposition 2. Suppose that the underlying graph of the network is series-parallel and all delay
functions are convex. Then such a network is always well-designed, independent of the convex delay
functions.

The proof of this proposition is in the appendix. We now state our main result.

Theorem 3. Suppose that the given network has a single source and a single destination and all
delay functions are convex. If

(i) the network is well-designed, and

(ii) all delay functions are affine,

then the social cost of the post-collusion equilibrium is bounded by that of the pre-collusion equilibrium.

On the other hand, if either of the two conditions is unsatisfied, then the social cost of the post-
collusion equilibrium can be strictly larger than that of the pre-collusion equilibrium.

Our Technique Let σ = (v1, v2, · · · , vk) be a profile, where v1 ≥ v2 ≥ · · · ≥ vk and each vi
represents the flow value of the i-th player. Note that if there are k′ < k players, we still can regard
the game as one of k players with the last k − k′ players having zero flow values, i.e., the last k − k′

entries of σ are 0.

Definition 4. Let σ = (v1, v2, · · · , vk) and σ′ = (v′1, v
′
2, · · · , v

′
k) be two profiles and

∑k
i=1 vi =

∑k
i=1 v

′
i = 1. Then σ majorizes σ′ if, for all 1 ≤ i ≤ k,

∑i
j=1 vj ≥

∑i
j=1 v

′
j.

We establish the first part of Theorem 3 via the following lemma.

Lemma 5. Let σ and σ′ be two profiles and the former majorizes the latter. In a well-designed
network with affine delays, the social cost of the Nash equilibrium for σ is bounded by the social cost
of the Nash equilibrium for σ′.

Proof of the First Part of Theorem 3. Let σ′ be the profile of the given game, and let σ be the
profile after some players form coalitions. Observe that σ must majorize σ′. Hence Lemma 5 gives the
proof. ⊓⊔

The main bulk of this paper (Section 3) is devoted to proving Lemma 5. Here we present the
high-level idea.

We first characterize a well-designed network and show that the optimal flow is updated according
to certain rate equations when its flow value is being increased in such a network. Exploiting these rate
equations, we design a flow-augmenting algorithm to build a Nash equilibrium. Then we apply this
algorithm to the input profiles σ and σ′ simultaneously. We show that the derivative of the social cost
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for the flow based on σ is always no larger than that for the flow based on σ′, thereby proving Lemma 5.

Counter-Examples Our positive result for collusion is tight: dropping either of the two con-
ditions may cause collusion to become detrimental for the social cost. We carefully construct two
counter-examples in which after some players form coalitions, the social cost in the post-collusion
equilibrium is strictly higher than in the pre-collusion equilibrium. We briefly summarize the two
examples (see Appendix A for details):

– When the network has affine delays but is not well-designed : in the Braess graph, which is known
to be the smallest non-series-parallel graph, we build a not well-designed network with affine
delays.

– When the network is well-designed but the delay functions are not affine: we use a network of just
3 parallel links (a special case of a series-parallel graph, hence well-designed). This network has
polynomials as delay functions.

Computational Result Given Theorem 3, it would be of practical interest to test whether a
network is well-designed. We have the following computational result.

Theorem 6. Suppose that all delay functions are affine and the coefficients of the delays are rational.
There is a polynomial time algorithm to test whether a network is well-designed. Moreover, if it is,
we can find the exact Nash equilibrium and the exact Wardrop equilibrium in polynomial time.

When all delay functions are affine, it is known that one can use convex programming to approx-
imate the Nash equilibrium [12] or to approximate the Wardrop equilibrium [31]. To our knowledge,
our algorithm is the first to find the exact equilibria for a nontrivial sub-class of atomic splittable
routing games. See Appendix C for the proof of Theorem 6.

Related Work

Atomic splittable routing games are the least understood among various versions of selfish routing
games. The exact price of anarchy in such games was only recently obtained by Roughgarden and
Schoppmann [30]. For related results about other versions of the routing games, see [2, 7, 13, 18–20,
27, 29, 31, 32].

Hayrapetyan, Tardos, and Wexler [22] investigated the effect of collusion in various games by
measuring the price of collusion, which is the worst ratio between the social cost of a post-collusion
equilibrium against that of a pre-collusion equilibrium. Using their terminology, our results can be
rephrased as identifying the conditions in atomic splittable routing games for the price of collusion to
be bounded by 1. Fotakis, Kontogiannis, and Spirakis [16] investigated algorithmic questions about
the Nash equilibrium after collusion in atomic congestion games.

When collusion is among non-atomic players A closely related scenario about collusion is
that initially each player is nonatomic, i.e., he controls an infinitesimal amount of flow. The players
may organize themselves into coalitions and each coalition cares about its collective welfare. Thus, each
coalition would behave as if it were an atomic player controlling a splittable flow. In this scenario, the
comparison between the social cost of the post-collusion equilibrium and the social cost of the pre-
collusion Wardrop equilibrium is studied in [8, 12, 22]. In particular, these works investigate under
what conditions would the social cost of the pre-collusion Wardrop equilibrium (with non-atomic
players) be bounded by that of the post-collusion Nash equilibrium (with atomic players). Our work
is the first to study the effect of collusion among the atomic players themselves.
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In [22], it is shown that in a parallel-links graph with convex delays, the post-collusion Nash
equilibrium has its social cost bounded by the social cost of the pre-collusion Wardrop equilibrium.
The same result has been generalized to series-parallel graphs with convex delays in [8]. Our second
counter-example offers an interesting contrast: even in a graph of just 3 links, if the collusion is among
the atomic players themselves, collusion can worsen the social cost.

In the case that the network is well-designed with affine delays, [8] shows that the post-collusion
Nash equilibrium has its social cost bounded by the social cost of the pre-collusion Wardrop equilib-
rium2. Our Lemma 5 can establish the same fact3. The result of [8] uses an earlier result of Cominetti,
Correa, and Stier-Moses [12]. It proposes a flow re-distribution strategy to update the flow value pro-
file, and, using linear algebraic arguments, shows that the social cost is monotonically non-decreasing.
We consider the technique presented in this work more intuitive and simpler.

Collusion in single-source-single-destination networks Earlier works [10, 12] have shown
that collusion may cause the social costs of equilibria to increase. We construct the first examples
showing this is still true even if the network has a single source and a single destination. However,
our examples are built assuming that the collusion is among atomic players themselves. Whether the
post-collusion equilibrium can have higher social than the pre-collusion Wardrop equilibrium in such
networks remains an open question.

Other models of collusion Another line of investigation about collusion is the strong price of
anarchy [5] introduced by Andelman, Feldman, and Mansour, which is the worst ratio of the social
cost in a strong Nash equilibrium [6] against that of the optimal solution. In a strong Nash equilibrium,
no coalition of players can change their strategies so that every one of them improves his cost. Further
results for the strong price of anarchy can be found in [3, 11, 14, 15, 21].

2 Preliminaries

Let G = (V,E) be a directed graph, with two special vertices s and d called source and destination
respectively. The vector f , indexed by edges e ∈ E, is defined as a flow of value v if the following
conditions are satisfied.

∑

w:(u,w)∈E

fuw −
∑

w:(w,u)∈E

fwu = 0, ∀u ∈ V \{s, d}. (1)

∑

w:(s,w)∈E

fsw −
∑

w:(w,s)∈E

fws = v. (2)

fe ≥ 0, ∀e ∈ E. (3)

A flow is a circulation if its value is 0. If f satisfies only conditions (1) and (2), f is a pseudo flow
of value v. If there are several flows {f1, f2, · · · , fk}, the total flow f is defined as f :=

∑k
i=1 f

i. We
define f−i :=

∑

j 6=i f
j = f − f i.

Each edge e is associated with a delay function le : R
+ → R+. A delay function is affine, if le(x) =

aex + be, where ae > 0 and be ≥ 0. For a flow f , player i incurs a cost C(f i, f−i) =
∑

e∈E f i
ele(fe)

2 Even though the result for affine delays as stated in [8] is only for series-parallel networks, the technique of [8] indeed
also works for well-designed networks. This is because a well-designed network always satisfies the nesting property
(see Section 3.2 for definition). A minor contribution of this paper is to identify a larger class of networks for this
result of [8] to hold.

3 The proof proceeds as follows. Let σ′ be the profile of k players, each with the same amount of flow. Let σ be the
profile of the post-collusion Nash equilibrium. Observe that σ majorizes σ′. It is established in [12] that the social cost
of the Nash equilibrium for σ′ has social cost no larger than the pre-collusion Wardrop equilibrium. Now applying
Lemma 5 to compare social costs for the Nash equilibria based on σ′ and σ would give the proof.
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The social cost of a flow f is defined as C(f) =
∑

e∈E fele(fe), which is also the sum of the costs of
all players

∑

iC(f i, f−i). A flow O(t) of value t is optimal if it minimizes the social cost among all
flows f of value t.

An atomic splittable routing game is a tuple (σ, (G, l, s, d)) where σ = (v1, · · · , vk) is a profile
indicating the flow values of the players from 1 to k, ordered non-increasingly, and (G, l, s, d) a
network and l its vector of delay functions for edges in G. A s-d path is a directed simple path from
s to d. P denotes the set of all s-d paths. We often abuse notation by writing e ∈ P ′ ⊆ P if e belongs
to any path p ∈ P ′. An edge e is used if fe > 0 and is used by player i if f i

e > 0. Similarly, a path p
is used (by player i) if on every edge e ∈ p, fe > 0 (f i

e > 0).
Each player i has a strategy space consisting of all possible s-d flows of value vi. His objective is

to minimize his cost C(f i, f−i). A set of players are said to be symmetric if each of them has the
same flow value.

A flow is a Nash equilibrium if no player can unilaterally alter his flow to reduce his cost.

Definition 7 (Nash Equilibrium). In an atomic splittable routing game (σ, (G, l, s, d)), flow f is
a Nash equilibrium if and only if, for every player i and every s-d flow g of value vi, C

i(f i, f−i) ≤
Ci(g, f−i).

For a player i and a path p, his marginal cost on path p is the rate of change of his cost when he
adds flow along path p:

∑

e∈p le(fe)+f i
el

′
e(fe). The following lemma follows from Karush-Kuhn-Tucker

optimality conditions for convex programs [24] applied to player i’s minimization problem.

Lemma 8. Flow f is a Nash equilibrium if and only if for any player i and any two directed paths p
and q between the same pair of vertices and player i uses path p,

∑

e∈p

le(fe) + f i
el

′
e(fe) ≤

∑

e∈q

le(fe) + f i
el
′
e(fe).

Note that the Nash equilibrium of just one player is exactly the optimal flow.

Lemma 9 (Existence and Uniqueness of Nash Equilibrium). [4, 25, 26] In an atomic splittable
routing game (σ, (G, l, s, d)), if all functions in l are affine, or if the underlying graph of G is parallel-
links and all functions in l are convex, then there exists a Nash equilibrium and it is unique.

When All Delay Functions are Affine. We introduce the notion of φ-delay, which plays a
prominent role in our algorithms and analysis. Let the φ-delay of an edge e be Le(f, φ) = φaefe + be
and along a path p be Lp(f, φ) =

∑

e∈p Le(f, φ).

Definition 10. A flow f is φ-optimal for some φ > 0 if and only if, given any two directed paths p
and q between the same pair of vertices and f uses path p,

Lp(f, φ) ≤ Lq(f, φ).

By Definition 10, a 2-optimal flow is exactly the optimal flow; 1-optimal flow is a Wardrop equilib-
rium4; and a Nash equilibrium of k symmetric players is k+1

k
-optimal5.

4 A Wardrop equilibrium f has the following characterization [27, 32]: if p and q are directed paths between the same
pair of vertices and f uses p,

∑
e∈p

le(fe) ≤
∑

e∈q
le(fe).

5 This follows from the fact that in a Nash equilibrium of symmetric players, the flows of all players are identical [12].
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3 Proof of Lemma 5

In this section, we assume that all delay functions are affine. We prove Lemma 5 through the following
three steps: (1) we characterize well-designed networks (Section 3.1); (2) using this characterization,
we design an algorithm to construct a Nash equilibrium based on the given profile (Section 3.2).
This algorithm proceeds by increasing flow value gradually and maintains a φ-optimal flow, with a
dynamically changing φ; (3) we apply this algorithm to two different profiles and observe their relative
growing speeds of the social cost while the flow values are being increased (Section 3.3).

3.1 Characterizing Well-Designed Networks

A well-designed network is associated with several sets of items, whose exact properties will be
captured by Lemma 12 below. Here we summarize them. A well-designed network (G, l, s, d) has

– a sequence of nested sets of paths P0 = ∅ ⊂ P1 ⊂ P2 ⊂ · · · Px ⊆ P, which are the sets of s-d paths
that the optimal flow uses when its flow value is increased;

– a sequence of flow values t0 = 0 < t1 < · · · < tx−1 < tx = ∞, which are the values by which the
optimal flow begins to use a different set of paths6;

– a sequence of vectors α1, α2, · · · , αx, which are vectors indexed over the edges in E. Each of these
vectors indicates how the optimal flow updates itself when its flow value is increased;

– a sequence of φ-delay thresholds Ψ0 = minq∈P
∑

e∈q be < Ψ1 < Ψ2 < · · · < Ψx−1, each of which
indicates the 2-delay of a path in P1 when the flow value of the optimal flow is ti.

Before explaining the details about these items, we need a fact from linear algebra. Assume that
Pi ⊆ P is a subset of s-d paths used by a flow f of value t. Consider the following linear system.

∑

e∈p

aefe −
∑

e∈q

aefe =
1

2
(
∑

e∈q

be −
∑

e∈p

be) ∀p, q ∈ Pi (4)

∑

u:(s,u)∈E

fsu = t (5)

∑

v:(u,v)∈E

fuv −
∑

v:(v,u)∈E

fvu = 0 ∀u 6∈ {s, d} (6)

fe = 0 ∀e 6∈ Pi (7)

Proposition 11. If the system (4)-(7) has a unique solution, then the flow value on each edge e ∈ E
can be expressed as fe = αi

et+ βi
e, where αi

e and βi
e depend on Pi and {ae, be}e∈Pi

.

Proof. This follows from Gaussian elimination. ⊓⊔

Lemma 12 (Characterization of a Well-designed Network). Suppose that (G, l, s, d) is well-
designed.

(i) There exists a sequence of nested sets of paths P0 = ∅ ⊂ P1 ⊂ P2 ⊂ · · · ⊂ Px ⊆ P, and a set of
values t0 = 0 < t1 < · · · < tx−1 < tx =∞ so that when t ∈ (ti−1, ti], ∀1 ≤ i ≤ x, O(t) uses the set
of edges in Pi.

(ii) There exists a sequence of vectors αi, 1 ≤ i ≤ x, which has the following properties:
(iia) if ti−1 ≤ t < t′ ≤ ti, then O(t′)−O(t) = αi(t′ − t);

6 To simplify our presentation, we slightly abuse notation by writing a value that goes to infinity as a fixed value tx.
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(iib) αi, by itself, is also a flow of value 1; specifically, αi
e ≥ 0, ∀i, e; and αi

e = 0 if e 6∈ Pi;
(iic) For every two paths p,q ∈ Pi,

∑

e∈p aeα
i
e =

∑

e∈q aeα
i
e.

(iii) There exists a sequence of φ-delay thresholds Ψ0 = minq∈P
∑

e∈q be < Ψ1 < Ψ2 < · · · < Ψx−1 so
that when t = ti, 0 ≤ i ≤ x − 1, all paths q ∈ Pi+1 (including those in Pi+1\Pi) have the same
minimum 2-delay Ψi = Lp(O(ti), 2). Furthermore,

(iiia) Ψi = Ψi−1 + 2(ti − ti−1)
∑

e∈p aeα
i
e, given a path p ∈ P1, for 1 ≤ i ≤ x− 1.

Proof. (i) follows from the definition of well-designedness: if an edge is used by the optimal flow, then
it continues to be used by the optimal flow when the latter increases its flow value.

For (ii), first assume that ti−1 < t (note the strict inequality). Then by (i), both O(t) and O(t′)
use the same set of paths Pi. Recall that the optimal flow is also a Nash equilibrium. Thus, by the
characterization of Nash equilibrium (Lemma 8), and the existence and uniqueness of Nash equilibrium
(Lemma 9), we can apply Proposition 11 to get

Oe(t
′)−Oe(t) = αi

e(t
′ − t) + βi

e − βi
e = αi

e(t
′ − t), ∀e ∈ E, if ti−1 < t < t′ ≤ ti. (8)

This proves (iia) except for the case that t = ti−1.
For (iib), note that by (8), we have αi = (O(t′)−O(t))/(t′ − t), and O(t′)−O(t) is a pseudo flow

of value t′ − t, and since the network is well-designed, Oe(t
′) − Oe(t) ≥ 0 for all edges e ∈ E. Hence

all components of αi are non-negative, implying that O(t′)−O(t) is a flow of value t′ − t and αi is a
flow of value 1. Finally, αi

e = 0 if e 6∈ Pi, since αi is a solution to the system of (4)-(7).

For (iic), since O(t) and O(t′) are solutions to the system (4)-(7), we have

1

2
(
∑

e∈q

be −
∑

e∈p

be) =
∑

e∈p

aeOe(t)−
∑

e∈q

aeOe(t) =
∑

e∈p

aeOe(t
′)−

∑

e∈q

aeOe(t
′),

which then implies that

∑

e∈p

ae(Oe(t
′)−Oe(t)) =

∑

e∈q

ae(Oe(t
′)−Oe(t)).

By (8), the LHS equals
∑

e∈p aeα
i
e(t

′ − t) and the RHS
∑

e∈q aeα
i
e(t

′ − t). (iic) follows.

To finish the proof of (iia), we need to handle the case that t = ti−1. Define Õ(t∗) := O(t′) −
αi(t′ − t∗). We claim that Õ(t∗) = O(t∗) if t∗ = ti−1, and the proof would follow if the claim holds.
Suppose, for a contradiction, that Õ(ti−1) 6= O(ti−1). There can be two reasons for Õ(ti−1) not being
optimal: either Õe(ti−1) < 0 on some edge e ∈ E, or there exists a path p ∈ P used by Õe(ti−1) so that
p’s 2-delay Lp(Õ(ti−1), 2) is not minimum among all paths q ∈ P. In both cases, choose an arbitrary
small ǫ > 0 so that ti+1 + ǫ < t′. Then Õ(ti−1 + ǫ) is still not an optimal flow, contradicting (8).

For (iii), first consider the case that t = ti, i ≥ 1. By Lemma 8, all paths p ∈ Pi have the same
minimum 2-delay Lp(O(ti), 2) among all paths in P. Let this 2-delay be Ψi. To see that q ∈ Pi+1\Pi
also has the same 2-delay, observe that by (iia) and (iic), the 2-delay of all paths p ∈ Pi+1 increases
in the same speed, i.e., Lp(O(ti + ǫ), 2)−Lp(O(ti), 2) = 2ǫ

∑

e∈p aeα
i
e, which is constant for all paths

p ∈ Pi+1. If there is some path q ∈ Pi+1\Pi such that Lq(O(ti), 2) > Ψi. Then as t increases from ti
to ti + ǫ ≤ ti+1, Lq(O(ti + ǫ), 2) > Lp∈Pi

(O(ti + ǫ), 2), a contradiction to Lemma 8.

When t = t0 = 0, by the same argument as above, all paths in P1 increase their 2-delays in the
same speed when t increases. Hence in O(0), all paths p ∈ P1 should have the same minimum 2-delay
among all paths in P, which is

∑

e∈p be, and we define this value to be Ψ0. This completes the proof
of (iii).
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Finally, (iiia) holds because, by (iia) and (iic), from ti−1 to ti, the path p ∈ P1 increases its 2-delay
by the amount of 2(ti − ti−1)

∑

e∈p aeα
i
e. ⊓⊔

In the following, we assume that the nested sets of paths Pi, the vectors αi, and the φ-delay
thresholds Ψi are known. See Appendix C about finding them in polynomial time if all coefficients
{ae, be}e∈E are rational.

The Vectors αi as “Accelerators” and φ-Delay Thresholds Ψi as “Landmarks” The vectors
αi and the φ-delay thresholds Ψi play a pivotal role in our algorithm in Section 3.2. Here we explain
why they are useful.

Lemma 12(ii) suggests an algorithmic view on an optimal flow when its value is increased: when
its value is increased from t to t+ ǫ so that ti−1 ≤ t ≤ t+ ǫ ≤ ti, the optimal flow is increased in the
speed of αi in the following sense

O(t+ ǫ) := O(t) + αiǫ.

In other words, the vector αi serves as an accelerator to tell the optimal flow how it should update
itself when the flow value increases. Lemma 12(iii) implies that once the flow value reaches ti, the
2-delay of all paths in Pi+1 will become exactly Ψi. And after this point, the optimal flow begins to
use the paths in Pi+1, instead of Pi. This suggests that we can view these thresholds Ψi as a sort of
“landmarks”: pick any path p ∈ P1 (and note that then p ∈ Pi for any i). Once its 2-delay becomes
Ψi, it is time to change gear: the optimal flow thence increases in the speed of αi+1, instead of αi.

Our main algorithm in Section 3.2 is inspired by these observations. Initially, the flow value is 0
and we increase it gradually up to 1. In this process, the flow is updated based on these accelerators
αi, and each time the φ-delay of a path in P1 reaches a landmark Ψi, we use a different accelerator
αi+1 to update the flow.

To better illustrate our idea, we first present a simpler algorithm, which we call Algorithm A, in
Figure 1. It constructs a Nash equilibrium for k symmetric players. Note that when k →∞, the Nash
equilibrium would just be a Wardrop equilibrium.

Algorithm A maintains a k+1
k

-optimal flow f(t) of value t when t is increased from 0 to 1. The

index h records the set of paths Ph that f(t) uses. f(t) is increased in the speed of αh (see Lines 5-6).
Each time the k+1

k
-delay of a path p ∈ P1 reaches Ψh, f(t) is then increased in the speed of αh+1 (see

Lines 2 and 4). Line 3 just records the value th(k) by which f(t) shifts from using Ph to Ph+1.
7 As a

clarification, in the following discussion, f(t∗) refers to the current flow maintained by Algorithm A
between Lines 1 and 2 when t = t∗.

Lemma 13. Let t0(k) = 0 and tz(k) = 1. (So when Algorithm A terminates h = z).

(i) For 0 ≤ i ≤ z, f(ti(k)) is an equilibrium flow with total flow value ti(k) for k symmetric players,
and it uses the same set of paths Pi as O(ti).

(ii) Let q be a path in P and p ∈ P1 the path chosen in Line 0.

(iia) 0 ≤ i ≤ z − 1, Lq(f(ti(k)),
k+1
k

) = Lq(O(ti), 2) and Lp(f(ti(k)),
k+1
k

) = Lp(O(ti), 2) = Ψi.

(iib) Lq(f(tz(k)),
k+1
k

) ≤ Lq(O(tz), 2) and Lp(f(tz(k)),
k+1
k

) ≤ Lp(O(tz), 2) = Ψz.

7 Since we increase the flow by an infinitesimal amount ǫ, this algorithm, along with the main algorithm in the next
section, does not run in polynomial time. But they can be easily modified to run in polynomial time. We choose to
present in this manner since we consider it as simpler and it makes the analysis in Section 3.3 go smoother.
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Input: k // the number of symmetric players;
Initialization: t := 0; fe(t) := 0, ∀e ∈ E; h = 1; ǫ > 0 is an infinitesimal amount;

// f(t) is the current flow of value t; h is the index of the set of paths Ph that f(t) uses;
0. pick p ∈ P1;
1. While t < 1
2. if Lp(f(t),

k+1
k

) = Ψh then

3. th(k) := t;
4. h := h+ 1;
5. f(t+ ǫ) := f(t) + αhǫ;
6. t := t+ ǫ;
7. End

8. th(k) := 1;
Fig. 1. Algorithm A.

Proof. We first note that f(t) is a flow for all t ∈ [0, 1]. This is because by Lemma 12(iib), αiǫ is a
flow of value ǫ, and f(t) is the sum of many flows of value ǫ, which is then still a flow.

We now prove the lemma by induction on i. In the base case i = 0, (i) is trivial and (ii) holds
because Lq(f(t0(k) = 0), k+1

k
) =

∑

e∈q be = Lq(O(t0 = 0), 2), and this value equals Ψ0 if q = p
according to Lemma 12(iii). For the induction step, observe that by the induction hypothesis,

Lq(f(ti−1(k)),
k + 1

k
) = Lq(O(ti−1), 2) and this quantity equals Ψi−1 if q = p ∈ P1. (9)

Let τ := k+1
2k (ti(k)− ti−1(k)). Then the quantity 2τ

∑

e∈q aeα
i
e represents the increase of path q’s

k+1
k

-delay from ti−1(k) to ti(k). We claim that

ti−1 + τ ≤ ti and the inequality holds with equality if 1 ≤ i ≤ z − 1. (10)

If the claim holds, then when t ∈ (ti−1, ti−1 + τ ], the optimal flow sticks to using Pi. This claim
follows from

ti − ti−1 =
Ψi − Ψi−1

2
∑

e∈p aeα
i
e

≥
Lp(f(ti(k)),

k+1
k

)− Lp(f(ti−1(k)),
k+1
k

)

2
∑

e∈p aeα
i
e

=
2τ

∑

e∈p aeα
i
e

2
∑

e∈p aeα
i
e

= τ,

where the first equality follows from Lemma 12(iiia) and the inequality from (9) and the fact that p’s
k+1
k

-delay at ti(k) is no larger than Ψi. And this inequality holds with equality if 1 ≤ i ≤ z− 1. Now,

Lq(f(ti(k)),
k + 1

k
) = Lq(f(ti−1(k)),

k + 1

k
) + 2τ

∑

e∈q

aeα
i
e

= Lq(O(ti−1), 2) + τ(2
∑

e∈q

aeα
i
e) = Lq(O(ti−1 + τ), 2) ≤ Lq(O(ti), 2),

where the second equality follows from (9) and the third from (10). So we establish (ii). (The second
part of (iia) holds because ti−1 + τ = ti if 1 ≤ i ≤ z − 1 and by Lemma 12(iii), Lp(O(ti), 2) = Ψi.)

By the algorithm, f(ti(k)) = f(ti−1(k))+αi(ti(k)−ti−1(k)) and by (i) of the induction hypothesis,
fi−1(k) uses Pi−1. Thus f(ti(k)) uses Pi as O(ti). Now f(ti(k)) and O(ti + τ) use the same set of
paths Pi and the k+1

k
-delay of the former is the same as the 2-delay of the latter along all paths. Since

the latter is 2-optimal, the former must be k+1
k

-optimal. This proves (i). ⊓⊔
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We remark that it is not difficult to infer that with the same flow value t, the smaller the k,
the larger set of the paths Pi that the

k+1
k

-optimal flow f(t) uses. (Since a larger k implies a slower
growth-rate of the φ-delay.) The extreme case is the optimal flow with k = 1 player. Thus, the optimal
flow shifts to larger sets of paths the fastest. This implies that the growing speed of the social cost
using a larger set of paths is less than the growing speed of the social cost using a smaller set of paths
(under a certain condition). Our analysis in Section 3.3 is centered around this intuition.

3.2 Constructing Nash Equilibria in a Well-Designed Network

The nice thing about a well-designed network, as we will show, is that it guarantees its Nash equilibria
satisfy the nesting property.

Definition 14 (Nesting Property). A flow f satisfies the nesting property, if when players i and
j have flow values vi > vj , then f i

e > f j
e on any edge e ∈ E used by player j, and when vi = vj, then

f i = f j.

If a Nash equilibrium satisfies the nesting property, it has an alternative characterization, which
will be exploited by our main algorithm. Let

bre := ae(

k
∑

i=r+1

f i
e) + be.

Lemma 15. Suppose that flow f satisfies the nesting property. If given any two directed paths p and
q between the same pair of vertices and p is used by player r, and the following holds:

∑

e∈p

aef
r
e +

1

r + 1
bre ≤

∑

e∈q

aef
r
e +

1

r + 1
bre, (11)

then the flow f is a Nash equilibrium.

Proof. To prove that a flow f fulfilling the condition in the lemma is a Nash equilibrium, by Lemma 8,
we need to show that for any player r, if he uses path p, then

∑

e∈p

ae(

k
∑

i=1,i 6=r

f i
e + 2f r

e ) + be ≤
∑

e∈q

ae(

k
∑

i=1,i 6=r

f i
e + 2f r

e ) + be, (12)

for any directed path q connecting the same pair of vertices as p.
Now suppose that player i uses path p and that q is any other directed path between the same

pair of vertices as p. Define

Xi :=
∑

e∈p

aef
i
e +

bie
i+ 1

, Yi :=
∑

e∈q

aef
i
e +

bie
i+ 1

.

Since we assume that the flow satisfies the nesting property, all the first r players use path p.
Therefore, Xi ≤ Yi for all 1 ≤ i ≤ r. Hence the expression in (12) can be written as

X1 +
1

2
X2 +

1

3
X3 + · · ·+

1

r − 1
Xr−1 +

r + 1

r
Xr ≤ Y1 +

1

2
Y2 +

1

3
y3 + · · ·+

1

r − 1
Yr−1 +

r + 1

r
Yr.

⊓⊔
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High-Level Ideas of Algorithm B Let σ = (v1, · · · , vk) be the input profile. Our algorithm
maintains a φ-optimal flow when the total flow value is increased from 0 to 1. But unlike the previous
algorithm, φ is dynamically changing. We maintain two indices h and r, where h indicates the set of
paths Ph the current flow uses and r the index of the player whose flow is about to be created (we
will explain how). Initially, let h := 1 and r := k.

While maintaining the invariant the current flow is r+1
r

-optimal, our algorithm increases the flow

in the speed of αh. Two things may happen in this process.

– The r+1
r

-delay of a path p ∈ P1 attains Ψh. Then we increase the flow thence in the speed of αh+1

(so we increment the index h).

– The current flow value attains rvr. Then we “freeze” 1
r

fraction of the current flow, give it to
the r-th player, treat the remaining unfrozen r−1

r
fraction as the current flow, and “update” the

network (to be explained shortly).

We will prove that the unfrozen r−1
r

fraction of the flow is r
r−1 -optimal in the updated network.

This is a crucial point of our algorithm. After the freezing, we decrement the index r.

In the end, we can show that the k frozen flows that are assigned to the players satisfy the nesting
property and the condition in (11). Thus by Lemma 15 they constitute a Nash equilibrium in the
original network.

We now explain how the “freezing” is done and how the network is updated. Let f(σ, t) denote
the current flow and we will maintain the invariant that its flow value is t−

∑k
j=r+1 vj . Assume that

in the current network the delay function of each edge e is le(x) = aex + bre and the flow value of
f(σ, t) is rvr. We freeze a fraction of the current flow as follows:

fr :=
1

r
f(σ, t), f(σ, t) :=

r− 1

r
f(σ, t).

Thus f(σ, t) is split into two parts: the frozen part, fr, which is given to the r-th player; the
unfrozen part r−1

r
f(σ, t), which is now treated as the current flow of value (r− 1)vr.

We also update the network in the process of freezing as follows.

le(x) := aex+ (br + aef
r
e ) = aex+ br−1

e ,∀e ∈ E.

In words, the newly frozen flow fr adds a constant term to the delay function on each edge e.
Finally, we decrement the index r.

Now let Le,r(f(σ, t),
r+1
r

) denote the r+1
r

-delay of edge e in the current network (which has been
updated k − r times because of those frozen flows), i.e.,

Le,r(f(σ, t),
r+ 1

r
) =

r+ 1

r
aefe(σ, t) + bre ,

and in the following we refer to Le,r(f(σ, t),
r+1
r

) as the φ-delay of the current flow on edge e.

We make a crucial observation about the consequence of the freezing: The φ-delay of the current
flow on each edge remains unchanged after the freezing. To be precise, assume that after the freezing,
the decremented index r = r− 1. Then the r

r−1-delay of each edge (path) in the new network with the

remaining unfrozen flow r−1
r
f(σ, t) would be identical to its r+1

r
-delay in the previous network with

its entire flow f(σ, t).

Claim. For each edge e ∈ E, Le,r−1(
r−1
r
f(σ, t), r

r−1) = Le,r(f(σ, t),
r+1
r
).

11



Proof. This follows from

Le,r−1(
r − 1

r
f(σ, t),

r

r − 1
) =

r

r − 1

[

ae
r − 1

r
fe(σ, t)

]

+(aef
r
e+bre) =

r + 1

r
aefe(σ, t)+bre = Le,r(f(σ, t),

r + 1

r
).

⊓⊔

By this claim, if we can show that immediately before the freezing, the current flow is r+1
r
-optimal

in the previous network, then the unfrozen remaining flow will be r
r−1 -optimal in the updated network.

We now present our main algorithm, Algorithm B, in Figure 2. We record the values th(σ) and
tr(σ) (see Lines 4 and 7) as the total flow values by which the current flow shifts to a larger set of
paths and by which the flow of the r-th player is created. The inner while loop is necessary because
it is possible the flow values of multiple players are the same, or at some point, the indice h and r are
updated at the same time. As a clarification, in the following lemma, its proof, and the subsequent
discussion in Section 3.3, we assume that Lines 2-14 of Algorithm B are executed instantaneously.
When we say “at time t∗”, we refer to the moment Algorithm B is executing between Lines 1 and 2
when t = t∗. Similarly, f(t∗, σ) refers to the current flow maintained by Algorithm B between Lines 1
and 2 when t = t∗. These assumptions are made to avoid possible confusion due to the changes in
the indices between Lines 2-14. It is easy to verify the invariant that the flow value of f(σ, t) being
t−

∑k
j=r+1 vj is maintained. The next lemma shows that the outcome will be a Nash equilibrium.

Input: A profile σ = (v1, · · · , vk), where
∑k

j=1 vj = 1;

Initialization: t := 0; r := k; h := 1; fe(σ, t) := 0,∀e ∈ E; ǫ > 0 an infinitesimal amount;
// f(σ, t) is the current flow, h is the index of the set of paths Ph that f(σ, t) uses;
// r is the index of the player whose flow is about to be created;

0. pick p ∈ P1;
1. While t ≤ 1 and r ≥ 1

2. While Lp,r(f(σ, t),
r+1
r

) = Ψh or t−
∑k

j=r+1 vj = rvr

3. if Lp,r(f(σ, t),
r+1
r

) = Ψh then // the φ-delay of path p ∈ P1 reaches a φ-delay threshold
4. th(σ) := t;
5. h := h+ 1;

6. else if t−
∑k

j=r+1 vj = rvr then // the current flow value reaches rvr
7 tr(σ) := t;
8. fr := 1

r
f(σ, t);

9. f(σ, t) := r−1
r

f(σ, t);
10. ∀e ∈ E, le(x) := aex+ aef

r
e + bre = aex+ br−1

e ;
11. r := r− 1;
12. End

13. f(σ, t+ ǫ) := f(σ, t) + αhǫ;
14. t := t+ ǫ;
15. End

16. th(σ) := 1;
Fig. 2. Algorithm B.

Lemma 16. Let t0(σ) = 0 and tz(σ) = 1 (So when Algorithm B terminates h = z).

(i) For all 0 ≤ i ≤ z, at time t∗ = ti(σ), f(σ, t
∗) uses the set of paths Pi as O(ti). Furthermore, if at

time t∗ = ti(σ), r = r, then f(σ, t∗) is r+1
r
-optimal in the current network.

(ii) Let q be a path in P and p ∈ P1 the path chosen at Line 0.

12



(iia) Suppose that 0 ≤ i ≤ z − 1 and at time t∗ = ti(σ), r = r. Then Lq,r(f(σ, t
∗), r+1

r
) =

Lq(O(ti), 2) and Lp,r(f(σ, t
∗), r+1

r
) = Lp(O(ti), 2) = Ψi;

(iib) At time t∗ = tz(σ), if r = r, then Lq,r(f(σ, t
∗), r+1

r
) ≤ Lq(O(tz), 2) and Lp,r(f(σ, t

∗), r+1
r
) ≤

Lp(O(tz), 2) = Ψz

(iii) At time t∗ = tr(σ), for some 1 ≤ r ≤ k,

(iiia) f(σ, t∗) is r+1
r
-optimal in the current network;

(iiib) if r > 1, then for each edge e ∈ E, Le,r(f(σ, t
∗), r+1

r
) = Le,r−1(

r−1
r
f(σ, t∗), r

r−1), which is the

φ-delay of edge e immediately before the freezing where φ = r+1
r
. As a consequence, immediately

after the freezing, i.e., Algorithm B is executing Line 12 when t = tr(σ) (note that then the
index r is now set to r − 1 and each edge has now the delay function le(x) = aex + bre ), the
unfrozen part of the flow still has the same φ-delay (where φ = r+1

r
) on each path in P and it

is still r+1
r

-optimal in the updated network.

(iv) f i is a flow of value vi for all 1 ≤ i ≤ k. Furthermore, f1,· · · ,fk satisfy the nesting property and
they constitute a Nash equilibrium in the original network.

Proof. We prove (i)-(iii) together by induction on the number of times tr(σ) and th(σ) are defined
(i.e. the number of times that Lines 4 and 7 are executed). To simplify notation, we write f(t), instead
of f(σ, t) to denote the current flow maintained by the algorithm.

Let the base case be when at time t∗ = 0, t0(σ) is defined to be 0. Then (i) is trivial and there
is nothing to prove in (iii) and (iia) holds because Lq,k(f(t0(σ)),

k+1
k

) =
∑

e∈q be = Lq(O(t0), 2). For
the induction step, either t∗ = ti(σ) or t

∗ = tr(σ). In the former case, assume that at time t∗ = ti(σ),
the index r = r. In the latter case, assume that at time t∗ = tr(σ) the index h = i.

Assume that at time ti−1(σ), the index r = r†. Then by these assumptions,

ti−1(σ) ≤ tr
†
(σ) ≤ tr

†−1(σ) ≤ · · · ≤ tr+1(σ) ≤ t∗ if r† > r,

ti−1(σ) ≤ t∗ ≤ tr
†
(σ) if r† = r.

(In the former case, between ti−1(σ) and t∗, the current flow has been frozen at least once, while in
the latter, never.)

Below we assume that r† > r. The case that r† = r follows similar and simpler arguments.
(iiib) of the induction hypothesis implies that the φ-delay of path q is unchanged at tr

†
(σ), tr

†−1(σ),
· · · , tr+1(σ). (ii) of the induction hypothesis states that

Lq,r†(f(ti−1(σ)),
r† + 1

r†
) = Lq(O(ti−1), 2) and this values equals Ψi−1 if q = p ∈ P1. (13)

Letting

τ = 1/2



(tr
†

(σ) − ti−1(σ))
r† + 1

r†
+





r†−1
∑

j=r+1

(tj(σ)− tj+1(σ))
j + 1

j



+ (t∗ − tr+1(σ))
r + 1

r



 ,

then the quantity 2τ
∑

e∈q aeα
i
e represents the increase of q’s φ-delay from ti−1(σ) up to t∗. We claim

ti−1 + τ ≤ ti and this inequality holds with equality if t ∈ {ti(σ)}
z−1
i=1 . (14)
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If the claim holds, then in the interval (ti−1, ti−1 + τ ], the optimal flow sticks to using Pi. This
claim follows from

ti − ti−1 =
Ψi − Ψi−1

2
∑

e∈p aeα
i
e

≥
Lp,r(f(ti(σ)),

r+1
r
)− Lp,r†(f(ti−1(σ)),

r†+1
r†

)

2
∑

e∈p aeα
i
e

=
2τ

∑

e∈p aeα
i
e

2
∑

e∈p aeα
i
e

= τ,

where the first equality follows from Lemma 12(iiia) and the inequality from (13) and the fact that p’s
φ-delay at time t∗ is no larger than Ψi. Note that this inequality holds with equality if t ∈ {ti(σ)}

z−1
i=1 .

And we have

Lq,r(f(t),
r + 1

r
) = Lq,r†(f(ti−1(σ)),

r† + 1

r†
) + 2τ

∑

e∈q

aeα
i
e

= Lq(O(ti−1), 2) + τ(2
∑

e∈q

aeα
i
e) = Lq(O(ti−1 + τ), 2) ≤ Lq(O(ti), 2)

where the second equality follow from (13) and the third from (14). So we establish (ii). (The second
half of (iia) holds because ti−1 + τ = ti if t ∈ {ti(σ)}

z−1
t=1 and Lemma 12(iii)).

Now by (i) of the induction hypothesis, the flow f(ti−1(σ)) uses Pi−1. In the case that t∗ ∈
{ti(σ)}

z−1
i=1 , from ti−1(σ) up to t∗, the current flow is updated based on αi, therefore, f(t∗) uses Pi.

(Though the current flow could have been frozen multiple times from ti−1(σ) up to t∗, each freezing
does not change the set of edges used by the current flow.) And Pi is also used by O(ti−1 + τ) due
to (14). Since f(t∗) and O(ti−1 + τ) use the same set of edges, if the latter flow is 2-optimal, the
former flow must be r+1

r
-optimal. This proves (i).

In the case that t∗ ∈ {tr(σ)}kr=1, (iiia) can be proved by the same arguments: since f(t∗) and
O(ti−1 + τ) use the same set of edges, if the latter flow is 2-optimal, the former flow must be r+1

r
-

optimal. (iiib) follows by the same argument as shown in the claim immediately preceding this lemma.
Finally for (iv), it follows easily from the algorithm that flow f i is of value vi for all i. Moreover,

the flows f1,· · · , fk satisfy the nesting property, since by Lemma 12(iib), αi
e ≥ 0 for all i and e. To

see that they form a Nash equilibrium in the original network, note that at time t∗ = tr(σ), (iiia)
states that the current flow f(t∗) is r+1

r
-optimal in the current network. So given a path p used by

f(t∗),

∑

e∈p

r + 1

r
aefe(t

∗) + bre =
∑

e∈p

(r + 1)aef
r
e + bre ≤

∑

e∈q

r + 1

r
aefe(t

∗) + bre =
∑

e∈q

(r + 1)aef
r
e + bre,

for any other path q linking the same pair of vertices as p. Dividing the above inequality by r + 1
gives the expression in (11). Hence f =

∑k
i=1 f

i is a Nash equilibrium by Lemma 15. ⊓⊔

3.3 Comparing the Social Cost of Two Different Profiles

In this section, we prove Lemma 5 by applying Algorithm B to two different profiles σ and σ′

simultaneously.
Let h(σ, t) and r(σ, t) denote the values of the indices h and r in the execution of Algorithm B

for σ. More precisely,
{

h(σ, t) = i if t ∈ (ti−1(σ), ti(σ)] (t0(σ) is understood to be 0)
r(σ, t) = r if t ∈ (tr+1(σ), tr(σ)] (tk+1(σ) is understood to be 0)
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Let C(σ, t) be the social cost of the accumulated flow, which is the sum of the current flow f(σ, t)
and those frozen flows, in the original network, i.e.,

C(σ, t) =
∑

e∈E



fe(σ, t) +

k
∑

j=r(σ,t)+1

f j
e







ae(fe(σ, t) +

k
∑

j=r(σ,t)+1

f j
e ) + be



 .

We want to observe the growing speed of the social cost C(σ, t), in other words, dC(σ,t)
dt

8. Suppose
that σ majorizes σ′. If we can show that

dC(σ, t)

dt
|t=t∗ ≤

dC(σ′, t)

dt
|t=t∗ for all 0 ≤ t∗ ≤ 1, t∗ 6∈ {ti(σ), ti(σ

′)}∀i, (15)

then we can conclude the equilibrium for σ has no greater cost than the equilibrium for σ′.
The following lemma can be proved by calculus and the observation that the accumulated flow

on edge e, which is fe(σ, t) +
∑k

j=r(σ,t)+1 f
j
e , can be expressed as





h(σ,t)−1
∑

i=1

αi
e(ti(σ) − ti−1(σ))



 + (t− th(σ,t)−1(σ))α
h(σ,t)
e = αh(σ,t)

e t+

h(σ,t)−1
∑

i=1

ti(σ)(α
i
e − αi+1

e ). (16)

Lemma 17. Let σ be an input profile of Algorithm B.

(i) For t ∈ [0, 1]\{ti(σ)}∀i,
dC(σ,t)

dt
= Yh(σ,t)t+Zh(σ,t), where Yh(σ,t) =

∑

e∈E 2ae(α
h(σ,t)
e )2 and Zh(σ,t) =

∑

e∈E α
h(σ,t)
e be;

(ii) For any h ≥ 2, Yh−1th−1 + Zh−1 = Yhth−1 + Zh; moreover, Yh−1 > Yh.

(iii) If h′ < h, h ≥ 2, and t∗ > th−1, then Yht
∗ + Zh < Yh′t∗ + Zh′;

(iv) If h′ = h, then Yh′t∗ + Zh′ = Yht
∗ + Zh.

Proof. For (i), by calculus and the fact that the accumulated flow on edge e ∈ E can be expressed
as (16),

dC(σ, t)

dt
= 2

∑

e∈E

aeα
h(σ,t)
e



(αh(σ,t)
e t+

h(σ,t)−1
∑

i=1

ti(σ)(α
i
e − αi+1

e )



+
∑

e∈E

αh(σ,t)
e be.

So if we can show that

∑

e∈E

aeα
h(σ,t)
e (αi

e − αi+1
e ) = 0,∀1 ≤ i ≤ h(σ, t)− 1, (17)

we can prove (i). We make use of the following fact that has been proved elsewhere.

Proposition 18. [8] Let z be a flow of value η and c the vector of cost indexed by e ∈ E such
that for every path p ∈ P ′ ⊆ P,

∑

e∈p ce = κ, a fixed constant, and ze = 0 for each e 6∈ P ′. Then
∑

e∈E ceze = κη.

8 To be precise, C(σ, t) is not differentiable in the breakpoints ti(σ). Hence the domain of dC(σ,t)
dt

is [0, 1]\{ti(σ)}∀i.
For our purpose, it suffices to consider the open intervals between these breakpoints, because the functions C(σ, t)
and C(σ′, t) are both continuous.
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By Lemma 12(iic) and (iib), for any path p ∈ Ph(σ,t),
∑

e∈p aeα
h(σ,t)
e is constant and αi and αi+1 are

flows of value 1. Thus, we can make use of Proposition 18 as follows: let P ′ := Ph(σ,t), ce := aeα
h(σ,t)
e ,

and z := αi or z := αi+1 (note that ze = 0, ∀e 6∈ P ′ by Lemma 12(iib).) This gives (17) and hence
the proof of (i).

For (ii), let σo = (1, 0, · · · , 0) denote the optimal flow profile. Then (i) implies that

dC(σo, t)

dt
|t=t∗ = Yh−1t

∗+Zh−1 for t∗ ∈ (th−2, th−1), and
dC(σo, t)

dt
|t=t∗ = Yht

∗+Zh for t∗ ∈ (th−1, th).

If Yh−1th−1 + Zh−1 < Yhth−1 + Zh, then choose a small ǫ > 0 so that th−1 + ǫ < th, and Yh−1t+
Zh−1 < Yht+Zh in the interval t ∈ [th−1, th−1+ ǫ]. This implies that when the flow value is increased
from th−1 to th−1 + ǫ, if the optimal flow sticks to the set of paths Ph−1, the growing speed of its
social cost, would have been less than if it uses Ph, an impossibility. More specifically, define a flow
Õ(t) as follows,

∀e ∈ E, Õe(t) = αh−1
e t+

h−2
∑

i=1

ti(α
i
e − αi+1

e ),

Then Õ(th−1) = O(th−1) and Õ(t) uses Ph−1 when th−1 ≤ t ≤ th−1 + ǫ. Letting C(Õ(t)) denote
the cost of Õ(t), then by the same calculation as has been done in (i),

if ti−1 ≤ t ≤ t+ ǫ,
dC(Õ(t))

dt
= Yh−1t+ Zh−1 < Yht+ Zh,

implying that the cost of Õ(th−1+ ǫ) is strictly less than the cost O(th−1+ ǫ), a contradiction. On the
other hand, if Yh−1th−1+Zh−1 > Yhth−1+Zh, then choose similarly an arbitrarily small ǫ > 0 so that
th−1 − ǫ > th−2, and Yh−1t + Zh−1 > Yht+ Zh in the interval t ∈ [th−1 − ǫ, th−1]. Then the optimal
flow should have shifted to using the set of paths Ph, in the interval t ∈ [th−1 − ǫ, th−1] by the same
arguments as above. But this contradicts Lemma 12(i). So we establish Yh−1th−1+Zh−1 = Yhth−1+Zh.

To show the last part of (ii), suppose that Yh−1 ≤ Yh. Then choose an ǫ > 0 so that th−1+ ǫ < th,
and Yh−1t+Zh−1 ≤ Yht+Zh in the interval t ∈ [th−1, th−1+ ǫ]. Then this implies that in this interval,
if the optimal flow sticks to the set of paths in Ph−1, instead of using Ph, either its social cost would
have been smaller (contradicting Lemma 12(i)), or there exist multiple optimal flows of the same
value (one using Ph−1 and the other using Ph), thus contradicting Lemma 9. This completes (ii).

For (iii), observe that by (ii),

if t∗ > ti−1 and i ≥ 2, then Yit
∗ + Zi < Yi−1t

∗ + Zi−1.

Since t∗ > th−1 and h ≥ 2, t∗ > ti−1 for all 2 ≤ i ≤ h. Repeatedly applying the above inequality
gives

Yht
∗ + Zh < Yh−1t

∗ + Zh−1 < · · · < Yh′t∗ + Zh′ .

(iv) is trivial. ⊓⊔

Our proof of Lemma 5 has a geometric interpretation. By Lemma 17(i), if we treat dC(σ,t)
dt

as a
function of t with domain [0, 1]\{ti(σ)}∀i , then such a function is piece-wise linear (but not necessarily
continuous, unless σ is the optimal flow profile). To prove (15), we just need to show that the function
dC(σ,t)

dt
is always above the other function dC(σ′,t)

dt
in the intervals [0, 1]\{ti(σ), ti(σ

′)}∀i.
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Specifically, by Lemma 17(i), we have

dC(σ, t)

dt
|t=t∗ = Yh(σ,t∗)t

∗ + Zh(σ,t∗),
dC(σ′, t)

dt
|t=t∗ = Yh(σ′,t∗)t

∗ + Zh(σ′,t∗).

In the following, we will establish the following fact.

if h(σ′, t∗) ≤ h(σ, t∗), then Yh(σ,t∗)t
∗ + Zh(σ,t∗) ≤ Yh(σ′,t∗)t

∗ + Zh(σ′,t∗). (18)

If this fact holds, then to prove (15), all we need to do is to find a way to compare h(σ, t∗) and
h(σ′, t∗) (See Lemmas 19 and 20.) Before doing so, let us first explain how this fact can be established.
Supposing that the “if” statement in (18) holds, there are two cases:

1. if h(σ, t∗) = h(σ′, t∗). The “then” statement in (18) follows trivially from Lemma 17(iv).
2. if h(σ, t∗) > h(σ′, t∗) (implying h(σ, t∗) ≥ 2), then we will show in Lemma 21 that t∗ > th(σ,t∗)−1.

The “then” statement in (18) would follow from Lemma 17(iii)9. .

Recall that in Algorithm B, the index h is incremented every time the φ-delay of a path p ∈ P1
reaches a threshold Ψi (see Line 2). Thus, h(σ, t

∗) is determined by how much p’s φ-delay has increased
during the interval [0, t∗]. We use the following device to capture the increase of p’s φ-delay.

Let rj(σ)[t†, t‡] denote the amount of time in the interval [t†, t‡] during which Algorithm B, with
input σ, sets the index r to be j. Precisely,

rj(σ)[t†, t‡] = max{0,min{t‡, tj(σ)} −max{t†, tj+1(σ)}}.

Now suppose that in the interval [t†, t‡], the current flow f(σ, t) uses the set of paths Ph, then
the quantity

∑

e∈p aeα
h
e

∑k
j=1

j+1
j
rj(σ)[t†, t‡] is exactly the increase of path p’s φ-delay in [t†, t‡]. The

proof of following lemma uses this observation.

Lemma 19. Suppose that t∗ ∈ [0, 1]. If
∑k

j=1
j+1
j
rj(σ)[0, t∗] ≥

∑k
j=1

j+1
j
rj(σ′)[0, t∗], then h(σ, t∗) ≥

h(σ′, t∗).

Proof. Let p ∈ P1.

Claim.
∑h(σ,t∗)−1

i=1
Ψi−Ψi−1∑
e∈p aeα

i
e
<

∑k
j=1

j+1
j
rj(σ)[0, t∗] ≤

∑h(σ,t∗)
i=1

Ψi−Ψi−1∑
e∈p aeα

i
e
.

Proof. By Lemma 16(iia) , if 1 ≤ i ≤ h(σ, t∗)−1, Ψi is p’s φ-delay at time ti(σ); moreover, p’s φ-delay
is at most Ψh(σ,t∗) at time t∗. The growth of p’s φ-delay from ti−1(σ) to ti(σ) is
∑

e∈p aeα
i
e

∑k
j=1

j+1
j
rj(σ)[ti−1(σ), ti(σ)], therefore,

k
∑

j=1

j + 1

j
rj(σ)[ti−1(σ), ti(σ)] =

Ψi − Ψi−1
∑

e∈p aeα
i
e

, ∀1 ≤ i ≤ h(σ, t∗)− 1 (19)

k
∑

j=1

j + 1

j
rj(σ)[th(σ,t∗)−1(σ), t

∗] ≤
Ψh(σ,t∗) − Ψh(σ,t∗)−1
∑

e∈p aeα
h(σ,t∗)
e

(since t∗ ≤ th(σ,t∗)(σ)) (20)

9 Recall our earlier remark at the end of Section 3.1: the growing speed of the social cost using a larger set of paths
Ph(σ,t∗), which is Yh(σ,t∗)t

∗ + Zh(σ,t∗), is less than the growing speed of the social cost using a smaller set of paths
Ph(σ′,t∗), which is Yh(σ′,t∗)t

∗ + Zh(σ′,t∗), under a certain condition, which is t∗ > th(σ,t∗)−1 and it is proved in
Lemma 21.
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Summing up (19) for all 1 ≤ i ≤ h(σ, t∗)− 1 and (20), we derive the second inequality. Summing
up (19) for all 1 ≤ i ≤ h(σ, t∗) − 1 and the LHS of (20) gives the first inequality (note that the
quantity

∑k
j=1 r

j(σ)[th(σ,t∗)−1(σ), t
∗] > 0 is due to the way we define h(σ, t)). ⊓⊔

We now prove the lemma by contradiction. If h(σ, t∗) < h(σ′, t∗), then by the above claim,

k
∑

j=1

j + 1

j
rj(σ)[0, t∗] ≤

h(σ,t∗)
∑

i=1

Ψi − Ψi−1
∑

e∈p aeα
i
e

≤

h(σ′,t∗)−1
∑

i=1

Ψi − Ψi−1
∑

e∈p aeα
i
e

<

k
∑

j=1

j + 1

j
rj(σ′)[0, t∗],

a contradiction to the statement of the lemma. ⊓⊔

Lemma 19 suggests the way to compare h(σ, t∗) and h(σ′, t∗).

Lemma 20. If σ = (v1, · · · , vk) majorizes σ′ = (v′1, · · · , v
′
k), then for any t∗ ∈ [0, 1],

∑k
j=1

j+1
j
rj(σ)[0, t∗] ≥

∑k
j=1

j+1
j
rj(σ′)[0, t∗].

Proof. We define a function g(t) =
∑k

j=1
j+1
j
rj(σ)[0, t] −

∑k
j=1

j+1
j
rj(σ′)[0, t] and we show that g(t)

is never negative in t ∈ [0, 1]. Observe that g(t) is continuous, and piecewise linear with breakpoints

in tr(σ) and tr(σ′) for all 1 ≤ r ≤ k. Moreover, between two breakpoints, the slope of g(t) is r(σ,t)+1
r(σ,t) −

r(σ′,t)+1
r(σ′,t) . If given any t ∈ [0, 1], r(σ, t) ≤ r(σ′, t), then g(t) is obviously never negative. So suppose

that at t† < 1, r(σ, t†) > r(σ′, t†) so that the slope of g(t) is negative at t†.

Claim. Let t† be as defined. Then there exists t‡ > t†, t‡ ∈ {tr(σ)}kr=2, so that

(i) Between the interval [t†, t‡), the slope of g(t) is always negative and if t‡ < 1, then the slope of
g(t) between t‡ and the next breakpoint of g(t) is 0;

(ii) g(t‡) ≥ 0.

Proof. Order all points tj(σ) and tj(σ′) that are no less than t† non-decreasingly. We look at these
points by this order. Each time we see a point tj(σ) (resp. tj(σ′)), then at t = tj(σ) (resp. at t = tj(σ′)),
the difference between r(σ, t) and r(σ′, t) becomes smaller (respectively, larger). (Recall the way we
define r(σ, t): when t ∈ (tr+1(σ), tr(σ)], r(σ, t) = r. And beyond tr(σ), the index r decreases.) By
this procedure, either: case (1) we find a point tr(σ) so that the slope between tr(σ) and the next
breakpoint is 0, or case (2) we do not find such point and reach the last point tr(σ) = 1. In both cases,
let t‡ = tr(σ). And we argue that r ≥ 2. In the former case, tr(σ) < 1 = t1(σ), hence r > 1. In the
latter case, we claim that t2(σ) = t1(σ) = 1. In this case, we can let t‡ be t2(σ). If the claim does not
hold, then t2(σ) < t1(σ) = 1. But in the interval (t2(σ), t1(σ)], r(σ, t) = 1 ≤ r(σ′, t), a contradiction
to case (2). Now (i) is proved.
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For (ii), note that the above procedure for picking t‡ = tr(σ) implies that tr(σ′) ≤ tr(σ), and for
all j ≥ r, tj(σ), tj(σ′) ≤ tr(σ) and for all j < r, tj(σ), tj(σ′) ≥ tr(σ). Let tk+1(σ) := tk+1(σ′) := 0.

g(t‡) =

k
∑

j=r

j + 1

j
(tj(σ) − tj+1(σ))−



(

k
∑

j=r

j + 1

j
(tj(σ′)− tj+1(σ′))) +

r

r − 1
(tr(σ)− tr(σ′))





=

k
∑

j=r

tj(σ′)− tj(σ)

j(j − 1)

=

k
∑

j=r

j(v′j − vj) +
∑k

i=j+1 v
′
i − vi

j(j − 1)
(using the fact that tj(σ) = jvj +

∑k
i=j+1 vi.)

=

∑k
j=r v

′
j − vj

r − 1
≥ 0. (using the fact that σ majorizes σ′.) ⊓⊔

Now by (i) of the claim, if the slope of g(t) is negative at t†, we can find a point t‡ > t† so that
either the slope of g(t) becomes 0 beyond t‡, or t‡ = 1. As g(t‡) ≥ 0 by (ii) of this claim, we prove
the lemma. ⊓⊔

Lemma 21. If h(σ, t∗) ≥ 2, then t∗ > th(σ,t∗)−1.

Proof. Let σo = (1, 0, · · · , 0) be the optimal flow profile. Then σo majorizes σ. By Lemmas 19 and 20,
we have h(σo, t∗) ≥ h(σ, t∗) > h(σ, t∗)− 1 = h(σo, th(σ,t∗)−1). Thus t

∗ > th(σ,t∗)−1. ⊓⊔

Proof of (15) and Lemma 5 As σ majorizes σ′, by Lemmas 19 and 20, h(σ, t∗) ≥ h(σ′, t∗) for
all t∗ ∈ [0, 1]. Now, by Lemma 17(i)(iii)(iv) and Lemma 21, given any t∗ ∈ [0, 1]\{ti(σ), ti(σ

′)}∀i,

dC(σ, t)

dt
|t=t∗ = Yh(σ,t∗)t

∗ + Zh(σ,t∗) ≤ Yh(σ′,t∗)t
∗ + Zh(σ′,t∗) =

dC(σ′, t)

dt
|t=t∗ ,

establishing (15). And Lemma 5 follows from (15). ⊓⊔
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A Counter-Examples

A.1 Affine Delays in the Braess Graph

To construct an example in which the collusion increases the social cost, as indicated by Theorem 3, we
need to avoid well-designed networks. For this purpose, we use the Braess graph shown in Figure 3(a),
which is the smallest non-series-parallel graph, to get around Proposition 2. The delay functions of the
5 edges are shown in Table 1(a). When t ∈ (1.083333, 1.973568], the flow on edge e3 can be expressed
as Oe3(t) = −0.468041t + 0.923711, hence this network is not well-designed.

Initially, one player has 2.4 units and the other six players have 0.1 unit each. Figure 3(b) shows
their flow patterns in the pre-collusion equilibrium, where the solid lines are the flow of the player
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with 2.4 units while the dotted lines are the flows of the other six players. The latter six players have
identical flows in the equilibrium. It can been seen that this Nash equilibrium does not satisfy the
nesting property.

Suppose now that every three of the players who have 0.1 unit flow decide to form themselves
into a coalition. Thus, after the collusion, there are three players, one with 2.4 units while the other
two with 0.3 unit each. The flow pattern of the post-collusion equilibrium is similar to the previous
as shown in Figure 3(b): the solid lines are the flow of the player with 2.4 units while the dotted lines
are the identical flows of the other two players. The social cost in this equilibrium is higher than that
in the previous equilibrium.
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(a) Braess graph
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(b) Flow patterns

Fig. 3. The graph and the flow patterns. Note that in (b), for both the pre-collusion and the post-collusion equilibria,
the solid lines are the flow pattern of the player with the largest flow value and the dotted lines are the flow pattern of
the players with smaller flow values.

(a) Delay Functions

Edge Delay function

e1 7x

e2 1.8x + 18

e3 x+ 2

e4 2x+ 6

e5 7x

(b) Flow values in the pre-collusion equilibrium

Edge Large player (Each of the) Small players

e1 1.002592 0.01681

e2 1.002592 0

e3 0 0.01681

e4 1.397408 0.08319

e5 1.397408 0.1

(c) Flow values in the post-collusion equilibrium

Edge Large player (Each of the) Small Players

e1 1.001325 0.052936

e2 1.001325 0

e3 0 0.052936

e4 1.398675 0.247064

e5 1.398675 0.3

Table 1. The delay functions and the flow values in both Nash equilibria
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(a) Flow value, delay, and cost in the pre-collusion equilibrium

Edge Flow value Delay Cost

e1 1.103449651046859 7.724147557328014 8.523207926768047

e2 1.002592223330010 19.80466600199402 19.85600411924744

e3 0.1008574277168492 2.100857427716849 0.2118870761593580

e4 1.896550348953141 9.793100697906281 18.57310854594740

e5 1.997407776669990 13.98185443668993 27.92746478411227

SUM 75.09167245223452

(b) Marginal costs of players in the pre-collusion equilib-
rium

Path Large player (Each of the) Small Players

e1-e2 36.35162512462612 27.64648055832502

e1-e3-e5 40.60685942173480 24.64133599202393

e4-e5 36.35162512462612 24.64133599202393

(c) Flow value, delay, and cost in the post-collusion equilibrium

Edge Flow value Delay Cost

e1 1.107196467991170 7.750375275938190 8.581188131124852

e2 1.001324503311258 19.80238410596026 19.82861242927941

e3 0.1058719646799118 2.105871964679912 0.2229528022650080

e4 1.892803532008830 9.785607064017661 18.52223161362319

e5 1.998675496688742 13.99072847682119 27.96292618744792

SUM 75.11791116374037

(d) Marginal costs of players in the post-collusion equilib-
rium

Path Large player (Each of the) Small Players

e1-e2 36.3644150110375 27.92331125827815

e1-e3-e5 40.59403973509934 26.37046357615894

e4-e5 36.3644150110375 26.37046357615894

Table 2. Details of the two Nash equilibria

A.2 Convex Delays in the Parallel-Links Graph

Consider the three-links graph shown in Figure 4(a) whose delay functions are shown in Table 3(a).
Initially, we have three players. Player 1 has 200 units, player 2 has 20.9 units, and player 3 has 0.1
unit. The flow patterns in the pre-collusion equilibrium are shown in Figure 4(b).

Suppose that players 2 and 3 decide to form a coalition, with a total flow of 21 units. The new
flow patterns in the post-collusion equilibrium are now shown in Figure 4(c). The social cost of this
equilibrium is higher than in the pre-collusion equilibrium.
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Fig. 4. The solid lines in (b) and (c) are the flow pattern of the player with the largest flow value, the dotted lines the
player with the second largest value, and the thinly dotted line the player with the smallest value.

(a) Delay functions

Edge Delay function

e1 20x + 5000

e2 x2 + 500

e3 x11

(b) Flow values in the pre-collusion equilibrium

Edge Largest player Second largest player Smallest player

e1 152.5058085 0 0

e2 46.36711109 20.18230154 0

e3 1.127080409 0.7176984568 0.1

(c) Flow values in the post-collusion
equilibrium

Edge Largest player Second largest

e1 152.4922717 0

e2 46.32694762 20.243744

e3 1.180780656 0.7562559985

Table 3. The delay functions and the flow values in both Nash equilibria

(a) Flow value, delay, and cost in the pre-collusion
equilibrium

Edge Flow value Delay Cost

e1 152.5058085 8050.11617 1227689.475024774

e2 66.54941263 4928.82432 328010.3635454956

e3 1.944778865 1505.12472 2927.134751868525

SUM 1558626.973322137

(b) Marginal costs of players in the pre-collusion equilibrium

Path Largest player Second largest player Smallest player

e1 11100.23234 8050.1162 8050.11617

e2 11100.23234 7615.0649 4928.82432

e3 11100.23234 7615.0649 2356.44886

(c) Flow value, delay, and cost in the post-collusion
equilibrium

Edge Flow value Delay Cost

e1 152.4922717 8049.845434 1227539.217064532

e2 66.57069162 4931.656983 328303.8161752776

e3 1.9370366545 1440.509837 2790.320355463135

SUM 1558633.353595273

(d) Marginal costs of players in the post-
collusion equilibrium

Path Largest player Second largest player

e1 11099.69087 8049.845434

e2 11099.69087 7626.937061

e3 11099.69087 7626.937061

Table 4. Details of the two Nash equilibria

B Proof of Proposition 2

We first define series-parallel graphs. Given graphs G1 = (V1, E1) and G2 = (V2, E2) and vertices
v1 ∈ V1, v2 ∈ V2, the operation merge(v1, v2) creates a new graph G′ = (V ′ = V1 ∪ V2, E

′ = E1 ∪E2),
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replaces v1 and v2 in V ′ with a single vertex v, and replaces each edge e ∈ E′ incident to v1 or v2 by
an edge incident to v.

Definition 22. A tuple (G, s, d) is series-parallel if G is a single edge e = (s, d), or is obtained by a
series or parallel composition of two series-parallel graphs (G1, s1, d1) and (G2, s2, d2). Vertices s and
d are terminals of G. And series and parallel compositions are defined as follows.

– Parallel Composition: s = merge(s1, s2), d = merge(d1, d2);
– Series Composition: s := s1, d := d2, v = merge(s2, d1).

In the following proof, we implicitly assume that all edges are directed from the source to the
destination and the graph is acyclic in the directed edges. This does not hurt generality, since any
edge not on an s-d path is not used in an optimal flow, and no optimal flow is sent along a directed
cycle.

Proof of Proposition 2: Let O(t) and O(t′) be optimal flows of values t and t′ and t > t′.
Suppose that the proposition does not hold. Then in the pseudo-flow z = O(t) − O(t′), there exists
some edge e∗ on which ze∗ < 0. Let G′ = (V ′, E′) be the largest subgraph of G containing e such that
G′ is also series-parallel and

∑

e∈E′ ze < 0. Then there exists another subgraph G′′ = (V ′′, E′′) such
that

∑

e∈E′′ ze > 0 and G′′ and G′ share the same two terminals s′ and d′.

Claim. : There exists an s′-d′ path p′ in G′ so that ze < 0, ∀e ∈ p′ and another s′-d′ path p′′ in G′′ so
that ze > 0, ∀e ∈ p′′.

If the claim holds, then
∑

e∈p′ Oe(t) <
∑

e∈p′ Oe(t
′) and

∑

e∈p′′ Oe(t) >
∑

e∈p′′ Oe(t
′). Recall that

optimal flow is a Nash equilibrium of one player, so we can apply Lemma 8 and the preceding two
inequalities to derive

∑

e∈p′′

le(Oe(t)) +Oe(t)l
′
e(Oe(t)) ≤

∑

e∈p′

le(Oe(t)) +Oe(t)l
′
e(Oe(t)) <

∑

e∈p′

le(Oe(t
′)) +Oe(t

′)l′e(Oe(t
′))

≤
∑

e∈p′′

le(Oe(t
′)) +Oe(t

′)l′e(Oe(t
′)) <

∑

e∈p′′

le(Oe(t)) +Oe(t)l
′
e(Oe(t)),

a contradiction. ⊓⊔
Proof of the ClaimWe only prove the first part. Suppose that G′ is composition of G′

1 = (V ′
1 , E

′
1)

and G′
2 = (V ′

2 , E
′
2). If G

′ is resulted from the series-composition of G′
1 and G′

2, then
∑

e∈E′
1
ze =

∑

e∈E′
2
ze < 0. If G′ is resulted from the parallel-composition of G′

1 and G′
2, then either

∑

e∈E′
1
ze < 0

or
∑

e∈E′
2
ze < 0. In both cases, we can apply induction to find out a path p′ in G′

1 and/or G′
2 so that

ze < 0 if e ∈ p′. ⊓⊔

C Proof of Theorem 6

In this section, we assume that the coefficient of all delay functions {ae, be}e∈E are rationals. We
discuss how to verify whether a network is well-designed and show that in this verifying process, we
can also find out the vectors αi and the φ-delay thresholds Φi, that are used in Algorithms A and B.

We assume that all rationals are stored in the form of fractions; we also assume that the coefficients
{ae, be}e∈E are integers. The latter assumption does not cause loss of generality, because we can rescale
the flows. In particular, let M be the least common multiple of the denominators of {ae, be}e∈E and
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let {Mle}e∈E be the set of delay functions. Then an equilibrium flow f (of which the optimal flow is a
special case) with respect to {Mle}e∈E implies an equilibrium flow f/M with respect to {le}e∈E and
vice versa. Also, after the rescaling of the delay functions, the new input size is still bounded by a
polynomial of the original input size. In the remaining, let amax := max{ae}e∈E, bmax := max{be}e∈E ,
|V | = n and |E| = m.

Suppose that the network is well-designed “up to th−1.”: that is, O(t) is monotonically non-
decreasing in (0, th−1] on all edges E and we have found out the φi-delay thresholds Ψi and the value
ti by which the optimal flow changes the set of paths for 0 ≤ i ≤ h− 1 (see Lemma 12). In the h-th
stage, the main tasks include

– find out the next set of paths Ph used by the optimal flow when t ∈ (th−1, th], where th is the
largest value by which the optimal flow uses the set of paths Ph; (in case that Ph happens to be
the last set of paths used by the optimal flow, assume th to be some arbitrarily large value).

– check that when t ∈ (th−1, th], the optimal flow is monotonically non-decreasing in all edges and
if it is, calculate the exact values in the vector αh,

– find out the flow value th by which the optimal flow shifts again to another set of paths different
from Ph, when Ph is not the last set of paths used by the optimal flow.

The following three sections deal with these issues separately. In the last section, we argue that
all operations can be done in polynomial time and the bit sizes of all values used in our algorithm
are also polynomially bounded.

C.1 Finding out Ph

It is natural to try to use convex programming to find out Ph used by the optimal flow O(t) when
t ∈ (th−1, th]. However, there is no prior knowledge of th; and even if it is given, it may happen
that Oe(th) is very small for some e ∈ E, then the approximate integral solution returned by convex
programming may not correctly give the true set of paths used by O(t).

To get around these issues, we trim the graph G so that if G is really well-designed, in the trimmed
graph of G, the optimal flow would stick to the same set of paths Ph for all t > th−1 and then we can
choose an arbitrary large t > th−1 to apply convex programming.

Define a subgraph G(V,E′) whose s-d paths form a superset of Ph Suppose that the given
network is well-designed. Then by Lemma 12(iii), all paths in Ph have the same minimum 2-delay
Ψh−1 in O(th−1) among all paths in P. We intend to find out the subgraph whose edges consist of the
union of all these s-d paths whose 2-delay equal Ψh−1. To find out such union, we make use of the
shortest path algorithm as follows.

Define the cost on edge e ∈ E as Le(O(th−1), 2). Build a shortest path tree T rooted at s and find
out the distance labels c(v) for all v ∈ V . For each edge e = (u, v) 6∈ T , if e is on any s-d path in the
original graph G and c(u) +Le(O(th−1), 2) = c(v), add e into T . Let the resultant set of edges be E′.

Lemma 23. Suppose that the given network G is well-designed. Then all paths in G(V,E′) have the
same 2-delay Ψh−1 in O(th−1) and these paths form a superset of Ph.

Proof. This follows from Lemma 12(iii) and the shortest path algorithm.

⊓⊔
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The following lemma states that if G is well-designed, then so is G(V,E′) and Ph will be the last
set of paths used by the optimal flow in it (so we can choose an arbitrarily large t to apply convex
programming). Conversely, if G(V,E′) is well-designed, then G is well-designed “at least up to th”.

Lemma 24. (i) Suppose that the given network G is well-designed. Then the optimal flow is also
monotonically non-decreasing for all t > th−1 in the network G(V,E′) and it can be expressed as
O(t) = O(th−1) + αh(t− th−1).

(ii) Conversely, if the optimal flow in G(V,E′) is monotonically non-decreasing for all t > th−1 and
it can be expressed as O(t) = O(th−1)+αh(t− th−1) for some vector αh, then O(t) is also optimal
in G for t ∈ (th−1, th] for some th > th−1.

Proof. To prove (i), because of Lemma 23, it needs to be shown that there is no s-d path q in G(V,E′)
and q 6∈ Ph, so that when t > th−1, Lq(O(t), 2)) < Lp(O(t), 2) for some p ∈ Ph.

If q 6∈ Ph, then given ǫ > 0 so that when t = th−1 + ǫ ≤ th, in the original graph G,

Lq(O(t), 2) = Ψh−1 + ǫ
∑

e∈q

aeα
h
e ≥ Lp(O(t), 2) = Ψh−1 + ǫ

∑

e∈p

aeα
h
e ,∀p ∈ Ph.

So
∑

e∈q aeα
h
e ≥

∑

e∈p aeα
h
e , implying that Lq(O(t), 2) ≥ Lp(O(t), 2) for all t > th−1 in G(V,E′).

For (ii), we need to argue that O(t) = O(th−1)+αh(t− th−1) is also an optimal flow in the original
graph G for t ∈ (th−1, th].

First note that if path q 6∈ Ph but q is in G(V,E′), then by the same argument as above, it is easy
to show that th−1 < t ≤ th, Lq(O(t), 2) ≥ Lp(O(t), 2) in the original graph G.

For those paths q not contained in G(V,E′), in G, Lq(O(th−1), 2) > Ψh−1 = Lp∈Ph
(O(th−1), 2) If

∑

e∈q aeα
h
e <

∑

e∈p∈Ph
aeα

h
e , there exists a value t > th−1 so that Lq(O(t), 2) = Lp(O(t), 2). Choose

the smallest such value t and we claim that it is th. (In the case that there is no such path q, let th be
infinity). To see this, note that by this choice of t, we have that for each path q 6∈ Ph and no matter
q is contained in G(V,E′) or not, Lq(O(t), 2) ≥ Lp(O(t), 2) in (th−1, th]. Hence, by Lemmas 8 and 9,
when t ∈ (th−1, th], O(t) is the optimal flow in the original graph G. ⊓⊔

We emphasize that Ph can be a strict subset of all s-d paths in G(V,E′). The network in the
figure below is a simple example. It is well-designed and when t > 0, the optimal flow O(t) uses the
two paths e1 − e2 and e4 − e5 evenly, though when t = 0, the path e1 − e3 − e5 has the same 2-delay
Ψ0 = 0 as the other two paths.

1e

e

e

e

e

2

3

4

5

s

d

Edge Delay function

e1 2x

e2 x

e3 0.1x

e4 x

e5 2x

Fig. 5. A counter-example to show that Ph can be a strict subset of all s-d paths in G(V,E′).

We now use convex programming to find out Ph. Consider the following convex program.
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min
∑

e∈E′

fe(aefe + be)

∑

v:(u,v)∈E′

fuv −
∑

v:(v,u)∈E′

fvu = 0 ∀u 6∈ {s, d} (21)

∑

v:(s,v)∈E′

fsv = t (22)

fe ≥ 0 ∀e ∈ E′ (23)

By Lemma 24(i), if G is well-designed, then we can choose an arbitrary t > th−1 and the optimal
solution O(t) for the above convex program gives the set of paths in Ph. The integral optimal solution
of this program can be found using min-cost algorithm [1, Chap. 14.5]. However, the integral optimal
is only an approximate; and if the exact solution O(t) on edge e has 0 < Oe(t) < 1, we may miss this
edge in the integral solution. To avoid this, we need a suitably large t to guarantee that if edge e is
used by O(t), then Oe(t) ≥ 1.

Lemma 25. Suppose that G is well-designed. Then there exists a value Mh so that αh
e is a multiple

of 1/Mh for each e ∈ Ph, and Mh ≤ m!ammax.

The proof of this lemma is deferred to the next section. By this lemma and Lemma 24(i), if G is
well-designed and we choose t to be ⌈th−1+m!ammax⌉, then Oe(t) ≥ 1 for all e ∈ E′. Thus the returned
approximate integral solution correctly returns the set of edges that are used in Ph.

To use the min-cost flow technique in [1, Chap. 14.5], one needs to set a capacity constraint on
each edge e ∈ E′. In our case, we can let the flow value t to be the capacity of all edges. Then the
complexity of finding an integral solution is O((m+n log n) log t), where the expression (m+n log n)
comes from the shortest path calculation and we will discuss how large t can be in Section C.4.

C.2 Calculating the exact values in αh

Suppose that Ph is known. Let Gh = (Vh, Eh) be the subgraph of G(V,E′), where Eh consists of all
edges used in Ph while Vh are vertices on any s-d path using only edges in Eh.

If the network G is well-designed, by Lemma 12(ii), αh itself is a flow of value 1 and along every
two s-d paths p,q in Gh,

∑

e∈p aeα
h
e =

∑

e∈q aeα
h
e . Also, if e 6∈ Eh, α

h
e must be 0. For simplicity, in

the following discussion, we assume that αh is a vector indexed by edges in Eh, instead of E.
By the above discussion, if the network is well-designed, the unique solution to (24)-(26) gives αh.

∑

e∈p

aeαe −
∑

e∈q

aeαe = 0 ∀p, q that are s-d paths in Gh (24)

∑

v:(u,v)∈Eh

αuv −
∑

v:(v,u)∈Eh

αvu = 0 ∀u 6∈ {s, d} (25)

∑

v:(s,v)∈Eh

αsv = 1 (26)

However, the number of equations in (24) can be exponential. Below we use the idea of cycle
basis [9, 17] to reduce the size of the linear system.
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Let the collection of all undirected cycles in the underlying graph Gh = (Vh, Eh) be C. Orient
each cycle C ∈ C arbitrarily. If in Gh, e agrees with the orientation of C, we write e →֒ C, otherwise,
we write e 6 →֒ C. Observe that for every two s-d simple paths p and q in Gh, p ∩ q is composed of a
subset of undirected cycles in C. This follows from the fact that an optimal flow cannot send its flow
along a directed cycle. Thus, (24) for such pair of paths can be written as

∑

C∈(p∩q)∩C

∑

e→֒C aeαe −
∑

e 6 →֒C aeαe = 0. By linear algebra, (24) can be expressed as

∑

e→֒C

aeαe −
∑

e 6 →֒C

aeαe = 0, ∀C ∈ C.

The above set of equations can still be of exponential size. Now define γe = aeαe for all e ∈ Eh.
The the above set of equations can be re-written as

∑

e→֒C

γe −
∑

e 6 →֒C

γe = 0 ∀C ∈ C,

and we can write the above set of equations in the matrix form Aγ = 0, where A is a {−1, 0, 1}
matrix and its row space is exactly the cycle space of the graph Gh = (Vh, Eh). Thus, any cycle
basis would guarantee that every row can be generated by a linear combination of vectors in it. It is
well-known that a cycle basis can be found in O(m2) time and it has O(m) vectors [9]. Let a cycle
basis in Gh = (Vk, Ek) be CB and consider the following system.

∑

e→֒C

aeαe −
∑

e 6 →֒C

aeαe = 0 ∀C ∈ CB (27)

Lemma 26. If the network G is well-designed, then αh is the unique solution to the system (25)-(27)
and the size of this system is bounded by O(m+ n).

Proof. It follows from the preceding discussion. ⊓⊔

By the above lemma, if the system (25)-(27) does not have a unique and non-negative solution, we
can report the network is not well-designed. By Lemma 24(ii), we can also test whether the optimal
flow is monotonically non-decreasing when t ∈ (th−1, th].

We now give the proof of Lemma 25 that has been promised earlier.

Proof of Lemma 25. We write the system (25)-(27) in the matrix form Aα = b. By Kramer’s rule,

the solution to (25)-(27) can be expressed as Det(Ae)

Det(A)
, where Ae is derived from A by replacing the

column corresponding to edge e with vector b. Since |Det(A)| ≤ m!ammax and Det(Ae) is integer, we
prove the lemma. ⊓⊔

C.3 Discovering Ψh and th

Suppose that αh is known and O(t) is monotonically non-decreasing in (th−1, th]. We can first check
whether Ph is the last set of paths used by the optimal flow by the following lemma.

Lemma 27. Ph is the last set of paths used by the optimal flow in the original graph G if and only
if for all paths q ∈ P\Ph,

∑

e∈p aeα
h
e ≤

∑

e∈q aeα
h
e for some p ∈ P1.
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Proof. (→) If Ph is the last set of paths and
∑

e∈p aeα
h
e >

∑

e∈q aeα
h
e for some path q ∈ P\Ph, then

there exists a large enough t > th−1 such that Lq(O(t), 2) < Lp(O(t), 2), contradicting Lemma 8.

(←) We claim that O(t) = O(th−1) + αh(t− th−1) for all t > th−1 in G. If the claim holds, then
Lemma 8 implies that Ph is the last set of paths. To see this claim, note that

∑

e∈p aeα
h
e ≤

∑

e∈q aeα
h
e

for all q ∈ P\Ph and Lq(O(th−1), 2) ≥ Lp(O(th−1), 2) in G. Thus, all paths in Ph always have the
smallest 2-delay for all t > th−1. ⊓⊔

From now on we assume that Ph is not the last set of paths used by the optimal flow in G.

By Lemma 12(iii), when t is increased to th, there exists a path q ∈ Ph+1\Ph so that Lq(O(th), 2) =
Lp(O(th), 2) = Ψh, for some path p ∈ P1. The difficulty lies in the fact that there may exist an
exponential number of paths in P\Ph. The next lemma implies that it suffices to keep track of a
polynomial number of 2-delays in these paths.

Lemma 28. Suppose that G is well-designed and Ph not the last set of paths used by the optimal
flow. Then there exists a path q ∈ Ph+1\Ph so that

(i) q = q1 ∪ q2∪ q3, where q1 links s and u, using only edges in Eh, q2 links u and v, using only edges
in E\Eh, and q3 links v and d, using only edges in Eh.

(ii) Let the cost of all edges in E\Eh be be. Then q2 is a shortest path from u to v in the subgraph
G(V,E\Eh);

(iii) Let qv be a path from s to v using only edges in Eh. Then

∑

e∈q1

Le(O(th−1), 2) + 2(th − th−1)aeα
h
e +

∑

e∈q2

be =
∑

e∈qv

Le(O(th−1), 2) + 2(th − th−1)aeα
h
e . (28)

Proof. Let q̃ be a path in Ph+1\Ph. Then q̃ uses at least an edge E\Eh. Let the first subpath of q̃
using edges in E\Eh be q2 and u and v its starting and ending vertices. Then v ∈ Vh and the 2-delay
of the path from v to d using only edges in Eh is the same as the 2-delay of the subpath of q from v
to d when t = th. (This holds because both paths are subpaths of some paths in Ph+1). Now let q1
be a path from s to u and q3 a path from v to d, both using only edges in Eh. (i) then follows.

(ii) follows from Lemma 12(iii) and (iii) from Lemma 12(i). ⊓⊔

Lemma 28 suggests a straightforward algorithm to discover th. Pick every two vertices u and v
in Vh. Calculate the amount th − th−1 based on the formula in (28). The pair that gives the smallest
positive amount of th − th−1 is the right pair and yields the correct value of th. Finally, Ψh can be
calculated based on th using Lemma 12(iiia).

C.4 The Complexity of the Algorithm and the Bit Size of All Values

All the computations discussed, except the convex programming in Section C.1, can be easily done
in polynomial time.

For the convex programming we use, recall that we need to use a large enough value t = ⌈th−1 +
m!ammax⌉ as a capacity on each edge and the complexity of would be O((m+ n log n) log t). Below we
give a (rather loose) bound of th. Let

∆i = max
v∈V

max
∀p,q from s to v

|Lp(O(ti), 2) − Lq(O(ti), 2)|.
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Note that ∆0 ≤ mbmax. Now observe that (28) can be re-written as

th − th−1 =

∑

e∈q1
Le(O(th−1), 2) +

∑

e∈q2
be −

∑

e∈qv
Le(O(th−1), 2)

2
∑

e∈qv
aeαh

e −
∑

e∈q1
aeαh

e

≤Mh(
∑

e∈q1∪q2

Le(O(th−1), 2) −
∑

e∈qv

Le(O(th−1), 2))

≤m!ammax∆h,

where the inequalities are due to Lemma 25. Furthermore, we have

∆h ≤ ∆h−1 + 2mamax(th − th−1) ≤ ∆h−1(1 + 2mamaxm!ammax),

where the first inequality follows from the fact that in the extreme case that, given two directed paths
linking s to some vertex v, one path does not increase its 2-delay when t goes from th−1 to th while
the other has m edges and αh

e = 1 for all such edges. Now by simple calculation, we have

th ≤ m!ammax(

h−1
∑

i=0

∆i) = ∆0m!ammax(

h−1
∑

i=0

(1 + 2mamaxm!ammax)
i) < mbmaxm!ammax(1 + 2mamaxm!ammax)

h.

As h ≤ m. We conclude that the value log t = log⌈th−1 +m!ammax⌉ is polynomially bounded.
Finally, we show that the bit sizes of all values used in our computation are polynomially bounded.

Lemma 29. Suppose that the network G is well-designed. Then all values in Oe(th), can be expressed
as a multiple of Πh

i=1Mi ≤ (ammaxm!)h.

Proof. This can be proved by induction and equation (28). ⊓⊔

By the above lemma, the bound on th, and Lemma 12(iiia), we can conclude that the bit sizes of
the φ-delay thresholds Ψh are also polynomially bounded.
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