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Introduction

A set function f : 2 — R, on a ground set E is submodular if it satisfies the diminishing marginal
return property, i.e., for any subsets SCT C F and e € E\ T,

f(SUu{e}) = f(S) = f(TU{e}) — f(T).

A function is monotone if f(S) < f(T') for any S C T. Submodular functions play a fundamen-
tal role in combinatorial optimization, as they capture rank functions of matroids, edge cuts of
graphs, and set coverage, just to name a few examples. Besides their theoretical interests, submod-
ular functions have attracted much attention from the machine learning community because they
can model various practical problems such as online advertising [I, 2, 7], sensor location [3], text
summarization [5, 0], and maximum entropy sampling [4].

Many of the aforementioned applications can be formulated as the maximization of a monotone
submodular function under a knapsack constraint. In this problem, we are given a monotone
submodular function f : 2F — R, a size function ¢ : E — N, and an integer K € N, where N
denotes the set of positive integers. The problem is defined as

maximize f(S) subject to ¢(S) <K, SCE, (1)

where we denote ¢(S) = > g c(e) for a subset S C E. Note that, when c(e) = 1 for every item
e € FE, the constraint coincides with a cardinality constraint:

maximize f(S) subject to |[S|< K, SCE. (2)

Internship Project

This project involves designing streaming algorithms for the above two problems (which are known
to be approximable within the factor of 1 —e~! in the offline setting). The streaming setting means:
each item in the ground set E arrives sequentially, and we can keep only a small number of the
items in memory at any point.

Designing streaming algorithms for submodular function optimisation is a relatively unexplored
area. There is much gap between the upper bound and the lower bound (in terms of approximation
ratios). The student working on this project will have much chance of making new progress.
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