Assignment 3

Please type your answers using the Latex. Please hand in your assignment before October 9th, 2019.

\(\alpha \)-min-cut

Let us assume that a undirected \(G = (V, E) \) is given. We can assume that all edges are unweighted (but multi-edges are allowed). The \(\alpha \)-min-cut is a natural generalisation of min-cut. Let \(c_1 \) be size of the min-cut in \(G \). A node set \(U \subseteq V \) is an \(\alpha \)-min-cut if \(|\delta(U)| \leq \alpha c_1 \).

Prove that the number of different \(\alpha \)-min-cuts is at most \(2^{2\alpha - 1} n^{2\alpha} \). You can assume that \(\alpha \) is an integer.

multiple-criteria-min-cut

Let \(G = (V, E) \) be a graph, where each edge \(e \in E \) is associated with two weights, \(c_1(e) \) and \(c_2(e) \). Given any cut \(U \), two cut values are naturally induced, namely \(\sum_{e \in \delta(U)} c_1(e) \) and \(\sum_{e \in \delta(U)} c_2(e) \). What we want is a cut \(U \) so that

\[\max_{i=1}^2 c_i(U), \]

is minimised.

Design a randomized polynomial algorithm to find such a cut with high probability. Hint: the previous exercise can be useful here.

Hyper-Graph Coloring

Let \(G = (V, E) \) be a hypergraph—here each hyperedge \(e \in E \) spans a subset of vertices \(U \subseteq V \). \(G \) is said to be \(k \)-uniform if each edge \(e \in E \) has size \(|e| = k \).

The notion of “coloring” generalizes naturally to hypergraphs. A coloring of vertices is feasible if not all vertices spanned by the same hyperedge \(e \) have the same color.

Prove that if \(|E| < 2^{k-1} \), the graph is always 2-colorable. Hint: assign a random coloring to \(V \).