Homework Assignment

December 11, 2019

Please type down your answer using Latex. Please hand in your answers before the last class of the course.

Question 1

Given two matroids $M_1 = (S, \Pi_1)$ and $M_2 = (S, \Pi_2)$ and a weight function $w : S \to \mathbb{R}_{\geq 0}$, the objective is to find the common independent set $I \in \Pi_1 \cap \Pi_2$ so that $w(I)$ is maximised.

When all weights in w are uniform, in class, we showed that Edmonds’ algorithm can find the optimal solution in polynomial time. Indeed, even when weights in w are not uniform, the problem still can be solved in polynomial time (again by Edmonds).

On the other hand, a very straightforward Greedy algorithm is the following. Initially let $I = \emptyset$. We add the max-weight element e into I if $I + e \in \Pi_1$ and $I + e \in \Pi_2$ and we do this repeatedly until no more element can be added. Prove that the final outcome I will be a $\frac{1}{2}$-approximation.

Answer: let $I = \{e_1, \ldots, e_t\}$ be the outcome of Greedy and OPT be the optimal set. We define two injections ϕ_1 and ϕ_2 from I to OPT so that (1) $w(e_i) \geq w(\phi_1(e_i)), w(\phi_2(e_i))$ for all i, and (2) $\cup_{e_i \in I}\{\phi_1(e_i), \phi_2(e_i)\} = OPT$. This will be enough to establish that I is a 0.5-approximation.

The two injections can be constructed as follows. Add e_1 into OPT. This creates at most two circuits, C_1 in M_1 and C_2 in M_2. Define $\Phi_1(e_1)$ as the heaviest element in $C_1 - e_1$ and $\Phi_2(e_1)$ the heaviest element in $C_2 - e_2$. In case the circuit C_1 and/or C_2 does not exist, let $\Phi_1(e_1) = e_1$ and/or $\Phi_2(e_1) = e_1$. Now define a new independent set $OPT' = OPT + e_1 - \phi_1(e_1) - \phi_2(e_1)$. Continue the same process by adding e_2 into OPT' and repeat.

Question 2

Given a bipartite graph $G = (A \cup B, E)$ and a weight function $w : E \to \{1, 2\}$, below is an algorithm that solves the maximum weight matching problem.
First consider the subgraph $G' = (A \cup B, E')$ consisting of only edges $E' = \{e|w(e) = 2\}$. Compute a maximum cardinality matching M_1 in G'. Find a minimum integral vertex cover C_1. (Here we write $C_1(v) = 1$ if $v \in C_1$, otherwise, $C_1(v) = 0$). Now create a second graph $G'' = (A \cup B, E'')$ consisting of edges $E'' = \{e = (a, b)|w(e) - C_1(a) - C_1(b) = 1\}$. Now again try to find a maximum cardinality matching M_2 in G'' under the condition that M_2 is derived from M_1 by augmenting) (so you should first prove that all edges in M_1 are still part of E''.)

Prove that M_2 will be the optimal solution.

Answer: Let C_2 be the minimum integral vertex cover C_2 in G''. Observe the following: (1) the sum of C_1 and C_2 form a weighted vertex cover of G, namely, for every edge $e = (u, v) \in E$, $C_1(u) + C_1(u) + C_2(u) + C_2(v) \geq w(e)$, (2) $\forall e = (u, v) \in M_2$, $w(e) = C_1(u) + C_1(u) + C_2(u) + C_2(v)$, and (3) for each vertex $v \in A \cup B$, if $C_1(v) + C_2(V) > 0$, v is matched in M_2.

(1) implies that $C_1 + C_2$ form a dual solution, while (2) and (3) imply that M_2 and $C_1 + C_2$ satisfy the complementary slackness condition, therefore, by linear programming duality, M_2 is optimal matching.

Question 3

Prove that a graph $G = (V, E)$ has two edge-disjoint spanning trees if and only if the following condition hold:

For every p, if $V_0, V_1, \cdots V_p$ form a partition of V, then the number of edges with two endpoints in different V_i is at least $2p$.

The following hint gives away almost everything. Create a second copy $G' = (V', E')$ of the graph, where V' and E' are just the copies of V and E respectively. In particular, every edge $e \in E$ will have a “twin” $e' \in E'$. Define a partition matroid M_1 over $E \cup E'$, where a set I is independent if and only if $|I \cap \{e, e'\}| \leq 1$ for every $e \in E$. The second matroid M_2 is the graph matroid defined on the union of G and G'. In particular, a set I is independent if and only if there is no cycle in $I \cap E$ nor in $I \cap E'$. Now apply matroid intersection theorem.

Answer: Observe that given $E_1, E_2 \subseteq E$ so that $E_1 \cap E_2 = \emptyset$ and neither E_i contains a cycle, $E_1 \cup E_2$ are a common independent set of M_1 and M_2. Therefore to prove that there are two disjoint spanning trees, we just have to argue that the minimum of

$$r_1(E \cup E' \setminus A) + r_2(A),$$

is at least $2(|V| - 1)$. Let A be the minimizer. We can assume that if $e \in A$, then its twin $e' \in A$ as well and vice versa. Consider G_i after we remove edges in A. Suppose that G_i has $p + 1$ connected components, then $r_1(E \cup E' \setminus A) = 2(|V| - p - 1)$ and by the statement of the problem, $r_2(A) \geq 2p$. The proof follows.

2
Question 4

In this exercise we will develop a max-flow algorithm. It is interesting in that we try to augment a “flow” in the residual network $G(f)$, instead of a “path” in $G(f)$, as is done in the standard Ford-Fulkerson algorithm.

Let us recall a few facts. For each directed edge $e = (u, v)$ in the original graph $G = (V, E)$, we create (potentially) two arcs in $G(f)$, e_1 from u to v, with capacity $c(e) - f(e)$, and e_2 from v to u with capacity $f(e)$. $G(f)$ by itself then is also a network with edge capacity. Suppose that \tilde{f} is a flow in $G(f)$. Then we can augment f by \tilde{f} as follows: for every edge $e \in E$, if e_1 and e_2 are the two corresponding edges in $G(f)$, let $f(e) := f(e) + \tilde{f}(e_1)$ (if e and e_1 are in the same direction) and $f(e) := f(e) - \tilde{f}(e_2)$ (if e and e_2 are in the opposite direction). It is easy to verify that f remains a flow and its value is increased by exactly the value of \tilde{f}.

So the idea is that if we can construct a flow of (relatively) large value in $G(f)$, we do not have to augment f too many times. We now introduce a subroutine, which is helpful in constructing a large flow in $G(f)$ later on.

Subroutine X

Step 0: $b(v) := 0$ and $L_v = \emptyset$ for all $v \in V$; $i = 1$. Let the source s be node 1. $W = \{1\}$.

Step 1: For each node $w \in V \setminus W$, if there exists a node $i \in W$ so that (i, w) is an arc in $G(f)$, let $b(w) := b(w) + c(i, w)$ and add the arc (i, w) into the list L_w.

Step 2: Let the node $v \in V \setminus W$ be the node with the largest $b(v)$. Call v node $i + 1$. $W := W \cup \{i + 1\}$. $i := i + 1$.

Step 3: If the newly added node is the destination t, stop. Otherwise, go back to Step 1.

You should be able to verify easily the following facts. They will be useful later.

1. The final set $W = \{1, 2, \cdots, k\}$ and all the lists $\bigcup_{i=1}^{k} L_i$ together define an acyclic subgraph H of $G(f)$ and in fact the numbers $\{1, \cdots, k\}$ respects the topological order of H.

2. For each node $x \in W$, $b(x) = \sum_{e \in L_x} c(e)$.

3. In the beginning of Step 1,

$$\sum_{e=(i,j),i \in W,j \notin W} c(e) = \sum_{j \in V \setminus W} b(j).$$
The subroutine X can be implemented in $O(m + n \log n)$ time by adapting Dijkstra’s shortest path algorithm. You can take this for granted. We can now define the formal algorithm.

Main Algorithm

Step 0: Define $f := 0$ in G.

Step 1: Apply Subroutine X on $G(f)$. Suppose that the final set $W = \{1, \cdots, k\}$. Let $\delta := \min_{i \in W} b(i)$. If $\delta = 0$, stop the algorithm; otherwise, define $\beta(k) := \delta$ and $\beta(v) := 0$ for each $v \neq k$. $\tilde{f} := 0$.

Step 2: For $i = k$ down to 1, do the following.

For each arc $e = (u, i)$ in L_i: $\tilde{f}(e) := \min\{\beta(i), c(u, i)\}$. $\beta(i) := \beta(i) - \tilde{f}(e)$ and $\beta(u) := \beta(u) + \tilde{f}(e)$.

Step 3: Augment f by \tilde{f}. Go back to Step 1.

Question 4(a)

Prove that \tilde{f} as constructed in Step 2 is a flow of value δ in $G(f)$.

Answer: we observe the following invariant: After vertex x is processed,

- If an edge $e = (i, j)$ has $\tilde{f}(e) > 0$, $j \in \{x, \cdots, k\}$.
- $\sum_{i < x, j \geq x} \tilde{f}_{ij} = \delta$.
- $\sum_{i, k} \tilde{f}_{i,k} = \delta$.
- For $x \leq h < k$, $\sum_{i < h} \tilde{f}_{ih} = \sum_{j > h} \tilde{f}_{hj}$, except that $x = h = 1$ (the source node).
- $\tilde{f}(e) \leq c(e), \forall e \in G(f)$.

By this invariant, after all vertices are processed, the final \tilde{f} is a flow in $G(f)$.

This invariant can be established by induction on (decreasing) value of x. Suppose that we now process node x. By the invariant, node x should have outgoing flow of value at most δ. The capacities of incoming arcs in L_x should be at least δ, otherwise, $b(x) > \delta$, a contradiction to the choice of δ. By this fact, we can easily establish the invariant.
Question 4(b)
Prove that if there is an augmenting path P of value α in $G(f)$, then after Step 3, the flow value of f increases by at least α. In particular, if $\delta = 0$, there is no augmenting path in $G(f)$.

Hint: It suffices to argue that if there is an augmenting path of value α, in Subroutine X, $b(i) \geq \alpha$ for all i in the final set W.

Answer: During the execution of subroutine X when $W = \{1, \cdots, i\}$ and destination $t \notin W$, there must exist a node $u \in W$ and another node $v \in V \setminus W$, so that (u, v) is an edge in the augmenting path P. Then $b(v)$ is increased by at least $c(e)$, which is at least α. In other words, the next node $i + 1$ to be added into the set W must have $b(i + 1) \geq \alpha$.

Question 4(c)
Suppose that $\delta > 0$ in Step 1. Prove that \tilde{f} constructed at the end of Step 2 has value at least $v(f_{opt}) - v(f)$. Here f_{opt} is the maximum flow in the original network G and $v(\cdot)$ refers to the value of the flow.

Hint: If we can show that the min-cut in $G(f)$ is at most $n\delta$, then by the previous exercise, we can easily establish the answer. Now suppose that $\delta = b(x)$ for some x in the final W. How large is the cut $W' = \{1, \cdots, x - 1\}$ in $G(f)$?

Answer: Suppose that in the Subroutine X we just finish processing vertex $x - 1$. Then

$$\sum_{e=(i, j), i \in W', j \notin W'} c(e) = \sum_{j \in V \setminus W'} b(j) \leq |V \setminus W'| b(x) \leq n\delta.$$

To see the first inequality, note that x is chosen to be the one which has currently large b-value in $V \setminus W'$.

To finish, observe that $v(f_{opt}) - v(f)$ is exactly the value of the maximum flow in $G(f)$, which is upper-bounded by the minimum cut-size of $G(f)$, and we know it is at most $n\delta$ by the preceding inequality. Now by the fact established in Question 4(b), we obtain the answer.

Question 4(d)
Suppose that all edge capacities $c(e)$ are integers in the original network G and $U = \max_{e \in E} c(e)$. Prove that the running time of this algorithm is $O(n(m + n \log n) \log nU)$.

5
Answer: let f_1 and f_2 be the two flows before and after Step 3 respectively. By the previous question, we know

$$v(f_{opt}) - v(f_2) \leq (1 - 1/n)(v(f_{opt}) - v(f_1)).$$

In other words, after $O(n)$ rounds of the algorithm, the difference in the flow values of the optimal and the current flow is at least halved. As $v(f_{opt})$ is at most nU, we conclude that we only need $O(n \log nU)$ rounds. Now as Steps 2 and 3 can be implemented in $O(m)$ time, we know the bottleneck lies in Subroutine X, which takes $O(m + n \log n)$ time. Now we arrive at the answer.

Question 5

The preflow-push algorithm gives the max-flow and of course the min-cut as well. But if we only want the min-cut, in fact, we do not have to run the algorithm to the very end. You can modify it in such a way so that we find the min-cut faster (not asymptotically, but at least improved by a constant factor).

The following observation is useful. When the distance label $d(v)$ of a node reaches n, there is something special about it. Build on this.

Answer: when $d(v) = n$, there is no more directed path from v to t in the residual network. So let us twitch the algorithm just a little bit: if an active node v already has $d(v) \geq n$, we do not raise its label further. Consider the point that the algorithm is “blocked.” Let U be the set of nodes having a directed path to t in $G(f)$. We claim that U is a min-cut.

Note U contains t but not s and every node v in U has $d(v) < n$ and is non-active. At this point, every edge e from $V \setminus U$ to V (in the original network) has $f(e) = c(e)$ and from U to $V \setminus U$ (in the original network) has $f(e) = 0$. If we now “unblock” the algorithm, no more flow will be ever exchanged between $V \setminus U$ and U (in either direction). In other words, the final flow value is exactly the cut size of $(V \setminus U, U)$.

6