
Homework 1

Please type your answers using Latex. It is allowed that you form small groups
of discussion among yourselves, but everyone should write down his/her own solution.
(Please also indicate with whom you have worked).

1 Scheduling on a Single Machine

Consider the following machine scheduling problem. Given a single machine, suppose
that there are n jobs, each with processing time pj , weight wj , and a due date dj . We
schedule these jobs one by one on the machine and we gain the weight wj of job j if its
finishing time is at most dj . We want to maximise the total weight gained.

This problem is NP-hard. But we will design an FPTAS for it in this exercise. (Do
not get intimidated by this problem. You can look carefully again over how we have
designed an FPTAS for knapsack problem).

Here are some hints.

1. Observe that there is an optimal schedule in which all on-time jobs finish before
all late jobs.

2. Next observe we can also assume that in this optimal schedule, the on-time jobs
complete in an earliest due date order.

3. Using these two observations, you should be able to solve the problem in O(nW)
time, where W =

∑
wj , using dynamic programming.

4. And then you should be able to turn this pseudo-polynomial time algorithm into
an FPTAS. What is the running time?

2 K-center

We have seen in class a 2-approximation algorithm for the k-center problem.
A new trend to deal with big data is to process the input data in parallel : each

machine receives a part of the input, does some local processing, and then sends its
own output to some special machine, which then resembles the outputs of the various
machines and then does a final processing.

Here is an example. Let P be the set of points in a metric space. We partition P
arbitrarily into m parts P1 ∪ · · · ∪ Pm. Each machine i is given Pi, and then it applies

1

the 2-approximation algorithm to Pi to get k points pi1, · · · pik. These points are then
sent to the special machine.

This special machine then again applies the 2-approximation algorithm to the set of
points

⋃m
i=1{pi1, · · · , pik} that it has received from machines 1 to m.

Prove that the final outcome is a 8-approximation for the original input P .

3 Constrained Forest

The purpose of this exercise is to make you look over again how the algorithm for Steiner
forest problem that we discussed in class works.

3.1 Generalization

We say a function f : 2V → {0, 1} a proper function if the following conditions hold.

• f(V) = 0,

• f(S) = f(S),

• if A and B are disjoint subsets of V and f(A ∪ B) = 1, then either f(A) = 1 or
f(B) = 1.

(Check that the function f we define for Steiner forest in class satisfies these condi-
tions).

We want to choose a subset of edges E′ ⊆ E with minimum cost so that for every
S ⊂ V , |δE′(S)| ≥ f(S). Show that the algorithm of Steiner forest can be generalized to
handle this case.

To be more concrete, try to answer the following questions.

• How do you implement the “pruning step”? (Remember that in the original al-
gorithm, we first pick a set of edges F ⊆ E during the process of synchronization
and then prune an edge if it is unnecessary for the feasibility of the solution).

• There is one particular lemma, which states that during the first phase, if C is a
component (with respect to the currently chosen F), if f(C) = 0, then δF ′(C) 6= 1.

Prove that your pruning step guarantees that this lemma still holds.

3.2 Point-to-Point Connection

Suppose that in the given graph G = (V,E), two subsets of vertices S, T ⊆ V , of
equal cardinality, are given, find a minimum cost subgraph so that there is a bijection
φ : S → T and vertex s ∈ S can be connected to the vertex φ(s) ∈ T .

Give a 2-approximation algorithm for this problem.

2

4 “Economical” Max-SAT

Consider the following variant of Max-SAT: given a SAT formula, where each clause Ci

has a weight wi and each variable xj also has a weight vj , and in particular, in each
clause, all literals are positive. Here the objective is modified as follows. It is the sum
of the weights of the clauses satisfied and the weights of the variables that are set to be
false.

Write a linear program to describe this problem and then use randomized rounding
(choose variable xi to be true with the probability pi according to your linear program)
to obtain 1−1/e approximation. For people who like a challenge, you can try to improve
the ratio further by more sophisticated rounding.

3

