
UC-Secure Protocols
using

Smooth Projective Hash Functions

Thèse d’habilitation

présentée et soutenue publiquement le 11 décembre 2017

pour l’obtention du

Diplôme d’Habilitation à Diriger des Recherches
de l’École normale supérieure

(spécialité Informatique)

Céline Chevalier
Maître de conférences à l’Université Panthéon-Assas, Paris II

Composition du jury :

Correspondant HDR : David Pointcheval (CNRS, DI/ENS, PSL Research University)
Rapporteurs : Dennis Hofheinz (Karlsruher Institut für Technologie)

Louis Goubin (Université de Versailles Saint-Quentin-en-Yvelines)
Duong-Hieu Phan (Université de Limoges, XLim)

Examinateurs : Michel Abdalla (CNRS, DI/ENS, PSL Research University)
Stéphanie Delaune (Univ Rennes, CNRS, IRISA)
Fabien Laguillaumie (Université Lyon 1)
Damien Vergnaud (Université Pierre et Marie Curie,

Institut Universitaire de France)

Travaux effectués au Laboratoire d’Informatique de l’École normale supérieure
45 rue d’Ulm, 75230 Paris Cedex 05

À Lucas et Gabriel

Remerciements

L’heure est venue d’écrire cette fameuse page, qui occupe traditionnellement l’assemblée en attendant
que l’exposé ne commence (ou que les questions se terminent enfin et que le pot commence). Pour ma
thèse j’avais écrit que c’était la plus difficile à écrire : si j’avais su ce qui m’attendait huit ans plus
tard... Écrire son mémoire d’habilitation, c’est avoir un peu l’impression qu’une page se tourne, même
si une nouvelle page blanche se présente. S’il y a bien quelque chose qui n’a pas changé, c’est la crainte
d’oublier des gens, ceux qui ont eu de l’importance ou un peu moins, ceux qui sont partis, ceux qui
sont restés ou revenus. Je ne vais pas essayer d’être exhaustive, même si je m’excuse par avance en cas
d’oubli. L’avantage de soutenir en même temps que de nombreux thésards en cette fin d’année, c’est que
la majorité des personnes seront déjà citées quinze fois dans les autres manuscrits et ne m’en voudront
donc pas trop. Dans le cas contraire, je compte sur toi Gaby, un sourire de ta part et tout sera oublié.

Mes remerciements les plus évidents s’adressent bien naturellement à David, qui a finalement réussi à
me convaincre de soutenir cette HdR, qui m’a encouragée et soutenue dans cette entreprise, allant même
jusqu’à m’envoyer un mail qui m’a bien fait rire début mai. C’est lui également qui m’a convaincue de
rédiger pendant mon congé maternité (ce qui s’est révélé être l’un de ses pires conseils de ces dix dernières
années), et qui a fait preuve d’énormément de patience envers moi. Mais bien au-delà de cette rédaction
d’HdR passablement rocambolesque, je le remercie également pour tous ses conseils depuis tant d’années
déjà (j’en écoute un grand nombre quand même...), et de m’avoir réaccueillie dans son équipe tout en
essayant de me faire prendre mon envol avec plus ou moins de succès. J’ai beaucoup de chance de pouvoir
profiter des conditions exceptionnelles de recherche à l’ENS et je lui en suis très reconnaissante.

Je remercie particulièrement Dennis, Louis et Hieu d’avoir accepté de rapporter ce mémoire, et Fabien,
Stéphanie, Michel et Damien d’avoir accepté de faire partie de mon jury. J’adresse un très grand merci
à mes coauteurs, en particulier Olivier, qui partage ses brillantes idées avec moi et supporte patiemment
mes manies de formalisme et de notations et mon manque fréquent de disponibilité. Merci aussi à Damien
d’avoir partagé son bureau avec moi pendant quelques années avant de nous quitter pour de plus hautes
destinées. Toutes mes félicitations au passage ! Nos discussions sur nos petits et les photos de Louis sur
ton bureau vont me manquer. Merci à tous les deux pour nos discussions sur Gtalk qui font souvent
oublier la distance. Merci également à Hoeteck et David de m’avoir confié la responsabilité du projet
EnBiD, qui une fois passé le stress de m’en occuper m’a finalement apporté beaucoup, et merci aussi
pour l’invitation de Iordanis et la participation à la Winter School à Darmstadt, qui ont tout déclenché.
Merci à Michele, Marc, Elham, Luka, Olivier et André, qui m’ont suivie dans cette aventure qui nous a
conduit à écrire un projet ANR dans des délais assez déraisonnables. Merci à Michel de m’avoir suggéré
cette idée l’an dernier.

Je remercie aussi celles et ceux qui font de l’ENS un endroit que je n’ai jamais eu envie de quitter,
de nombreuses années plus tard : les membres permanents, thésards et post-docs pour la qualité de la
recherche dans une bonne ambiance, le service informatique et l’équipe administrative, en particulier
Joëlle, Sophie, Lise-Marie et Valérie pour leur efficacité, leur gentillesse et leur patience.

Je tiens également à remercier David N de m’avoir fait confiance et proposé de candidater à Paris 2.
Après des années dans le microcosme de la prépa puis des ENS, il m’a fait découvrir une université
surprenante mais sympathique dans laquelle je me sens bien. Merci aussi à mes collègues de Paris 2 ;
je suis ravie de faire partie d’une équipe de maths aussi sympathique et de m’initier à la recherche en
économie tout en ayant la liberté de poursuivre également mes recherches à l’ENS.

Je souhaite remercier Marta, les amis d’Olivier devenus les miens, Seb et les amis d’H&K, ceux qui le
sont restés malgré la distance et le temps. Merci à Anne aussi, même si nos discussions ont moins rythmé
ces derniers travaux qu’elles ne l’avaient fait pendant ma thèse. Merci à Michèle, Keren-Or et Michel,
même si je ne peux pas venir aussi souvent que je le voudrais.

6 REMERCIEMENTS

Enfin un immense merci à ma famille d’être là depuis toujours, Maman en premier lieu, bien sûr.
À « Mamie » et « Tonton », qui s’occupent à merveille de Lulu et Gaby quand je suis à Paris, à Odile
qui s’en occupe aujourd’hui pour que Maman puisse être un peu tranquille (si toutefois Lucas accepte de
partager sa mamie...) Merci au dévouement de Maman et Nicolas qui nous ont fait une si jolie maison,
et merci à Nicolas et Valérie d’être là et de supporter leur affreuse petite sœur avec tous ses défauts.
Je m’excuse envers vous d’avoir rédigé en anglais, j’espère me rattraper avec la présentation en français.

Et bien sûr, un immense merci également à mes deux rayons de soleil qui sont trop petits pour lire ça.
Merci p’tit Lu, d’être simplement trop mignon. Tu es la plus adorable crapule que je connaisse (en toute
objectivité bien sûr). Et toi p’tit Gab, merci pour ta bouille craquante, ta bonne humeur permanente et
tes sourires. Même si parfois le temps et la qualité de mon travail pâtissent un peu (beaucoup) de votre
présence, je ne vous changerais pour rien au monde. Et le dernier merci va tout naturellement à Olivier,
leur merveilleux papa.

Contents

Remerciements 5

I Introduction 11

1 Introduction 13
1.1 Primitives and Protocols Studied . 13
1.2 Related Work . 15
1.3 Our contributions . 15

1.3.1 Efficient UC-Secure Authenticated Key-Exchange for Algebraic Languages (PKC
2013, [BBC+13a]) . 16

1.3.2 New Techniques for SPHFs and Efficient One-Round PAKE Protocols (Crypto 2013,
[BBC+13b]) . 16

1.3.3 SPHF-Friendly Non-Interactive Commitments (Asiacrypt 2013, [ABB+13]) 16
1.3.4 Adaptive Oblivious Transfer and Generalization (Asiacrypt 2016, [BCG16]) . . . 17
1.3.5 Structure-Preserving Smooth Projective Hashing (Asiacrypt 2016, [BC16]) 17
1.3.6 Other Contributions . 18

1.4 Outline . 19
1.5 Publications . 20

2 Security Model 23
2.1 Description of the UC Framework . 23

2.1.1 Ideal World and Real World . 23
2.1.2 Adversary and Environment . 24
2.1.3 Corruptions . 25

2.2 Main Ingredients for UC Security . 25
2.2.1 Ideal Functionalities . 25
2.2.2 Session and Player Identifiers . 26
2.2.3 UC Framework With Joint State . 26
2.2.4 The Split Functionality . 26
2.2.5 A Simpler Model . 27

2.3 Formalisation of Ideal Models . 27
2.3.1 Random Oracle in the UC Framework . 28
2.3.2 The Common Reference String Model . 28

II Cryptographic Primitives 29

3 Smooth Projective Hash Functions 31
3.1 Definition and Classical Properties . 31
3.2 Classification and Examples . 32

3.2.1 Smoothness Adaptivity and Key Word-Dependence 32
CS-SPHF . 32
GL-SPHF . 32
KV-SPHF . 32

3.2.2 SPHF on Languages of Ciphertexts . 33

8 CONTENTS

3.2.3 SPHF on Cramer-Shoup Ciphertexts . 33
Labeled Cramer-Shoup Encryption Scheme (CS) 33
The (known) GL-SPHF for CS . 33
A (new) KV-SPHF for CS . 33

3.3 Constructions . 34
3.4 Additional Properties: Structure-Preserving SPHF . 34

3.4.1 Definition . 35
3.4.2 Retro-compatibility . 35
3.4.3 Possible Applications . 36

4 Commitments 39
4.1 Definition, Classical Properties and Ideal Functionality . 39
4.2 Discussion and Correction of Lindell’s Protocols . 40

4.2.1 Security Against Adaptive Corruptions . 41
4.2.2 A Simple Patch . 41
4.2.3 Our Optimization of the Commitments Protocols 41

Improvement of the Static Protocol . 42
Improvement of the Adaptive Protocol . 42

4.3 Additional Properties and New Constructions . 42
4.3.1 Extractable and Equivocable Commitment Schemes 42
4.3.2 Constructions . 42
4.3.3 SPHF-Friendly Commitments . 43

Definition . 43
Constructions . 44
The Case of FLM’s Commitment . 44

III Cryptographic Protocols 45

5 Password-Authenticated Key-Exchange 47
5.1 Security Definition in the UC Framework . 47
5.2 Constructions of One-Round PAKE . 48

5.2.1 Katz and Vaikuntanathan Smooth Projective Hash Functions 48
5.2.2 Constructions of One-Round PAKE in the UC Framework 49

5.3 Extension to Language-Authenticated Key Exchange . 50
5.3.1 Definition and Ideal Functionality . 50

Language Definition . 51
Ideal Functionality . 52

5.3.2 A Generic UC-Secure LAKE Construction . 54
Intuition . 54
Security Analysis . 54
Improvement . 54

5.3.3 Concrete Instantiations and Comparisons . 55
Password-Authenticated Key Exchange . 55
Verifier-based PAKE . 56

5.4 Extension to Distributed PAKE . 56
5.4.1 Definition and Security Model . 56

Introduction . 56
Our Constructions . 57
Security Model . 58

5.4.2 Our Simple Protocol . 58
Description of the Setting . 58
Main Idea of the Construction . 59

5.4.3 Our Efficient Protocol . 59
Description of the Setting . 59
Main Idea of the Construction . 59

CONTENTS 9

6 Oblivious Transfer 61
6.1 Definition and Security Model . 61
6.2 Constructions . 62

6.2.1 Three-round adaptively secure 1-out-of-k OT . 62
Generic Construction from SPHF-Friendly Commitments 62
Concrete Instantiation and Comparison . 62

6.2.2 Generic Construction . 62
Idea of the Construction . 63
Generic Protocol . 64
Instanciations . 64

6.2.3 Improving the Complexity . 65
6.3 Adaptive version of the Protocol . 65

6.3.1 Definition and (New) Security Model . 65
Languages . 66
Security Model . 67

6.3.2 High-Level Idea of the Construction . 68
6.3.3 Generic Construction . 69

6.4 Extension to Oblivious Language-Based Envelope . 69
6.4.1 Definition of Oblivious Language-Based Envelope 69
6.4.2 Security Properties and Ideal Functionality of OLBE 70
6.4.3 Generic UC-Secure Instantiation of OLBE with Adaptive Security 71
6.4.4 Oblivious Primitives Obtained by the Framework 73

6.5 From a UC-Secure PAKE to a UC-Secure OT . 73
6.5.1 Introduction . 73

Our Construction . 73
Comparison with other existing OT schemes . 73

6.5.2 Generic Construction of a UC-Secure OT From a UC-Secure PAKE 73
Description of a UC-Secure PAKE Scheme . 74
Generic Construction of a UC-Secure OT Scheme 74
Generic Optimization . 75

IV Conclusion 77

Conclusion and Perspectives 79

List of figures 80

Bibliography 83

V Appendices 93

A Efficient UC-Secure LAKE [BBC+13a] 95

B New SPHFs and One-Round PAKE [BBC+13b] 137

C SPHF-Friendly Non-Interactive Commitments [ABB+13] 169

D Adaptive OT and Generalization [BCG16] 207

E Structure-Preserving SPHF [BC16] 247

Part I

Introduction

Chapter 1

Introduction

In this work, we study well-known two-party protocols, mainly PAKE (Password-Authenticated Key Ex-
change) and OT (Oblivious Transfer), in a powerful security model called UC (Universal Composability)
framework. As we will see, the constructions achieved heavily rely on a primitive called SPHF (Smooth
Projective Hash Function), that we extensively study in the following, combined with another primitive
called Commitment.

1.1 Primitives and Protocols Studied
Oblivious Transfer (OT) is a notion introduced in 1981 by Rabin [Rab81]. In its classical 1-out-of-k
version, it allows a receiver R to access a single line of a database while interacting with the server S
owning the database containing k lines of data. In such schemes, the receiver should be oblivious to
the other line values, while the server should be oblivious to which line was indeed received. Oblivious
transfer has a fundamental role for achieving secure multi-party computation: It is for example needed
for every bit of input in Yao’s protocol [Yao86] as well as for Oblivious RAM ([WHC+14] for instance),
for every AND gate in the Boolean circuit computing the function in [GMW87] or for almost all known
garbled circuits [BHR12]. It has been widely used and studied in the community, especially since a
fundamental result by Kilian [Kil88], stating that one can achieve any multi-party computation scheme
from oblivious transfer.

In the same vein, Private Information Retrieval (PIR) schemes [CGKS95] allow a user to retrieve
information from a database, while ensuring that the database does not learn which data were retrieved.
With the increasing need for user privacy, these schemes are quite useful in practice, be they used
for accessing records for email repositories, collection of webpages, music... But while protecting the
privacy of the user, it is equally important that the user should not learn more information than he
is allowed to. This is called database privacy and the corresponding protocol is called a Symmetrically
Private Information Retrieval (SPIR), which could be employed in practice, for medical data or biometric
information. This notion is closely related to Oblivious Transfer.

Authenticated Key Exchange is quite an important notion for practical applications, since it enables
two parties to generate a shared high entropy secret key. This secret key will be later used with symmetric
protocols in order to protect communication, while interacting over an insecure network under the control
of an adversary. Various authentication means have been proposed, and the most practical one is definitely
a shared low entropy secret (called password) that the users can agree on over the phone. This kind of
protocol, named PAKE, for Password-Authenticated Key Exchange, were proposed in 1992 by Bellovin
and Merritt [BM92]. The small entropy space from which the password is drawn is subject to exhaustive
search. The two participants, owning the same password, should end with the same private session key
after the interaction. Due to their importance in practice, many schemes have been proposed and studied
since then.

The Commit and Hash Paradigm. Many methods have been proposed in the past 20 years in order
to construct such schemes, and moreover to prove them secure. First focusing on PAKE protocols, we
choose to follow the idea introduced by Katz, Ostrovsky and Yung in [KOY01] and formally proven by

14 CHAPTER 1. INTRODUCTION

Gennaro and Lindell in [GL03] using the idea of Hash Proof Systems (or equivalently, Smooth Projective
Hash Functions), designed by Cramer and Shoup in [CS02]. This idea roughly consists in committing to
the password and then using the hashing primitive to generate the key, with specific properties so that the
participants will obtain the same key if and only if they own the same password (and the computations
were sound and done honestly). What we then remark is that the same idea can be applied to OT
protocols.

Commitment schemes are two-party primitives (between a committer and a receiver) divided into
two phases. In a first commit phase, the committer gives the receiver an analogue of a sealed envelope
containing a value m, while in the second opening phase, the committer reveals m in such a way that
the receiver can verify that it was indeed m which was contained in the envelope. It is required that
a committer cannot change the committed value (i.e. he should not be able to open to a value dif-
ferent from the one he committed to), this is called the binding property. It is also required that the
receiver cannot learn anything about m before the opening phase, this is called the hiding property. It
is impossible to perfectly achieve both properties (rather than computationally or statistically) at the
same time. El Gamal [ElG84] or Cramer-Shoup [CS02] encryptions are famous examples of perfectly
binding commitments, and Pedersen encryption [Ped92] is the most known example of perfectly hiding
commitments.

In our specific case of application to password-based authenticated key-exchange, in which the com-
mitted value is a password, one does not want to reveal this secret value during the opening phase.
Instead, one wants the decommitment to be implicit, which means that the committer does not really
open its commitment, but rather convinces the receiver that it actually committed to the value it pre-
tended to. In the articles formerly cited, the authors achieve this property thanks to the notion of Smooth
Projective Hash Functions.

Smooth Projective Hash Functions have been initially defined by Cramer and Shoup [CS02] and
their application to PAKE schemes (among others) has been seen by Katz, Ostrovsky and Yung in [KOY01]
and formally proven by Gennaro and Lindell in [GL03]. These hash functions are defined such that their
value can be computed in two different ways if the input belongs to a particular subset (called the
language), either using a private hashing key or a public projection key along with a private witness
ensuring that the input belongs to the language. The hash value obtained is indistinguishable from
random in case the input does not belong to the language (property of smoothness) and in case the input
does belong to the language but no witness is known (property of pseudo-randomness).

Applying this to PAKE schemes, when one considers the language of “well-formed commitments of the
password owned by the other participant” (using the randomness as a witness), this ensures the implicit
decommitment since the hash value will only be the same if the intended password is indeed the good
one and the other participant indeed owns the witness (i.e. computed honestly the commitment on the
aforesaid password).

Universal Composability Framework. In a traditional security model, this paradigm quite easily
ensures the security. But an additional difficulty arises when one wants to prove the protocols in the
universal composability framework proposed in [Can01]. In a nutshell, in the UC framework, security for
a specific kind of protocol is captured by an ideal functionality (in an ideal world). A protocol is then
proven secure if, given any adversary to the protocol in the real world, one can construct a simulator of
this adversary in the ideal world, such that no environment can distinguish between the execution in the
ideal world (between dummy players, the ideal functionality and the simulator of the adversary) and the
execution in the real world (between the real players executing the real protocol and interacting between
themselves and the adversary) in a non-negligible way.

Skipping the details, when the protocol makes use of commitments, this usually forces those commit-
ments to be both extractable (meaning that a simulator can recover the value m committed to thanks to
a trapdoor) and equivocable (meaning that a simulator can open a commitment to a value m′ different
from the value m it committed to thanks to another trapdoor), which is quite a difficult goal to achieve.

The now classical way [CF01, ACP09], [ABB+13] to achieve both extractability and equivocability
is to combine an equivocable CPA encryption scheme (such as Pedersen [Ped92]) and an extractable CCA
encryption scheme (such as Cramer-Shoup [CS02]). As explained above, one then links them with an
SPHF in order to obtain an implicit decommitment.

1.2. RELATED WORK 15

1.2 Related Work
Commitments. The first UC-secure commitment schemes were given by [CF01] and [DN02] and the
authors of the former were the first to formalize the methodology combining an equivocable primitive and
an extractable primitive. Many constructions have been proposed since then, for instance [Lin11a] and
[FLM11] for the UC-commitment schemes and [KV11] for the UC PAKE schemes, in which the relations
between commitments and SPHF have proven very useful.

Smooth Projective Hash Functions and Password-Authenticated Key-Exchange. These sub-
jects cannot really be studied separately anymore, since SPHFs have been extensively used for PAKE
schemes, which in return led to big improvements on the SPHF constructions.

The most famous instantiation of PAKE has been proposed by Bellovin and Merritt [BM92], and is
called EKE, for Encrypted Key Exchange. It simply consists of a Diffie-Hellman key exchange [DH76],
where the flows are symmetrically encrypted under the shared password. Overall, the equivalent of
2 group elements have to be sent.

A first formal security model was proposed by Bellare, Pointcheval and Rogaway [BPR00] (the BPR
model), to deal with off-line dictionary attacks. It essentially says that the best attack should be the
on-line exhaustive search, consisting in trying all the passwords by successive executions of the protocol
with the server. Several variants of EKE with BPR-security proofs have been proposed in the ideal-
cipher model or the random-oracle model [Poi12]. Katz, Ostrovsky and Yung [KOY01] proposed the first
practical scheme (KOY), provably secure in the standard model under the DDH assumption. This is a
3-flow protocol, with the client sending 5 group elements plus a verification key and a signature, for a
one-time signature scheme, and the server sending 5 group elements. It has been generalized by Gennaro
and Lindell [GL03], who extended the initial definition of SPHF for an application to PAKE.

Their approach has thereafter been adapted to the Universal Composability (UC) framework by
Canetti et al. [CHK+05], who also proposed the first ideal functionality for PAKE protocols in the UC
framework. Though quite efficient, their protocol was only secure against static corruptions (as opposed
to adaptive adversaries, that are capable of corrupting players at any time, and learn their internal states).
The first ones to propose an adaptively secure PAKE in the UC framework were Barak et al. [BCL+05] us-
ing general techniques from multi-party computation. Though conceptually simple, their solution results
in quite inefficient schemes. Building on the idea from [CF01], we improved the scheme from [CHK+05]
in [ACP09] to resist to adaptive adversaries, still in the standard model (without random oracles).

More recently, a variant of SPHF (called KV-SPHF in the following, as opposed to traditional CS-SPHF
of Cramer-Soup and GL-SPHF of Gennaro-Lindell) proposed by Katz and Vaikuntanathan even allowed
the construction of one-round UC-secure PAKE schemes [KV09, KV11], where the two players just have
to send simultaneous flows to each other. In these SPHFs, the projection key depends on the hashing key
only (and not on the word in the language), and the smoothness holds even if the word is chosen after
having seen the projection key.

Oblivious Transfer. Since the original paper [Rab81], several instantiations and optimizations of OT
protocols have appeared in the literature [NP01, CLOS02], including proposals in the UC framework.
More recently, new instantiations have been proposed, trying to reach round-optimality [HK07], and/or
low communication costs [PVW08]. Choi et al. [CKWZ13] proposed a generic method and an efficient
instantiation secure against adaptive corruptions in the CRS model with erasures, but it is only 1-out-
of-2 and it does not scale to 1-out-of-n OT, for n > 2. As far as adaptive versions of those protocols
are concerned, this problem was first studied by [NP97, GH07, KNP11], and more recently UC secure
instantiations were proposed, but unfortunately either under the Random Oracle, or under not so standard
assumptions such as q-Hidden LRSW or later on q-SDH [CNs07, JL09a, RKP09, CDH12, GD14], but
without allowing adaptive corruptions.

1.3 Our contributions
We focus here on our five more relevant publications and describe the results achieved in these papers.
We also give the related results achieved in other papers when it is worth mentioning them.

16 CHAPTER 1. INTRODUCTION

1.3.1 Efficient UC-Secure Authenticated Key-Exchange for Algebraic Lan-
guages (PKC 2013, [BBC+13a])

At PKC 2013 (see the full version page 95 or on eprint), with Fabrice Ben Hamouda, Olivier Blazy, David
Pointcheval and Damien Vergnaud, we propose a new primitive that encompasses most of the previous
notions of authenticated key exchange. It is closely related to Credential-Authenticated Key Exchange
(CAKE) [CCGS10] and we call it LAKE, for Language-Authenticated Key-Exchange, since parties establish
a common key if and only if they hold credentials that belong to specific (and possibly independent) lan-
guages. The definition of the primitive is more practice-oriented than the definition of CAKE but the two
notions are very similar. In particular, the new primitive enables privacy-preserving authentication and
key exchange protocols by allowing two members of the same group to secretly and privately authenticate
each other without revealing this group beforehand.

In order to define the security of this primitive, we use the UC framework and an appropriate definition
for languages that permits to dissociate the public part of the policy, the private common information
the users want to check and the (possibly independent) secret values each user owns that assess the
membership to the languages. We provide an ideal functionality for LAKE and give efficient realizations
of the new primitive (for a large family of languages), that are secure under classical mild assumptions,
in the standard model (with a common reference string – CRS), with static corruptions.

We significantly improve the efficiency of several CAKE protocols for specific languages and we enlarge
the set of languages for which we can construct practical schemes. Notably, we obtain a very practical
realization of Secret Handshakes and a Verifier-based Password-Authenticated Key Exchange.

1.3.2 New Techniques for SPHFs and Efficient One-Round PAKE Protocols
(Crypto 2013, [BBC+13b])

At Crypto 2013 (see the full version page 137 or on eprint), with Fabrice Ben Hamouda, Olivier Blazy,
David Pointcheval and Damien Vergnaud, our first contribution is the description of an instantiation
of KV-SPHF on Cramer-Shoup ciphertexts, and thus the first KV-SPHF on an efficient CCA encryption
scheme. We thereafter use it within Katz and Vaikuntanathan’s framework for one-round PAKE [KV11],
in the BPR security model. Our scheme just consists of 6 group elements in each direction under the DDH
assumption (4 for the ciphertext, and 2 for the projection key). This has to be compared with the 20
group elements, or more, in the best constructions known before, which all need pairing-friendly groups
and pairing computations, or with the KOY protocol [KOY01] that has a similar complexity but with
three sequential flows.

We also present the first GL-SPHFs and KV-SPHFs able to handle multi-exponentiation equations
without requiring pairings. Our new KV-SPHFs enable several efficient instantiations of one-round LAKE
protocols [BBC+13a]. Our above one-round PAKE scheme is actually a particular case of a more general
one-round LAKE scheme, for which we provide a BPR-like security model and a security proof. Our general
constructions also cover CAKE [CCGS10].

1.3.3 SPHF-Friendly Non-Interactive Commitments
(Asiacrypt 2013, [ABB+13])

At Asiacrypt 2013 (see the full version page 169 or on eprint), with Michel Abdalla, Fabrice Ben Hamouda,
Olivier Blazy, and David Pointcheval, we first define the notion of SPHF-friendly E2-commitment together
with an instantiation. The new construction is inspired by the commitment schemes in [CF01, CLOS02],
[ACP09]. Like the construction in [ACP09], it combines a variant of the Cramer-Shoup encryption
scheme (as an extractable commitment scheme) and an equivocable commitment scheme to be able
to simultaneously achieve both equivocability and extractability. However, unlike the construction in
[ACP09], we rely on Haralambiev’s perfectly hiding commitment [Har11, Section 4.1.4], instead of the
Pedersen commitment [Ped92].

Since the opening value of Haralambiev’s scheme is a group element that can be encrypted in one
ElGamal-like ciphertext to allow extractability, this globally leads to a better communication and com-
putational complexity for the commitment. The former is linear in m · K, where m is the bit-length of
the committed value and K, the security parameter. This is significantly better than our extractable
commitment construction in [ACP09] which was linear in m ·K2, but asymptotically worse than the two

https://eprint.iacr.org/2012/284.pdf
https://eprint.iacr.org/2013/034.pdf
https://eprint.iacr.org/2013/588.pdf

1.3. OUR CONTRIBUTIONS 17

proposals in [FLM11] that are linear in K, and thus independent of m. However, we point out the latter
proposals in [FLM11] are not SPHF-friendly since they are not robust.

We then show that a labeled E2-commitment satisfying stronger notions of equivocability and ex-
tractability is a non-interactive UC-secure commitment scheme in the presence of adaptive adversaries,
assuming reliable erasures and a single global CRS, and we apply this result to our new construction.

Second, we provide a generic construction of a one-round UC-secure PAKE from any SPHF-friendly
commitment, verifying an additional property called strong pseudo-randomness. The UC-security holds
against adaptive adversaries, assuming reliable erasures and a single global CRS. In addition to being
the first one-round adaptively secure PAKE, our new scheme also enjoys a much better communication
complexity than previous adaptively secure PAKE schemes. For instance, in comparison to the PAKE in
[ACP09], which was in 2013 the most efficient adaptively secure PAKE, the new scheme gains a factor K
in the overall communication complexity, where K is the security parameter. However, unlike our scheme
in [ACP09], our new construction requires pairing-friendly groups.

Third, we provide a generic construction of a three-round UC-secure 1-out-of-k OT from any SPHF-
friendly commitment. The UC-security holds against adaptive adversaries, assuming reliable erasures and
a single global CRS. Besides decreasing the total number of rounds with respect to existing OT schemes
with similar security levels, our resulting protocol also has a better communication complexity than the
best known solution in 2013 [CKWZ13]. Moreover, our construction is more general and provides a
solution for 1-out-of-k OT schemes while the solution in [CKWZ13] only works for k = 2.

1.3.4 Adaptive Oblivious Transfer and Generalization
(Asiacrypt 2016, [BCG16])

Due to their huge interest in practice, it is important to achieve low communication on Oblivious Transfer
protocols, reducing the gap between them and Private Information Retrieval schemes. In adaptive OT
schemes, the server is only required to send a message linear in the size k of the database for the first
line queried. All the subsequent communication should be in o(k).

At Asiacrypt 2016 (see the full version page 207 or on eprint), with Olivier Blazy and Paul Germouty,
we give the first round-optimal adaptive Oblivious Transfer protocol secure in the UC framework with
adaptive corruptions under standard assumptions (MDDH) and assuming reliable erasures. Our protocol
builds on top of our UC-secure OT scheme [BC15] and adds the adaptivity by applying the idea of [GH07],
which is round-optimal and based on Blind IBE. Roughly speaking, the idea is that each line (entry) of
the database is encrypted using an IBE, and each line number corresponds to an identity. To obtain the
s-th entry, the receiver then asks the secret key for identity s to the sender. The additional UC security
(against adaptive corruptions) requirement furthermore adds some technicalities on the Blind IBE and the
commitment used. We show how to instantiate the needed building blocks using standard assumptions,
using or extending various basic primitives in order to fit the MDDH framework introduced in [EHK+13].
It is interesting to note that our resulting adaptive Oblivious Transfer scheme has an amortized complexity
in O(log k), which is similar to current Private Information Retrieval instantiations [KLL+15], that have
weaker security prerequisites.

We also propose our new notion, named OLBE (Oblivious Language-Based Envelope) and provide a
security model by giving a UC ideal functionality. We show that this notion supersedes the classical
asymmetric automated trust negotiation schemes such as Oblivious Transfer, Oblivious Signature-Based
Envelope, or even Access Controlled Oblivious Transfer, Priced Oblivious Transfer and Conditional Obliv-
ious Transfer, in which the access to each line of the database is hidden behind some possibly secret
restriction, be it a credential, a price, or an access policy. We show how to choose the languages in order
to obtain from our framework all the corresponding ideal functionalities, recovering the known ones (such
as OT) and providing the new ones (such as OSBE). We then give a generic scheme fulfilling our ideal
functionality, which directly gives generic constructions for the specific cases.

1.3.5 Structure-Preserving Smooth Projective Hashing
(Asiacrypt 2016, [BC16])

At Asiacrypt 2016 (see the full version page 247 or on eprint), with Olivier Blazy, we propose the notion
of structure-preserving Smooth Projective Hash Functions (SP-SPHF), where both words, witnesses and
projection keys are group elements. This is similar to the notion of structure-preserving signatures
requiring the message, the signature, and the public keys to be group elements. Furthermore, hash

https://eprint.iacr.org/2016/259.pdf
https://eprint.iacr.org/2016/258.pdf

18 CHAPTER 1. INTRODUCTION

and projective hash computations are doable with simple pairing-product equations in the context of
bilinear groups. This allows, for example, to build SPHFs that implicitly demonstrate the knowledge of
a Groth-Sahai Proof (serving as a witness).

As an example, we show that the UC-commitment from [FLM11] (while not fitting with the method-
ology of traditional SPHF we use in [ABB+13]), is compatible with SP-SPHF and can be used to build
UC protocols. As a side contribution, we first generalize this commitment from DLin to the k −MDDH
assumption from [EHK+13]. The combination of this commitment and the associated SP-SPHF then
enables us to give interesting applications, among which a construction of a three-round 1-out-of-k OT,
UC-secure against adaptive adversaries assuming reliable erasures and a single global CRS, and an in-
stantiation of a one-round PAKE UC-secure against adaptive adversaries assuming reliable erasures and
a single global CRS under any k−MDDH assumption. Contrarily to most existing one-round adaptively
secure PAKE, we show that our scheme enjoys a much better communication complexity while not leaking
information about the length of the password used.

1.3.6 Other Contributions
In [BCPV13] (ACNS 2013), with Olivier Blazy, David Pointcheval and Damien Vergnaud, we detail
a possible inconsistency on the binding property of Lindell’s second commitment scheme [Lin11a]. In
order to avoid the above concern, we propose a simple patch to Lindell’s scheme making it secure against
adaptive corruptions.

We also improve both schemes by noting that the committer encrypts the value m (encoded as a
group element) using the Cramer-Shoup encryption scheme [CS98]. In the opening phase, he simply
reveals the value m and uses a Σ protocol to give an interactive proof that the message is indeed the one
encrypted in the ciphertext. In Lindell’s schemes, the challenge in the Σ protocol is sent to the committer
using a “dual encryption scheme”. Our improvement consists in noting that the receiver can in fact send
this challenge directly without having to send it encrypted before. With additional modifications of the
schemes, we can present two new protocols secure under the DDH assumption in the UC framework,
against static and adaptive corruptions. Both schemes requires a smaller bandwidth and less interactions
than the original schemes.

In [BC15] (ACNS 2015), with Olivier Blazy, we show that we can broaden the class of primitives
that can be used for the equivocable part of the SPHF-friendly commitments defined in [ABB+13].
We give a generic construction of SPHF-friendly commitments from two conceptually easier building
blocks: a collision-resistant chameleon hash (CH, introduced in [KR00]) function which is verifiable (either
publicly or for the receiver only) and an SPHF-friendly CCA encryption scheme. The extra requirement
on the CH function is simple to achieve as soon as only classical algebraic operations are applied to
the randomness, and SPHF-friendly encryption is now well-known since [CS02], with several instances
(contrary to SPHF-friendly commitments, which is a difficult task). We then give three instantiations of
this SPHF-friendly scheme, respectively based on DDH, LWE and DCR.

While the UC-secure OT construction we give in [ABB+13] is an ad hoc solution with pairings,
we obtain here a generic construction (from CH and CCA encryption) which does not specifically in-
duce pairings. Furthermore, our 3 instantiations come straightforward from our generic framework (and
[ABB+13] can be derived from it).

In [BCV15] (RSA 2015), with Olivier Blazy and Damien Vergnaud, we present an efficient non-
interactive technique to prove (in zero-knowledge) that a committed message does not belong to a set L.
The proof is generic and relies on a proof of membership to L with specific mild properties. In particular, it
is independent of the size of L and if there exists an efficient proof of membership for committed values, one
gets readily an efficient proof of non-membership. Instantiated with a combination of SPHF and Groth-
Sahai proof system, we obtain very efficient realization for non-interactive proof of non-membership of
committed values.

In 2009, Kiayias and Zhou [KZ09] introduced zero-knowledge proofs with witness elimination. This
primitive enables to prove that a committed message m belongs to a set L (with a witness w) in such a
way that the verifier accepts the interaction only if w does not belong to a set determined by a public
relation Q and some private input w′ of the verifier. The verifier does not learn anything about w
(except that m ∈ L and (w,w′) /∈ Q) and the prover does not learn anything about w′. The primitive
can obviously be used to handle revocation lists. We show that the original proposal of zero-knowledge

https://eprint.iacr.org/2013/123.pdf
https://eprint.iacr.org/2015/560.pdf
https://eprint.iacr.org/2015/072.pdf

1.4. OUTLINE 19

proofs with witness elimination from [KZ09] is flawed and that a dishonest prover can actually make a
verifier accept a proof for any message m ∈ L even if (w,w′) ∈ Q. In particular, in the suspect tracking
scenario, a dishonest prover can identify himself even if he is on the suspect list. Therefore, their protocol
does not achieve the claimed security. However we explain how to apply our proof of non-membership
to fix it. We obtain a proof system that achieves the security goal and is more efficient than the original
(insecure) solution.

Finally, we briefly present applications of our proof of non-membership to other settings such as
anonymous credentials and privacy-preserving authenticated key exchange.

In [BCV16] (RSA 2016), with Olivier Blazy and Damien Vergnaud, we consider distributed PAKE,
which was designed to prevent the adversary from recovering a whole database of passwords in case of
server corruption. In this setting, the password database on the server side is shared among two servers,
and authentication requires a distributed computation involving the client, only owning his password,
and the two servers, who will use some additional shared secret information. The interaction is performed
using a gateway that does not know any secret information and ends up in the gateway and the client
sharing a common key.

We first define a security model, based on a variant of the BPR model in the distributed setting
proposed by Katz, MacKenzie, Taban and Gligor in [KMTG12].

In our first construction, the user generates information theoretic shares of his password and sends
them to the servers. In the authentication phase, the parties run a dedicated protocol to verify that the
provided password equals the priorly shared one. This is achieved by combining six SPHFs. However,
it implies that at each time period, the servers have to refresh the information-theoretic sharing of the
password of all users.

In our second construction, passwords are now encrypted using a public-key encryption scheme where
the corresponding secret key is shared among the servers. At the beginning of each time period, the
servers only need to refresh the sharing of this secret key but the password database is not modified (and
can actually be public). Password verification and the authenticated key exchange is then carried out
without ever decrypting the database. A secure protocol is run to verify that the password sent by the
user matches the encrypted password, again by combining several SPHFs.

In [BCG17] (ACNS 2017), with Olivier Blazy and Paul Germouty, we propose a generic transforma-
tion from Password-Authenticated Key Exchange to Oblivious Transfer (the reverse transformation was
already studied in [CDVW12]). Our framework allows to transform a UC-secure PAKE into a UC-secure
OT with the same level of security (for instance resistance to adaptive corruptions).

We choose to focus on the transformation of a 2-round PAKE to a 3-round OT since this kind of
PAKE is the most commonly encountered and the most efficient one. Furthermore, this allows us to give
a generic optimization of our transformation in this specific case, exploiting the fact that the server does
not need to hide his “password”, since his password is a (public) number of line in the database.

After showing an application of our technique on our PAKE scheme from [ABB+13], which allows us
to immediately recover the associated OT scheme given in this article, we show that our transformation
also applies to the PAKE scheme from [JR15], allowing us to give a nearly optimal OT scheme.

Our technique works with every possible PAKE scheme, be they elliptic-curve-based or not. Further-
more, also note that it also allows to transform a BPR-secure PAKE [BPR00] into an OT secure in a
game-based security model. In order to illustrate these last two points, we apply our framework to a
BPR-secure lattice-based PAKE scheme proposed by [KV09], giving us a secure lattice-based OT scheme.

1.4 Outline
After a brief introduction to the UC framework in the rest of this part (Chapter 2 page 23), we present
the cryptographic primitives in Part II (Chapters 3 and 4) and the cryptographic protocols in Part III
(Chapters 5 and 6).

In Chapter 3 page 31, we start by giving the definition and classical properties of SPHFs. We then
give an example of KV-SPHF construction (for Cramer-Shoup ciphertexts) that was originaly published
in [BBC+13b] and a quick summary of the constructions we were able to achieve in the different papers.
We conclude by giving our new notion of structure-preserving SPHF [BC16] and a summary of its possible
applications.

https://eprint.iacr.org/2015/1144.pdf
https://eprint.iacr.org/2017/358.pdf

20 PUBLICATIONS

In Chapter 4 page 39, we start by giving the definition and classical properties of commitment schemes.
We then describe our correction and improvement of Lindell’s commitment scheme [Lin11a], [BCPV13].
We finish by extending the definitions of equivocability and extractability, and by defining the notion of
SPHF-friendly commitments [ABB+13, BC15, BC16] useful for the PAKE and OT schemes described
later.

In Chapter 5 page 47, we start by giving the definition and ideal functionality for PAKE schemes.
We then focus on one-round constructions [KV11], [BBC+13b, ABB+13, BC16], before describing
the new notion of Language-Authenticated Key-Exchange (LAKE) [BBC+13a, BBC+13b], giving some
applications. Finally, we describe the security model and constructions for Distributed PAKE [BCV16].

In Chapter 6 page 61, we start by giving the definition and ideal functionality for OT schemes. We
then describe our three-round constructions [ABB+13, BC15, BC16], before dealing with the adaptive
version of the protocol [BCG16] with a security model and a practical instanciation. We finally describe
our extension to Oblivious Language-Based Envelope (OLBE) [BCG16], before giving our transformation
of a PAKE scheme into an OT scheme [BCG17].

Finally, the full version of the five articles described earlier can be found in Part V page 93.

1.5 Publications
[ABB+13] Michel Abdalla, Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, and David

Pointcheval. SPHF-friendly non-interactive commitments. In Kazue Sako and Palash Sarkar,
editors, Advances in Cryptology – ASIACRYPT 2013, Part I, volume 8269 of Lecture Notes
in Computer Science, pages 214–234, Bengalore, India, December 1–5, 2013. Springer, Hei-
delberg, Germany.

[ABCP09] Michel Abdalla, Xavier Boyen, Céline Chevalier, and David Pointcheval. Distributed public-
key cryptography from weak secrets. In Stanislaw Jarecki and Gene Tsudik, editors,
PKC 2009: 12th International Conference on Theory and Practice of Public Key Cryptogra-
phy, volume 5443 of Lecture Notes in Computer Science, pages 139–159, Irvine, CA, USA,
March 18–20, 2009. Springer, Heidelberg, Germany.

[ACCP08] Michel Abdalla, Dario Catalano, Céline Chevalier, and David Pointcheval. Efficient two-
party password-based key exchange protocols in the UC framework. In Tal Malkin, editor,
Topics in Cryptology – CT-RSA 2008, volume 4964 of Lecture Notes in Computer Science,
pages 335–351, San Francisco, CA, USA, April 7–11, 2008. Springer, Heidelberg, Germany.

[ACCP09] Michel Abdalla, Dario Catalano, Céline Chevalier, and David Pointcheval. Password-
authenticated group key agreement with adaptive security and contributiveness. In Bart
Preneel, editor, AFRICACRYPT 09: 2nd International Conference on Cryptology in Africa,
volume 5580 of Lecture Notes in Computer Science, pages 254–271, Gammarth, Tunisia,
June 21–25, 2009. Springer, Heidelberg, Germany.

[ACGP11] Michel Abdalla, Céline Chevalier, Louis Granboulan, and David Pointcheval. Contributory
password-authenticated group key exchange with join capability. In Aggelos Kiayias, editor,
Topics in Cryptology – CT-RSA 2011, volume 6558 of Lecture Notes in Computer Science,
pages 142–160, San Francisco, CA, USA, February 14–18, 2011. Springer, Heidelberg, Ger-
many.

[ACMP10] Michel Abdalla, Céline Chevalier, Mark Manulis, and David Pointcheval. Flexible group
key exchange with on-demand computation of subgroup keys. In Daniel J. Bernstein and
Tanja Lange, editors, AFRICACRYPT 10: 3rd International Conference on Cryptology in
Africa, volume 6055 of Lecture Notes in Computer Science, pages 351–368, Stellenbosch,
South Africa, May 3–6, 2010. Springer, Heidelberg, Germany.

[ACP09] Michel Abdalla, Céline Chevalier, and David Pointcheval. Smooth projective hashing for
conditionally extractable commitments. In Shai Halevi, editor, Advances in Cryptology –
CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages 671–689, Santa
Barbara, CA, USA, August 16–20, 2009. Springer, Heidelberg, Germany.

PUBLICATIONS 21

[BBC+13a] Fabrice Ben Hamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien
Vergnaud. Efficient UC-secure authenticated key-exchange for algebraic languages. In Kaoru
Kurosawa and Goichiro Hanaoka, editors, PKC 2013: 16th International Conference on
Theory and Practice of Public Key Cryptography, volume 7778 of Lecture Notes in Computer
Science, pages 272–291, Nara, Japan, February 26 – March 1, 2013. Springer, Heidelberg,
Germany.

[BBC+13b] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien
Vergnaud. New techniques for SPHFs and efficient one-round PAKE protocols. In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part I, vol-
ume 8042 of Lecture Notes in Computer Science, pages 449–475, Santa Barbara, CA, USA,
August 18–22, 2013. Springer, Heidelberg, Germany.

[BC15] Olivier Blazy and Céline Chevalier. Generic construction of UC-secure oblivious transfer.
In Tal Malkin, Vladimir Kolesnikov, Allison Bishop Lewko, and Michalis Polychronakis,
editors, ACNS 15: 13th International Conference on Applied Cryptography and Network
Security, volume 9092 of Lecture Notes in Computer Science, pages 65–86, New York, NY,
USA, June 2–5, 2015. Springer, Heidelberg, Germany.

[BC16] Olivier Blazy and Céline Chevalier. Structure-preserving smooth projective hashing. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology – ASIACRYPT 2016,
Part II, volume 10032 of Lecture Notes in Computer Science, pages 339–369, Hanoi, Vietnam,
December 4–8, 2016. Springer, Heidelberg, Germany.

[BCFP10] Xavier Boyen, Céline Chevalier, Georg Fuchsbauer, and David Pointcheval. Strong cryptog-
raphy from weak secrets. In Daniel J. Bernstein and Tanja Lange, editors, AFRICACRYPT
10: 3rd International Conference on Cryptology in Africa, volume 6055 of Lecture Notes
in Computer Science, pages 297–315, Stellenbosch, South Africa, May 3–6, 2010. Springer,
Heidelberg, Germany.

[BCG16] Olivier Blazy, Céline Chevalier, and Paul Germouty. Adaptive oblivious transfer and gen-
eralization. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology –
ASIACRYPT 2016, Part II, volume 10032 of Lecture Notes in Computer Science, pages
217–247, Hanoi, Vietnam, December 4–8, 2016. Springer, Heidelberg, Germany.

[BCG17] Olivier Blazy, Céline Chevalier, and Paul Germouty. Almost Optimal Oblivious Transfer
from QA-NIZK. In ACNS 2017, LNCS. Springer-Verlag, to appear, 2017.

[BCPV13] Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud. Analysis and
improvement of Lindell’s UC-secure commitment schemes. In Michael J. Jacobson Jr.,
Michael E. Locasto, Payman Mohassel, and Reihaneh Safavi-Naini, editors, ACNS 13: 11th
International Conference on Applied Cryptography and Network Security, volume 7954 of
Lecture Notes in Computer Science, pages 534–551, Banff, AB, Canada, June 25–28, 2013.
Springer, Heidelberg, Germany.

[BCTV16] Fabrice Benhamouda, Céline Chevalier, Adrian Thillard, and Damien Vergnaud. Easing
Coppersmith methods using analytic combinatorics: Applications to public-key cryptography
with weak pseudorandomness. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and
Bo-Yin Yang, editors, PKC 2016: 19th International Conference on Theory and Practice of
Public Key Cryptography, Part II, volume 9615 of Lecture Notes in Computer Science, pages
36–66, Taipei, Taiwan, March 6–9, 2016. Springer, Heidelberg, Germany.

[BCV15] Olivier Blazy, Céline Chevalier, and Damien Vergnaud. Non-interactive zero-knowledge
proofs of non-membership. In Kaisa Nyberg, editor, Topics in Cryptology – CT-RSA 2015,
volume 9048 of Lecture Notes in Computer Science, pages 145–164, San Francisco, CA, USA,
April 20–24, 2015. Springer, Heidelberg, Germany.

[BCV16] Olivier Blazy, Céline Chevalier, and Damien Vergnaud. Mitigating server breaches in
password-based authentication: Secure and efficient solutions. In Kazue Sako, editor, Topics
in Cryptology – CT-RSA 2016, volume 9610 of Lecture Notes in Computer Science, pages
3–18, San Francisco, CA, USA, February 29 – March 4, 2016. Springer, Heidelberg, Germany.

22 PUBLICATIONS

[CC11] Hervé Chabanne and Céline Chevalier. Vaudenay’s Privacy Model in the Universal Compos-
ability Framework: A Case Study, pages 16–24. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2011.

[CDK11] Céline Chevalier, Stéphanie Delaune, and Steve Kremer. Transforming password protocols
to compose. In Supratik Chakraborty and Amit Kumar, editors, IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2011,
December 12-14, 2011, Mumbai, India, volume 13 of LIPIcs, pages 204–216. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2011.

[CDKR13] Céline Chevalier, Stéphanie Delaune, Steve Kremer, and Mark Dermot Ryan. Composition
of password-based protocols. Formal Methods in System Design, 43(3):369–413, 2013.

[CFPZ09] Céline Chevalier, Pierre-Alain Fouque, David Pointcheval, and Sébastien Zimmer. Optimal
randomness extraction from a Diffie-Hellman element. In Antoine Joux, editor, Advances in
Cryptology – EUROCRYPT 2009, volume 5479 of Lecture Notes in Computer Science, pages
572–589, Cologne, Germany, April 26–30, 2009. Springer, Heidelberg, Germany.

[CLV16] Céline Chevalier, Fabien Laguillaumie, and Damien Vergnaud. Privately outsourcing ex-
ponentiation to a single server: Cryptanalysis and optimal constructions. In Ioannis G.
Askoxylakis, Sotiris Ioannidis, Sokratis K. Katsikas, and Catherine A. Meadows, editors,
ESORICS 2016: 21st European Symposium on Research in Computer Security, Part I, vol-
ume 9878 of Lecture Notes in Computer Science, pages 261–278, Heraklion, Greece, Septem-
ber 26–30, 2016. Springer, Heidelberg, Germany.

Chapter 2

Security Model

We give here a high-level description of the so-called UC (for Universal Composability) framework. It is
a security model tailored for multiparty computation, in which n players interact in order to compute
securely a given function of their inputs. Securely here means that the output is correct and that the
secrecy of the inputs is insured, even if a certain number of players are cheating.

Formally, one considers n players Pi, each owning an input xi, and an n-variable function f . The goal
is to compute f(x1, . . . , xn) = (y1, . . . , yn) such that each player Pi learns yi and nothing more.

Yao gave in [Yao82] a good example, known as the “millionnaires’ problem ”. Imagine two millionnaires
meeting in the street and willing to establish who is the richest among the two, without revealing the
exact sum each one possesses. The considered function is here a comparison between two integers: each
one will learn the result (who owns more money), but nothing more (and in particular not the amount of
money owned by the other one). One can also think of voting systems: each voter has to learn the result
of the vote, and be certain it is the good one, but not the name of the candidate for which its neighbour
voted. These two examples are particular cases in which the yi are equal, which is not always the case.
In a blind signature scheme for instance [Cha82], useful in electronic payment systems, the signer gives
its private signing key as input and learns nothing, whereas the user gives the message to be signed as
input and learns the signature as output.

It is necessary to give a formal mathematical framework and a security model to prove thoroughly the
security of such a protocol. In the case of multi-party protocols, this is not so easy, given the diversity of
the possibilities.

A good definition necessarily has to deal correctly with particular cases (such as electronic vote): for
instance, one can make a list of the required properties (secret input, correct result...), but it is difficult
to be sure that such a list is exhaustive (for instance, the model has to ensure that a player cannot behave
in a way related to the behaviours of its neighbours).

In order to solve this inherent problem, the inventor of the UC framework, Canetti [Can01] started
from a completely different point of view, by considering for each protocol, the “ideal behaviour” it should
have.

2.1 Description of the UC Framework

2.1.1 Ideal World and Real World
A protocol and the corresponding attacks lie in the so-called real world. On the opposite side, one
considers an ideal world, in which everything would happen in a perfect way: This world describes the
specifications of the protocol. The main idea behind the UC framework is then to say that a protocol is
secure if its behaviour is indistinguishable from its ideal counterpart.

More formally, we define in the ideal world an entity that one can never corrupt, called the ideal
functionality and usually denoted as F . The players privately send their inputs to this entity, and receive
their corresponding output the same way. There is no communication between the different players, as
sketched in the following picture. F is assumed to behave in a perfectly correct way, without revealing
information other than required, and without being possibly corrupted by an adversary. If it is well
designed, we usually say that F is trivially secure and correct.

24 CHAPTER 2. SECURITY MODEL

. . . Pi
. . . Pn

F

P1

x1

y1 xi

yi xn

yn

In the case of shared computation, the secure evaluation of a function can be specified by a trusted
authority which receives all the inputs, computes the outputs, and gives back those values to the players.
The main advantage of the UC framework is to allow the treatment of reactive tasks, by replacing this
trusted party by the ideal functionality, which is a more general algorithmic entity.

Since the goal of this security model is to guarantee the robustness of a protocol with respect to the
environment in which it is executed, one considers the protocols independently of the environment and
tries to prove that it remains secure when composed with other protocols. One thus defines tasks for a
unique instance, even if the protocol is supposed to be used with multiple and concurrent instances. This
enables to have simple formulations of ideal functionalities and an automatic guarantee of the security of
a protocol in a multi-task setting, thanks to a so-called universal composability theorem.

Such examples of basic tasks have been formalized with an adapted functionality ([Can01]): message
authentication Fauth, secure message transmission Fsmt), secure communication sessions and key ex-
change Fscs), public-key encryption, digital signatures, coin-tossing, commitment, zero-knowledge, obliv-
ious transfer...

Once F is defined, the goal of a protocol π, executed in a real world in the presence of an adversary,
is then to create a situation equivalent to that obtained with F . This means that the communication
between players should not give more information than that given by the description of the function itself
and the result of the latter (which can suffice to forbid any kind of security, for instance when considering
the constant function).

2.1.2 Adversary and Environment
As always in cryptography, there exists an adversary which spies on the players and can do whatever it
wants to interfere with the execution of the protocol. The adversary can either be adaptive, i.e. allowed
to corrupt users whenever it likes to, or static, i.e. required to choose which users to corrupt prior to
the execution of the session sid of the protocol. After corrupting a player, A has complete access to the
internal state and the private values of the player, takes its entire control, and plays on its behalf.

But in the UC framework, there also exists a second type of adversary, playing the role of the dis-
tinguisher, called the environment. As implied by its name, it models “everything that is outside the
protocol being executed”. The environment is the one giving the inputs to the players and recovering the
outputs from them in the end of the execution. This models the fact that, in general, the inputs are not
randomly chosen. Indeed, they rather depend on the “environment” (in its classical meaning) in which
the protocol is executed. For instance, an email is most often an answer to another email.

As said before, in order to be secure, a protocol has to perfectly mimic its ideal counterpart: It is
the environment which will have to judge that, by giving a single bit output, saying whether it thinks it
interacted with the real or the ideal protocol. The goal of the UC framework is to ensure that UC-secure
protocols will continue to behave in the ideal way even if executed in a concurrent way in arbitrary
environments. It is a simulation-based model, relying on the indistinguishability between the real world
and the ideal world. In the ideal world, the security is provided by the ideal functionality F , capturing
all the properties required for the protocol and all the means of the adversary.

Since the adversary can interact at any moment with the environment, we say that the role of the
latter is to be an interactive distinguisher. This gives a huge constraint to the simulator, which cannot
“rewind” the environment, which is a classical trick in traditional security proofs. The main difference
with classical proofs lies in the way the environment interacts with the adversary. In the UC framework,
they can interact freely and anytime; This models the fact that the information between the considered
instance and the remaining of the network can be exchanged anytime.

The environment can measure the influence of the adversary A on the outputs of the players, the
leakage of information as well as the time for delivering the messages. The allowed interactions are

2.2. MAIN INGREDIENTS FOR UC SECURITY 25

drawn on the following picture. The adversay has access to the communication between players, but
not to the inputs and outputs of the honest players (it completely controls the dishonest or corrupted
players). On the contrary, the environment has access to the inputs and outputs of all players, but not
to their communication, nor to the inputs and outputs of the subroutines they can invoque. Finally, it is
aware of the identities of the players corrupted by the adversary.

out

in

o
u
t

in

o
u
t

in

Pi

A

Z

Pj
message

message

m
es
sa
g
e

m
essa

g
e

m
essa

g
e

m
es
sa
g
e

2.1.3 Corruptions
In classical models, depending on the security framework, the privacy of the session key is either modeled
via the “semantic security” [BR94] or via the indistinguishability between the protocol and its ideal
counterpart [CK01]. In either case, the leakage of the long-term secret (such as a password) is modeled
by “corruption” queries. Unfortunately, a corruption can reveal more information than the sole long-term
secrets. Since the leakage of ephemeral secrets can cause important damages in several contexts [Kra05,
KM06], one has to consider “strong corruptions” [Sho99]. However, it seems unrealistic to allow the
designer of a protocol to decide which precise element is revealed or not by a corruption query.

On the contrary, the UC framework allows for a different approach: When a strong corruption occurs,
the adversary gains access to the whole intern memory of the corrupted player (and thus learns its internal
state) and then takes its entire control in order to act on its behalf for the remaining of the execution.
This seems to be a much more realistic scenario. In a real execution of the protocol, this is modeled by
giving the adversary the long-term secrets (such as the passwords) as well as the internal state of the
corrupted player. Furthermore, the adversary can from now on arbitrarily modify the strategy of the
player. In an ideal execution of the protocol, the simulator S learns the player’s long-term secrets from
the functionality and has to simulate its internal state in such a way that everything remains consistent
with what the environment had given to the player at the beginning and everything that has followed
since then.

A

. . . Pi
. . . Pn

F

P1

x1

y1 xi

yi xn

yn

2.2 Main Ingredients for UC Security
2.2.1 Ideal Functionalities
In the UC framework, the security is thus defined in terms of an ideal functionality F , which is a trusted
authority interacting with a set of players in order to compute a given function f . In particular, the players
give their inputs to F , which then applies f to these values and returns as a result the corresponding

26 CHAPTER 2. SECURITY MODEL

value as output to each player. In this ideal framework, the security is thus inherently guaranteed, since
an adversary controlling certain players can only learn (and maybe modify) the data of corrupted players.

More formally, in order to prove that a candidate protocol π UC-emulates the ideal functionality F ,
one considers an environment Z, which is allowed to give inputs to all players, and has to construct, for
any polynomial adversary A (which controls the communication between the players), a simulator S such
that no polynomial environment Z (the distinguisher) can distinguish between the real world (with the
real players interacting with themselves and A and executing the protocol π) and the ideal world (with
dummy players only interacting with S and F) with a significant advantage.

The UC theorem then implies that π keeps on behaving as the ideal functionality even if it is executed
in an arbitrary environment.

Z

S

P
n

P2 P
n

P2· · · · · ·P1 P1

F

A

Π

2.2.2 Session and Player Identifiers
In the UC framework, there can be several copies of the ideal functionality running in parallel. Each one
is then assumed to own a unique session identifier (SID). Each time a message is sent to a specific copy
of this functionality F , this message has to contain the SID of the copy to which it is intended. Follow-
ing [CHK+05], we assume that each protocol UC-emulating F expects inputs containing the proper SID.

2.2.3 UC Framework With Joint State
The universal composition theorem allows for the security analysis of a system seen as a simple entity,
but it gives no information in case several protocols share a given number of states and randomness (as a
secret key, for instance). In many cases, it thus cannot be used as is, since different sessions of a unique
protocol share some data (such as a random oracle, an ideal cipher or a common reference string).

In order to overcome this issue, Canetti and Rabin introduced in 2003 the notion of universal com-
posability with joint state [CR03]. Informally speaking, it consists in a new composition operation which
enables several protocols to share some states while preserving security. This is done by defining the
multi-session extension of F , which runs in parallel multiple extensions of F . Each copy of F owns a
subsession identifier (SSID) which means that, if F̂ receives a message m with SSID ssid, then it sends m
to the copy of F owning the SSID ssid. If this copy does not exist, F̂ invokes a new one on-the-go. To
sum up, when F̂ is executed, the protocol has to specify both the SID (the session identifier, as with
any ideal functionality) and the intended SSID.

2.2.4 The Split Functionality
Without any strong authentication mechanisms, since the network is controlled by the adversary, the
latter can always partition the players into disjoint subgroups and execute independent sessions of the
protocol with each subgroup, playing the role of the other players. Such an attack is unavoidable since
players cannot distinguish the case in which they interact with each other from the case where they
interact with the adversary. We call such an attack an implicit corruption, which means that the ad-
versary impersonates one or several players from the beginning, before the key generation. The authors
of [BCL+05] addressed this issue by proposing a new model based on split functionalities which guarantees
that this attack is the only one available to the adversary. More generally, the authors have considered
protocols for generic multiparty computation without authenticated channels. In particular, they give a
general and conceptually simple (though inefficient) solution to a certain number of problems, including
group password-based key exchange.

2.3. FORMALISATION OF IDEAL MODELS 27

The split functionality is a generic construction based upon an ideal functionality: Its description can
be found in Figure 2.1. In the initialization stage, the adversary A adaptively chooses disjoint subsets
of the honest parties (with a unique session identifier that is fixed for the duration of the protocol).
More precisely, the protocol starts with a session identifier sid. Then, the initialization step generates
random values which, randomly combined and associated with sid, create the new session identifier sid′,
shared among all players which have received the same values – that is all the players of the disjoint
subsets. The important point is that all the subsets create a partition of the players, thus forbidding
any communication between the subsets. During the computation, each subset H activates a separate
instance of the functionality F . All these functionality instances are independent: The executions of the
protocol for each subset H can only be related in the way A chooses the inputs of the players it controls.
The parties Pi ∈ H provide their own inputs and receive their own outputs, whereas A plays the role of
all the parties Pj /∈ H.

In the particular case of password-authenticated key exchange, the adversary then sends a NewSession
query on behalf of such implicitly corrupted players, which never become really corrupted, but have
always been controlled by the adversary. This situation is modeled in the ideal world by the split
functionalities sF , which make one or several calls to normal functionalities F on disjoint subsets of
(real) players.

Fig. 2.1 – The Split Functionality sF

Given a functionality F , the split functionality sF proceeds as follows:

Initialization:
• Upon receiving (Init, sid) from party Pi, send (Init, sid,Pi) to the adversary.

• Upon receiving a message (Init, sid,Pi,H, sidH) from A, where H is a set of party identities,
check that Pi has already sent (Init, sid) and that for all recorded (H′, sidH′), either H = H′ and
sidH = sidH′ or H and H′ are disjoint and sidH 6= sidH′ . If so, record the pair (H, sidH), send
(Init, sid, sidH) to Pi, and invoke a new functionality (F , sidH) denoted as FH and with set of
honest parties H.

Computation:

• Upon receiving (Input, sid,m) from party Pi, find the set H such that Pi ∈ H and forward m to
FH.

• Upon receiving (Input, sid,Pj ,H,m) from A, such that Pj /∈ H, forward m to FH as if coming
from Pj .

• When FH generates an output m for party Pi ∈ H, send m to Pi. If the output is for Pj /∈ H or
for the adversary, send m to the adversary.

2.2.5 A Simpler Model
Canetti, Cohen and Lindell formalized a simpler variant of the UC Framework in [CCL15]. This simplifies
the description of the functionalities for the following reasons (in a nutshell): All channels are automat-
ically assumed to be authenticated (as if we worked in the FAuth-hybrid model); There is no need for
public delayed outputs (waiting for the adversary before delivering a message to a party), neither for an
explicit description of the corruptions. We refer the interested reader to [CCL15] for details.

2.3 Formalisation of Ideal Models
As for every primitive, ideal models have to be formalized in the universal composability framework by the
corresponding ideal functionalities. For instance, one will speak of a protocol secure in the FRO-hybrid
model in order to speak of a protocol secure in the random oracle model.

28 CHAPTER 2. SECURITY MODEL

Canetti et al. show in [CHK+05] the impossibility of UC-secure password-authenticated key exchange
without any additional setup assumptions. This motivates the study of protocols secure in the hybrid
models FRO and FCRS, as described in this section.

2.3.1 Random Oracle in the UC Framework
The ideal functionality for a random oracle [BR93] has been defined by Hofheinz and Müller-Quade
in [HMQ04]. We present it here in Figure 2.2 . It is clear that the random oracle model (ROM) UC-
emulates this functionality.

Since the session identifier sid is included in the inputs to the random oracle in the protocols, one can
use a single instantiation of the random oracle, lying in the joint state, rather than a different instantiation
for each session, which is more realistic. Note however that in the cases where only part of the session
identifier is included, this could lead to collisions with other sessions sharing this part of sid, and thus in
issues during the simulation (and more precisely the programming of the oracle). But the oracle is only
programmed for honest players. The only important point is thus to ensure, when designing a protocol,
that this programming will only be needed only once (except, of course, if the adversary already asked
the critical query, but this only happens with negligible probability). This will usually be done thanks
to the split functionality, as described in Section 2.2.4.

Fig. 2.2 – The Functionality FRO

The functionality FRO proceeds as follows, running on security parameter k, with parties P1, . . . ,Pn
and an adversary S:
• FRO keeps a list Lsid (which is initially empty) of pairs of bitstrings.

• Upon receiving a value (sid,m) (with m ∈ {0, 1}∗) from some party Pi or from S, do:

– If there is a pair (m, h̃) for some h̃ ∈ {0, 1}k in the list Lsid, set h := h̃.
– If there is no such pair, choose uniformly h ∈ {0, 1}k and store the pair (m,h) ∈ L.

Once h is set, reply to the activating machine (i.e. either Pi or S) with (sid, h).

2.3.2 The Common Reference String Model
The functionality FDCRS was presented by Barak, Canetti, Nielsen and Pass in [BCNP04]. At each call of
FDCRS, it sends back the same reference string, chosen by itself, following a known public distribution D.
We recall it here in Figure 2.3 .

Fig. 2.3 – The Functionality FD
CRS

The functionality FDCRS is parameterized by a distribution D. It interacts with a set of players and
an adversary in the following way:

• Choose a value r $←− D.

• Upon receiving a value (CRS, sid) from a player, send (CRS, sid, r) to this player.

Part II

Cryptographic Primitives

Chapter 3

Smooth Projective Hash Functions

Smooth projective hash functions (SPHF) were introduced by Cramer and Shoup [CS02] for constructing
encryption schemes. A projective hashing family is a family of hash functions that can be evaluated in
two ways: using the (secret) hashing key, one can compute the function on every point in its domain,
whereas using the (public) projected key one can only compute the function on a special subset of its
domain. Such a family is deemed smooth if the value of the hash function on any point outside the special
subset is independent of the projected key. The notion of SPHF has already found numerous applications
in various contexts in cryptography (for instance, [GL03, Kal05, BPV12], [ACP09]).

3.1 Definition and Classical Properties
Definition 1 (Smooth Projective Hashing System). A Smooth Projective Hash Function over a language
L ⊂ X, is defined by five algorithms (Setup,HashKG,ProjKG,Hash,ProjHash):
• Setup(1K) generates the global parameters param of the scheme, and the description of an NP
language L;

• HashKG(L, param), outputs a hashing key hk for the language L;
• ProjKG(hk, (L, param),W), derives the projection key hp, using the hashing key hk;
• Hash(hk, (L, param),W), outputs a hash value v, thanks to the hashing key hk, and W;
• ProjHash(hp, (L, param),W, w), outputs the hash value v′, thanks to hp and the witness w that

W ∈ L.

In the following, we consider L as a hard-partitioned subset of X, i.e. it is computationally hard to
distinguish a random element in L from a random element in X \ L.

The correctness of the SPHF assures that if C ∈ L with w a witness of this membership, then the two
ways to compute the hash values give the same result: Hash(hk,L,C) = ProjHash(hp,L,C, w). On the
other hand, the security is defined through the smoothness, which guarantees that, if C 6∈ L, the hash
value is statistically indistinguishable from a random element, even knowing hp.

A Smooth Projective Hash Function SPHF should satisfy the following properties:
• Correctness: Let W ∈ L and w a witness of this membership. Then, for all hashing keys hk and

associated projection keys hp we have Hash(hk, (L, param),W) = ProjHash(hp, (L, param),W, w).
• Smoothness: For all W ∈ X \ L the following distributions are statistically indistinguishable:

∆0 =

(L, param,W, hp, v)
param = Setup(1K), hk = HashKG(L, param),
hp = ProjKG(hk, (L, param),W),
v = Hash(hk, (L, param),W) ∈ G


∆1 =

{
(L, param,W, hp, v) param = Setup(1K), hk = HashKG(L, param),

hp = ProjKG(hk, (L, param),W), v $← G

}
.

A third property called Pseudo-Randomness, is implied by the Smoothness on Hard Subset member-
ship languages. If W ∈ L, then without a witness of membership the two previous distributions should
remain computationally indistinguishable: for any adversary A within reasonable time the following
advantage is negligible

Advpr
SPHF,A(K) = |Pr∆1 [A(L, param,W, hp, v) = 1]− Pr∆0 [A(L, param,W, hp, v) = 1]|

32 CHAPTER 3. SMOOTH PROJECTIVE HASH FUNCTIONS

We define a third property in [ABB+13] (needed for our one-round PAKE protocol in combination
with a commitment), called strong pseudo-randomness (see page 181). It is a strong version of the pseudo-
randomness where the adversary is also given the hash value of a commitment of its choice (obviously
not a simulated commitment, which can open to anything, though: See Section 4.3.1). This property
only makes sense when the projection key does not depend on the word C to be hashed. It thus applies
to KV-SPHF and CS-SPHF only (as defined in Section 3.2.1).

In [BBC+13b], we introduce a new notation for SPHF: for a language L, there exist a function Γ
and a family of functions Θ, such that ~u ∈ L, if and only if, Θ(~u) is a linear combination ~λ of the rows of
Γ(~u). We furthermore require that a user, who knows a witness of the membership ~u ∈ L, can efficiently
compute the linear combination ~λ. The SPHF can now then be described as:
• HashKG(L, param), outputs a hashing key hk = ~α for the language L,
• ProjKG(hk, (L, param), ~u), derives the projection key hp = ~γ(~u),
• Hash(hk, (L, param), ~u), outputs a hash value H = Θ(~u)� ~α,
• ProjHash(hp, (L, param), ~u,~λ), outputs the hash value H′ = ~λ� ~γ(~u).
We give in Section 3.4.2 an example of KV-SPHF for Cramer-Shoup encryption, both in classical and

new notations.

3.2 Classification and Examples
3.2.1 Smoothness Adaptivity and Key Word-Dependence
The construction of one-round protocol exploits the very strong notion that we call KV-SPHF. Informally,
while the GL-SPHF definition allows the projection key hp to depend on the word W, the KV-SPHF
definition prevents the projection key hp from depending on W, as in the original CS-SPHF definition. In
addition, the smoothness should hold even if W is chosen as an arbitrary function of hp. This models the
fact the adversary can see hp before deciding which word W it is interested in. More formal definitions
follow, where we denote Π the range of the hash function.

CS-SPHF

This is almost1 the initial definition of SPHF, where the projection key hp does not depend on the
word W (word-independent key), but the word W cannot be chosen after having seen hp for breaking the
smoothness (non-adaptive smoothness). More formally, a CS-SPHF is ε-smooth if ProjKG does not use
its input W and if, for any W ∈ X\L, the two following distributions are ε-close:

{(hp,H) | hk $← HashKG(L); hp← ProjKG(hk,L,⊥); H← Hash(hk,L,W)}

{(hp,H) | hk $← HashKG(L); hp← ProjKG(hk,L,⊥); H $← Π}.

GL-SPHF

This is a relaxation, where the projection key hp can depend on the word W (word-dependent key). More
formally, a GL-SPHF is ε-smooth if, for any W ∈ X\L, the two following distributions are ε-close:

{(hp,H) | hk $← HashKG(L); hp← ProjKG(hk,L,W); H← Hash(hk,L,W)}

{(hp,H) | hk $← HashKG(L); hp← ProjKG(hk,L,W); H $← Π}.

KV-SPHF

This is the strongest SPHF, in which the projection key hp does not depend on the word W (word-
independent key) and the smoothness holds even if W depends on hp (adaptive smoothness). More
formally, a KV-SPHF is ε-smooth if ProjKG does not use its input W and, for any function f onto X\L,
the two following distributions are ε-close:

{(hp,H) | hk $← HashKG(L); hp← ProjKG(hk,L,⊥); H← Hash(hk,L, f(hp))}

{(hp,H) | hk $← HashKG(L); hp← ProjKG(hk,L,⊥); H $← Π}.
1In the initial definition, the smoothness was defined for a word W randomly chosen from X\L, and not necessarily for

any such word.

3.2. CLASSIFICATION AND EXAMPLES 33

Remark. One can see that a perfectly smooth (i.e. 0-smooth) CS-SPHF is also a perfectly smooth KV-
SPHF, since each value H has exactly the same probability to appear, and so adaptively choosing W does
not increase the above statistical distance. However, as soon as a weak word W can bias the distribution,
f can exploit it.

3.2.2 SPHF on Languages of Ciphertexts
We cover in [BBC+13a] languages very general, but for the sake of clarity, and since the main applications
need some particular cases only, we focus on SPHFs for languages of ciphertexts, whose corresponding
plaintexts verify some relations. We denote these languages LofCfull-aux.

The parameter full-aux will parse in two parts (crs, aux): the public part crs, known in advance, and
the private part aux, possibly chosen later. More concretely, crs represents the public values: it will define
the encryption scheme (and will thus contain the global parameters and the public key of the encryption
scheme) with the global format of both the tuple to be encrypted and the relations it should satisfy, and
possibly additional public coefficients; while aux represents the private values (indeed, unless specified
differently, aux is assumed private): it will specify the relations, with more coefficients or constants that
will remain private, and thus implicitly known by the sender and the receiver (as the expected password,
for example, in PAKE protocols).

To keep aux secret, hp should not leak any information about it. We will thus restrict HashKG and
ProjKG not to use the parameter aux, but just crs. This is a stronger restriction than required for our
purpose, since one can use aux without leaking any information about it. But we already have quite
efficient instantiations, and it makes everything much simpler to present.

3.2.3 SPHF on Cramer-Shoup Ciphertexts

Labeled Cramer-Shoup Encryption Scheme (CS)

We briefly review the CS labeled encryption scheme, where we combine all the public information
in the encryption key. We thus have a group G of prime order p, with two independent generators
(g1, g2) $← G2, a hash function HK

$← H from a collision-resistant hash function family onto Z∗p, and a
reversible mapping G from {0, 1}n to G. From 5 scalars (x1, x2, y1, y2, z) $← Zp5, one also sets c = gx1

1 gx2
2 ,

d = gy1
1 gy2

2 , and h = gz1 . The encryption key is ek = (G, g1, g2, c, d, h,HK), while the decryption key is
dk = (x1, x2, y1, y2, z). For a message m ∈ {0, 1}n, with M = G(m) ∈ G, the labeled Cramer-Shoup
ciphertext is:

C def= CS(`, ek,M; r) def= (u = (gr1, gr2), e = M · hr, v = (cdξ)r),

with ξ = HK(`,u, e) ∈ Z∗p. If one wants to encrypt a vector of group elements (M1, . . . ,Mn), all
at once in a non-malleable way, one computes all the individual ciphertexts with a common ξ =
HK(`,u1, . . . ,un, e1, . . . , en) for v1, . . . , vn. Hence, everything done on tuples of ciphertexts will work
on ciphertexts of vectors. In addition, the Cramer-Shoup labeled encryption scheme on vectors is IND-
CCA under the DDH assumption.

The (known) GL-SPHF for CS

Gennaro and Lindell [GL03] proposed an SPHF on labeled Cramer-Shoup ciphertexts: the hashing key
just consists of a random tuple hk = (η, θ, µ, ν) $← Z4

p. The associated projection key, on a ciphertext
C = (u = (u1, u2) = (gr1, gr2), e = G(m) · hr, v = (cdξ)r), is hp = gη1g

θ
2h

µ(cdξ)ν ∈ G. Then, one can
compute the hash value in two different ways, for the language LofCek,m of the valid ciphertexts of
M = G(m), where crs = ek is public but aux = m is kept secret:

H def= Hash(hk, (ek,m),C) def= uη1u
θ
2(e/G(m))µvν

= hpr def= ProjHash(hp, (ek,m),C, r) def= H′.

A (new) KV-SPHF for CS

We give here the description of the first known KV-SPHF on labeled Cramer-Shoup ciphertexts: the
hashing key just consists of a random tuple hk = (η1, η2, θ, µ, ν) $← Z5

p; the associated projection key

34 CHAPTER 3. SMOOTH PROJECTIVE HASH FUNCTIONS

is the pair hp = (hp1 = gη1
1 gθ2h

µcν , hp2 = gη2
1 dν) ∈ G2. Then one can compute the hash value in two

different ways, for the language LofCek,m of the valid ciphertexts of M = G(m) under ek:

H = Hash(hk, (ek,m),C) def= u
(η1+ξη2)
1 uθ2(e/G(m))µvν

= (hp1hpξ2)r def= ProjHash(hp, (ek,m),C, r) = H′.

Theorem 1 ([BBC+13b]). The above SPHF is a perfectly smooth (i.e. 0-smooth) KV-SPHF.

The proof can be found in [BBC+13b] (page 162) as an illustration of our new framework.

3.3 Constructions
In all this work, we focus on the elliptic curve setting, which is currently the most studied. Let
GGen be a probabilistic polynomial time (PPT) algorithm that on input 1K returns a description G =
(p,G1,G2,GT, e, g1, g2) of asymmetric pairing groups where G1, G2, GT are cyclic groups of order p for
a K-bit prime p, g1 and g2 are generators of G1 and G2, respectively, and e : G1 × G2 is an efficiently
computable (non-degenerated) bilinear map. Define gT := e(g1, g2), which is a generator in GT.

In the protocols studied (PAKE and OT), we usually need to verify pairing product equations over
bilinear groups (for instance to verify a signature), in which certain terms are private. In order to transmit
them publicly, the prover starts with sending commitments on these values. In [GS08], Groth and Sahai
proposed non-interactive zero-knowledge proofs of satisfiability of these equations by showing that the
committed values actually satisfy the equation. The proofs consists of group elements, and is verified
by a pairing equation derived from the statement. In our applications, the verification is indeed done
implicitely, by the means of SPHFs: In case the “proof” is correct, then the hash value computed is
correct. Otherwise, it is completely indistinguishable from a random value, thanks to the smoothness
property.

In [BBC+13a], we show that all the proofs doable in the Groth-Sahai methodology can be done
with GL-SPHFs, which can even handle unknown values in GT. In [BBC+13b], we present the first con-
structions of GL-SPHFs and KV-SPHFs able to handle multi-exponentiation equations without requiring
pairings. This gives a full treatment for linear pairing product equations, which encompass Diffie-Hellman
tuples, El Gamal encryptions, Cramer-Shoup encryptions, verification of BLS signatures... This allows
for many cryptographic applications, such as one-round UC-secure PAKE, as we will see in Chapter 5.
For quadratic pairing product equations (with a unknown variable on each side of the equation), however,
we are able to give constructions for GL-SPHF, but KV-SPHF are still missing. This would have several
applications, for instance for the verification of “strong” Boneh-Boyen signatures.

3.4 Additional Properties: Structure-Preserving SPHF
Similarly to structure-preserving signatures requiring the message, the signature and the public keys to
be group elements, we propose in [BC16] the notion of structure-preserving Smooth Projective Hash
Functions (SP-SPHF), where both words, witnesses and projection keys are group elements, and hash
and projective hash computations are doable with simple pairing-product equations in the context of
bilinear groups.

Since witnesses now become group elements, this allows a full compatibility with Groth and Sa-
hai methodology [GS08], such that we can build, for instance, SPHFs that implicitly demonstrate the
knowledge of a Groth-Sahai proof (the non-interactive zero-knowledge proof of knowledge now serving
as a witness). This leads to interesting applications: As an example, we show in our paper that the UC-
commitment from [FLM11] (while not fitting with the methodology of traditional SPHF from [ABB+13],
see Section 4.3.3), is compatible with SP-SPHF and can be used to build UC protocols (see Sections 5.2.2
and 6.2.3).

We show in [BC16] how to transform every previously known pairing-less construction of SPHF
to fit this methodology, and then propose several applications in which storing a group element as a
witness allows to avoid the drastic restrictions that arise when building protocols secure against adaptive
corruptions in the UC framework with a scalar as witness. Asking the witness to be a group element
enables us to gain more freedom in the simulation (the discrete logarithm of this element and / or real
extraction from a commitment). For instance, the simulator can always commit honestly to a random

3.4. ADDITIONAL PROPERTIES: STRUCTURE-PRESERVING SPHF 35

message, since it only needs to modify its witness in the equivocation phase. Furthermore, it allows
to avoid bit-per-bit construction. Such design carries similarity with the publicly verifiable MACs from
[KPW15], where the pairing operation allows to relax the verification procedure.

3.4.1 Definition

As we are in the context of structure-preserving cryptography, we assume the existence of a (prime
order) bilinear group (p,G1,G2, g1, g2,GT, e), and consider languages (sets of elements) L defined over
this group. The hash space is usually GT, the projection key space a group Gm1 × Gn2 and the witness
space a group Gn1 ×Gm2 .

Definition 2 (Structure-Preserving Smooth Projective Hash Functions). A Structure-Preserving Smooth
Projective Hash Function over a language L ⊂ X onto a set H, is defined by 4 algorithms (HashKG,ProjKG,
Hash,ProjHash):
• HashKG(L, param), outputs a hashing key hk for the language L;
• ProjKG(hk, (L, param),W), derives the projection key hp thanks to the hashing key hk.
• Hash(hk, (L, param),W), outputs a hash value H ∈ H, thanks to the hashing key hk, and W
• ProjHash(hp, (L, param),W, w), outputs the value H′ ∈ H, thanks to hp and the witness w that

W ∈ L.

We stress that, contrarily to classical SPHF, both hp, W and more importantly w are base group
elements, and so live in the same space. Properties of correctness, smoothness and pseudo-randomness
are then inherited by those of classical Smooth Projective Hash Functions.

3.4.2 Retro-compatibility

Constructing SP-SPHF is not that hard of a task. A first naive approach allows to transform every
pairing-less SPHF into a SP-SPHF in a bilinear setting. It should be noted that while the resulting
Hash/ProjHash values live in the target group, nearly all use cases encourage to use a proper hash function
on them before computing anything using their value, hence the communication cost would remain the
same. (Only applications where one of the party has to provide an additional proof that the ProjHash
was honestly computed might be lost, but besides proof of negativity from [BCV15], this never arises.)

To this goal, simply given a new generator f ∈ G2 and a scalar witness vector λ, one generates the
new witness vector Λ = [f � ~λ]2. Words and projection keys belong to G1, and hash values to GT. Any
SPHF can thus be transformed into an SP-SPHF in the way described in Figure 3.1.

Fig. 3.1 – Transformation of an SPHF into an SP-SPHF

SPHF SP-SPHF
Word ~u [~λ� Γ(~u)]1 [~λ� Γ(~u)]1
Witness w ~λ ~Λ = [f � ~λ]2
hk ~α ~α
hp = [~γ(~u)]1 [Γ(~u)� ~α]1 [Γ(~u)� ~α]1
Hash(hk, ~u) [Θ(~u)� ~α]1 [f �Θ(~u)� ~α]T
ProjHash(hp, ~u, w) [~λ� ~γ(~u)]1 [~Λ� ~γ(~u)]T

It should be noted that in case this does not weaken the subgroup decision assumption (k-MDDH in
the following) linked to the original language, one can set G1 = G2.

We give in Figure 3.2 two examples of regular SPHFs on Diffie-Hellman and Cramer-Shoup encryption
of M, where α = H(u, e), and their counterparts with SP-SPHF. ElGamal being a simplification of
Cramer-Shoup, we skip the description of the associated SP-SPHF. We also give in Figure 3.3 the matricial
version of Cramer-Shoup encryption, in which we denote by C′ the Cramer-Shoup encryption C of M in
which we removed M.

36 CHAPTER 3. SMOOTH PROJECTIVE HASH FUNCTIONS

Fig. 3.2 – Example of conversion of classical SPHF into SP-SPHF (DH and CS)

SPHF SP-SPHF

DH hr, gr hr, gr

Witness w r gr2
hk λ, µ λ, µ
hp hλgµ hλgµ

Hash(hk, ~u) (hr)λ(gr)µ e((hr)λ(gr)µ, g2)
ProjHash(hp, ~u, w) hpr e(hp, gr2)

CS(M;r) hrM, fr, gr, (cdα)r hrM, fr, gr, (cdα)r
Witness w r gr2
hk λ1, λ2, µ, ν, η λ1, λ2, µ, ν, η
hp hλ1fµgνcη, hλ2dν hλ1fµgνcη, hλ2dν

Hash(hk, ~u) (hr)λ1+αλ2(fr)µ(gr)ν((cdα)r)µ e((hr)λ1+αλ2(fr)µ(gr)ν((cdα)r)µ, g2)
ProjHash(hp, ~u, w) (hp1hpα2)r e(hp1hpα2 , gr2)
(with hp = (hp1, hp2))

Fig. 3.3 – Example of conversion of SPHF into SP-SPHF (CS in matricial notations)

SPHF SP-SPHF

CS(M;r) [hr + M, ~Ar, (c+ dα)r] [hr + M, ~Ar, (c+ dα)r]1

~B :


h
f
g
c


~Br +


0
0
0
d

αr +


M
0
0
0




~Br +


0
0
0
d

αr +


M
0
0
0




1
Witness w r [r]2
hk λ1, λ2, µ, ν, η λ1, λ2, µ, ν, η

hp

(λ1 µ ν η
)
~B,
(
λ2 0 0 η

)
h
0
0
d


 [hp]1

Hash(hk, ~u)
[(
λ1 + αλ2 µ ν η

)
(C′)

] [(
λ1 + αλ2 µ ν η

)
(C′)

]
T

ProjHash(hp, ~u, w) [(hp1 + αhp2)r] [(hp1 + αhp2)r]T

3.4.3 Possible Applications
Nearly Constant 1-out-of-k Oblivious Transfer Using FLM. Recent pairing-based constructions
([CKWZ13] or our paper [ABB+13]) of Oblivious Transfer use SPHF to mask each line of a database
with the hash value of as SPHF on the language corresponding to the first flow being a commitment of
the said line. But those constructions require special UC commitment on scalars (see Section 4.3.3), with
equivocation and extraction capacities.

In 2011, [FLM11] proposed a UC commitment, whose decommitment operation is done via group
elements. In section 6.2.3, we show how to combine the existing constructions with this efficient commit-
ment using SP-SPHF, in order to obtain a very efficient round-optimal scheme where there is no longer
a growing overhead due to the commitment.

Round-Optimal Password Authenticated Key Exchange with Adaptive Corruptions. Re-
cent developments around SPHF-based PAKE have either lead to Round-Optimal PAKE in the BPR
model [BPR00], or with static corruptions [KV11], [BBC+13b]. In order to achieve round-optimality,

3.4. ADDITIONAL PROPERTIES: STRUCTURE-PRESERVING SPHF 37

we need in [ABB+13] to do a bit-per-bit commitment of the password, inducing a communication cost
proportional to the maximum password length.

In Section 5.2.2, we show how to take advantage of the SP-SPHF constructed on the FLM com-
mitment [FLM11] to propose a One-Round PAKE UC secure against adaptive adversaries, providing a
constant communication cost [BC16].

Using a ZKPK as a witness, Anonymous Credentials. Previous applications allow more efficient
instantiations of protocols already using scalar-based SPHF. However, one can imagine additional sce-
narios, where a scalar-based approach may not be possible, due to the inherent nature of the witness
used. For example, one could consider a strong authentication scenario, in which each user possesses an
identifier delivered by an authority, and a certification on a commitment to this identifier, together with
a proof of knowledge that this commitment is indeed a commitment to this identifier. (Such scenario
can be transposed to the delivery of a Social Security Number, where a standalone SSN may not be that
useful, but a SSN officially linked to someone is a sensitive information that should be hidden.) In this
scenario, a user, who wants to access his record on a government service where he is already registered,
should give the certificate, and then would use an implicit proof that this corresponds to his identifier.
With our technique, the server would neither learn the certificate plaintext nor the user’s identifier (if he
did not possess it earlier), and the user would be able to authenticate only if his certificate is indeed on
his committed identifier.

In our scenario, we could even add an additional step, such that Alice does not interact directly with
Bob but can instead use a pawn named Carol. She could send to Carol a commitment to the signature
on her identity, prove in a black box way that it is a valid signature on an identity, and let Carol do the
interaction on her behalf. For example, to allow a medical practitioner to access some subpart of her
medical record concerning on ongoing treatment, in this case, Carol would need to anonymously prove
to the server that she is indeed a registered medical practitioner, and that Alice has given her access to
her data.

Chapter 4

Commitments

4.1 Definition, Classical Properties and Ideal Functionality
We give here the informal security definitions for commitment schemes and refer the reader to [ABB+13]
for details. In a typical commitment scheme, there are two main phases. In a commit phase, the committer
computes a commitment C for some message m and sends it to the receiver. Then, in an opening phase,
the committer releases some information δ to the receiver which allows the latter to verify that C was
indeed a commitment of m.

A commitment scheme C is thus defined by 3 algorithms:

• Setup(1K), where K is the security parameter, generates the global parameters param of the scheme,
implicitly given as input to the other algorithms;

• Commit(m; r) produces a commitment C on the input message m ∈ M, using the random coins
r

$← R, and also outputs the opening information w;

• Decommit(C,m; δ) decommits the commitment C using the opening information δ; it outputs the
message m, or ⊥ if the opening check fails.

To be useful in practice, a commitment scheme should satisfy two basic security properties. The first
one is hiding, which informally guarantees that no information about x is leaked through the commit-
ment C. The second one is binding, which guarantees that the committer cannot generate a commitment C
that can be successfully opened to two different messages. These two properties can be obtained in a
perfect, statistical or computational way, according to the power an adversary would need to break them.
But essentially, a perfectly binding commitment scheme guarantees the uniqueness of the opening phase.
This is achieved by an encryption scheme, which on the other hand provides the computational hiding
property only, under the IND-CPA security. A perfectly hiding commitment scheme guarantees the perfect
secrecy of m.

In addition to the binding and hiding properties, certain applications may require additional prop-
erties from a commitment scheme. One such property is equivocability [Bea96], for a perfectly hiding
commitment scheme, which guarantees that a commitment C can be opened in more than a single way
when in possession of a certain trapdoor information. The commitment admits an indistinguishable Setup
phase that generates a trapdoor allowing to open a commitment in any way.

Another one is extractability, for a perfectly binding commitment scheme, which allows the computation
of the message m committed in C when in possession of a certain trapdoor information. Again, an
encryption scheme is an extractable commitment, where the decryption key is the trapdoor that allows
extraction.

Yet another property that may also be useful for cryptographic applications is non-malleability
[DDN00], which ensures that the receiver of a unopened commitment C for a message m cannot generate
a commitment for a message that is related to m.

Though commitment schemes satisfying stronger properties such as non-malleability, equivocability,
and extractability may be useful for solving specific problems, they usually stop short of guaranteeing
security when composed with arbitrary protocols. To address this problem, Canetti and Fischlin [CF01]
proposed an ideal functionality for commitment schemes in the universal composability (UC) framework

40 CHAPTER 4. COMMITMENTS

[Can01] which guarantees all these properties simultaneously and allow the schemes to remain secure
even under concurrent compositions with arbitrary protocols. Unfortunately, they also showed that such
commitment schemes can only be realized if one makes additional setup assumptions, such as the existence
of a common reference string (CRS) [CF01], random oracles [HMQ04], or secure hardware tokens [Kat07].

A UC-secure commitment scheme provides all the properties previously given: it should be hiding
and binding, but also extractable and equivocable, and even non-malleable. The ideal functionality is
presented on Figure 4.1 and borrowed from [Can01, Lin11a]. A delayed output is an output first sent to
the adversary S that eventually decides if and when the message is actually delivered to the recipient.
This models denial of services from the adversary.

Fig. 4.1 – Ideal Functionality Fmcom for Multiple Commitments

The functionality Fmcom proceeds as follows, with session identifier sid and running with parties
P1, . . . ,Pn, a security parameter 1K, and an adversary S:
• Commit phase: Upon receiving a message of the form (Commit, sid, ssid,Pi,Pj ,m) from Pi
where m ∈ {0, 1}polylogk, record the tuple (ssid,Pi,Pj ,m) and generate a delayed output
(receipt, sid, ssid,Pi,Pj) to Pj . Ignore further Commit-message with the same (sid, ssid).

• Reveal phase: Upon receiving a message (reveal, sid, ssid) from party Pi, if a tuple (ssid,Pi,Pj ,m)
was previously recorded, then generate a delayed output (reveal, sid, ssid,Pi,Pj ,m) to Pj . Ignore
further reveal-message with the same (sid, ssid) from Pi.

4.2 Discussion and Correction of Lindell’s Protocols

Several UC-secure commitment schemes in the CRS model have been proposed. Canetti and Fis-
chlin [CF01] and Canetti, Lindell, Ostrovsky, and Sahai [CLOS02] proposed inefficient non-interactive
schemes from general primitives. On the other hand, Damgård and Nielsen [DN02], and Camenish and
Shoup [CS03] (among others) presented interactive constructions from several number-theoretic assump-
tions.

Lindell [Lin11a] presented the first very efficient commitment schemes proven in the UC framework.
They can be viewed as combinations of Cramer-Shoup encryption schemes and Σ-protocols. He pre-
sented two versions, one proven against static adversaries (static corruptions), while the other can also
handle adaptive corruptions. These two schemes have commitment lengths of only 4 and 6 group ele-
ments respectively, while their total communication complexity amounts to 14 and 19 group elements
respectively. Their security relies on the classical Decisional Diffie-Hellman assumption in standard cryp-
tographic groups. Fischlin, Libert and Manulis [FLM11] shortly after adapted the scheme secure against
static corruptions by removing the interaction in the Σ-protocol using non-interactive Groth-Sahai proofs
[GS08]. This transformation also makes the scheme secure against adaptive corruptions but at the cost
of relying on the Decisional Linear assumption in symmetric bilinear groups. It thus requires the use
of computationally expensive pairing computations for the receiver and can only be implemented over
groupes twice1 as large (rather than the ones that do not admit pairing computations).

We only give here the high-level ideas and refer the reader to [Lin11a], [BCPV13] for details and
precise notations. The CRS consists of (p,G, g1, g2, c, d, h, h1, h2, ζ,HK), where G is a group of order p
with generators g1, g2; c, d, h ∈ G are random elements in G and h1 = g1

ρ and h2 = g2
ρ for a ran-

dom ρ ∈ Zp; HK is randomly drawn from a collision-resistant hash function family H. Intuitively
(p,G, g1, g2, c, d, h,HK) is a Cramer-Shoup encryption key, (p,G, g1, g2, h1, h2) is the CRS of a dual-
mode encryption scheme, and (p,G, g, ζ) = is the CRS of a Pedersen commitment scheme. Finally,
G : {0, 1}n → G is an efficiently computable and invertible mapping of a binary string to the group. The
adaptive version of the protocol can be seen in Figure 4.3.

1It is possible to adapt the scheme from [FLM11] to asymmetric bilinear groups using the instantiation of Groth-Sahai
proofs based on the Strong eXternal Diffie-Hellman assumption (as we did in [BC16]) but Lindell’s scheme nevertheless
remains more efficient.

4.2. DISCUSSION AND CORRECTION OF LINDELL’S PROTOCOLS 41

4.2.1 Security Against Adaptive Corruptions
Lindell has proven both schemes secure under the DDH assumption, the former in details but a sketch of
proof only for the latter. And actually, as noted by Lindell in the last version of [Lin11b], the security
against adaptive corruptions might eventually not be guaranteed.

He indeed proves that no adversary can choose a message m′ beforehand, and do a valid commit/de-
commit sequence to m′ where the simulator extraction, at the end of the commit phase, would output
an m different from m′. However this is not enough as an adversary could still do a valid commit/de-
commit sequence to m′ where the simulator extraction at the end of the commit phase would output
an m different from m′. The difference between the two experiments is how much the adversary controls
the value m′: in the former m′ has to be chosen beforehand, while in the latter m′ is any value different
from m.

We describe in [BCPV13] such a situation in which the adversary A plays as Pi, and makes the
simulator extract the value m, while in fact committing (or actually opening) to another value m′.

Any extraction done on C at the end of the commit phase would lead the simulator to believe to a
commit to m, however the valid decommit outputs m′. Note however that this attack does not succeed
very often since one needs to invert G on a random value, so that the preimage exists and can be parsed
as (m′, sid, ssid,Pi,Pj).

We stress that this possible inconsistency comes from the move forward of the proof in the commit
phase, even before the message m is strongly committed. The first protocol does not suffer from this
issue.

4.2.2 A Simple Patch
In order to avoid the above concern, a simple patch consists in committing x = G(m, sid, ssid,Pi,Pj)
in the second Pedersen commitment c2p. This leads to the simple change in the protocol presented on
Figure 4.2, where m is now strongly committed before the proof, and then the previous issue does not
occur anymore.

Fig. 4.2 – Simple Patch to the Adaptive Version of Lindell’s Protocol

The commit phase
5. Pi picks s, k2

$← Zp and computes (α, β, γ, δ) = (g1
s, g2

s, hs, (cdω)s).
He then computes and sends c2p = Ped(x,HK(α, β, γ, δ); k2) to Pj .

4.2.3 Our Optimization of the Commitments Protocols
We kept in [BCPV13] (and in Figures 4.2 and 4.3 here) the original notations for describing Lindell’s
schemes and the patch we proposed, but as we did earlier in [BBC+13a], we can note that C is actually
a Cramer-Shoup encryption of x = G(m, sid, ssid,Pi,Pj), and (α, β, γ, δ) is a partial Cramer-Shoup en-
cryption of 1 with the same ω as in the first ciphertext: the double Cramer-Shoup encryption of (x, x′)
is denoted by DCS(x, x′; r, s) = (C1,C2), where

• C1 is a real Cramer-Shoup encryption C1 = CS(x; r) of x for a random r
$← Zp: C1 = (u1 =

(g1
r, g2

r), e1 = x · hr, v1 = (cdω)r), where v1 is computed afterwards with ω = HK(u1, e1);

• C2 is a partial Cramer-Shoup encryption C2 = PCS(x′;ω, s) of x′ for a random s
$← Zp with the

above ω value: C2 = (u2 = (g1
s, g2

s), e2 = x′ · hs, v2 = (cdω)s), where v2 is computed directly with
the above ω = HK(u1, e1).

In addition, when ω is fixed, we have an homomorphic property: if (C1,C2) = DCS(x, x′; r, s), with a
common ω, the component-wise product C1 × C2 = PCS(x × x′;ω, r + s). In particular, we can see the
last tuple (αuε1, βuε2, γeε, δvε) as C2 × Cε1. It should thus be PCS(xε;ω, εr + s) = PCS(xε;ω, z), which is
the final check. We now use these new notations (see [BCPV13] for their specific definitions and for
details on the protocols) in the following.

42 CHAPTER 4. COMMITMENTS

Improvement of the Static Protocol

The improvement presented in [BCPV13] consists in noting that the receiver can directly send the
value ε in the decommit phase, without having to send a commitment first. To allow this, we simply
ask the sender to send a Pedersen commitment of C2 = (α, β, γ, δ) prior to receiving ε. This reduces
the number of flows of the decommit phase (from 5 downto 3) and the number of elements sent by the
receiver (from 2 group elements and 3 scalars down to only 1 scalar, the challenge), simply increasing the
number of elements sent by the sender by 1 group element and 1 scalar (the Pedersen commitment).

Improvement of the Adaptive Protocol

As for the static version of the protocol, the main improvement consists in noting that the receiver can
directly send the value ε, without having to send an encryption before. To allow this, we simply ask the
sender to send his two Pedersen commitments prior to receiving ε.

This reduces, in the commit phase, the number of rounds (from 5 downto 3) and the number of
elements sent by the receiver (from 2 group elements and 3 scalars down to only 1 scalar, the challenge).
Contrary to the static version, there is no additional cost. This is illustrated in Figure 4.3, which sums
up the differences between Lindell’s protocol and ours, in the same setting: UC-security against adaptive
corruption with erasures.

In addition, in order to slightly increase the message space from n−log2(n) to n, we move the sensitive
prefix (sid, ssid,Pi,Pj) into the second Pedersen.

Eventually, in order to definitely exclude the security concerns presented above, we include the value x
to the second Pedersen to prevent the adversary from trying to open his commitment to another value.

4.3 Additional Properties and New Constructions

4.3.1 Extractable and Equivocable Commitment Schemes
Following the work of Canetti and Fischlin [CF01], we aimed in [ABB+13] to build non-interactive com-
mitment schemes which can simultaneously guarantee non-malleability, equivocability and extractability
properties. To this end, we first define a new notion of commitment scheme, called E2-commitments
(page 176), for which there exists an alternative setup algorithm, whose output is computationally indis-
tinguishable from that of a normal setup algorithm and which outputs a common trapdoor that allows for
both equivocability and extractability: this trapdoor not only allows for the extraction of a committed
message, but it can also be used to create simulated commitments which can be opened to any message.

To define the security of E2-schemes, we first extend the security notions of standard equivocable
commitments and extractable commitments to the E2-commitment setting: Since the use of a common
trapdoor for equivocability and extractability could potentially be exploited by an adversary to break
the extractability or equivocability properties of an E2-commitment scheme, we define stronger versions
of these notions, which account for the fact that the same trapdoor is used for both extractability
or equivocability. In particular, in these stronger notions, the adversary is given oracle access to the
simulated commitment and extractor algorithms.

Finally, after defining the security of E2-schemes, we further show that these schemes remain secure
even under arbitrary composition with other cryptographic protocols. More precisely, we show that any
labeled E2–commitment scheme which meets the strong versions of the equivocability or extraction notions
is a non-interactive UC-secure (multiple) commitment scheme in the presence of adaptive adversaries,
assuming reliable erasures and a single global CRS (page 177).

4.3.2 Constructions
After defining in [ABB+13] the notion of E2-commitment, we give an instantiation of such a scheme (see
page 178), inspired by the commitment schemes in [CF01, CLOS02], [ACP09]. Like the construction in
[ACP09], it combines a variant of the Cramer-Shoup encryption scheme (as an extractable commitment
scheme) and an equivocable commitment scheme in order to be able to simultaneously achieve both
equivocability and extractability. However, unlike the construction in [ACP09], we rely on Haralambiev’s
perfectly hiding commitment [Har11, Section 4.1.4], instead of the Pedersen commitment [Ped92].

4.3. ADDITIONAL PROPERTIES AND NEW CONSTRUCTIONS 43

Fig. 4.3 – Comparison of Lindell’s Adaptive Protocol (above) and Ours (below)

The commit phase

x = G(m, sid, ssid,Pi,Pj)
r

$← Zp, k1
$← Zp

C = CS(x; r)
c1p = Ped(HK(C); k1)

c1
p−→ R,S $← Zp, ε $← {0, 1}n

s
$← Zp, k2

$← Zp
c′

←− c′ = (g1
Rg2

S, h1
Rh2

SG(ε))
(α, β, γ, δ) = (g1

s, g2
s, hs, (cdω)s)

c2p = Ped(HK(α, β, γ, δ)); k2)
c2

p−→
Aborts if c′ inconsistent R,S,ε←−−−
z = s+ εr, erases r, s k1,C−−−→ Aborts if c1p inconsistent

The decommit phase

(m,α,β,γ,δ,k2,z)−−−−−−−−−−→ x = G(m, sid, ssid,Pi,Pj)
checks c2p and whether
gz1 = αu1

ε, g2
z = βu2

ε

hz = γ(e/x)ε, (cdω)z = δvε

The commit phase

x = G(m)
r

$← Zp, s $← Zp
(C1,C2) = DCS(x; 1; r, s)

k1, k2
$← Zp

c1p = Ped(HK(C1); k1)
c2p = Ped(HK(C2, x, sid, ssid,Pi,Pj); k2)

c1
p,c

2
p−−−→
ε←− ε

$← Zp
z = s+ εr, erases r, s k1,C1−−−→ Aborts if c1p

inconsistent

The decommit phase

(m,C2,k2,z)−−−−−−−→ x = G(m)
checks c2p and whether
gz1 = αu1

ε, g2
z = βu2

ε

hz = γ(e/x)ε, (cdω)z = δvε

Since the opening value of Haralambiev’s scheme is a group element that can be encrypted in one
ElGamal-like ciphertext to allow extractability, this globally leads to a better communication and compu-
tational complexity for the commitment. The communication is linear in m ·K, where m is the bit-length
of the committed value and K the security parameter. This is significantly better than the extractable
commitment construction in [ACP09] which was linear in m ·K2, but asymptotically worse than the two
proposals in [FLM11] that are linear in K, and thus independent of m.

4.3.3 SPHF-Friendly Commitments
Definition

Our goal in [ABB+13] was to build non-interactive E2-commitments, to which smooth projective hash
functions could be efficiently associated. Unfortunately, achieving this goal is not so easy due to the
equivocability property of E2-commitments. To understand why, let X be the domain of an SPHF
function and let L be some underlying NP language such that it is computationally hard to distinguish

44 CHAPTER 4. COMMITMENTS

a random element in L from a random element in X \ L. As seen in Chapter 3, a key property of these
SPHF functions that makes them so useful for applications such as PAKE and OT is that, for words C
in L, their values can be computed using either a secret hashing key hk or a public projected key hp
together a witness w to the fact that C is indeed in L. A typical example of a language in which we are
interested is the language Lx corresponding to the set of elements {C} such that C is a valid commitment
of x. Unfortunately, when commitments are equivocable, the language Lx containing the set of valid
commitments of x may not be well defined since a commitment C could potentially be opened to any x.
To get around this problem and be able to use SPHF with E2-commitments, we show in [ABB+13] that
it suffices for an E2-commitment scheme to satisfy two properties (see pages 179 and 176). The first
one is the stronger version of the equivocability notion, which guarantees that equivocable commitments
are computationally indistinguishable from normal commitments, even when given oracle access to the
simulated commitment and extractor algorithms. The second one, which is called robustness, is new
and guarantees that commitments generated by polynomially-bounded adversaries are perfectly binding.
Finally, we say that a commitment scheme is SPHF-friendly if it satisfies both properties and if it admits
an SPHF on the languages Lx.

Constructions

We show in [ABB+13] that the E2-commitment scheme proposed in the paper is also SPHF-friendly (see
page 181). We generalize it in [BC15] by giving a generic construction of SPHF-friendly commitments
from two simple blocks: a collision-resistant chameleon hash (CH) function which is verifiable (either
publicly or for the receiver only) and an SPHF-friendly CCA encryption scheme. The extra requirement
on the CH function is simple to achieve as soon as only classical algebraic operations are applied to
the randomness, and SPHF-friendly encryption is now well-known since [CS02], with several instances
(contrary to SPHF-friendly commitments, which is a difficult task). We give in particular an instanciation
based on DDH.

The Case of FLM’s Commitment

As already said in Section 4.3.2, the complexity of the commitment given in [ABB+13] is asymptotically
worse than the two proposals in [FLM11] that are linear in K, and thus independent of m, but the latter
proposals are not SPHF-friendly since they are not robust.

Thus, the UC-commitment from [FLM11] do not fit the methodology of traditional SPHF from
[ABB+13] and cannot be used as is in the PAKE and OT protocols proposed in [ABB+13]. How-
ever, we show in [BC16] that it is indeed compatible with our new notion of SP-SPHF and can be used
to build UC protocols (see pages 262, 264 and 265). As a side contribution, we first generalize in this
paper this commitment from DLin to the k −MDDH assumption from [EHK+13] (see page 261).

Part III

Cryptographic Protocols

Chapter 5

Password-Authenticated
Key-Exchange

5.1 Security Definition in the UC Framework
The PAKE ideal functionality FpwKE, presented on Figure 5.1, was described in [CHK+05]. The main idea
behind this functionality is as follows: If neither party is corrupted and the adversary does not attempt
any password guess, then the two players both end up with either the same uniformly-distributed session
key if the passwords are the same, or uniformly-distributed independent session keys if the passwords
are distinct. In addition, the adversary does not know whether this is a success or not. However, if
one party is corrupted, or if the adversary successfully guessed the player’s password (the session is then
marked as compromised), the adversary is granted the right to fully determine its session key. There
is in fact nothing lost by allowing it to determine the key. In case of wrong guess (the session is then
marked as interrupted), the two players are given independently-chosen random keys. A session that is
nor compromised nor interrupted is called fresh, which is its initial status.

Choosing the Passwords. First note that the functionality is not in charge of providing the pass-
word(s) to the participants. The passwords are chosen by the environment which then hands them to the
parties as inputs. This guarantees security even in the case where two honest players execute the protocol
with two different passwords: This models, for instance, the case where a user mistypes its password. It
also implies that the security is preserved for all password distributions (not necessarily the uniform one)
and in all situations where the passwords are related passwords, used in different protocols. Also note
that allowing the environment to choose the passwords guarantees forward secrecy.

Defining a New Session. In the initialization step, the functionality merely waits for the players to
notify their interest in participating to the protocol. More precisely, we assume that each player starts a
new session with the query (NewSession, sid, Pi, Pj , pwi, role), where Pi is the player’s identity, Pj that
of the player with which it would like to establish a communication, pwi its password and role its role
(client or server). The player’s session is then denoted as fresh.

Modeling Dictionary Attacks. The adversary is awarded the right to try to guess the password of
a player via TestPwd queries (this models the passwords’ vulnerability as in an online attack in the real
world: If the adversary correctly guessed the password, it succeeded in its impersonation attempt). Each
player’s session is initially fresh. A correct guess makes it become compromised, whereas an incorrect
guess makes it become interrupted. Once the key is established, all the records are completed. Changing
the fresh status of a record when a password guess (correct or not) happened or when a (valid) key was
established enables to limit the number of guesses to at most one per player.

Generating the Session Key. The generation is initiated by the adversary, which enables it to decide
at which exact moment the key has to be sent to the players. In particular, it can choose the exact moment
where it can try to corrupt or impersonate a player (recall that S can only try to guess a password when
the session of the player is fresh, which is not the case anymore after a NewKey query). If the two players

48 CHAPTER 5. PASSWORD-AUTHENTICATED KEY-EXCHANGE

own the same password and their sessions are fresh, they receive the same, uniformly distributed, key. If
one of their sessions is interrupted, they obtain independent, randomly chosen keys. Otherwise, if one of
the players is corrupted or its session compromised, the adversary is granted the right to choose its key.

Corruptions. In case of corruption, the adversary learns the password of the corrupted player, and
after the NewKey-query, it additionally learns the session key.

Fig. 5.1 – Ideal Functionality for PAKE FpwKE

The functionality FpwKE is parameterized by a security parameter k. It interacts with an adversary S
and a set of parties P1,. . . ,Pn via the following queries:

• Upon receiving a query (NewSession, sid, ssid,Pi,Pj, pw) from party Pi:
Send (NewSession, sid, ssid,Pi,Pj) to S. If this is the first NewSession query, or if this is the second
NewSession query and there is a record (sid, ssid,Pj ,Pi, pw′), then record (sid, ssid,Pi,Pj , pw) and
mark this record fresh.

• Upon receiving a query (TestPwd, sid, ssid,Pi, pw′) from the adversary S:
If there is a record of the form (Pi,Pj , pw) which is fresh, then do: If pw = pw′, mark the record
compromised and reply to S with “correct guess”. If pw 6= pw′, mark the record interrupted and
reply with “wrong guess”.

• Upon receiving a query (NewKey, sid, ssid,Pi, sk) from the adversary S:
If there is a record of the form (sid, ssid,Pi,Pj , pw), and this is the first NewKey query for Pi,
then:
– If this record is compromised, or either Pi or Pj is corrupted, then output (sid, ssid, sk) to

player Pi.
– If this record is fresh, and there is a record (Pj ,Pi, pw′) with pw′ = pw, and a key sk′ was

sent to Pj , and (Pj ,Pi, pw) was fresh at the time, then output (sid, ssid, sk′) to Pi.
– In any other case, pick a new random key sk′ of length K and send (sid, ssid, sk′) to Pi.

Either way, mark the record (sid, ssid,Pi,Pj , pw) as completed.

5.2 Constructions of One-Round PAKE
5.2.1 Katz and Vaikuntanathan Smooth Projective Hash Functions
Katz and Vaikuntanathan [KV11] were the first to propose a practical one-round PAKE, where the two
players just have to send simultaneous flows to each other, that depend on their own passwords only.
More precisely, each flow just consists of an IND-CCA ciphertext of the password and an SPHF projection
key for the correctness of the partner’s ciphertext (the word is the ciphertext and the witness consists of
the random coins of the encryption). The shared secret key is eventually the product of the two hash
values, as in the KOY and GL protocols.

Because of the simultaneous flows, one flow cannot explicitly depend on the partner’s flow, which
makes impossible the use of the Gennaro and Lindell SPHF (named GL-SPHF, see Section 3.2.1), in which
the projection key depends on the word (the ciphertext here). On the other hand, the adversary can wait
for the player to send his flow first, and then adapt its message, which requires stronger security notions
than the initial Cramer and Shoup SPHF (named CS-SPHF), in which the smoothness does not hold
anymore if the word is generated after having seen the projection key. This led Katz and Vaikuntanathan
to provide a new definition for SPHF (named KV-SPHF), where the projection key depends on the hashing
key only, and the smoothness holds even if the word is chosen after having seen the projection key.

They also proposed another construction of one-round PAKE, provably secure against static corrup-
tions in the UC framework. To achieve such a level of security, the simulator has to be more powerful:
it should be able to make a successful execution after a dummy simulation, with a wrong password. To
this aim, Katz and Vaikuntanathan allowed the simulator to extract the hashing key of the SPHF, to

5.2. CONSTRUCTIONS OF ONE-ROUND PAKE 49

allow it to compute afterwards the hash value on any word, even outside the language. More precisely,
each player additionally encrypts his hashing key to allow the key recovery by the simulator, so that the
latter can compute the hash value even when a dummy password has initially been committed, whereas
a success is expected.

However, previous SPHF known on Cramer-Shoup ciphertexts were GL-SPHF only. For their one-round
PAKE, Katz and Vaikuntanathan did not manage to construct such a KV-SPHF for an efficient IND-CCA
encryption scheme. They then suggested to use the Naor and Yung approach [NY90], with an ElGamal-
like encryption scheme and a simulation-sound non-interactive zero-knowledge (SS-NIZK) proof [Sah99].
Such an SS-NIZK proof is quite costly in general. They suggested to use Groth-Sahai [GS08] proofs
in bilinear groups and the linear encryption [BBS04] which leads to a PAKE secure under the DLin
assumption with a ciphertext consisting of 66 group elements and a projection key consisting of 4 group
elements. As a consequence, the two players have to send 70 group elements each, which is far more
costly than the KOY protocol, but it is one-round only.

More recent results on SS-NIZK proofs or IND-CCA encryption schemes, in the discrete logarithm
setting, improved on that: Libert and Yung [LY12] proposed a more efficient SS-NIZK proof of plaintext
equality in the Naor-Yung-type cryptosystem with ElGamal-like encryption. The proof can be reduced
from 60 to 22 group elements and the communication complexity of the resulting PAKE is decreased to
32 group elements per user. Jutla and Roy [JR12] proposed relatively-sound NIZK proofs as an efficient
alternative to SS-NIZK proofs to build new publicly-verifiable IND-CCA encryption schemes. They can
then decrease the PAKE communication complexity to 20 group elements per user. In any case, one can
remark that all one-round PAKE schemes require pairing computations.

5.2.2 Constructions of One-Round PAKE in the UC Framework
In [BBC+13b], our first contribution is the description of an instantiation of KV-SPHF on Cramer-Shoup
ciphertexts, and thus the first KV-SPHF on an efficient IND-CCA encryption scheme (see page 143). We
thereafter use it within the above KV framework for one-round PAKE [KV11], in the BPR security
model. Our scheme (described page 143) just consists of 6 group elements in each direction under the
DDH assumption (4 for the ciphertext, and 2 for the projection key). This has to be compared with the
20 group elements, or more, in the best constructions discussed above, which all need pairing-friendly
groups and pairing computations, or with the KOY protocol that has a similar complexity but with three
sequential flows.

In [ABB+13], we provide a generic construction of a one-round UC-secure PAKE from any SPHF-
friendly commitment, verifying an additional property called strong pseudo-randomness (page 184). The
UC-security holds against adaptive adversaries, assuming reliable erasures and a single global CRS. In
addition to being the first one-round adaptively secure PAKE, our new scheme also enjoys a much better
communication complexity than previous adaptively secure PAKE schemes. For instance, in comparison
to the PAKE in [ACP09], which was in 2013 the most efficient adaptively secure PAKE, the new scheme
gains a factor of K in the overall communication complexity, where K is the security parameter. However,
unlike this scheme, the new construction requires pairing-friendly groups.

These constructions follow the Gennaro-Lindell methodology with variation of the Canetti-Fischlin
commitment [CF01]. However their communication size is growing in the size of the passwords, which
is leaking information about an upper-bound on the password used in each exchange. Besides being an
efficiency problem, it is over all a security issue in the UC framework. Indeed, the simulator somehow
has to “guess” the length of the password of the player it simulates, otherwise it is unable to equivocate
the commitment (since the commitment reveals the length of the password it commits to). Since such a
guess is impossible, the apparently only solution to get rid of this limitation seems to give the users an
upper-bound on the length of their passwords and to ask them to compute commitments of this length,
which leads to costly computations.

In [BC16], we provide an instantiation of a one-round UC-secure PAKE which does not leak any
information about the length of the password used, under any k − MDDH assumption, combining the
UC commitment from [FLM11] (generalized to the k − MDDH assumption from [EHK+13]) and the
associated SP-SPHF that we propose (page 264). We show that the UC-security holds against adaptive
adversaries, assuming reliable erasures and a single global CRS, and that our scheme enjoys a much better
communication complexity (see Figure 5.2 for a comparison, in particular for the SXDH version1). Only

1We omit our paper [BC15] from this table, as its contribution is to widen the construction to non-pairing based
hypotheses.

50 CHAPTER 5. PASSWORD-AUTHENTICATED KEY-EXCHANGE

[JR14] achieves a slightly better complexity as ours, but only for SXDH, while ours easily extends to k−
MDDH. Furthermore, our construction is an extension to SP-SPHF of well-known classical constructions
based on SPHF, which makes it simpler to understand.

Fig. 5.2 – Comparison with existing UC-secure PAKE schemes where |password| = m

Adaptive One-round Communication complexity Assumption
[ACP09] yes no 2× (2m+ 22mK)×G + OTS DDH
[KV11] no yes ≈ 2× 70×G DLIN
[BBC+13b] no yes 2× 6×G1 + 2× 5×G2 SXDH
[ABB+13] yes yes 2× 10m×G1 + 2×m×G2 SXDH
[JR14] yes yes 4×G1 + 4×G2 SXDH
[BC16] yes yes 2× (k + 3)×G1 k-MDDH

+2× (k + 3 + k(k + 1))×G2
[BC16] yes yes 2× 4×G1 + 2× 5×G2 SXDH

We present in Figure 5.3 the PAKE protocol from [BC16], which is constant-size, round-optimal
and UC-secure against adaptive corruptions (see the paper for details and notations, in particular the
description of FLM’s commitment, page 260). It builds upon the protocol proposed in [ABB+13], using
the SP-SPHF technique (see Section 3.4) to avoid the apparent impossibility to use FLM’s commitment.

The language Lpwi
is then the language of valid Cramer-Shoup encryptions of the embedded password

G(pwi), consistent with the randomness committed in the second part, and the rest of the label.
Theorem 2 ([BC16]). The Password Authenticated Key Exchange scheme described in Figure 5.3 is
UC-secure in the presence of adaptive adversaries, assuming reliable erasures and authenticated channels.

Fig. 5.3 – One-Round UC-Secure PAKE from the revisited FLM’s Commitment

CRS: crs $← SetupCom(1K).

Protocol execution by Pi with pwi:
1. Pi generates hki $← HashKG(Lpwi

), hpi ← ProjKG(hki,Lpwi
)

and erases any random coins used for the generation
2. Pi computes ([~Ci]1, [~Ri]2, [~Πi]1) = Com`i(crs, pwi, sid, cid,Pi,Pj)

with label `i = (sid,Pi,Pj , hpi)
3. Pi stores [~Πi]1, completely erases random coins used by Com

and sends hpi, [~Ci]1, [~Ri]2 to Pj

Key computation: Upon receiving hpj , [~Cj]1, [~Rj]2 from Pj
1. Pi computes H′i ← ProjHash(hpj , (Lpwi

, `i, [~Ci]1, [~Ri]2), [Πi]1))
and Hj ← Hash(hki, (Lpwi

, `j , [~Cj]1, [~Rj]2)) with `j = (sid,Pj ,Pi, hpj)
2. Pi computes ski = H′i ·Hj and erases everything else, except pwi.

5.3 Extension to Language-Authenticated Key Exchange
5.3.1 Definition and Ideal Functionality
Password-Authenticated Key Exchange schemes presented above allow users to generate a strong cryp-
tographic key based on a shared “human-memorable” (i.e. low-entropy) password without requiring a
public-key infrastructure. In this setting, an adversary controlling all communication in the network
should not be able to mount an off-line dictionary attack.

The concept of Secret Handshakes has been introduced in 2003 by Balfanz, Durfee, Shankar, Smetters,
Staddon and Wong [BDS+03] (see also [JL09b, AKB07]). It allows two members of the same group to

5.3. EXTENSION TO LANGUAGE-AUTHENTICATED KEY EXCHANGE 51

identify each other secretly, in the sense that each party reveals his affiliation to the other only if they are
members of the same group. At the end of the protocol, the parties can set up an ephemeral session key
for securing further communication between them and an outsider is unable to determine if the handshake
succeeded. In case of failure, the players do not learn any information about the other party’s affiliation.

Credential-Authenticated Key Exchange (CAKE) was presented in 2010 by Camenisch, Casati, Groß
and Shoup [CCGS10]. In this primitive, a common key is established if and only if a specific relation
is satisfied between credentials hold by the two players. This primitive includes variants of PAKE and
Secret Handshakes, and namely Verifier-based PAKE, where the client owns a password pw and the server
knows a one-way transformation v of the password only. It prevents massive password recovering in case
of server corruption. The two players eventually agree on a common high entropy secret if and only if pw
and v match together, and off-line dictionary attacks are prevented for third-party players.

We propose in [BBC+13a] a new primitive that encompasses most of the previous notions of au-
thenticated key exchange. It is closely related to CAKE and we call it LAKE, for Language-Authenticated
Key-Exchange, since parties establish a common key if and only if they hold credentials that belong to
specific (and possibly independent) languages. The definition of the primitive is more practice-oriented
than the definition of CAKE from [CCGS10] but the two notions are very similar. In particular, the new
primitive enables privacy-preserving authentication and key exchange protocols by allowing two mem-
bers of the same group to secretly and privately authenticate to each other without revealing this group
beforehand.

In order to define the security of this primitive, we use the UC framework and an appropriate definition
for languages that permits to dissociate the public part of the policy, the private common information
the users want to check and the (possibly independent) secret values each user owns that assess the
membership to the languages. We provide an ideal functionality for LAKE and give efficient realizations
of the new primitive (for a large family of languages) secure under classical mild assumptions, in the
standard model (with a common reference string – CRS), with static corruptions.

We significantly improve the efficiency of several CAKE protocols [CCGS10] for specific languages and
we enlarge the set of languages for which we can construct practical schemes. Notably, we obtain a very
practical realization of Secret Handshakes and a Verifier-based Password-Authenticated Key Exchange.

Language Definition

We define in [BBC+13a] a simpler formalism for languages to be considered for SPHF than the one we
formalized in [ACP09]. It is nevertheless more general: We consider any efficiently computable binary
relation R : {0, 1}∗ ×P × S → {0, 1}, where the additional parameters pub ∈ {0, 1}∗ and priv ∈ P define
a language LR(pub, priv) ⊆ S of the words W such that R(pub, priv,W) = 1:
• pub are public parameters;
• priv are private parameters the two players have in mind, and they should think to the same values:
they will be committed to, but never revealed;

• W is the word the sender claims to know in the language: it will be committed to, but never
revealed.

Our LAKE primitive, specific to two relations Ra and Rb, allows two users, Alice and Bob, owning a
word Wa ∈ LRa(pub, priva) and Wb ∈ LRb

(pub, privb) respectively, to agree on a session key under some
specific conditions: they first both agree on the public parameter pub, Bob will think about priv′a for
his expected value of priva, Alice will do the same with priv′b for privb; eventually, if priv′a = priva and
priv′b = privb, and if they both know words in the languages, then the key agreement will succeed. In case
of failure, no information should leak about the reason of failure, except the inputs did not satisfy the
relations Ra or Rb, or the languages were not consistent.

We stress that each LAKE protocol is specific to a pair of relations (Ra,Rb) describing the way Alice
and Bob will authenticate to each other. This pair of relations (Ra,Rb) specifies the sets Pa, Pb and
Sa, Sb (to which the private parameters and the words should respectively belong). Therefore, the formats
of priva, privb and Wa and Wb are known in advance, but not their values. When Ra and Rb are clearly
defined from the context (e.g., PAKE), we omit them in the notations. For example, these relations can
formalize:

• Password authentication: The language is defined by R(pub, priv,W) = 1 ⇔ W = priv, and thus
pub = ∅. The classical setting of PAKE requires the players A and B to use the same password W,
and thus we should have priva = priv′b = privb = priv′a = Wa = Wb;

52 CHAPTER 5. PASSWORD-AUTHENTICATED KEY-EXCHANGE

• Signature authentication: R(pub, priv,W) = 1 ⇔ Verif(pub1, pub2,W) = 1, where pub = (pub1 =
vk, pub2 = M) and priv = ∅. The word W is a signature of M valid under vk, both specified in pub;

• Credential authentication: we can consider any mix for vk and M in pub or priv, and even in W,
for which the relation R verifies the validity of the signature. When M and vk are in priv or W, we
achieve affiliation-hiding property.

In the two last cases, the parameter pub can thus consist of a message on which the user is expected
to know a signature valid under vk: either the user knows the signing key and can generate the signature
on the fly to run the protocol, or the user has been given signatures on some messages (credentials). As
a consequence, we just assume that, after having publicly agreed on a common pub, the two players have
valid words in the appropriate languages. The way they have obtained these words does not matter.

Following our generic construction, private elements will be committed using encryption schemes,
derived from Cramer-Shoup’s scheme, and will thus have to be first encoded as n-tuples of elements in a
group G. In the case of PAKE, authentication will check that a player knows an appropriate password.
The relation is a simple equality test, and accepts for one word only. A random commitment (and thus
of a random group element) will succeed with negligible probability. For signature-based authentication,
the verification key can be kept secret, but the signature should be unforgeable and thus a random word
W should quite unlikely satisfy the relation. We will often make this assumption on useful relations R:
for any pub, {(priv,W) ∈ P ×S,R(pub, priv,W) = 1} is sparse (negligible) in P ×S, and a fortiori in the
set Gn in which elements are first embedded.

Ideal Functionality

We generalize the Password-Authenticated Key Exchange functionality Fpake (first provided in [CHK+05]
and presented earlier) to more complex languages: The players agree on a common secret key if and only
if they own words that lie in the languages the partners have in mind. More precisely, after an agreement
on pub between Pi and Pj (modeled here by the use of the split functionality, see below), player Pi uses
a word Wi belonging to Li = LRi(pub, privi) and it expects its partner Pj to use a word Wj belonging
to the language L′j = LRj

(pub, priv′j), and vice-versa for Pj and Pi. We assume relations Ri and Rj
to be specified by the kind of protocol we study (PAKE, Verifier-based PAKE, secret handshakes, . . .)
and so the languages are defined by the additional parameters pub, privi and privj only: They both
agree on the public part pub, to be possibly parsed in a different way by each player for each language
according to the relations. Note however that the respective languages do not need to be the same or to
use similar relations: authentication means could be totally different for the 2 players. The key exchange
should succeed if and only if the two following pairs of equations hold: (L′i = Li and Wi ∈ Li) and
(L′j = Lj and Wj ∈ Lj).

In the initial Fpake functionality [CHK+05], the adversary was given access to a TestPwd-query, which
modeled the on-line dictionary attack. But it is known since [BCL+05] that it is equivalent to use
the split functionality model [BCL+05], generate the NewSession-queries corresponding to the corrupted
players and tell the adversary (on behalf of the corrupted player) whether the protocol should succeed
or not. Both methods enable the adversary to try a credential for a player (on-line dictionary attack).
The second method (that we use here) implies allowing S to ask NewSession-queries on behalf of the
corrupted player, and letting it to be aware of the success or failure of the protocol in this case: the
adversary learns this information only when it plays on behalf of a player (corruption or impersonation
attempt). This is any way an information it would learn at the end of the protocol. We insist that third
parties will not learn whether the protocol succeeded or not, as required for secret handshakes. To this
aim, the NewKey-query informs in this case the adversary whether the credentials are consistent with the
languages or not. In addition, the split functionality model guarantees from the beginning which player
is honest and which one is controlled by the adversary. This finally allows us to get rid of the TestPwd-
query. The Flake functionality is presented in Figure 5.4 and the corresponding split functionality sFlake
in Figure 5.5, where the languages are formally described and compared using the pub and priv parts.

The security goal is to show that the best attack for the adversary is a basic trial execution with a
credential of its guess or choice: the proof will thus consist in emulating any real-life attack by either a
trial execution by the adversary, playing as an honest player would do, but with a credential chosen by
the adversary or obtained in any way; or a denial of service, where the adversary is clearly aware that its
behavior will make the execution fail.

5.3. EXTENSION TO LANGUAGE-AUTHENTICATED KEY EXCHANGE 53

Fig. 5.4 – Ideal Functionality Flake

The functionality Flake is parametrized by a security parameter k and a public parameter pub for
the languages. It interacts with an adversary S and a set of parties P1,. . . ,Pn via the following
queries:
• New Session: Upon receiving a NewSession-query (sid,Pi,Pj ,Wi,Li = L(pub, privi),L′j =

L(pub, priv′j)) from Pi,
– If this is the first NewSession-query with identifier sid, record the tuple (Pi,Pj ,Wi,

Li,L′j , initiator). Send (NewSession; sid,Pi,Pj , pub, initiator) to S and Pj .
– If this is the second NewSession-query with identifier sid, and if there exists a

record (Pj ,Pi,Wj ,Lj ,L′i, initiator), then record the tuple (Pj ,Pi,Wj ,Lj ,L′i, initiator,
Wi,Li,L′j , receiver) and send the answer (NewSession; sid,Pi,Pj , pub, receiver) to S
and Pj .

• Key Computation: Upon receiving a query (NewKey : sid) from S, if there is a record of
the form (Pi,Pj ,Wi,Li,L′j , initiator,Wj ,Lj ,L′i, receiver) and this is the first NewKey-query
for session sid, then
– If (L′i = Li and Wi ∈ Li) and (L′j = Lj and Wj ∈ Lj), then pick a random key sk

of length k and store (sid, sk). If one player is corrupted, send (sid, success) to the
adversary.

– Else, store (sid,⊥), and send (sid, fail) to the adversary if one player is corrupted.

• Key Delivery: Upon receiving a query (SendKey : sid,Pi, sk) from S, then
– If there is a record of the form (sid, sk′), then, if both players are uncorrupted, out-

put (sid, sk′) to Pi. Otherwise, output (sid, sk) to Pi.
– If there is a record of the form (sid,⊥), then pick a random key sk′ of length k and

output (sid, sk′) to Pi.

Fig. 5.5 – Split Functionality sFlake

Given the functionality Flake, the split functionality sFlake proceeds as follows:
• Initialization:

– Upon receiving (Init, sid, pubi) from party Pi, send (Init, sid,Pi, pubi) to the adversary.
– Upon receiving a message (Init, sid,Pi,H, pub, sidH) from S, where H = {Pi,Pj} is a

set of party identities, check that Pi has already sent (Init, sid, pubi) and that for all
recorded (H′, pub′, sidH′), either H = H′, pub = pub′ and sidH = sidH′ or H and H′ are
disjoint and sidH 6= sidH′ . If so, record the pair (H, pub, sidH), send (Init, sid, sidH, pub)
to Pi, and invoke a new functionality (Flake, sidH, pub) denoted as F (H,pub)

lake and with
set of honest parties H.

• Computation:

– Upon receiving (Input, sid,m) from party Pi, find the set H such that Pi ∈ H, the public
value pub recorded, and forward m to F (H,pub)

lake .

– Upon receiving (Input, sid,Pj ,H,m) from S, such that Pj /∈ H, forward m to F (H,pub)
lake

as if coming from Pj .

– When F (H,pub)
lake generates an output m for party Pi ∈ H, send m to Pi. If the output is

for Pj /∈ H or for the adversary, send m to the adversary.

54 CHAPTER 5. PASSWORD-AUTHENTICATED KEY-EXCHANGE

5.3.2 A Generic UC-Secure LAKE Construction

Intuition

Using smooth projective hash functions on commitments, one can generically define a LAKE protocol as
done in [ACP09]. The basic idea is to make the player commit to their private information (for the
expected languages and the owned words), and eventually the smooth projective hash functions will be
used to make implicit validity checks of the global relation.

Details on commitments and associated smooth projective hash functions can be found in Sections 3
and 4 of [BBC+13a], pages 99 and 101. The relations on the committed values will not be explicitly
checked, since the values will never be revealed, but will be implicitly checked using SPHF. It is interesting
to note that in both cases considered (one-part or two-part commitment), the projection key will only
depend on the first part of the commitment.

As it is often the case in the UC setting, we need the initiator to use stronger primitives than the
receiver. They both have to use non-malleable and extractable commitments, but the initiator will use a
commitment that is additionally equivocable.

As already explained, SPHF will be used to implicitly check whether (L′i = Li and Wi ∈ Li) and
(L′j = Lj and Wj ∈ Lj). But since in our instantiations private parameters priv and words W will have to
be committed, the structure of these commitments will thus be publicly known in advance: commitments
of P-elements and S-elements. Section 5.3.3 discusses on the languages captured by our definition, and
illustrates with some AKE protocols. However, while these P and S sets are embedded in Gn from
some n, it might be important to prove that the committed values are actually in P and S (e.g., one
can have to prove it commits bits, whereas messages are first embedded as group elements in G of large
order p). This will be an additional language-membership to prove on the commitments.

This leads to a very simple protocol described on Figure 5.6 (the notations for (double) linear Cramer-
Shoup commitments LCS and DLCS can be found in Section 3 of the paper, page 99). Note that if a
player wants to make external adversaries think it owns an appropriate word, as it is required for Secret
Handshakes, he can still play, but will compute everything with dummy words, and will replace the
ProjHash evaluation by a random value, which will lead to a random key at the end.

Security Analysis

Since we have to assume common pub, we make a first round (with flows in each direction) where the
players send their contribution, to come up with pub. These flows will also be used to know if there is
a player controlled by the adversary (as with the split functionality [BCL+05]). In case the languages
have empty pub, these additional flows are not required, since the split functionality can be applied on
the committed values. The signing key for the receiver is not required anymore since there is one flow
only from its side.

Theorem 3 ([BBC+13a]). Our LAKE scheme from Figure 5.6 realizes the sFlake functionality in the
Fcrs-hybrid model, in the presence of static adversaries, under the DLin assumption and the security of
the One-Time Signature.

Actually, from a closer look at the full proof (page 126), one can notice that Comj = Cj needs to be
extractable, but IND-CPA security is enough, which leads to a shorter ciphertext (2 group elements less
if one uses a Linear ciphertext instead of LCS). Similarly, one will not have to extract Wi from Ci when
simulating sessions where Pi is corrupted. As a consequence, only the private parts of the languages have
to be committed to in Comi in the first and third rounds, whereas Wi can be encrypted independently
with an IND-CPA encryption scheme in the third round only (5 group elements less in the first round,
and 2 group elements less in the third round if one uses a Linear ciphertext instead of LCS).

Improvement

In [BBC+13b], our new constructions of KV-SPHF enable several efficient instantiations of one-round
LAKE protocols (page 147). The one-round PAKE scheme given in this paper is actually a particular
case of a more general one-round LAKE scheme, for which we provide a BPR-like security model and a
security proof (page 155).

5.3. EXTENSION TO LANGUAGE-AUTHENTICATED KEY EXCHANGE 55

Fig. 5.6 – LAKE from a Smooth Projective Hash Function on Commitments

Execution between Pi and Pj , with session identifier sid.

• Preliminary Round: each user generates a pair of signing/verification keys (SK,VK) and sends
VK together with its contribution to the public part of the language.

We denote by `i the label (sid, ssid,Pi,Pj , pub,VKi,VKj) and by `j the label (sid, ssid,Pi,Pj ,
pub,VKj ,VKi), where pub is the combination of the contributions of the two players. The initiator
now uses a word Wi in the language L(pub, privi), and the receiver uses a word Wj in the language
L(pub, privj), possibly re-randomized from their long-term secrets∗. We assume commitments and
associated smooth projective hash functions exist for these languages.

• First Round: user Pi (with random tape ωi) generates a multi-DLCSCom′ commitment on
(privi, priv′j ,Wi) in (Ci, C′i), where Wi has been randomized in the language, under the label
`i. It also computes a Pedersen commitment on C′i in C′′i (with random exponent t). It then
sends (Ci, C′′i) to Pj ;

• Second Round: user Pj (with random tape ωj) computes a multi-LCS commitment on
(privj , priv′i,Wj) in Comj = Cj , with witness ~r, where Wj has been randomized in the lan-
guage, under the label `j . It then generates a challenge ~ε on Ci and hashing/projection keys†
hki and hpi associated to Ci (which will be associated to the future Comi). It finally signs all
the flows using SKj in σj , and sends (Cj , ~ε, hpi, σj) to Pi;

• Third Round: user Pi first checks the signature σj , computes Comi = Ci · C′i
~ε and witness

z (from ~ε and ωi), it generates hashing/projection keys hkj and hpj associated to Comj . It
finally signs all the flows using SKi in σi, and sends (C′i, t, hpj , σi) to Pj ;

• Hashing: Pj first checks the signature σi and the correct opening of C′′i into C′i, it computes
Comi = Ci · C′i

~ε. Pi computes Ki and Pj computes Kj as follows:

Ki = Hash(hkj , {(priv′j , privi)} × L(pub, priv′j), `j ,Comj)
×ProjHash(hpi, {(privi, priv′j)} × L(pub, privi), `i,Comi; z)

Kj = ProjHash(hpj , {(privj , priv′i)} × L(pub, privj), `j ,Comj ;~r)
×Hash(hki, {(priv′i, privj)} × L(pub, priv′i), `i,Comi)

∗As explained in Section 5.3.1, recall that the languages considered depend on two possibly different relations,
namely Li = LRi

(pub, privi) and Lj = LRj
(pub, privj), but we omit them for the sake of clarity. We assume they are

both self-randomizable.
†Recall that the SPHF is constructed in such a way that this projection key does not depend on C′i and is indeed

associated to the future whole Comi.

5.3.3 Concrete Instantiations and Comparisons
Our generic protocol of LAKE enables us to give in [BBC+13a] some concrete instantiations of several
AKE protocols, such as PAKE, verifier-based PAKE, CAKE and secret handshakes. We here give the main
ideas for the two first and refer the reader to the article for the two others (page 108).

Password-Authenticated Key Exchange

Using our generic construction, we can easily obtain a PAKE protocol, as described on Figure 5.7, where
we optimize from the generic construction, since pub = ∅, removing the agreement on pub, but still
keeping the one-time signature keys (SKi,VKi) to avoid man-in-the-middle attacks since it has another
later flow: Pi uses a password Wi and expects Pj to own the same word, and thus in the language
L′j = Li = {Wi}; Pj uses a password Wj and expects Pi to own the same word, and thus in the language
L′i = Lj = {Wj}; The relation is the equality test between privi and privj , which both have no restriction
in G (hence P = G). As the word Wi, the language private parameters privi of a user and priv′j of the
expected language for the other user are the same, each user can commit in the protocol to only one
value: its password.

56 CHAPTER 5. PASSWORD-AUTHENTICATED KEY-EXCHANGE

Fig. 5.7 – Password-based Authenticated Key Exchange

Pi uses a password Wi and Pj uses a password Wj . We denote ` = (sid, ssid,Pi,Pj).

• First Round: Pi (with random tape ωi) first generates a pair of signing/verification keys
(SKi,VKi) and a DLCSCom′ commitment on Wi in (Ci, C′i), under `i = (`,VKi). It also
computes a Pedersen commitment on C′i in C′′i (with random exponent t). It then sends
(VKi, Ci, C′′i) to Pj ;

• Second Round: Pj (with random tape ωj) computes a LCSCom commitment on Wj in
Comj = Cj , with witness ~r, under the label `. It then generates a challenge ε on Ci and
hashing/projection keys hki and the corresponding hpi for the equality test on Comi (”Comi

is a valid commitment of Wj”, this only requires the value ξi computable thanks to Ci). It
then sends (Cj , ε, hpi) to Pi;

• Third Round: user Pi can compute Comi = Ci · C′i
ε and witness z (from ε and ωi), it generates

hashing/projection keys hkj and hpj for the equality test on Comj . It finally signs all the flows
using SKi in σi and sends (C′i, t, hpj , σi) to Pj ;

• Hashing: Pj first checks the signature and the validity of the Pedersen commitment (thanks
to t), it computes Comi = Ci · C′i

ε. Pi computes Ki and Pj computes Kj as follows:

Ki = Hash(hkj ,L′j , `,Comj) · ProjHash(hpi,Li, `i,Comi; z)

Kj = ProjHash(hpj ,Lj , `,Comj ;~r) · Hash(hki,L′i, `i,Comi)

Verifier-based PAKE

The above scheme can be modified into an efficient PAKE protocol that is additionally secure against
server compromise: the so-called verifier-based PAKE, where the client owns a password pw, while the
server knows a verifier only, such as gpw, so that in case of break-in to the server, the adversary will not
immediately get all the passwords.

To this aim, as usually done, one first does a PAKE with gpw as common password, then asks the
client to additionally prove it can compute the Diffie-Hellman value hpw for a basis h chosen by the server.
Ideally, we could implement this trick, where the client Pj just considers the equality test between the
gpw and the value committed by the server for the language L′i = Lj , while the server Pi considers the
equality test with (gpw, hpw), where h is sent as its contribution to the public part of the language by the
server Li = L′j . Since the server chooses h itself, it chooses it as h = gα, for an ephemeral random α, and
can thus compute hpw = (gpw)α. On its side, the client can compute this value since it knows pw. The
client could thus commit to (gpw, hpw), in order to prove its knowledge of pw, whereas the server could
just commit to gpw. Unfortunately, from the extractability of the server commitment, one would just get
gpw, which is not enough to simulate the client.

To make it in a provable way, the server chooses an ephemeral h as above, and they both run the
previous PAKE protocol with (gpw, hpw) as common password, and mutually checked: h is seen as the pub
part, hence the preliminary flows are required.

5.4 Extension to Distributed PAKE
5.4.1 Definition and Security Model
Introduction

Incidents of sensitive customer information “hacking” (including leaking of passwords) in e-commerce
systems are frequently revealed in the newspaper. In addition to major reputational damage, a company
with a significant data breach may be sued by its clients for the breach and may be suspended or
disqualified from future public sector or government work.

To alleviate the threat that stored passwords are revealed immediately in case of a server compromise,
many servers adopt the approach for storing passwords in a hashed form with a random salt. When the

5.4. EXTENSION TO DISTRIBUTED PAKE 57

database of hashed password is compromised, the offline dictionary attack requires a more important
computational effort but remains usually possible. The notion of Verifier-based PAKE, where the client
owns a password pw and the server knows a one-way transformation v of the password only, was proposed
by Bellovin and Merritt [BM92]. The two players eventually agree on a common high entropy secret if
and only if pw and v match together. It prevents massive password recovering in case of server corruption
and it forces the attacker who breaks into the server and is willing to recover passwords to perform an
additional costly offline dictionary attack.

We consider in [BCV16] an alternative approach inspired by the multi-party computation paradigm
(and first suggested by Ford and Kaliski [FK00]). The password database on the server side is somehow
shared among two servers (or more, but we focus here on two for sake of simplicity), and authentication
requires a distributed computation involving the client – who still does not need an additional cryp-
tographic device capable of storing high-entropy secret keys – and the two servers who will use some
additional shared secret information. The interaction is performed using a gateway that does not know
any secret information and ends up in the gateway and the client sharing a common key. The lifetime of
the protocol is divided into distinct periods (for simplicity, one may think of these time periods as being
of equal length; e.g. one day) and at the beginning of each period, the two servers interact and update
their sharing of the password database. Similarly to proactive schemes in multi-party computation, we
allow the adversary multiple corruptions of each server, limiting only the corruptions to one server for
each period. The user does not need to update his password nor to perform any kind of computations
and its interaction with the two servers (performed using the gateway) remains the same for the lifetime
of the protocol. In this scenario, even if a server compromise is doable, the secret exposure is not valuable
to the adversary since it reveals only a share of the password database and does not permit to run an
offline dictionary attack.

Ford and Kaliski [FK00] were the first to propose to distribute the capability to test passwords over
multiple servers. Building on this approach, several such protocols were subsequently proposed in var-
ious settings (for instance, [Jab01, MSJ02, BJKS03, DG06, SK05, KMTG12, ACFP05, KM14]) and it
is worth noting that the protocol from [BJKS03] is commercially available as EMC’s RSA Distributed
Credential Protection. Recently, Camenisch, Enderlein and Neven [CEN15] revisited this approach and
proposed a scheme in the universal composability framework [Can01] (which has obvious advantages for
password-based protocols since users often use related passwords for many providers). Camenisch et
al. gave interesting details about the steps that need to be taken when a compromise actually occurs.
Unfortunately, due to the inherent difficulties of construction of the simulator in the universal com-
posability framework, their scheme is inefficient since users and servers have to perform a few hundred
exponentiations each.

Our Constructions

We present in our paper practical realizations based on classical cryptographic assumptions in the stan-
dard security model. In order to achieve practical constructions in the standard security model, we
consider the variant of the BPR model2 in the distributed setting proposed by Katz, MacKenzie, Taban
and Gligor in [KMTG12]. In this security model, we assume that the communication between the client
and the authentication servers is carried on a basically insecure network. Messages can be tapped and
modified by an adversary and the communication between the clients and the servers is asynchronous.
The adversary should not be able to brute force guess a password without further interactions with the
client for each guess even if he corrupts and impersonates a server in an active way.

Our first construction uses a similar approach to the schemes from [Jab01, MSJ02, BJKS03, DG06,
SK05, KMTG12, ACFP05, KM14]: The user generates information theoretic shares of his password and
sends them to the servers. In the authentication phase, the parties run a dedicated protocol to verify
that the provided password equals the priorly shared one. Our solution then consists in some sort of
three-party PAKE, in which (1) the user implicitly checks (using a smooth projective hash function) that
its password is indeed the sum of the shares owned by the two servers, and (2) each server implicitly
checks that its share is the difference of the password owned by the user and the share owned by the
other server. Contrary to the popular approach initiated in [KOY01, GL03] for PAKE, we cannot use two
smooth projective hash functions (one for the client and one for the server) so we propose a technique in
order to combine in a secure way six smooth projective hash functions. This new method (which may be

2Our schemes can be adapted to achieve security in universal composability framework using techniques similar to those
used in [CEN15]. The resulting schemes are slightly more efficient but are unfortunately still not practical.

58 CHAPTER 5. PASSWORD-AUTHENTICATED KEY-EXCHANGE

of independent interest) allows us to prove the security of this construction under classical cryptographic
assumptions (namely the DDH assumption) in the standard security model from [KMTG12] (without
any idealized assumptions).

The main weakness of this first solution is that at each time period, the servers have to refresh the
information-theoretic sharing of the password of all users. This can be handled easily using well-known
techniques from proactive multi-party computation but if the number of users is large, this can be really
time-consuming (in particular if the time period is very short).

Our second construction is built on the ideas from the first one but passwords are now encrypted
using a public-key encryption scheme where the corresponding secret key is shared among the servers.
At the beginning of each time period, the servers only need to refresh the sharing of this secret key
but the password database is not modified (and can actually be public). Password verification and the
authenticated key exchange is then carried out without ever decrypting the database. A secure protocol
is run to verify that the password sent by the user matches the encrypted password. It is similar to the
protocol we design for the first construction except that the user encrypts its password and the parties
implicitly check (using in this case five smooth projective hash functions) that the message encrypted in
this ciphertext is the same as the message encrypted in the database (using the secret key shared upon
the servers). Both constructions consist in only two flows (one from the client and one from the servers)
and a (private) flow from the servers to the gateway.

Security Model

In a distributed PAKE system, we consider as usual a client (owning a password) willing to interact with
a gateway, such as a website. The difference compared to a non-distributed system is that the gateway
itself interacts with two servers, and none of the three owns enough information to be able to recover the
passwords of the clients on its own3. Such a scheme is correct if the interaction between a client with a
correct password and the gateway succeeds. An honest execution of a distributed PAKE protocol should
result in the client holding a session key KU and the gateway holding a session key KG = KU.

We propose here two settings that describe well this situation. In a first setting, we consider that the
passwords of the clients are shared information-theoretically between the servers, such as π = π1 + π2
(if the password π belongs to an appropriate group) or with the help of any secret sharing protocol. At
the beginning of each time period, the shares are updated, in a probabilistic way, using a public function
Refresh, depending on the sharing protocol used.

In a second setting, we consider that the gateway owns a database of encrypted passwords (which can
be considered public), and the servers each own a share of the corresponding private keys (obtained by a
secret sharing protocol). At the beginning of each time period, the shares are updated, in a probabilistic
way, using a public function Refresh, depending on the sharing protocol used.

Since the security of our schemes is not analyzed in the universal composability framework (contrary
to the recent paper [CEN15]), the Refresh procedure can be handled easily using classical techniques from
computational proactive secret sharing (see [OY91, HJKY95] for instance).

We consider the classical model [BPR00] for authenticated key-exchange, adapted to the two-server
setting by [ACFP05, KMTG12]. In the latter model, the authors assume that every client in the system
shares its password with exactly two servers. We loosen this requirement here, depending on the setting
considered, as described above. We refer the interested reader to these articles for the details and we give
the high-level ideas in [BCV16].

5.4.2 Our Simple Protocol
Description of the Setting

In this first setting, we consider a client U owning a password π and willing to interact with a gateway G.
The gateway interacts with two servers S1 (owning π1) and S2 (owning π2), such that π = π1 + π2. It
should be noted that only the client’s password is assumed to be small and human-memorable. The two
“passwords” owned by the servers can be arbitrarily big. The aim of the protocol is to establish a shared
session key between the client and the gateway.

A simple solution to this problem consists in considering some sort of three-party PAKE, in which the
client implicitly checks (using an SPHF) whether its password is the sum of the shares owned by the two
servers, and the servers implicitly check (also using an SPHF) whether their share is the difference of the

3Note that the gateway can be merged with one server.

5.4. EXTENSION TO DISTRIBUTED PAKE 59

password owned by the client and the share owned by the other server. For sake of simplicity, we denote
the client U as S0 and its password π as π0.

Main Idea of the Construction

In our setting, we denote by pwb = gπb . The main idea of the protocol is depicted on Figure 5.8. For sake
of readability, the participants which have a real role in the computations are directly linked by arrows
in the picture, but one should keep in mind that all the participants (U, S1 and S2) only communicate
with G, which then broadcasts all the messages.

In a classical SPHF-based two-party key-exchange between U and G, the client and the gateway would
compute a Cramer-Shoup encryption of their password: C0 = CSek(pw0; r0) and CG = CSek(pwG; rG). The
gateway would then send a projection key hpG,0 in order to implicitly check via an SPHF whether C0 is
a valid Cramer-Shoup encryption of pwG, and the client would send a projection key hp0,G in order to
implicitly check via an SPHF whether CG is a valid Cramer-Shoup encryption of pw0.

Here, since S0 owns pw0 = pw1 · pw2, so that the players do not share the same password, we
consider an SPHF between each pair of players (Si,Sj), in which player Si computes the ciphertext Ci =
CSek(pwi; ri), the keys hki,j and hpi,j and sends (Ci, hpi,j) to Sj . It also computes the hash value Hi,j =
Hash(hki,j , (ek, pwi), Cj) and the projected hash value H′j,i = ProjHash(hpj,i, (ek,Mi), Ci, ri). Formally,
for each pair of users (Si,Sj), the language checked on Sj by Si is defined as follows: Cj ∈ Li,j =
{C = (u1, u2, e, v) ∈ G4 | ∃r ∈ Zp such that C = CSek(pwj ; r)} but it cannot be checked directly by a
unique SPHF since the passwords are different (and thus Si does not know pwj). Rather, we combine
in the protocol the six SPHF described to globally ensure the correctness (each one remaining smooth
and pseudo-random), as described in the next part. The correctness of the SPHF for the pair (Si,Sj)
implies that if everything was computed honestly, then one gets the equalities Hi,j(pwi/pwj)λi = H′i,j
and Hj,i(pwj/pwi)λj = H′j,i.

Fig. 5.8 – Main idea of the construction (simple protocol)

U
C0 = CSek(pw0; r0)

G

S1

C1 = CSek(pw1; r1)

S2

C2 = CSek(pw2; r2)

hp1,2
(r2 for C2
known?)

hp2,1
(r1 for C1
known?)

hp1,0 (r0 for C0 known?)

hp0,1 (r1 for C1 known?)

hp2,0 (r0 for C0 known?)

hp0,2 (r2 for C2 known?)

5.4.3 Our Efficient Protocol
Description of the Setting

In this second setting, we consider again a client U owning a password π and willing to interact with
a gateway G. The gateway owns a public database of encrypted passwords, and it interacts with two
servers S1 and S2, each owning a share of the secret key of the encryption scheme. The aim of the protocol
is to establish a shared session key between the client and the gateway.

The idea is similar to the protocol described in the former section, except that only the client needs to
compute a ciphertext, the other ciphertext being publicly available from the database. The participants
implicitly check (using several SPHF) that the message encrypted in the ciphertext of the client is the
same as the message encrypted in the database (using the secret key shared upon the servers).

Main Idea of the Construction

Again, we denote the client U as S0 and its password π as π0. In our setting, we denote by pwk = gπk

for all k. The database contains El Gamal encryptions of each ciphertext pwUi
, under randomness sUi

:

60 CHAPTER 5. PASSWORD-AUTHENTICATED KEY-EXCHANGE

CDB
Ui

= EGpk(pwUi
; sUi

) = (hsUi pwUi
, gsUi), so that here, CDB

U = EGpk(pwU; sU) = (hsU pwU, g
sU). The client

computes a Cramer-Shoup encryption of its password: C0 = CSek(pw0; r0) = (u1, u2, e, v) with v = cdξ.
The execution of the protocol should succeed if these encryptions are correct and pw0 = pwU. Recall that
the server Si knows αi such that α = α1 + α2 is the decryption key of the El Gamal encryption.

The main idea is depicted on Figure 5.9. For sake of readability, the participants which have a real
role in the computations are directly linked by arrows in the picture, but one should keep in mind that
all the participants (U, S1 and S2) only communicate with G, which then broadcasts all the messages.

Fig. 5.9 – Main idea of the construction (efficient protocol)

U
C0 = CSek(pw0; r0)

G
CDB

U = EGpk(pwU; sU)
sk = α1 + α2 (unknown)

S1

α1

S2
α2

hpEG
0 (α for CDB

U known?) hpEG
1

(α2 for CDB
U

known?)

hpEG
2

(α1 for CDB
U

known?)

hpCS
1 (r0 for C0 known?)

hpCS
2 (r0 for C0 known?)

In a classical SPHF-based two-party key-exchange between the user U and the gateway G, the gateway
would check whether C0 is a valid Cramer-Shoup encryption of pwU. Since here the password pwU is
unknown to the servers S1 and S2, this is done in our setting by two SPHF, using hpCS

1 (sent by S1) and
hpCS

2 (sent by S2), where the servers use the first term of the public encryption CDB
U (hsU pwU) in order to

cancel the unknown pwU.
In a classical SPHF-based two-party key-exchange between U and G, the client would also check

whether CDB
U is a valid El Gamal encryption of its password pw0, i.e. whether the gateway knows a

witness for its ciphertext CDB
U (sU in the usual constructions, α here). Since α is unknown to the gateway,

this is done in our setting by the combination of three SPHF, using hpEG
0 (sent by the client), hpEG

1 (sent
by S1) and hpEG

2 (sent by S2). These three SPHF allow the client and the servers to implicitly check that
the servers know α1 and α2 such that CDB

U can be decrypted (using the decryption key α = α1 + α2) to
the same password pw0 than the one encrypted in C0 sent by the client. Formally, the languages checked
are as follows:
• by the client:
CDB

U ∈ L0 = {C = (e, u) ∈ G2 | ∃α ∈ Zp such that h = gα and e/uα = pw0}
• by server Si (with respect to the client S0 and server Sj):
C0 ∈ Li,0 = {C = (u1, u2, e, v) ∈ G4 | ∃r ∈ Zp such that C = CSek(pwU; r) and CDB

U ∈ Li,j = {C =
(e, u) ∈ G2 | ∃αj ∈ Zp such that h = gαi+αj} and e/uαi+αj = pwU}

but they cannot be checked directly by a unique SPHF since the value pwU appearing in the languages
is unknown to the verifier Si. Rather, the server Si will use the first term of the public encryption CDB

U
(hsU pwU) in order to cancel this unknown pwU. To achieve this goal, we combine the five SPHF described
to globally ensure the correctness (each one remaining smooth and pseudo-randomness), as described
in [BCV16].

Chapter 6

Oblivious Transfer

6.1 Definition and Security Model
In an oblivious transfer scheme, we consider the interaction between a server, possessing a database
called DB containing k = 2d lines, and a user, willing to request the line s of the database in an oblivious
way. Informally, this implies that the user will gain no information about the other lines of the database,
and also that the server will obtain no information about the specific line the user wants to obtain.

The ideal functionality of an Oblivious Transfer (OT) protocol was given in [Can01, CKWZ13],
[ABB+13]. We recall it in Figure 6.1. We also give a version of this functionality [BCG16] in simple
UC [CCL15] in Figure 6.2. The main difference is that there is no need for public delayed outputs (waiting
for the adversary before delivering a message to a party).

The party Pi is the sender S, while the party Pj is the receiver R. The former is provided with a
database consisting of a set of k lines (m1, . . . ,mk), while the latter is querying a particular line ms (with
s ∈ {1, . . . , k}). Since there is no communication between them (the functionality deals with everything),
it automatically ensures the oblivious property on both sides (the sender does not learn which line was
queried, while the receiver does not learn any line other than Ls).

Fig. 6.1 – Ideal Functionality for 1-out-of-k Oblivious Transfer F(1,k)-OT

The functionality F(1,k)-OT is parameterized by a security parameter K. It interacts with an adver-
sary S and a set of parties P1,. . . ,Pn via the following queries:
• Upon receiving an input (Send, sid, ssid,Pi,Pj, (m1, . . . ,mk)) from party Pi, with

(m1, . . . ,mk) ∈ ({0, 1}K)k: record the tuple (sid, ssid,Pi,Pj , (m1, . . . ,mk)) and reveal (Send,
sid, ssid,Pi,Pj) to the adversary S. Ignore further Send-message with the same ssid from Pi.

• Upon receiving an input (Receive, sid, ssid,Pi,Pj, s) from party Pj, with s ∈ {1, . . . , k}:
record the tuple (sid, ssid,Pi,Pj , s), and reveal (Receive, sid, ssid,Pi,Pj) to the adversary S. Ignore
further Receive-message with the same ssid from Pj .

• Upon receiving a message (Sent, sid, ssid,Pi,Pj) from the adversary S: ignore the
message if (sid, ssid,Pi,Pj , (m1, . . . ,mk)) or (sid, ssid,Pi,Pj , s) is not recorded; otherwise send
(Sent, sid, ssid,Pi,Pj) to Pi and ignore further Sent-message with the same ssid from the adversary.

• Upon receiving a message (Received, sid, ssid,Pi,Pj) from the adversary S: ignore the
message if (sid, ssid,Pi,Pj , (m1, . . . ,mk)) or (sid, ssid,Pi,Pj , s) is not recorded; otherwise send
(Received, sid, ssid,Pi,Pj ,ms) to Pj and ignore further Received-message with the same ssid from
the adversary.

62 CHAPTER 6. OBLIVIOUS TRANSFER

Fig. 6.2 – Ideal Functionality for 1-out-of-k Oblivious Transfer F(1,k)-OT (simple UC)

The functionality F(1,k)-OT is parametrized by a security parameter K. It interacts with an adver-
sary S and a set of parties P1,. . . ,Pk via the following queries:
• Upon receiving an input (Send, sid, ssid,Pi,Pj, (m1, . . . ,mk)) from party Pi, with

(m1, . . . ,mk) ∈ ({0, 1}K)k: record the tuple (sid, ssid,Pi,Pj , (m1, . . . ,mk)) and reveal (Send,
sid, ssid,Pi,Pj) to the adversary S. Ignore further Send-message with the same ssid from Pi.

• Upon receiving an input (Receive, sid, ssid,Pi,Pj, s) from party Pj : ignore the message
if (sid, ssid,Pi,Pj , (m1, . . . ,mk)) is not recorded. Otherwise, reveal (Receive, sid, ssid,Pi,Pj) to
the adversary S and send (Received, sid, ssid,Pi,Pj ,ms) to Pj and ignore further Receive-message
with the same ssid from Pj .

6.2 Constructions

6.2.1 Three-round adaptively secure 1-out-of-k OT
In [ABB+13], we provide a generic construction of a three-round UC-secure 1-out-of-k OT (see page 185)
from any SPHF-friendly commitment (see definition in Section 4.3.3). The UC-security holds against
adaptive adversaries, assuming reliable erasures and a single global CRS. Besides decreasing the total
number of rounds with respect to existing OT schemes with similar security levels, our resulting protocol
also has a better communication complexity than the best known solution so far [CKWZ13]. Moreover,
our construction is more general and provides a solution for 1-out-of-k OT schemes while the solution in
[CKWZ13] only works for k = 2.

Generic Construction from SPHF-Friendly Commitments

In Figure 6.3, we describe a 3-round OT that is UC-secure against adaptive adversaries, and a 2-round
variant which is UC-secure against static adversaries. They can be built from any SPHF-friendly commit-
ment scheme, where Lt is the language of the commitments that open to t under the associated label `,
and from any IND-CPA encryption scheme E = (Setup,KeyGen,Encrypt,Decrypt) with plaintext size at
least K, and from any Pseudo-Random Generator (PRG) F with input size equal to plaintext size, and
output size equal to the size of the messages in the database. Notice the adaptive version can be seen as a
variant of the static version where the last flow is sent over a somewhat secure channel, as in [CKWZ13];
and the preflow and pk and c are used to create this somewhat secure channel.

Theorem 4 ([ABB+13]). The two Oblivous Transfer schemes described in Figure 6.3 are UC-secure in
the presence of adaptive adversaries and static adversaries respectively, assuming reliable erasures and
authenticated channels, as soon as the commitment scheme is SPHF-friendly.

Concrete Instantiation and Comparison

Using our commitment E2C along with its SPHF, one gets the protocol described in [ABB+13] (page 205),
where the number of bits of the commited value is d = dlog ke. The comparison of the communication
costs with other schemes (in particular [CKWZ13]) can be found in Figure 6.10 page 74.

6.2.2 Generic Construction
In [BC15], our generic construction of SPHF-friendly commitment scheme (see Section 4.3.3) allows us
to provide a generic way to obtain a UC-secure OT scheme from the same building blocks (CH and CCA
encryption) and three concrete instantiations from DDH, LWE and DCR. This construction is generic
and does not specifically induce pairings (as in [ABB+13]). Furthermore, our 3 instantiations come
straightforward from our generic framework (and [ABB+13] can be derived from it). The complexity
comparisons can be found in Figure 6.10 page 74.

6.2. CONSTRUCTIONS 63

Fig. 6.3 – UC-Secure 1-out-of-k OT from an SPHF-Friendly Commitment

CRS generation:
ρ

$← SetupCom(1K), param $← Setup(1K).

Pre-flow (for adaptive security only):
1. Pi generates a key pair (pk, sk) $← KeyGen(param) for E
2. Pi stores sk, completely erase random coins used by KeyGen, and sends pk to Pi

Index query on s:
1. Pj chooses a random value S, computes R ← F(S) and encrypts S under pk: c $← Encrypt(pk,S)

(for adaptive security only; for static security: c =⊥,R = 0)
2. Pj computes (C, δ) $← Com`(s) with ` = (sid, ssid,Pi,Pj)
3. Pj stores δ, completely erases S and random coins used by Com and Encrypt, and sends C and c

to Pi

Database input (m1, . . . ,mk):
1. Pi decrypts S← Decrypt(sk, c) and gets R ← F(S) (for static security: R = 0)
2. Pi computes hkt $← HashKG(Lt), hpt ← ProjKG(hkt,Lt, (`,C)),

Kt ← Hash(hkt,Lt, (`,C)), and Mt ← R ⊕Kt ⊕mt, for t = 1, . . . , k
3. Pi erases everything except (hpt,Mt)t=1,...,k and sends (hpt,Mt)t to Pj

Data recovery:
Upon receiving (hpt,Mt)t=1,...,k, Pj computes Ks ← ProjHash(hps,Ls, (`,C), δ) and gets
ms ← R ⊕Ks ⊕Ms.
Then Pj erases everything except ms and s.

Idea of the Construction

In [ABB+13], we give a way to construct a UC-secure oblivious transfer protocol from an SPHF-friendly
commitment, but we only give an instantiation of such an SPHF-friendly commitment in a DDH-based
setting, using Haralambiev commitment scheme [Har11] and Cramer-Shoup encryption scheme [CS02].

As shown in Section 4.3.3, we show in [BC15] how to construct, in a generic way, a UC-secure
SPHF-friendly commitment scheme in any setting, from a collision-resistant chameleon hash and a CCA-2
encryption scheme. This enables us to strengthen the generic part of the [ABB+13] construction, by
showing how to construct a UC-secure oblivious transfer from any collision-resistant chameleon hash and
CCA-2 encryption scheme.

In the protocol described in [ABB+13], from a high point of view1, the user sends to the server
a commitment of the number s of the line it is willing to obtain. The server then computes a pair of
keys for a smooth projective hash function (SPHF) adapted to the commitment. It keeps secret the hash
key and sends the projection key to the user, along with the hash value of all the lines of the database.
Thanks to the properties of the SPHF, the user will then be able to recover the particular line it wants,
using the public projection key and the secret random coins it used to create its committed value in the
first place. The properties of the SPHF also ensure that the server has no idea about the line the user
is requiring, and that the user cannot obtain any information from the hash values of the other lines of
DB, which are exactly the requirements of a secure OT.

We prove the security of this protocol in the UC framework, which implies the use of a commitment
with strong security properties. Indeed, the simulator of a user needs to be able to change its mind
about the line required, hence an equivocable commitment; and the simulator of a server also needs to
be able to extract the line required by the user, hence an extractable commitment. Unfortunately, as
explained in Section 4.3.1, combining both equivocability and extractability on the same commitment
scheme, especially if we require this commitment scheme to admit an SPHF, is a difficult task and requires
more security properties, namely it to be SPHF-friendly.

1Note that we omit here for the sake of simplicity the creation of a secure channel between the user and the server (this
is only needed in the adaptive version of the protocol).

64 CHAPTER 6. OBLIVIOUS TRANSFER

Generic Protocol

We denote by DB the database of the server containing k = 2d lines, and s the line requested by the user in
an oblivious way. We assume the existence of a Pseudo-Random Generator (PRG) F with input size equal
to the plaintext size, and output size equal to the size of the messages in the database and a IND-CPA
encryption scheme E = (Setupcpa,KeyGencpa,Encryptcpa,Decryptcpa) with plaintext size at least equal
to the security parameter. We also assume the existence of compatible CCA-encryption and chameleon
hash with the properties described in [BC15], and we generically obtain from them the SPHF-friendly
commitment scheme given in the paper.

We exactly follow the construction given in [ABB+13], giving the protocol presented on Figure 6.4.
The only difference is that we take advantage of the pre-flow to ask the server to generate the chameleon
hash verification keys (vk, vtk). For the sake of simplicity, we only give the version for adaptive security,
in which the server generates pk and c to create a somewhat secure channel (they would not be used in
the static version).

Fig. 6.4 – Adaptive UC-Secure 1-out-of-k OT from an SPHF-Friendly Commitment
[ABB+13]

CRS generation:
ρ = (ek, ck, param) $← SetupCom(1K), paramcpa

$← Setupcpa(1K).

Pre-flow:
1. Server generates a key pair (pk, sk) $← KeyGencpa(paramcpa) for E , stores sk and completely erases

the random coins used by KeyGen
2. Server generates a verification key pair (vk, vtk) $← VKeyGen(ck) for CH, stores vtk and completely

erases the random coins used by VKeyGen
3. Server sends pk and vk to User

Index query on s:
1. User chooses a random value J, computes R ← F(J) and encrypts J under pk:
c

$← Encryptcpa(pk, J)
2. User computes (C, δ) $← Com`(s) with ` = (sid, ssid,Pi,Pj)
3. User stores δ and completely erases J, R and the random coins used by Com and Encryptcpa and

sends C and c to Server

Database input (m1, . . . ,mk):
1. Server decrypts J← Decryptcpa(sk, c) and then R ← F(J)
2. For t = 1, . . . , k: Server computes hkt $← HashKG(Lt, param),

hpt ← ProjKG(hkt, (Lt, param), (`,C)), Kt ← Hash(hkt, (Lt, param), (`,C)),
and Mt ← R ⊕Kt ⊕mt

3. Server erases everything except (hpt,Mt)t=1,...,k and sends them over a secure channel

Data recovery:
Upon receiving (hpt,Mt)t=1,...,k, user computes Ks ← ProjHash(hpj , (Ls, param), (`,C), δ) and gets
ms ← R ⊕Ks ⊕Ms.

The oblivious transfer scheme described in Figure 6.4 is UC-secure in the presence of adaptive ad-
versaries, assuming reliable erasures and authenticated channels, as soon as the commitment scheme
is constructed from a secure publicly-verifiable chameleon hash and a secure CCA encryption scheme
admitting an SPHF on the language of valid ciphertexts.

Instanciations

Instanciation Based on Cramer-Shoup Encryption (DDH). We give in the paper a construction
based on DDH. The commitment revisits the one used in [ABB+13] but we remove the pairing used
in it thanks to the methods described in the paper, by generating vtk on the fly. For the chameleon

6.3. ADAPTIVE VERSION OF THE PROTOCOL 65

hash, we use a CDH-based Pedersen encryption scheme. However, as such CH is not designated verifier,
we transform it in an Haralambiev way [Har11, Section 4.1.4]. For the CCA encryption we rely on an
extended version of Cramer-Shoup encryption.

Instanciation Based on Paillier Encryption (Composite Residuosity). The solution is pretty
straightforward on how to instantiate the previous scheme while relying on a DCR assumption. This
simply requires the generic transformation from any native DDH scheme into a DCR based one presented
in [HO09].

It is interesting to note that this boils down to using the Paillier-based CCA encryption presented in
[CS02], in addition to a DCR-based Chameleon Hash encryption.

Instanciation Based on Dual Regev Encryption (LWE). We present in the paper a Chameleon
Hash constructed from the SIS assumption, following the chameleon hash given in [CHKP10] but using
the Micciancio-Peikert trapdoor generation [MP12].

Katz and Vaikuntanathan proposed in [KV09] a labelled CCA-Encryption with an approximate SPHF.
In order to achieve the 2d-labelled, one simply has to use the same label in all the encryptions, and then
add a one-time signature, built for example by using the previous chameleon hash.

The approximate SPHF presented in [KV09] is sufficient for our application with a small modification
to our generic framework. Indeed, instead of obtaining two identical values for Hash and ProjHash, the
correctness only guarantees that for a well-formed ciphertext, those two values have a small Hamming
distance, hence xoring the two values together leads to a string with low Hamming weight. Assuming
the line in the database is first encoded using an Error Correcting Code, and then masked by the server
using the Hash value, the user can then use his projective hash value to recover a word near a valid
encoding for the required entry, and then decoding using the Error Correcting Code as the remaining
noise is small, he will recover the valid string. On invalid lines, the noise is seemingly random, hence
beyond the decoding limit of any possible code.

6.2.3 Improving the Complexity
As already seen in Section 5.2.2 for PAKE schemes, we show in [BC16] that the UC-commitment
from [FLM11] (while not fitting with the methodology of traditional SPHF from [ABB+13]), is compat-
ible with SP-SPHF and can be used to build UC protocols.

We provide a construction of a three-round UC-secure 1-out-of-k OT with adaptive security based on
MDDH (page 262). Assuming reliable erasures and a single global CRS, we show that our instantiation
is UC-secure against adaptive adversaries. Besides having a lesser number of rounds than most recent
existing OT schemes with similar security levels, our resulting protocol also has a better communication
complexity than the best known solutions so far (see Figure 6.10 page 74).

We denote by DB the database of the server containing k = 2d lines, and s the line requested by the
user in an oblivious way. We assume the existence of a Pseudo-Random Generator (PRG) F with input
size equal to the plaintext size, and output size equal to the size of the messages in the database and
a IND-CPA encryption scheme E = (Setupcpa,KeyGencpa,Encryptcpa,Decryptcpa) with plaintext size at
least equal to the security parameter. The commitment used is the variant of [FLM11] described above.
It is denoted as Com` in the description of the scheme, with ` being a label. Note that sid denotes the
session identifier, ssid the subsession identifier and cid the commitment identifier and that the combination
(sid, cid) is globally unique, as in [HMQ04, FLM11].

We present our construction in Figure 6.5, following the global framework presented in [ABB+13],
for an easier efficiency comparison. The proof of the following result can be found in the paper, page 274.

Theorem 5 ([BC16]). The oblivious transfer scheme described in Figure 6.5 is UC-secure in the presence
of adaptive adversaries, assuming reliable erasures and authenticated channels.

6.3 Adaptive version of the Protocol
6.3.1 Definition and (New) Security Model
The classical OT constructions based on the commitment/SPHF paradigm (with so-called implicit de-
commitment), among the latest in the UC framework [CKWZ13], [ABB+13, BC15], require the server

66 CHAPTER 6. OBLIVIOUS TRANSFER

Fig. 6.5 – Adaptive UC-Secure 1-out-of-k OT from an SPHF-Friendly Commitment [BC16]

CRS generation:
crs $← SetupCom(1K), paramcpa

$← Setupcpa(1K).

Pre-flow:
1. Server generates a key pair (pk, sk) $← KeyGencpa(paramcpa) for E , stores sk and completely

erases the random coins used by KeyGen
2. Server sends pk to User

Index query on s:
1. User chooses a random value J, computes S← F(J) and encrypts J under pk:
c

$← Encryptcpa(pk, J)
2. User computes ([~C]1, [~R]2, [~Π]1) $← Com`(crs, s, sid, cid,Pi,Pj) with ` = (sid, ssid,Pi,Pj)
3. User stores [~Π]1 and completely erases J and the random coins used by Com and Encryptcpa

and sends [~C]1, [~R]2 and c to Server

Database input (m1, . . . ,mk):
1. Server decrypts J← Decryptcpa(sk, c) and computes S← F(J)
2. For t = 1, . . . , k: Server computes hkt $← HashKG(Lt), hpt ← ProjKG(hkt,Lt),

Kt ← Hash(hkt, (Lt, (`, [~C]1, [~R]2))) and Mt ← S⊕Kt ⊕mt

3. Server erases everything except (hpt,Mt)t=1,...,k and sends them over a secure channel

Data recovery:
Upon receiving (hpt,Mt)t=1,...,k, User computes Ks ← ProjHash(hpj , (Ls, `, [~C]1, [~R]2), [~Π]1) and
gets ms ← S⊕Ks ⊕Ms.

to send an encryption of the complete database for each line required by the user (thus O(k) each time).
We give in [BCG16] a protocol (page 215) requiring O(log(k)) for each line (except the first one, still
in O(k)), in the UC framework with adaptive corruptions under classical assumptions (MDDH). This
protocol builds upon the one we give in [BC15], which is the more efficient known scheme secure in the
UC framework, and we use ideas from [GH07] to make it adaptive.

Using implicit decommitment in the UC framework implies a very strong commitment primitive (for-
malized as SPHF-friendly commitments in [ABB+13]), which is both extractable and equivocable. Our
idea is here to split these two properties by using on the one hand an equivocable commitment and
on the other hand an (extractable) CCA encryption scheme by generalizing the way to access a line in
the database. But this is infeasible with simple line numbers. Indeed, we suggest here not to consider
anymore the line numbers as numbers in {1, . . . , k} but rather to “encode” them (the exact encoding will
depend on the protocol): For every line t, a word Wt in the language Lt will correspond to a represen-
tation of line t. This representation must be publicly verifiable, in the sense that anyone can associate t
to a word Wt. We formalize this in the following definition of oblivious transfer2, given without loss of
generality3 (the classical notion of OT being easily captured using Lt = {t}).

Languages

The language L ⊂ X used in the definition of an SPHF should be a hard-partitioned subset of X, i.e. it is
computationally hard to distinguish a random element in L from a random element not in L (see formal
definition in [GL03, AP06]). The languages used here are more complex and should fulfill the following
properties4:

2The adaptive version only implies that the database (m1, . . . , mk) is sent only once in the interaction, while the user
can query several lines (i.e. several words), in an adaptive way.

3This formalization furthermore encompasses the variants of OT, such as conditioned OT, where a user accesses a line
only if he knows a credential for this line.

4We here mainly consider languages which are hard-partitioned subsets, for instance, encryptions of publicly verifiable
languages.

6.3. ADAPTIVE VERSION OF THE PROTOCOL 67

• Publicly Verifiable: Given a word x in X, anyone should be able to decide in polynomial time
whether x ∈ L or not.

• Self-Randomizable: Given a word in the language, anyone should be able to sample a new word in
the language5, and the distribution of this resampling should be indistinguishable from an honest
distribution. This will be used in order to prevent an adversary, or the authority in charge of
distributing the words, to learn which specific form of the word was used by the user.

In case we consider several languages (L1, . . . ,Ln), we also assume it is a Trapdoor Collection of
Languages: It is computationally hard to sample an element in L1 ∩ · · · ∩ Ln, except if one possesses a
trapdoor tk (without the knowledge of the potential secret keys)6. For instance, if for all i, Li is the
language of the equivocable commitments on words in an inner language L̃i = {i} (as we will consider
for OT), the common trapdoor key can be the equivocation trapdoor.

Depending on the applications, we can assume a Keyed Language, which means that it is set by a
trusted authority, and that it is hard to sample fresh elements from scratch in the language without the
knowledge of a secret language key skL. In this case, the authority is also in charge of giving a word in
the language to the receiver.

In case the language is keyed, we assume it is also a Trapdoor Language: We assume the existence of
a trapdoor tkL allowing a simulator to sample an element in L (without the knowledge of the potential
secret key skL). For instance, for a language of valid Waters signatures of a message M (as we will
consider for OSBE), one can think of skL as being the signing key, whereas the trapdoor tkL can be the
discrete logarithm of h in basis g.7

Security Model

In an OT protocol, a server S possesses a database of k lines (m1, . . . ,mk) ∈ ({0, 1}K)k. A user U will be
able to recover ms (in an oblivious way) as soon as he owns a word Ws ∈ Ls. The languages (L1, . . . ,Lk)
will be assumed to be a trapdoor collection of languages, publicly verifiable and self-randomizable. As
we consider simulation-based security (in the UC framework), we allow a simulated setup SetupT to be
run instead of the classical setup Setup in order to allow the simulator to possess some trapdoors. Those
two setup algorithms should be indistinguishable.

Definition 3 (Oblivious Transfer). An OT scheme is defined by five algorithms (Setup,KeyGen,DBGen,
Samp,Verif), along with an interactive protocol Protocol〈S,U〉:
• Setup(1K), where K is the security parameter, generates the global parameters param, among which
the number k;

or SetupT(1K), where K is the security parameter, additionally allows the existence8 of a trapdoor tk
for the collection of languages (L1, . . . ,Lk).

• KeyGen(param,K) generates, for all t ∈ {1, . . . , k}, the description of the language Lt (as well as
the language key skLt if need be). If the parameters param were defined by SetupT, this implicitly
also defines the common trapdoor tk for the collection of languages (L1, . . . ,Lk).

• Samp(param) or Samp(param, (skLt
)t∈{1,...,k}) generates a word Wt ∈ Lt;

• Verift(Wt,Lt) checks whether Wt is a valid word in the language Lt. It outputs 1 if the word is
valid, 0 otherwise;

• Protocol〈S((L1, . . . ,Lk), (m1, . . . ,mk)),U((L1, . . . ,Lk),Ws)〉 between the server S with the private
database (m1, . . . ,mk) and corresponding languages (L1, . . . ,Lk), and the user U with the same
languages and the word Ws, proceeds as follows. If the algorithm Verifs(Ws,Ls) returns 1, then U
receives ms, otherwise it does not. In any case, S does not learn anything.

The ideal functionality of an Oblivious Transfer (OT) protocol recalled in Figure 6.1 was given
in [Can01, CKWZ13], [ABB+13], and an adaptive version in [GH08]. We here combine them and
rewrite it in simple UC and using our language formalism (instead of directly giving a number line s to

5It should be noted that this property is not incompatible with the potential secret key of the language in case it is
keyed (see below).

6This implicitly means that the languages are compatible, in the sense that one can indeed find a word belonging to all
of them.

7As another example, one may think of more expressive languages which may not rely directly on generators fixed by
the CRS. In this case, one can assume that the CRS contains parameters for an encryption and an associated NIZK proof
system. The description of such a language is thus supplemented with an encryption of the language trapdoor, and a non-
interactive zero-knowledge proof that the encrypted value is indeed a trapdoor for the said language. Using the knowledge
of the decryption key, the simulator is able to recover the trapdoor.

8The specific trapdoor will depend on the languages and be computed in the KeyGen algorithm.

68 CHAPTER 6. OBLIVIOUS TRANSFER

the functionality, the user will give it a word Ws ∈ Ls). The resulting functionality FL
OT is given in

Figure 6.6. Recall that there is no need to give an explicit description of the corruptions in the simple
version of UC [CCL15].

Fig. 6.6 – Ideal Functionality for (Adaptive) Oblivious Transfer FL
OT

The functionality FL
OT is parametrized by a security parameter K and a set of languages (L1, . . . ,Lk)

along with the corresponding public verification algorithms (Verif1, . . . ,Verifk). It interacts with an
adversary S and a set of parties P1, . . . ,Pn via the following queries:
• Upon receiving an input (NewDataBase, sid, ssid,Pi,Pj, (m1, . . . ,mk)) from party Pi,
with mt ∈ {0, 1}K for all t: record the tuple (sid, ssid,Pi,Pj , (m1, . . . ,mk)) and reveal
(Send, sid, ssid,Pi,Pj) to the adversary S. Ignore further NewDataBase-message with the same
ssid from Pi.

• Upon receiving an input (Receive, sid, ssid,Pi,Pj,Ws) from party Pj : ignore the message
if (sid, ssid,Pi,Pj , (m1, . . . ,mk)) is not recorded. Otherwise, reveal (Receive, sid, ssid,Pi,Pj) to
the adversary S and send (Received, sid, ssid,Pi,Pj ,m′s) to Pj where m′s = ms if Verifs(Ws,Ls)
returns 1, and m′s = ⊥ otherwise.
(Non-Adaptive case: Ignore further Receive-message with the same ssid from Pj.)

6.3.2 High-Level Idea of the Construction
Our construction in [BCG16] (pages 216 to 221) builds upon the UC-secure OT scheme from [BC15],
with ideas inspired from [GH07], who propose a neat framework allowing to achieve adaptive Oblivious
Transfer (but not in the UC framework). Their construction is quite simple: It requires a blind Identity-
Based Encryption, in other words, an IBE scheme in which there is a way to query for a user key
generation without the authority (here the server) learning the targeted identity (here the line in the
database). Once such a Blind IBE is defined, one can conveniently obtain an oblivious transfer protocol
by asking the database to encrypt (once and for all) each line for an identity (the t-th line being encrypted
for the identity t), and having the user do a blind user key generation query for identity s in order to
recover the key corresponding to the line s he expects to learn.

This approach is round-optimal: After the database preparation, the first flow is sent by the user
as a commitment to the identity s, and the second one is sent by the server with the blinded expected
information. But several technicalities arise because of the UC framework we consider here. For instance,
the blinded expected information has to be masked, we do this here thanks to an SPHF. Furthermore,
instead of using simple line numbers as identities, we have to commit to words in specific languages (so
as to ensure extractability and equivocability) as well as to fragment the IBE keys into bits in order
to achieve O(log k) in both flows. This allows us to achieve the first UC-secure adaptive OT protocol
allowing adaptive corruptions.

Following [BKP14], we recall in the paper the definitions, notations and security properties for an
IBE scheme, seen as an Identity-Based Key Encapsulation (IBKEM) scheme. We continue to follow the
KEM formalism by adapting the definition of a Blind IBE scheme given in [GH07] to this setting.

Definition 4 (Blind Identity-Based Key Encapsulation Scheme). A Blind Identity-Based Key Encapsula-
tion scheme BlindIBKEM consists of four PPT algorithms (Gen,BlindUSKGen,Enc,Dec) with the following
properties:
• Gen, Enc and Dec are defined as for a traditional IBKEM scheme.
• BlindUSKGen(〈(S,msk)(U , id, `;ρ)〉) is an interactive protocol, in which an honest user U with iden-
tity id ∈ ID obtains the corresponding user secret key usk[id] from the master authority S or outputs
an error message, while S’s output is nothing or an error message (` is a label and ρ the random-
ness).

Defining the security of a BlindIBKEM requires two additional properties, stated as follows (see [GH07,
pages 6 and 7] for the formal security games):

1. Leak-free Secret Key Generation (called Leak-free Extract for Blind IBE security in the original
paper): A potentially malicious user cannot learn anything by executing the BlindUSKGen protocol

6.4. EXTENSION TO OBLIVIOUS LANGUAGE-BASED ENVELOPE 69

with an honest authority which he could not have learned by executing the USKGen protocol with
an honest authority; Moreover, as in USKGen, the user must know the identity for which he is
extracting a key.

2. Selective-failure Blindness: A potentially malicious authority cannot learn anything about the
user’s choice of identity during the BlindUSKGen protocol; Moreover, the authority cannot cause
the BlindUSKGen protocol to fail in a manner dependent on the user’s choice.

For our applications, we only need a weakened property for blindness:9
3. Weak Blindness: A potentially malicious authority cannot learn anything about the user’s choice

of identity during the BlindUSKGen protocol.
We show in the paper how to obtain a BlindIBKEM scheme from any IBKEM scheme.

6.3.3 Generic Construction
We derive from here our generic construction of OT (depicted in Figure 6.7). A pairing-based instantiation
is given in the paper (page 221). We additionally assume the existence of a Pseudo-Random Generator
(PRG) F with input size equal to the plaintext size, and output size equal to the size of the messages in
the database and an IND-CPA encryption scheme E = (Setupcpa,KeyGencpa,Encryptcpa,Decryptcpa) with
plaintext size at least equal to the security parameter. First, the owner of the database generates the
keys for such an IBE scheme, and encrypts each line t of the database for the identity t. Then when a
user wants to request a given line, he runs the blind user key generation algorithm and recovers the key
for the expected given line. This leads to the following security result, proven in the paper (page 236).

Theorem 6 ([BCG16]). Assuming that BlindUSKGen is constructed as described above, the adaptive
Oblivious Transfer protocol described in Figure 6.7 UC-realizes the functionality FL

OT presented in Fig-
ure 6.6 with adaptive corruptions assuming reliable erasures.

6.4 Extension to Oblivious Language-Based Envelope
The previous construction opens new efficient applications to the already known Oblivious-Transfer pro-
tocols. But what happens when someone wants some additional access control by requesting extra prop-
erties, like if the user is only allowed to ask two lines with the same parity bits, the user can only request
lines for whose number has been signed by an authority, or even finer control provided through creden-
tials? In [BCG16], we also propose to develop a new primitive, that we call Oblivious Language-Based
Envelope (OLBE, see page 223). The idea generalizes that of Oblivious Transfer and OSBE (recalled in
the paper) for p messages (with p polynomial in the security parameter K).

6.4.1 Definition of Oblivious Language-Based Envelope
In such a protocol, a sender S wants to send one or several private messages (up to p 6 k) among
(m1, . . . ,mk) ∈ ({0, 1}K)k to a recipient R in possession of a word W = (Wt1 , . . . ,Wtp) such that some of
the words Wts may belong to the corresponding language Lts . More precisely, the receiver gets each mts

as soon as Wts ∈ Lts with the requirement that he gets at most p messages. In such a scheme, the
languages (L1, . . . ,Lk) are assumed to be a trapdoor collection of languages, publicly verifiable and
self-randomizable.

The collections of words can be a single certificate/signature on a message M (encompassing OSBE,
with k = p = 1), a password, a credential, a line number (encompassing 1-out-of-k oblivious transfer10,
with p = 1), q line numbers (encompassing q-out-of-k oblivious transfer, with p = q), etc. (see the paper
for detailed examples). Following the definitions for OSBE recalled in the paper and given in [LDB03,
BPV12], we give the following definition for OLBE. As we consider simulation-based security (in the UC
framework), we allow a simulated setup SetupT to be run instead of the classical setup Setup in order to
allow the simulator to possess some trapdoors. Those two setup algorithms should be indistinguishable.

9Two things to note: First, Selective Failure would be considered as a Denial of Service in the Oblivious Transfer setting.
Then, we do not restrict ourselves to schemes where the blindness adversary has access to the generated user keys, as
reliable erasures in the OT protocol provide us a way to forget them before being corrupted (otherwise we would need to
use a randomizable base IBE).

10Even if, as explained in the former section, we would rather consider equivocable commitments of line numbers than
directly line numbers, in order to get adaptive UC security.

70 CHAPTER 6. OBLIVIOUS TRANSFER

Fig. 6.7 – Adaptive UC-Secure 1-out-of-k OT from a Fragmented Blind IBE

CRS generation:
crs $← SetupCom(1K), paramcpa

$← Setupcpa(1K).

Database Preparation:
1. Server runs Gen(K), to obtain mpk,msk.
2. For each line t, he computes (Dt,Kt) = Enc(mpk, t), and Lt = Kt ⊕DB(t).
3. He also computes usk[t, b] for all t = 1 . . . , k and b = 0, 1 and erases msk.
4. Server generates a key pair (pk, sk) $← KeyGencpa(paramcpa) for E , stores sk and completely erases

the random coins used by KeyGen.
5. He then publishes mpk, {(Dt,Lt)}t, pk.

Index query on s:
1. User chooses a random value S, computes R ← F(S) and encrypts S under pk:
c

$← Encryptcpa(pk,S)
2. User computes C with the first flow of BlindUSKGen(〈(S,msk)(U , s, `;ρ)〉) with ` = (sid, ssid,U ,S).
3. User stores the random ρs = {ρ∗} needed to open C to s, and completely erases the rest, including

the random coins used by Encryptcpa and sends (c, C) to the Server

IBE input msk:
1. Server decrypts S← Decryptcpa(sk, c) and computes R ← F(S)
2. Server runs the second flow of BlindUSKGen(〈(S,msk)(U , s, `;ρ)〉) on C.
3. Server erases every new value except (hpt,b)t,b, (busk[t, b])t,b,Z⊕R and sends them over a secure

channel.

Data recovery:
1. Uusing ρs, user then recovers usk[s] from the values received from the server.
2. He then recovers the expected information with Dec(usk[s], s,Ds)⊕Ls and erases everything else.

Definition 5 (Oblivious Language-Based Envelope). An OLBE scheme is defined by four algorithms
(Setup,KeyGen,Samp,Verif), and one interactive protocol Protocol〈S,R〉:
• Setup(1K), where K is the security parameter, generates the global parameters param, among which
the numbers k and p;

or SetupT(1K), where K is the security parameter, additionally allows the existence11 of a trapdoor tk
for the collection of languages (L1, . . . ,Lk).

• KeyGen(param,K) generates, for all t ∈ {1, . . . , k}, the description of the language Lt (as well as
the language key skLt

if need be). If the parameters param were defined by SetupT, this implicitly
also defines the common trapdoor tk for the collection of languages (L1, . . . ,Lk).

• Samp(param, I) or Samp(param, I, (skLs
)s∈I) such that I ⊂ {1, . . . , k} and |I| = p, generates a list of

words (Ws)s∈I such that Ws ∈ Ls for all s ∈ I;
• Verifs(Ws,Ls) checks whether Ws is a valid word in the language Ls. It outputs 1 if the word is
valid, 0 otherwise;

• Protocol〈S((L1, . . . ,Lk), (m1, . . . ,mk)),R((L1, . . . ,Lk), (Ws)s∈I)〉 between the sender S with private
messages (m1, . . . ,mk) and corresponding languages (L1, . . . ,Ln), and the recipient R with the same
languages and the words (Ws)s∈I with I ⊂ {1, . . . , k} and |I| = p, proceeds as follows. For all s ∈ I,
if the algorithm Verifs(Ws,Ls) returns 1, then R receives ms, otherwise it does not. In any case,
S does not learn anything.

6.4.2 Security Properties and Ideal Functionality of OLBE
Since we aim at proving the security in the universal composability framework, we now describe the
corresponding ideal functionality (depicted in Figure 6.8). However, in order to ease the comparison with
an OSBE scheme, we first list the security properties required, following [LDB03] and [BPV12]:

11The specific trapdoor will depend on the languages and be computed in the KeyGen algorithm.

6.4. EXTENSION TO OBLIVIOUS LANGUAGE-BASED ENVELOPE 71

• correct: the protocol actually allows R to learn (ms)s∈I, whenever (Ws)s∈I are valid words of the
languages (Ls)s∈I, where I ⊂ {1, . . . , k} and |I| = p;

• semantically secure (sem): the recipient learns nothing about the input ms of S if it does not use
a word in Ls. More precisely, if S0 owns ms,0 and S1 owns ms,1, the recipient that does not use a
word in Ls cannot distinguish between an interaction with S0 and an interaction with S1 even if
the receiver has seen several interactions 〈S((L1, . . . ,Lk), (m1, . . . ,mk)),R((L1, . . . ,Lk), (W′t)t∈I)〉
with valid words W′s ∈ Ls, and the same sender’s input ms;

• escrow free (oblivious with respect to the authority): the authority corresponding to the language Ls
(owner of the language secret key skLs – if it exists), playing as the sender or just eavesdropping,
is unable to distinguish whether R used a word Ws in the language Ls or not. This requirement
also holds for anyone holding the trapdoor key tk.

• semantically secure w.r.t. the authority (sem∗): after the interaction, the trusted authority (owner
of the language secret keys if they exist) learns nothing about the values (ms)s∈I from the transcript
of the execution. This requirement also holds for anyone holding the trapdoor key tk.

Moreover, the Setups should be indistinguishable and it should be infeasible to find a word belonging
to two or more languages without the knowledge of tk.

Fig. 6.8 – Ideal Functionality for Oblivious Language-Based Envelope FOLBE

The functionality FOLBE is parametrized by a security parameter K and a set of languages
(L1, . . . ,Lk) along with the corresponding public verification algorithms (Verif1, . . . ,Verifk). It in-
teracts with an adversary S and a set of parties P1,. . . ,Pn via the following queries:
• Upon receiving an input (Send, sid, ssid,Pi,Pj, (m1, . . . ,mk)) from party Pi, with mt ∈
{0, 1}K for all t: record the tuple (sid, ssid,Pi,Pj , (m1, . . . ,mk)) and reveal (Send, sid, ssid,Pi,Pj)
to the adversary S. Ignore further Send-message with the same ssid from Pi.

• Upon receiving an input (Receive, sid, ssid,Pi,Pj, (Ws)s∈I) where I ⊂ {1, . . . , k}
and |I| = p from party Pj : ignore the message if (sid, ssid,Pi,Pj , (m1, . . . ,mk)) is not
recorded. Otherwise, reveal (Receive, sid, ssid,Pi,Pj) to the adversary S and send (Received,
sid, ssid,Pi,Pj , (m′s)s∈I) to Pj where m′s = ms if Verifs(Ws,Ls) returns 1, and m′s = ⊥ otherwise.
Ignore further Received-message with the same ssid from Pj .

The ideal functionality is parametrized by a set of languages (L1, . . . ,Lk). Since we show in the
paper that one can see OSBE and OT as special cases of OLBE, it is inspired from the oblivious transfer
functionality given in [Can01, CKWZ13], [ABB+13] in order to provide a framework consistent with
works well-known in the literature. As for oblivious transfer (Figure 6.6), we adapt them to the simple
UC framework for simplicity (this enables us to get rid of Sent and Received queries from the adversary
since the delayed outputs are automatically considered in this simpler framework: We implicitly let the
adversary determine if it wants to acknowledge the fact that a message was indeed sent). The first step
for the sender (Send query) consists in telling the functionality he is willing to take part in the protocol,
giving as input his intended receiver and the messages he is willing to send (up to p messages). For
the receiver, the first step (Receive query) consists in giving the functionality the name of the player he
intends to receive the messages from, as well as his words. If the word does belong to the language, the
receiver recovers the sent message, otherwise, he only gets a special symbol ⊥.

6.4.3 Generic UC-Secure Instantiation of OLBE with Adaptive Security
For the sake of clarity, we now concentrate on the specific case where p = 1. This is the most classical
case in practice, and suffices for both OSBE and 1-out-of-k OT. In order to get a generic protocol in which
p > 1, one simply has to run p protocols in parallel. This modifies the algorithms Samp and Verify as
follows: Samp(param, {s}) or Samp(param, {s}, {skLs

}) generates a word W = Ws ∈ Ls and Verift(W,Lt)
checks whether W is a valid word in Lt.

Let us introduce our protocol OLBE: we will call R the receiver and S the sender. If R is an honest
receiver, then he knows a word W = Ws in the language Ls. If S is an honest sender, then he wants
to send up a message among (m1, . . . ,mk) ∈ ({0, 1}K)k to R. We assume the languages Lt to be self-
randomizable and publicly verifiable. We also assume the collection of languages (L1, . . . ,Lk) possess a
trapdoor, that the simulator is able to find by programming the common reference string. As recalled

72 CHAPTER 6. OBLIVIOUS TRANSFER

Fig. 6.9 – UC-Secure OLBE for One Message (Secure Against Adaptive Corruptions)

CRS generation:
param $← Setup(1K), paramcca

$← Setupcca(1K), paramcpa
$← Setupcpa(1K).

Pre-flow:
1. Sender generates a key pair (pk, sk) $← KeyGencpa(paramcpa) for E , stores sk and completely erases

the random coins used by KeyGen.
2. Sender sends pk to User.

Flow From the Receiver R:
1. User chooses a random value J, computes R ← F(J) and encrypts J under pk:
c

$← Encryptcpa(pk, J).
2. User computes C $← Encrypt`cca(W; r) with ` = (sid, ssid,R,S).
3. User completely erases J and the random coins used by Encryptcpa and sends C and c to Sender.

He also checks the validity of his words: the receiver only keeps the random coins used by
Encryptcca for the t such that Verift(W,Lt) = 1 (since he knows they will be useless otherwise).

Flow From the Sender S:
1. Sender decrypts J← Decryptcpa(sk, c) and then R ← F(J).
2. For all t ∈ {1, . . . , k}, sender computes hkt = HashKG(`,LC,t, param),

hpt = ProjKG(hkt, `, (LC,t, param)), vt = Hash(hkt, (LC,t, param), (`,C)), Qt = mt ⊕ KDF(vt)⊕ R.
3. Sender erases everything except (Qt, hpt)t∈{1,...,k} and sends them over a secure channel.

Message recovery:
Upon receiving (Qt, hpt)t∈{1,...,k}, R can recover ms by computing
ms = Qs ⊕ ProjHash(hpi, (LC,s, param), (`,C), r)⊕ R.

previously, this trapdoor enables him to find a word lying in the intersection of the k languages. This
should be infeasible without the knowledge of the trapdoor. Intuitively, this allows the simulator to
commit to all languages at once, postponing the time when it needs to choose the exact language he
wants to bind to. On the opposite, if a user was granted the same possibilities, this would prevent the
simulator to extract the chosen language.

We assume the existence of a labeled CCA-encryption scheme E = (Setupcca,KeyGencca,Encrypt`cca,
Decrypt`cca) compatible with an SPHF onto a set G. In the KeyGen algorithm, the description of the lan-
guages (L1, . . . ,Lk) thus implicitly defines the languages (LC,1, . . . ,LC,k) of CCA-encryptions of elements
of (L1, . . . ,Lk). We additionally use a key derivation function KDF to derive a pseudo-random bit-string
K ∈ {0, 1}K from a pseudo-random element v ∈ G. One can use the Leftover-Hash Lemma [HILL99],
with a random seed defined in param during the global setup, to extract the entropy from v, then fol-
lowed by a pseudo-random generator to get a long enough bit-string. Many uses of the same seed in the
Leftover-Hash Lemma just lead to a security loss linear in the number of extractions. We also assume the
existence of a Pseudo-Random Generator (PRG) F with input size equal to the plaintext size, and output
size equal to the size of the messages in the database and an IND-CPA encryption scheme E = (Setupcpa,
KeyGencpa,Encryptcpa,Decryptcpa) with plaintext size at least equal to the security parameter.

We follow the ideas of the oblivious transfer constructions given in [ABB+13, BC15], giving the
protocol presented on Figure 6.9. For the sake of simplicity, we only give the version for adaptive security,
in which the sender generates a public key pk and ciphertext c to create a somewhat secure channel (they
would not be used in the static version). The proof of the following result is given in the paper, page 239.

Theorem 7 ([BCG16]). The oblivious language-based envelope scheme described in Figure 6.9 is UC-
secure in the presence of adaptive adversaries, assuming reliable erasures, an IND-CPA encryption scheme,
and an IND-CCA encryption scheme admitting an SPHF on the language of valid ciphertexts of elements
of Lt for all t, as soon as the languages are self-randomizable, publicly-verifiable and admit a common
trapdoor.

6.5. FROM A UC-SECURE PAKE TO A UC-SECURE OT 73

6.4.4 Oblivious Primitives Obtained by the Framework
Classical oblivious primitives such as Oblivious Transfer (both 1-out-of-k and q-out-of-k) or Oblivi-
ous Signature-Based Envelope directly lie in this framework and can be seen as examples of Oblivious
Language-Based Envelope. We provide in the paper details about how to describe the languages and
choose appropriate smooth projective hash functions to readily achieve current instantiations of Oblivi-
ous Signature-Based Envelope or Oblivious Transfer from our generic protocol (pages 226 and 242). The
framework also enables us to give a new instantiation of Access Controlled Oblivious Transfer under
classical assumptions (page 245). In such a primitive, the user does not automatically gets the line he
asks for, but has to prove that he possesses one of the credential needed to access this particular line.

For the sake of simplicity, all the instantiations given are pairing-based but techniques explained in
[BC15] could be used to rely on other families of assumptions, like decisional quadratic residue or LWE.

6.5 From a UC-Secure PAKE to a UC-Secure OT
6.5.1 Introduction
In [BCG17], we propose a generic transformation from Password-Authenticated Key Exchange to Obliv-
ious Transfer. As the reverse transformation was already studied in [CDVW12], this allows to study one
protocol for the other. Our framework allows to transform a UC-secure PAKE into a UC-secure OT with
the same level of security (for instance resistance to adaptive corruptions).

Our Construction

We choose to focus on the transformation of a 2-round PAKE to a 3-round OT since this kind of PAKE is
the most commonly encountered and the most efficient one. Furthermore, this allows us to give a generic
optimization of our transformation in this specific case, exploiting the fact that the server does not need
to hide his “password”, since his password is a (public) number of line in the database. Note that our
generic transformation could allow to transform an nr-round PAKE into an (nr + 1)-round OT, but the
optimization would then have to be tailored to the considered protocol.

After showing an application of our technique on our PAKE scheme from [ABB+13], which allows us
to immediately recover the associated OT scheme given in our article, we show that our transformation
also applies to the PAKE scheme from [JR15], allowing us to give a nearly optimal OT scheme.

Note that our technique works with every possible PAKE scheme, be they elliptic-curve-based or not.
Furthermore, also note that it also allows to transform a BPR-secure PAKE [BPR00] into an OT secure
in a game-based security model. In order to illustrate these last two points, we apply in the paper our
framework to a (non-UC) secure lattice-based PAKE scheme proposed by [KV09], giving us a (non-UC)
secure lattice-based OT scheme.

Comparison with other existing OT schemes

The table given in Figure 6.10 shows the costs of various known OT schemes based on elliptic curves.
While Barreto-Naehrig curves [BN06] are considered less and less secure for efficient parameters, we

consider for the asymptotic scaling that elements in G2 are smaller than those in G1, hence, we switched
some elements to G2 for big enough values of k.

Thanks to the use of a QA-NIZK technique, we manage to get rid of the extra logarithm overhead. And
we end up being approximately four times more efficient than existing solutions without this overhead.

6.5.2 Generic Construction of a UC-Secure OT From a UC-Secure PAKE
There is a trend in proven cryptography that consists in finding the link between primitives and show
which primitives can be used to build other ones. A well-known example is the transformation of an IBE

12It should be noted that our [BC15] OT does not rely on pairings. Classical implementations suggest that the elements
in one of the groups in our scheme will be at least twice as big as those from the non-pairing curve, which would give
roughly the same efficiency between both schemes in the 1-out-of-2 case, with an edge for the [BC15] construction in term
of computational requirements. However, the scaling in this paper is then worse when increasing the number of lines (see
the 1-out-of-k case).

74 CHAPTER 6. OBLIVIOUS TRANSFER

Fig. 6.10 – Communication cost comparisons of various Elliptic Curve based OT schemes

Paper Assumption # Group elements # Rounds

Static Security (1-out-of-2)
[PVW08] + [GWZ09] SXDH 51 8

[CKWZ13] SXDH 26 + 7 Zp 4
Adaptive Security (1-out-of-2)

[ABB+13] SXDH 12 G1 + 1 G2 + 2Zp 3
[BC15]12 DDH 15 G+ 2 Zp 3
[BC16] SXDH 12 G1 + 4 G2 + 2 Zp 3
[BCG17] SXDH 6 G1 + 2 G2 + 2 Zp 3

Adaptive Security (1-out-of-k)
[ABB+13] SXDH log k G1 + (k + 8 log k) G2 + k Zp 3
[BC15]12 DDH (k + 9 log k + 4) G + 2k Zp 3
[BC16] SXDH 4 G1 + (4k + 4) G2 + k Zp 3
[BCG17] SXDH 4 G1 + (k + 2) G2 + k Zp 3

encryption scheme into a signature scheme, which was proposed by Naor as recalled in [BF01], and its
reverse transformation from an affine MAC or signature scheme into an IBE scheme given in [BKP14].

A neat result, presented by Canetti et al. in [CDVW12], shows how a UC-secure Oblivious Transfer
scheme can be transformed into a UC-secure PAKE scheme. In this section we are going to go the other
way, and show how a UC-secure PAKE can be transformed into a UC-secure Oblivious Transfer scheme.
While considering this direction may seem like transforming a very strong primitive into a weaker one,
this will allow us to prepare a framework to propose the most efficient Oblivious Transfer scheme to date.
This also echoes to the results from [Ngu05] on a simulation-based transform.

Description of a UC-Secure PAKE Scheme

We consider PAKE protocols in two flows, since there already exists a multitude of PAKE schemes sat-
isfying this requirement, and since minimizing the number of flows is one of the most important issues
in modern instantiations. This allows us to generically give an optimization, leading to more efficient
protocols. In order to present the framework or our transformation, we formally split a PAKE scheme
into the following four algorithms13.
• Setup: An algorithm that generates the initial crs.
• flow1(pwj ; ρj , ρ′j): The algorithm run by the user Pj , using some randomness ρj and ρ′j and pos-
sessing the password pwj , to generate the first flow of the protocol. We note ρj the part of the
randomness involved in hiding the password, and ρ′j the remainder.

• flow2(flow1, pwi; ρi, ρ′i): The algorithm run by the user Pi, using some randomness ρi and possessing
the password pwi, after receiving the flow flow1, to generate the second flow of the protocol. This
algorithm also produces Pi’s view of the key: K(i)

j .
• Decap(flow2, pwj , f(ρj , ρ′j)): The algorithm run by Pj when receiving the flow flow2 from Pi, using
his password pwj and a function f(ρj , ρ′j) of the randomness initially used and the remainder (which
function can be anything from the identity to the null function), to recover Pj ’s view of the key: K(j)

i .

Generic Construction of a UC-Secure OT Scheme

We denote by DB = (m1, . . . ,mk) the database of the server containing k lines, and by s the line requested
by the user in an oblivious way. We assume the existence of a CPA-Secure encryption scheme, whose
public parameters are going to be included in the public common reference string crs generated by the

13Since it was shown in [CHK+05] that UC-secure PAKE is impossible in the plain model, we focus on the CRS model
for the ease of readability.

6.5. FROM A UC-SECURE PAKE TO A UC-SECURE OT 75

setup algorithm of the PAKE scheme. Such an encryption scheme E is described through four algorithms
(Setupcpa,KeyGencpa,Encryptcpa,Decryptcpa):
• Setupcpa(1K), where K is the security parameter, generates the global parameters paramcpa of the
scheme;

• KeyGencpa(paramcpa) outputs a pair of keys: a (public) encryption key pk and a (private) decryption
key sk;

• Encryptcpa(pk,M; ρ) outputs a ciphertext ~c = E(M) on the message M, under the encryption key
pk, using the randomness ρ;

• Decryptcpa(sk,~c) outputs the plaintext M encrypted in the ciphertext ~c, or ⊥.
We also assume the existence of a Pseudo-Random Generator (PRG) F with input size equal to the

plaintext size, and output size equal to the size of the messages in the database.
Using the PAKE scheme, the encryption scheme and the PRG, one can now obtain an OT scheme from

a PAKE scheme, as described in Figure 6.11. The idea of the protocol is as follows:
• First, a setup phase enables to generate the CRS, both for the PAKE and encryption schemes.
• The pre-flow is a technical requirement for the UC proof.
• When querying for line s, the receiver proceeds in three steps. The first one consists in generating
a masking value R (technical requirement for the UC proof), the second one consists in running the
first flow of the PAKE scheme for password s to generate the first flow denoted14 as flow0, and the
third one consists in erasing anything but the needed values, and sending flow0 to the sender.

• When answering to this query, the sender also proceeds in three steps. The first one consists in
recovering the value R and the second one consists in running, for each line t ∈ {1, . . . , k}, the second
flow of the PAKE scheme to generate the second flow denoted as flowt (using t as the password)
as well as S’s view of the session key, denoted as (Kt)(S)

R . Finally, in the third step, the server
computes a xor Qt of the line mt and this session key and the value R and sends the set (flowt,Qt)
back to R.

• When receiving this set of values, the receiver uses flows to run the decapsulation algorithm of the
PAKE scheme (with password s) to recover his view of the session key, denoted as (Ks)(R)

S . He
finally uses R, Qs and (Ks)(R)

S to recover the expected line ms.
The correctness easily follows from the correctness of the PAKE protocol, since the views of R and S of

the session key for the PAKE scheme executed for password s are the same. The scheme is oblivious with
respect to S since the first flow of the PAKE scheme executed by R does not reveal any information on s.
And it is oblivious with respect to R since the correctness of the PAKE scheme gives him no information
on the session keys (Kt)(S)

R for t 6= s.

Theorem 8 ([BCG17]). Under the UC-security of the PAKE protocol, the existence of a Pseudo-Random
Generator (PRG) F with input size equal to the plaintext size, and output size equal to the size of the
messages in the database, and the IND-CPA security of the encryption scheme, the transformation pre-
sented in Figure 6.11 achieves a UC-secure 1-out-of-k Oblivious Transfer scheme, with the same handling
of corruptions as in the PAKE protocol.

Generic Optimization

It should be noted that in the previous transformation we never used the fact that the first user in the
PAKE scheme (here, the receiver) does not learn the password from the second (here, the sender). This
is a property required by PAKE but not useful in the transformation (since the sender executes k parallel
PAKE schemes, using the (public) number t of the lines as the password). This argument is the key of the
optimization we now propose in Figure 6.12. The difference is that in the index query, the receiver does
not pick the second randomness ρ′ and in the database answer, the randomness ρt is not used anymore.
The proof remains the same as the previous one.

14Note that we now denote as flow0 (and not flow1) the flow generated by the PAKE algorithm flow1, in order to avoid
the confusion with the flow1 message generated by the sender (for line 1) during the database answer phase.

76 CHAPTER 6. OBLIVIOUS TRANSFER

Fig. 6.11 – UC-Secure 1-out-of-k OT from a UC-Secure PAKE

CRS generation:
crs $← Setup(1K), paramcpa

$← Setupcpa(1K).

Pre-Flow:
1. S generates a key pair (pk, sk) $← KeyGencpa(paramcpa) for E , stores sk and completely erases the

random coins used by KeyGencpa.
2. S publishes pk.

Index query on s:
1. R picks a random J, computes R ← F(J) and sets c $← Encryptcpa(pk, J).
2. R picks a random (ρ, ρ′), and runs flow1(s; ρ, ρ′) to obtain flow0.
3. R stores f(ρ, ρ′) needed for the Decap algorithm and R and completely erases the rest, including

the random coins used by Encryptcpa and sends (c, flow0) to S.

Database answer:
1. S decrypts J← Decryptcpa(sk, c) and computes R ← F(J).
2. For each line t:

• S picks a random (ρt, ρ′t), runs flow2(flow0, t; ρt, ρ′t) to generate flowt and (Kt)(S)
R .

• S then computes Qt = mt ⊕ (Kt)(S)
R ⊕ R.

3. S erases everything except (flowt,Qt)t∈J1,kK and sends it to R.

Data recovery:
R then using f(ρ,⊥) computes (Ks)(R)

S = Decap(flows, s, f(ρ, ρ′)), sets ms = Qs ⊕ (Ks)(R)
S ⊕ R,

and erases everything else.

Fig. 6.12 – Optimized UC-Secure 1-out-of-k OT from a UC-Secure PAKE

CRS generation:
crs $← Setup(1K), paramcpa

$← Setupcpa(1K).

Pre-Flow:
1. S generates a key pair (pk, sk) $← KeyGencpa(paramcpa) for E , stores sk and completely erases the

random coins used by KeyGencpa.
2. S publishes pk.

Index query on s:
1. R picks a random J, computes R ← F(J) and sets c $← Encryptcpa(pk, J).
2. R picks a random ρ, and runs flow1(s; ρ,⊥) to obtain flow0.
3. R stores f(ρ,⊥) needed for the Decap algorithm and R and completely erases the rest, including

the random coins used by Encryptcpa and sends (c, flow0) to S.

Database answer:
1. S decrypts J← Decryptcpa(sk, c) and computes R ← F(J).
2. For each line t:

• S picks a random ρ′t, and runs flow2(flow0, t;⊥, ρ′t) to generate flowt and (Kt)(S)
R .

• S then computes Qt = mt ⊕ (Kt)(S)
R ⊕ R.

3. S erases everything except (flowt,Qt)t∈J1,kK and sends it to R.

Data recovery: R then using f(ρ,⊥) computes (Ks)(R)
S = Decap(flows, s, f(ρ,⊥)),

sets Ls = Qs ⊕ (Ks)(R)
S ⊕ R, and erases everything else.

Part IV

Conclusion

Conclusion and Perspectives

Working on concrete protocols proven in the UC framework enabled us in the several papers described in
this manuscript to make improvements both on these protocols (in particular in terms of efficiency) and
on the primitives used. We briefly recall here the main results obtained and give a few open problems
that we plan to work on in the near future.

Smooth Projective Hash Functions. Following [CS02, GL03, CHK+05], [ACP09], we focused
on the now well-known paradigm combining commitments and smooth projective hash functions in order
to construct UC-secure PAKE schemes. So far, only ad hoc SPHF had been constructed, and we proposed
in our articles a full treatment of linear and quadratic pairing product equations.

However, Katz and Vaikuntanathan introduced in [KV11] a way to construct specific SPHF, which
we called KV-SPHF (in which the projected hash key does not depend on the word in the language).
It enabled them to propose the first one-round PAKE schemes, both in the BPR and the UC security
models. We continued their work by proposing for instance the first KV-SPHF on the Cramer-Shoup
encryption scheme, but this formalism only allows for linear equations so far. Maybe some applications
would need more complex relations based on quadratic equations, and one could wonder how to construct
the corresponding SPHF.

In all the SPHF designed so far, the witness (of the membership of the word to the language) usually
was a scalar, when the word is a group element. Following work already done on signatures, we proposed
the notion of structure-preserving SPHF, enabling to use a group element as a witness. This allowed us
to get rid of the usual bit-per-bit trick and combine SPHF with more efficient commitments, leading to
more efficient protocols.

Commitments. Considering the other classical building block of PAKE protocols, we first corrected
and improved the best UC-secure commitment scheme known so far [Lin11a]. We then formalized precisely
what security properties were needed in order for commitments to work well with SPHF, which is what
we called SPHF-friendly commitments, and showed how to construct such commitments generically from
chameleon hash and CCA encryption schemes. Finally, using our former notion of structure-preserving
SPHF, we managed to obtain the same applications to PAKE and OT in a more efficient way, with a
commitment [FLM11] which does not fulfill those requirements.

Password-Authenticated Key-Exchange. We continued the study of UC-secure PAKE started
in [CHK+05], [ACP09] by improving the complexity of the schemes. Furthermore, following the ideas
of [KV11] and using the KV-SPHF mentionned above, we also managed to construct UC-secure one-round
PAKE schemes fulfilling adaptive security (meaning that the adversary can corrupt a player anytime).
We also used the same methodology to design more general schemes, denoted as LAKE (Language-
Authenticated Key-Exchange), where the password is replaced by a word in a language.

Finally, we started the study of PAKE distributed over two or more servers in [BCV16], in a security
model inspired from the BPR model [BPR00]. It would be worth designing an ideal functionality in the
UC framework for such protocols, and to propose a scheme UC-secure in that model.

Oblivious Transfer. Although most of the work done on the primitives was initially designed for
the construction of UC-secure PAKE schemes, we managed to apply it to OT schemes, giving us the most
efficient UC-secure protocols so far. However, a drawback of using SPHF is to ask the server to send a
very long message (of the size k of the database) for each query. We thus proposed a first step towards
an adaptive version of these schemes, in which the server is only required to send a shorter message of
length log(k). It is still an open problem to achieve a completely adaptive protocol, in which the server
would be allowed to send a message of constant size.

80 CONCLUSION AND PERSPECTIVES

Following the idea of OSBE (Oblivious Signature-Based Envelope), we also proposed the generic
concept of OLBE (Oblivious Language-Based Envelope), in which a user obtains a message if and only if
it owns the good credential for it (here a word in a language). This encompasses several other protocols,
such as Access Controlled, Priced or Conditional Oblivious Transfer.

Finally, we continued the work started in [CDVW12], which shows how a UC-secure OT scheme can
be transformed into a UC-secure PAKE scheme, by proving the transformation in the other direction,
giving a close link between the two protocols studied in our work.

Other Security Models. We focused in all our work on the UC framework, which is one of the most
powerful security model for multiparty protocols so far. But a recent trend in cryptography focuses on
post-quantum security, which means security even in the case an adversary owns a quantum computer
and can use it, for instance to break computational assumptions. It would be worth wondering whether
our results still hold in such a setting, in particular by modifying the underlying assumptions to quantum-
resistant ones.

List of Figures

2 Security Model 23
2.1 The Split Functionality sF . 27
2.2 The Functionality FRO . 28
2.3 The Functionality FDCRS . 28

3 Smooth Projective Hash Functions 31
3.1 Transformation of an SPHF into an SP-SPHF . 35
3.2 Example of conversion of classical SPHF into SP-SPHF (DH and CS) 36
3.3 Example of conversion of SPHF into SP-SPHF (CS in matricial notations) 36

4 Commitments 39
4.1 Ideal Functionality Fmcom for Multiple Commitments . 40
4.2 Simple Patch to the Adaptive Version of Lindell’s Protocol 41
4.3 Comparison of Lindell’s Adaptive Protocol (above) and Ours (below) 43

5 Password-Authenticated Key-Exchange 47
5.1 Ideal Functionality for PAKE FpwKE . 48
5.2 Comparison with existing UC-secure PAKE schemes where |password| = m 50
5.3 One-Round UC-Secure PAKE from the revisited FLM’s Commitment 50
5.4 Ideal Functionality Flake . 53
5.5 Split Functionality sFlake . 53
5.6 LAKE from a Smooth Projective Hash Function on Commitments 55
5.7 Password-based Authenticated Key Exchange . 56
5.8 Main idea of the construction (simple protocol) . 59
5.9 Main idea of the construction (efficient protocol) . 60

6 Oblivious Transfer 61
6.1 Ideal Functionality for 1-out-of-k Oblivious Transfer F(1,k)-OT 61
6.2 Ideal Functionality for 1-out-of-k Oblivious Transfer F(1,k)-OT (simple UC) 62
6.3 UC-Secure 1-out-of-k OT from an SPHF-Friendly Commitment 63
6.4 Adaptive UC-Secure 1-out-of-k OT from an SPHF-Friendly Commitment [ABB+13] . . . 64
6.5 Adaptive UC-Secure 1-out-of-k OT from an SPHF-Friendly Commitment [BC16] 66
6.6 Ideal Functionality for (Adaptive) Oblivious Transfer FL

OT 68
6.7 Adaptive UC-Secure 1-out-of-k OT from a Fragmented Blind IBE 70
6.8 Ideal Functionality for Oblivious Language-Based Envelope FOLBE 71
6.9 UC-Secure OLBE for One Message (Secure Against Adaptive Corruptions) 72
6.10 Communication cost comparisons of various Elliptic Curve based OT schemes 74
6.11 UC-Secure 1-out-of-k OT from a UC-Secure PAKE . 76
6.12 Optimized UC-Secure 1-out-of-k OT from a UC-Secure PAKE 76

Bibliography

[ABB+13] Michel Abdalla, Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, and David
Pointcheval. SPHF-friendly non-interactive commitments. In Kazue Sako and Palash Sarkar,
editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 214–234. Springer, Heidel-
berg, December 2013. (Cited on pages 7, 14, 16, 18, 19, 20, 32, 34, 36, 37, 39, 42, 43, 44,
49, 50, 61, 62, 63, 64, 65, 66, 67, 71, 72, 73, 74, and 81.)

[ABCP09] Michel Abdalla, Xavier Boyen, Céline Chevalier, and David Pointcheval. Distributed public-
key cryptography from weak secrets. In Stanislaw Jarecki and Gene Tsudik, editors,
PKC 2009, volume 5443 of LNCS, pages 139–159. Springer, Heidelberg, March 2009. (Not
cited.)

[ACCP08] Michel Abdalla, Dario Catalano, Céline Chevalier, and David Pointcheval. Efficient two-
party password-based key exchange protocols in the UC framework. In Tal Malkin, editor,
CT-RSA 2008, volume 4964 of LNCS, pages 335–351. Springer, Heidelberg, April 2008. (Not
cited.)

[ACCP09] Michel Abdalla, Dario Catalano, Céline Chevalier, and David Pointcheval. Password-
authenticated group key agreement with adaptive security and contributiveness. In Bart
Preneel, editor, AFRICACRYPT 09, volume 5580 of LNCS, pages 254–271. Springer, Hei-
delberg, June 2009. (Not
cited.)

[ACFP05] Michel Abdalla, Olivier Chevassut, Pierre-Alain Fouque, and David Pointcheval. A simple
threshold authenticated key exchange from short secrets. In Bimal K. Roy, editor, ASI-
ACRYPT 2005, volume 3788 of LNCS, pages 566–584. Springer, Heidelberg, December 2005.
(Cited on pages 57 and 58.)

[ACGP11] Michel Abdalla, Céline Chevalier, Louis Granboulan, and David Pointcheval. Contributory
password-authenticated group key exchange with join capability. In Aggelos Kiayias, editor,
CT-RSA 2011, volume 6558 of LNCS, pages 142–160. Springer, Heidelberg, February 2011.
(Not cited.)

[ACMP10] Michel Abdalla, Céline Chevalier, Mark Manulis, and David Pointcheval. Flexible group
key exchange with on-demand computation of subgroup keys. In Daniel J. Bernstein and
Tanja Lange, editors, AFRICACRYPT 10, volume 6055 of LNCS, pages 351–368. Springer,
Heidelberg, May 2010. (Not cited.)

[ACP09] Michel Abdalla, Céline Chevalier, and David Pointcheval. Smooth projective hashing for
conditionally extractable commitments. In Shai Halevi, editor, CRYPTO 2009, volume 5677
of LNCS, pages 671–689. Springer, Heidelberg, August 2009. (Cited on pages 14, 15, 16, 17,
31, 42, 43, 49, 50, 51, 54, and 79.)

[AKB07] Giuseppe Ateniese, Jonathan Kirsch, and Marina Blanton. Secret handshakes with dynamic
and fuzzy matching. In NDSS 2007. The Internet Society, February / March 2007. (Cited
on page 50.)

[AP06] Michel Abdalla and David Pointcheval. A scalable password-based group key exchange
protocol in the standard model. In Xuejia Lai and Kefei Chen, editors, ASIACRYPT 2006,
volume 4284 of LNCS, pages 332–347. Springer, Heidelberg, December 2006. (Cited on
page 66.)

84 BIBLIOGRAPHY

[BBC+13a] Fabrice Ben Hamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien
Vergnaud. Efficient UC-secure authenticated key-exchange for algebraic languages. In Kaoru
Kurosawa and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 272–291.
Springer, Heidelberg, February / March 2013. (Cited on pages 7, 16, 20, 33, 34, 41, 51, 54,
55, and 95.)

[BBC+13b] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien
Vergnaud. New techniques for SPHFs and efficient one-round PAKE protocols. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages
449–475. Springer, Heidelberg, August 2013. (Cited on pages 7, 16, 19, 20, 32, 34, 36, 49,
50, 54, and 137.)

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew
Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, Heidelberg,
August 2004. (Cited on page 49.)

[BC15] Olivier Blazy and Céline Chevalier. Generic construction of UC-secure oblivious transfer. In
Tal Malkin, Vladimir Kolesnikov, Allison Bishop Lewko, and Michalis Polychronakis, editors,
ACNS 15, volume 9092 of LNCS, pages 65–86. Springer, Heidelberg, June 2015. (Cited on
pages 17, 18, 20, 44, 49, 62, 63, 64, 65, 66, 68, 72, 73, and 74.)

[BC16] Olivier Blazy and Céline Chevalier. Structure-preserving smooth projective hashing. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of
LNCS, pages 339–369. Springer, Heidelberg, December 2016. (Cited on pages 7, 17, 19, 20,
34, 37, 40, 44, 49, 50, 65, 66, 74, 81, and 247.)

[BCFP10] Xavier Boyen, Céline Chevalier, Georg Fuchsbauer, and David Pointcheval. Strong cryptog-
raphy from weak secrets. In Daniel J. Bernstein and Tanja Lange, editors, AFRICACRYPT
10, volume 6055 of LNCS, pages 297–315. Springer, Heidelberg, May 2010. (Not cited.)

[BCG16] Olivier Blazy, Céline Chevalier, and Paul Germouty. Adaptive oblivious transfer and gen-
eralization. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II,
volume 10032 of LNCS, pages 217–247. Springer, Heidelberg, December 2016. (Cited on
pages 7, 17, 20, 61, 66, 68, 69, 72, and 207.)

[BCG17] Olivier Blazy, Céline Chevalier, and Paul Germouty. Almost optimal oblivious transfer
from QA-NIZK. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi, editors, Applied
Cryptography and Network Security - 15th International Conference, ACNS 2017, Kanazawa,
Japan, July 10-12, 2017, Proceedings, volume 10355 of Lecture Notes in Computer Science,
pages 579–598. Springer, 2017. (Cited on pages 19, 20, 73, 74, and 75.)

[BCL+05] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure computation
without authentication. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS,
pages 361–377. Springer, Heidelberg, August 2005. (Cited on pages 15, 26, 52, and 54.)

[BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally composable
protocols with relaxed set-up assumptions. In 45th FOCS, pages 186–195. IEEE Computer
Society Press, October 2004. (Cited on page 28.)

[BCPV13] Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud. Analysis and
improvement of Lindell’s UC-secure commitment schemes. In Michael J. Jacobson Jr.,
Michael E. Locasto, Payman Mohassel, and Reihaneh Safavi-Naini, editors, ACNS 13, vol-
ume 7954 of LNCS, pages 534–551. Springer, Heidelberg, June 2013. (Cited on pages 18,
20, 40, 41, and 42.)

[BCTV16] Fabrice Benhamouda, Céline Chevalier, Adrian Thillard, and Damien Vergnaud. Easing
Coppersmith methods using analytic combinatorics: Applications to public-key cryptography
with weak pseudorandomness. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano,
and Bo-Yin Yang, editors, PKC 2016, Part II, volume 9615 of LNCS, pages 36–66. Springer,
Heidelberg, March 2016. (Not cited.)

BIBLIOGRAPHY 85

[BCV15] Olivier Blazy, Céline Chevalier, and Damien Vergnaud. Non-interactive zero-knowledge
proofs of non-membership. In Kaisa Nyberg, editor, CT-RSA 2015, volume 9048 of LNCS,
pages 145–164. Springer, Heidelberg, April 2015. (Cited on pages 18 and 35.)

[BCV16] Olivier Blazy, Céline Chevalier, and Damien Vergnaud. Mitigating server breaches in
password-based authentication: Secure and efficient solutions. In Kazue Sako, editor, CT-
RSA 2016, volume 9610 of LNCS, pages 3–18. Springer, Heidelberg, February / March 2016.
(Cited on pages 19, 20, 57, 58, 60, and 79.)

[BDS+03] Dirk Balfanz, Glenn Durfee, Narendar Shankar, Diana K. Smetters, Jessica Staddon, and
Hao-Chi Wong. Secret handshakes from pairing-based key agreements. In IEEE Symposium
on Security and Privacy, pages 180–196. IEEE Computer Society, 2003. (Cited on page 50.)

[Bea96] Donald Beaver. Adaptive zero knowledge and computational equivocation (extended ab-
stract). In 28th ACM STOC, pages 629–638. ACM Press, May 1996. (Cited on
page 39.)

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from theWeil pairing. In Joe
Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer, Heidelberg,
August 2001. (Cited on page 74.)

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In
Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 12, pages 784–796. ACM
Press, October 2012. (Cited on page 13.)

[BJKS03] John G. Brainard, Ari Juels, Burt Kaliski, and Michael Szydlo. A new two-server approach for
authentication with short secrets. In Proceedings of the 12th USENIX Security Symposium,
Washington, D.C., USA, August 4-8, 2003, 2003. (Cited on page 57.)

[BKP14] Olivier Blazy, Eike Kiltz, and Jiaxin Pan. (Hierarchical) identity-based encryption from affine
message authentication. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part I, volume 8616 of LNCS, pages 408–425. Springer, Heidelberg, August 2014. (Cited on
pages 68 and 74.)

[BM92] Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In 1992 IEEE Symposium on Security and Privacy, pages
72–84. IEEE Computer Society Press, May 1992. (Cited on pages 13, 15, and 57.)

[BN06] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime order.
In Bart Preneel and Stafford Tavares, editors, SAC 2005, volume 3897 of LNCS, pages 319–
331. Springer, Heidelberg, August 2006. (Cited on
page 73.)

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure
against dictionary attacks. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of
LNCS, pages 139–155. Springer, Heidelberg, May 2000. (Cited on pages 15, 19, 36, 58, 73,
and 79.)

[BPV12] Olivier Blazy, David Pointcheval, and Damien Vergnaud. Round-optimal privacy-preserving
protocols with smooth projective hash functions. In Ronald Cramer, editor, TCC 2012,
volume 7194 of LNCS, pages 94–111. Springer, Heidelberg, March 2012. (Cited on
pages 31, 69, and 70.)

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press, November
1993. (Cited on page 28.)

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Douglas R.
Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 232–249. Springer, Heidelberg,
August 1994. (Cited on page 25.)

86 BIBLIOGRAPHY

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001. (Cited on
pages 14, 23, 24, 40, 57, 61, 67, and 71.)

[CC11] Hervé Chabanne and Céline Chevalier. Vaudenay’s Privacy Model in the Universal Compos-
ability Framework: A Case Study, pages 16–24. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2011. (Not
cited.)

[CCGS10] Jan Camenisch, Nathalie Casati, Thomas Groß, and Victor Shoup. Credential authenticated
identification and key exchange. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS,
pages 255–276. Springer, Heidelberg, August 2010. (Cited on pages 16 and 51.)

[CCL15] Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of universally compos-
able security for standard multiparty computation. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 3–22. Springer,
Heidelberg, August 2015. (Cited on pages 27, 61, and 68.)

[CDH12] Jan Camenisch, Maria Dubovitskaya, and Kristiyan Haralambiev. Efficient structure-
preserving signature scheme from standard assumptions. In Ivan Visconti and Roberto De
Prisco, editors, SCN 12, volume 7485 of LNCS, pages 76–94. Springer, Heidelberg, Septem-
ber 2012. (Cited on
page 15.)

[CDK11] Céline Chevalier, Stéphanie Delaune, and Steve Kremer. Transforming password protocols
to compose. In Supratik Chakraborty and Amit Kumar, editors, IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2011,
December 12-14, 2011, Mumbai, India, volume 13 of LIPIcs, pages 204–216. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2011. (Not cited.)

[CDKR13] Céline Chevalier, Stéphanie Delaune, Steve Kremer, and Mark Dermot Ryan. Composition
of password-based protocols. Formal Methods in System Design, 43(3):369–413, 2013. (Not
cited.)

[CDVW12] Ran Canetti, Dana Dachman-Soled, Vinod Vaikuntanathan, and Hoeteck Wee. Efficient
password authenticated key exchange via oblivious transfer. In Marc Fischlin, Johannes
Buchmann, and Mark Manulis, editors, PKC 2012, volume 7293 of LNCS, pages 449–466.
Springer, Heidelberg, May 2012. (Cited on pages 19, 73, 74, and 80.)

[CEN15] Jan Camenisch, Robert R. Enderlein, and Gregory Neven. Two-server password-
authenticated secret sharing UC-secure against transient corruptions. In Jonathan Katz,
editor, PKC 2015, volume 9020 of LNCS, pages 283–307. Springer, Heidelberg, March / April
2015. (Cited on pages 57 and 58.)

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer, Heidelberg, August 2001.
(Cited on pages 14, 15, 16, 39, 40, 42, and 49.)

[CFPZ09] Céline Chevalier, Pierre-Alain Fouque, David Pointcheval, and Sébastien Zimmer. Optimal
randomness extraction from a Diffie-Hellman element. In Antoine Joux, editor, EURO-
CRYPT 2009, volume 5479 of LNCS, pages 572–589. Springer, Heidelberg, April 2009. (Not
cited.)

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information
retrieval. In 36th FOCS, pages 41–50. IEEE Computer Society Press, October 1995. (Cited
on page 13.)

[Cha82] David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L.
Rivest, and Alan T. Sherman, editors, CRYPTO’82, pages 199–203. Plenum Press, New
York, USA, 1982. (Cited on page 23.)

BIBLIOGRAPHY 87

[CHK+05] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKenzie. Uni-
versally composable password-based key exchange. In Ronald Cramer, editor, EURO-
CRYPT 2005, volume 3494 of LNCS, pages 404–421. Springer, Heidelberg, May 2005. (Cited
on pages 15, 26, 28, 47, 52, 74, and 79.)

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate
a lattice basis. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages
523–552. Springer, Heidelberg, May 2010. (Cited on page 65.)

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of
LNCS, pages 453–474. Springer, Heidelberg, May 2001. (Cited on page 25.)

[CKWZ13] Seung Geol Choi, Jonathan Katz, Hoeteck Wee, and Hong-Sheng Zhou. Efficient, adaptively
secure, and composable oblivious transfer with a single, global CRS. In Kaoru Kurosawa
and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 73–88. Springer,
Heidelberg, February / March 2013. (Cited on pages 15, 17, 36, 61, 62, 65, 67, 71, and 74.)

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable
two-party and multi-party secure computation. In 34th ACM STOC, pages 494–503. ACM
Press, May 2002. (Cited on pages 15, 16, 40, and 42.)

[CLV16] Céline Chevalier, Fabien Laguillaumie, and Damien Vergnaud. Privately outsourcing ex-
ponentiation to a single server: Cryptanalysis and optimal constructions. In Ioannis G.
Askoxylakis, Sotiris Ioannidis, Sokratis K. Katsikas, and Catherine A. Meadows, editors, ES-
ORICS 2016, Part I, volume 9878 of LNCS, pages 261–278. Springer, Heidelberg, September
2016. (Not cited.)

[CNs07] Jan Camenisch, Gregory Neven, and abhi shelat. Simulatable adaptive oblivious transfer.
In Moni Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS, pages 573–590. Springer,
Heidelberg, May 2007. (Cited on page 15.)

[CR03] Ran Canetti and Tal Rabin. Universal composition with joint state. In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 265–281. Springer, Heidelberg, August 2003.
(Cited on page 26.)

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, CRYPTO’98, volume
1462 of LNCS, pages 13–25. Springer, Heidelberg, August 1998. (Cited on page 18.)

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In Lars R. Knudsen, editor, EUROCRYPT 2002,
volume 2332 of LNCS, pages 45–64. Springer, Heidelberg, April / May 2002. (Cited on
pages 14, 18, 31, 44, 63, 65, and 79.)

[CS03] Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of discrete
logarithms. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 126–144.
Springer, Heidelberg, August 2003. (Cited on page 40.)

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM Journal
on Computing, 30(2):391–437, 2000. (Cited on page 39.)

[DG06] Mario Di Raimondo and Rosario Gennaro. Provably secure threshold password-authenticated
key exchange. J. Comput. Syst. Sci., 72(6):978–1001, 2006. (Cited on page 57.)

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976. (Cited on page 15.)

[DN02] Ivan Damgård and Jesper Buus Nielsen. Perfect hiding and perfect binding universally
composable commitment schemes with constant expansion factor. In Moti Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 581–596. Springer, Heidelberg, August 2002.
(Cited on pages 15 and 40.)

88 BIBLIOGRAPHY

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic
framework for Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147. Springer, Heidelberg, August
2013. (Cited on pages 17, 18, 44, and 49.)

[ElG84] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete log-
arithms. In G. R. Blakley and David Chaum, editors, CRYPTO’84, volume 196 of LNCS,
pages 10–18. Springer, Heidelberg, August 1984. (Cited on page 14.)

[FK00] Warwick Ford and Burton S. Kaliski Jr. Server-assisted generation of a strong secret from
a password. In 9th IEEE International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE 2000), 4-16 June 2000, Gaithersburg, MD, USA,
pages 176–180, 2000. (Cited on page 57.)

[FLM11] Marc Fischlin, Benoît Libert, and Mark Manulis. Non-interactive and re-usable universally
composable string commitments with adaptive security. In Dong Hoon Lee and Xiaoyun
Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 468–485. Springer, Heidel-
berg, December 2011. (Cited on pages 15, 17, 18, 34, 36, 37, 40, 43, 44, 49, 65,
and 79.)

[GD14] Vandana Guleria and Ratna Dutta. Lightweight universally composable adaptive oblivious
transfer. In ManHo Au, Barbara Carminati, and C.-C.Jay Kuo, editors, Network and Sys-
tem Security, volume 8792 of Lecture Notes in Computer Science, pages 285–298. Springer
International Publishing, 2014. (Cited on page 15.)

[GH07] Matthew Green and Susan Hohenberger. Blind identity-based encryption and simulatable
oblivious transfer. In Kaoru Kurosawa, editor, ASIACRYPT 2007, volume 4833 of LNCS,
pages 265–282. Springer, Heidelberg, December 2007. (Cited on pages 15, 17, 66, and 68.)

[GH08] Matthew Green and Susan Hohenberger. Universally composable adaptive oblivious transfer.
In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS, pages 179–197. Springer,
Heidelberg, December 2008. (Cited on page 67.)

[GL03] Rosario Gennaro and Yehuda Lindell. A framework for password-based authenticated key
exchange. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 524–543.
Springer, Heidelberg, May 2003. (Cited on pages 14, 15, 31, 33, 57, 66, and 79.)

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM
STOC, pages 218–229. ACM Press, May 1987. (Cited on page 13.)

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In
Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer,
Heidelberg, April 2008. (Cited on pages 34, 40, and 49.)

[GWZ09] Juan A. Garay, Daniel Wichs, and Hong-Sheng Zhou. Somewhat non-committing encryption
and efficient adaptively secure oblivious transfer. In Shai Halevi, editor, CRYPTO 2009,
volume 5677 of LNCS, pages 505–523. Springer, Heidelberg, August 2009. (Cited on
page 74.)

[Har11] Kristiyan Haralambiev. Efficient Cryptographic Primitives for Non-Interactive Zero-
Knowledge Proofs and Applications. PhD thesis, New York University, 2011. (Cited on
pages 16, 42, 63, and 65.)

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.
(Cited on page 72.)

[HJKY95] Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proactive secret sharing
or: How to cope with perpetual leakage. In Don Coppersmith, editor, CRYPTO’95, volume
963 of LNCS, pages 339–352. Springer, Heidelberg, August 1995. (Cited on page 58.)

BIBLIOGRAPHY 89

[HK07] Omer Horvitz and Jonathan Katz. Universally-composable two-party computation in two
rounds. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 111–129.
Springer, Heidelberg, August 2007. (Cited on page 15.)

[HMQ04] Dennis Hofheinz and Jörn Müller-Quade. Universally composable commitments using ran-
dom oracles. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 58–76. Springer,
Heidelberg, February 2004. (Cited on pages 28, 40, and 65.)

[HO09] Brett Hemenway and Rafail Ostrovsky. Lossy trapdoor functions from smooth homomorphic
hash proof systems. Electronic Colloquium on Computational Complexity (ECCC), 16:127,
2009. (Cited on page 65.)

[Jab01] David P. Jablon. Password authentication using multiple servers. In David Naccache, editor,
CT-RSA 2001, volume 2020 of LNCS, pages 344–360. Springer, Heidelberg, April 2001.
(Cited on page 57.)

[JL09a] Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function with applica-
tions to adaptive OT and secure computation of set intersection. In Omer Reingold, editor,
TCC 2009, volume 5444 of LNCS, pages 577–594. Springer, Heidelberg, March 2009. (Cited
on page 15.)

[JL09b] Stanislaw Jarecki and Xiaomin Liu. Private mutual authentication and conditional oblivi-
ous transfer. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 90–107.
Springer, Heidelberg, August 2009. (Cited on page 50.)

[JR12] Charanjit S. Jutla and Arnab Roy. Relatively-sound NIZKs and password-based key-
exchange. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012,
volume 7293 of LNCS, pages 485–503. Springer, Heidelberg, May 2012. (Cited on page 49.)

[JR14] Charanjit S. Jutla and Arnab Roy. Dual-system simulation-soundness with applications to
uc-pake and more. Cryptology ePrint Archive, Report 2014/805, 2014. (Cited on page 50.)

[JR15] Charanjit S. Jutla and Arnab Roy. Dual-system simulation-soundness with applications to
UC-PAKE and more. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part
I, volume 9452 of LNCS, pages 630–655. Springer, Heidelberg, November / December 2015.
(Cited on pages 19 and 73.)

[Kal05] Yael Tauman Kalai. Smooth projective hashing and two-message oblivious transfer. In
Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 78–95. Springer,
Heidelberg, May 2005. (Cited on page 31.)

[Kat07] Jonathan Katz. Universally composable multi-party computation using tamper-proof hard-
ware. In Moni Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS, pages 115–128.
Springer, Heidelberg, May 2007. (Cited on page 40.)

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages 20–31.
ACM Press, May 1988. (Cited on page 13.)

[KLL+15] Aggelos Kiayias, Nikos Leonardos, Helger Lipmaa, Kateryna Pavlyk, and Qiang Tang. Opti-
mal rate private information retrieval from homomorphic encryption. PoPETs, 2015(2):222–
243, 2015. (Cited on
page 17.)

[KM06] Neal Koblitz and Alfred Menezes. Another look at “provable security”. II. (invited talk). In
Rana Barua and Tanja Lange, editors, INDOCRYPT 2006, volume 4329 of LNCS, pages
148–175. Springer, Heidelberg, December 2006. (Cited on page 25.)

[KM14] Franziskus Kiefer and Mark Manulis. Distributed smooth projective hashing and its ap-
plication to two-server password authenticated key exchange. In Ioana Boureanu, Philippe
Owesarski, and Serge Vaudenay, editors, ACNS 14, volume 8479 of LNCS, pages 199–216.
Springer, Heidelberg, June 2014. (Cited on page 57.)

90 BIBLIOGRAPHY

[KMTG12] Jonathan Katz, Philip D. MacKenzie, Gelareh Taban, and Virgil D. Gligor. Two-server
password-only authenticated key exchange. J. Comput. Syst. Sci., 78(2):651–669, 2012.
(Cited on pages 19, 57, and 58.)

[KNP11] Kaoru Kurosawa, Ryo Nojima, and Le Trieu Phong. Generic fully simulatable adaptive
oblivious transfer. In Javier Lopez and Gene Tsudik, editors, ACNS 11, volume 6715 of
LNCS, pages 274–291. Springer, Heidelberg, June 2011. (Cited on page 15.)

[KOY01] Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient password-authenticated key ex-
change using human-memorable passwords. In Birgit Pfitzmann, editor, EUROCRYPT 2001,
volume 2045 of LNCS, pages 475–494. Springer, Heidelberg, May 2001. (Cited on pages 13,
14, 15, 16, and 57.)

[KPW15] Eike Kiltz, Jiaxin Pan, and Hoeteck Wee. Structure-preserving signatures from stan-
dard assumptions, revisited. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 275–295. Springer, Heidelberg, August
2015. (Cited on page 35.)

[KR00] Hugo Krawczyk and Tal Rabin. Chameleon signatures. In NDSS 2000. The Internet Society,
February 2000. (Cited on page 18.)

[Kra05] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In Victor
Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 546–566. Springer, Heidelberg,
August 2005. (Cited on page 25.)

[KV09] Jonathan Katz and Vinod Vaikuntanathan. Smooth projective hashing and password-based
authenticated key exchange from lattices. In Mitsuru Matsui, editor, ASIACRYPT 2009,
volume 5912 of LNCS, pages 636–652. Springer, Heidelberg, December 2009. (Cited on
pages 15, 19, 65, and 73.)

[KV11] Jonathan Katz and Vinod Vaikuntanathan. Round-optimal password-based authenticated
key exchange. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 293–310.
Springer, Heidelberg, March 2011. (Cited on pages 15, 16, 20, 36, 48, 49, 50, and 79.)

[KZ09] Aggelos Kiayias and Hong-Sheng Zhou. Zero-knowledge proofs with witness elimination. In
Stanislaw Jarecki and Gene Tsudik, editors, PKC 2009, volume 5443 of LNCS, pages 124–
138. Springer, Heidelberg, March 2009. (Cited on pages 18
and 19.)

[LDB03] Ninghui Li, Wenliang Du, and Dan Boneh. Oblivious signature-based envelope. In Elizabeth
Borowsky and Sergio Rajsbaum, editors, 22nd ACM PODC, pages 182–189. ACM, July 2003.
(Cited on pages 69 and 70.)

[Lin11a] Yehuda Lindell. Highly-efficient universally-composable commitments based on the DDH
assumption. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS,
pages 446–466. Springer, Heidelberg, May 2011. (Cited on pages 15, 18, 20, 40, and 79.)

[Lin11b] Yehuda Lindell. Highly-efficient universally-composable commitments based on the DDH
assumption. Cryptology ePrint Archive, Report 2011/180, 2011. (Cited on page 41.)

[LY12] Benoît Libert and Moti Yung. Non-interactive CCA-secure threshold cryptosystems with
adaptive security: New framework and constructions. In Ronald Cramer, editor, TCC 2012,
volume 7194 of LNCS, pages 75–93. Springer, Heidelberg, March 2012. (Cited on page 49.)

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of
LNCS, pages 700–718. Springer, Heidelberg, April 2012. (Cited on page 65.)

[MSJ02] Philip D. MacKenzie, Thomas Shrimpton, and Markus Jakobsson. Threshold password-
authenticated key exchange. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS,
pages 385–400. Springer, Heidelberg, August 2002. (Cited on page 57.)

BIBLIOGRAPHY 91

[Ngu05] Minh-Huyen Nguyen. The relationship between password-authenticated key exchange and
other cryptographic primitives. In Joe Kilian, editor, TCC 2005, volume 3378 of LNCS,
pages 457–475. Springer, Heidelberg, February 2005. (Cited on page 74.)

[NP97] Moni Naor and Benny Pinkas. Visual authentication and identification. In Burton S. Kaliski
Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 322–336. Springer, Heidelberg, August
1997. (Cited on page 15.)

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In S. Rao Kosaraju,
editor, 12th SODA, pages 448–457. ACM-SIAM, January 2001. (Cited on page 15.)

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen cipher-
text attacks. In 22nd ACM STOC, pages 427–437. ACM Press, May 1990. (Cited on
page 49.)

[OY91] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks (extended abstract).
In Luigi Logrippo, editor, 10th ACM PODC, pages 51–59. ACM, August 1991. (Cited on
page 58.)

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret shar-
ing. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer,
Heidelberg, August 1992. (Cited on pages 14, 16, and 42.)

[Poi12] David Pointcheval. Password-based authenticated key exchange (invited talk). In Marc
Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012, volume 7293 of LNCS,
pages 390–397. Springer, Heidelberg, May 2012. (Cited on page 15.)

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and
composable oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume 5157 of
LNCS, pages 554–571. Springer, Heidelberg, August 2008. (Cited on pages 15 and 74.)

[Rab81] Michael O. Rabin. How to exchange secrets with oblivious transfer. Technical Report TR81,
Harvard University, 1981. (Cited on pages 13 and 15.)

[RKP09] Alfredo Rial, Markulf Kohlweiss, and Bart Preneel. Universally composable adaptive priced
oblivious transfer. In Hovav Shacham and Brent Waters, editors, PAIRING 2009, volume
5671 of LNCS, pages 231–247. Springer, Heidelberg, August 2009. (Cited on page 15.)

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext
security. In 40th FOCS, pages 543–553. IEEE Computer Society Press, October 1999. (Cited
on page 49.)

[Sho99] Victor Shoup. On formal models for secure key exchange. Technical Report RZ 3120, IBM,
1999. (Cited on page 25.)

[SK05] Michael Szydlo and Burton S. Kaliski Jr. Proofs for two-server password authentication.
In Alfred Menezes, editor, CT-RSA 2005, volume 3376 of LNCS, pages 227–244. Springer,
Heidelberg, February 2005. (Cited on page 57.)

[WHC+14] Xiao Shaun Wang, Yan Huang, T.-H. Hubert Chan, Abhi Shelat, and Elaine Shi. SCORAM:
Oblivious RAM for secure computation. In Gail-Joon Ahn, Moti Yung, and Ninghui Li,
editors, ACM CCS 14, pages 191–202. ACM Press, November 2014. (Cited on page 13.)

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd
FOCS, pages 160–164. IEEE Computer Society Press, November 1982. (Cited on page 23.)

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
FOCS, pages 162–167. IEEE Computer Society Press, October 1986. (Cited on page 13.)

Part V

Appendices

Appendix A

Efficient UC-Secure Authenticated
Key-Exchange for Algebraic
Languages [BBC+13a]

This is the Full Version of the Extended Abstract that appears in the Proceedings of the 16th International
Conference on Practice and Theory in Public-Key Cryptography (PKC ’13) (26 February – 1 March 2013,
Nara, Japan), Kaoru Kurosawa Ed., Springer-Verlag, LNCS 7778, pages 272–291.

Authors

Fabrice Ben Hamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, Damien Vergnaud

Abstract

Authenticated Key Exchange (AKE) protocols enable two parties to establish a shared, cryptograph-
ically strong key over an insecure network using various authentication means, such as cryptographic
keys, short (i.e., low-entropy) secret keys or credentials. In this paper, we provide a general framework,
that encompasses several previous AKE primitives such as (Verifier-based) Password-Authenticated Key
Exchange or Secret Handshakes, we call LAKE for Language-Authenticated Key Exchange.

We first model this general primitive in the Universal Composability (UC) setting. Thereafter, we
show that the Gennaro-Lindell approach can efficiently address this goal. But we need smooth projective
hash functions on new languages, whose efficient implementations are of independent interest. We indeed
provide such hash functions for languages defined by combinations of linear pairing product equations.

Combined with an efficient commitment scheme, that is derived from the highly-efficient UC-secure
Lindell’s commitment, we obtain a very practical realization of Secret Handshakes, but also Credential-
Authenticated Key Exchange protocols. All the protocols are UC-secure, in the standard model with a
common reference string, under the classical Decisional Linear assumption.

1 Introduction

The main goal of an Authenticated Key Exchange (AKE) protocol is to enable two parties to
establish a shared cryptographically strong key over an insecure network under the complete
control of an adversary. AKE is one of the most widely used and fundamental cryptographic
primitives. In order for AKE to be possible, the parties must have authentication means, e.g.
(public or secret) cryptographic keys, short (i.e., low-entropy) secret keys or credentials that
satisfy a (public or secret) policy.

Motivation. PAKE, for Password-Authenticated Key Exchange, was formalized by Bellovin and
Merritt [BM92] and followed by many proposals based on different cryptographic assumptions
(see [ACP09,CCGS10] and references therein). It allows users to generate a strong cryptographic
key based on a shared “human-memorable” (i.e. low-entropy) password without requiring a
public-key infrastructure. In this setting, an adversary controlling all communication in the
network should not be able to mount an off-line dictionary attack.

The concept of Secret Handshakes has been introduced in 2003 by Balfanz, Durfee, Shankar,
Smetters, Staddon and Wong [BDS+03] (see also [JL09,AKB07]). It allows two members of the
same group to identify each other secretly, in the sense that each party reveals his affiliation to
the other only if they are members of the same group. At the end of the protocol, the parties
can set up an ephemeral session key for securing further communication between them and an
outsider is unable to determine if the handshake succeeded. In case of failure, the players do not
learn any information about the other party’s affiliation.

More recently, Credential-Authenticated Key Exchange (CAKE) was presented by Camenisch,
Casati, Groß and Shoup [CCGS10]. In this primitive, a common key is established if and only if
a specific relation is satisfied between credentials hold by the two players. This primitive includes
variants of PAKE and Secret Handshakes, and namely Verifier-based PAKE, where the client
owns a password pw and the server knows a one-way transformation v of the password only. It
prevents massive password recovering in case of server corruption. The two players eventually
agree on a common high entropy secret if and only if pw and v match together, and off-line
dictionary attacks are prevented for third-party players.

Our Results. We propose a new primitive that encompasses most of the previous notions of
authenticated key exchange. It is closely related to CAKE and we call it LAKE, for Language-
Authenticated Key-Exchange, since parties establish a common key if and only if they hold
credentials that belong to specific (and possibly independent) languages. The definition of the
primitive is more practice-oriented than the definition of CAKE from [CCGS10] but the two
notions are very similar. In particular, the new primitive enables privacy-preserving authenti-
cation and key exchange protocols by allowing two members of the same group to secretly and
privately authenticate to each other without revealing this group beforehand.

In order to define the security of this primitive, we use the UC framework and an appropriate
definition for languages that permits to dissociate the public part of the policy, the private
common information the users want to check and the (possibly independent) secret values each
user owns that assess the membership to the languages. We provide an ideal functionality for
LAKE and give efficient realizations of the new primitive (for a large family of languages) secure
under classical mild assumptions, in the standard model (with a common reference string –
CRS), with static corruptions.

We significantly improve the efficiency of several CAKE protocols [CCGS10] for specific
languages and we enlarge the set of languages for which we can construct practical schemes. No-
tably, we obtain a very practical realization of Secret Handshakes and a Verifier-based Password-
Authenticated Key Exchange.

96 APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A]

Our Techniques. A general framework to design PAKE in the CRS model was proposed
by Gennaro and Lindell [GL03] in 2003. This approach was applied to the UC framework by
Canetti, Halevi, Katz, Lindell, and MacKenzie [CHK+05], and improved by Abdalla, Chevalier
and Pointcheval [ACP09]. It makes use of the smooth projective hash functions (SPHF), intro-
duced by Cramer and Shoup [CS02]. Such a hashing family is a family of hash functions that can
be evaluated in two ways: using the (secret) hashing key, one can compute the function on every
point in its domain, whereas using the (public) projection key one can only compute the function
on a special subset of its domain. Our first contribution is the description of smooth projective
hash functions for new interesting languages: Abdalla, Chevalier and Pointcheval [ACP09] ex-
plained how to make disjunctions and conjunctions of languages, we study here languages defined
by linear pairing product equations on committed values.

In 2011, Lindell [Lin11] proposed a highly-efficient commitment scheme, with a non-interactive
opening algorithm, in the UC framework. We will not use it in black-box, but instead we will
patch it to make the initial Gennaro and Lindell’s approach to work, without zero-knowledge
proofs [CHK+05], using the equivocability of the commitment.

Language Definition. In [ACP09], Abdalla et al. already formalized languages to be consid-
ered for SPHF. But, in the following, we will use a more simple formalism, which is nevertheless
more general: we consider any efficiently computable binary relationR : {0, 1}∗×P×S → {0, 1},
where the additional parameters pub ∈ {0, 1}∗ and priv ∈ P define a language LR(pub, priv) ⊆ S
of the words W such that R(pub, priv,W) = 1:

– pub are public parameters;
– priv are private parameters the two players have in mind, and they should think to the same

values: they will be committed to, but never revealed;
– W is the word the sender claims to know in the language: it will be committed to, but never

revealed.

Our LAKE primitive, specific to two relations Ra and Rb, will allow two users, Alice and Bob,
owning a word Wa ∈ LRa(pub, priva) and Wb ∈ LRb(pub, privb) respectively, to agree on a session
key under some specific conditions: they first both agree on the public parameter pub, Bob will
think about priv′a for his expected value of priva, Alice will do the same with priv′b for privb;
eventually, if priv′a = priva and priv′b = privb, and if they both know words in the languages, then
the key agreement will succeed. In case of failure, no information should leak about the reason
of failure, except the inputs did not satisfy the relations Ra or Rb, or the languages were not
consistent.

We stress that each LAKE protocol will be specific to a pair of relations (Ra,Rb) describing
the way Alice and Bob will authenticate to each other. This pair of relations (Ra,Rb) specifies
the sets Pa, Pb and Sa, Sb (to which the private parameters and the words should respectively
belong). Therefore, the formats of priva, privb and Wa and Wb are known in advance, but not
their values. When Ra and Rb are clearly defined from the context (e.g., PAKE), we omit them
in the notations. For example, these relations can formalize:

– Password authentication: The language is defined by R(pub, priv,W) = 1⇔ W = priv, and
thus pub = ∅. The classical setting of PAKE requires the players A and B to use the same
password W , and thus we should have priva = priv′b = privb = priv′a = Wa = Wb;

– Signature authentication: R(pub, priv,W) = 1 ⇔ Verif(pub1, pub2,W) = 1, where pub =
(pub1 = vk, pub2 = M) and priv = ∅. The word W is thus a signature of M valid under vk,
both specified in pub;

– Credential authentication: we can consider any mix for vk and M in pub or priv, and even
in W , for which the relation R verifies the validity of the signature. When M and vk are in
priv or W , we achieve affiliation-hiding property.

APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A] 97

In the two last cases, the parameter pub can thus consist of a message on which the user is
expected to know a signature valid under vk: either the user knows the signing key and can
generate the signature on the fly to run the protocol, or the user has been given signatures
on some messages (credentials). As a consequence, we just assume that, after having publicly
agreed on a common pub, the two players have valid words in the appropriate languages. The
way they have obtained these words does not matter.

Following our generic construction, private elements will be committed using encryption
schemes, derived from Cramer-Shoup’s scheme, and will thus have to be first encoded as n-
tuples of elements in a group G. In the case of PAKE, authentication will check that a player
knows an appropriate password. The relation is a simple equality test, and accepts for one
word only. A random commitment (and thus of a random group element) will succeed with
negligible probability. For signature-based authentication, the verification key can be kept secret,
but the signature should be unforgeable and thus a random word W should quite unlikely
satisfy the relation. We will often make this assumption on useful relations R: for any pub,
{(priv,W) ∈ P × S,R(pub, priv,W) = 1} is sparse (negligible) in P × S, and a fortiori in the
set Gn in which elements are first embedded.

2 Definitions

In this section, we first briefly recall the notations and the security notions of the basic primitives
we will use in the rest of the paper, and namely public key encryption and signature. More formal
definitions, together with the classical computational assumptions (CDH, DDH, and DLin) are
provided in the Appendix A.1: A public-key encryption scheme is defined by four algorithms:
param ← Setup(1k), (ek, dk) ← KeyGen(param), c ← Encrypt(ek,m; r), and m ← Decrypt(dk, c).
We will need the classical notion of IND-CCA security. A signature scheme is defined by four al-
gorithms: param← Setup(1k), (vk, sk)← KeyGen(param), σ ← Sign(sk,m; s), and Verif(vk,m, σ).
We will need the classical notion of EUF-CMA security. In both cases, the global parameters
param will be ignored, included in the CRS. We will furthermore make use of collision-resistant
hash function families.

2.1 Universal Composability

Our main goal will be to provide protocols with security in the universal composability frame-
work. The interested reader is referred to [Can01, CHK+05] for details. More precisely, we will
work in the UC framework with joint state proposed by Canetti and Rabin [CR03] (with the
CRS as the joint state). Since players are not individually authenticated, but just afterward
if the credentials are mutually consistent with the two players’ languages, the adversary will
be allowed to interact on behalf of any player from the beginning of the protocol, either with
the credentials provided by the environment (static corruption) or without (impersonation at-
tempt). As with the Split Functionality [BCL+05], according to whom sends the first flow for a
player, either the player itself or the adversary, we know whether this is an honest player or a
dishonest player (corrupted or impersonation attempt, but anyway controlled by the adversary).
Then, our goal will be to prove that the best an adversary can do is to try to play against one
of the other players, as an honest player would do, with a credential it guessed or obtained in
any possible way. This is exactly the so-called one-line dictionary attack when one considers
PAKE protocols. In the adaptive corruption setting, the adversary could get complete access
to the private credentials and the internal memory of an honest player, and then get control of
it, at any time. But we will restrict to the static corruption setting in this paper. It is enough
to deal with most of the concrete requirements: related credentials, arbitrary compositions, and
forward-secrecy. To achieve our goal, for a UC-secure LAKE, we will use some other primitives
which are secure in the classical setting only.

98 APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A]

2.2 Commitment

Commitments allow a user to commit to a value, without revealing it, but without the possibility
to later change his mind. It is composed of three algorithms: Setup(1k) generates the system
parameters, according to a security parameter k; Commit(`,m; r) produces a commitment c on

the input message m ∈ M using the random coins r
$← R, under the label `, and the opening

information d; while Decommit(`, c,m, d) opens the commitment c with the message m and the
opening information d that proves the correct opening under the label `.

Such a commitment scheme should be both hiding, which says that the commit phase does
not leak any information about m, and binding, which says that the decommit phase should not
be able to open to two different messages. Additional features will be required in the following,
such as non-malleability, extractability, and equivocability. We also included a label `, which
can be empty or an additional public information that has to be the same in both the commit
and the decommit phases. A labeled commitment that is both non-malleable and extractable
can be instantiated by an IND-CCA labeled encryption scheme (see the Appendix A.1). We will
use the Linear Cramer-Shoup encryption scheme [Sha07,CKP07]. We will then patch it, using a
technique inspired from [Lin11], to make it additionally equivocable (see Section 3). It will have
an interactive commit phase, in two rounds: Commit(`,m; r) and a challenge ε from the receiver,
which will define an implicit full commitment to be open latter.

2.3 Smooth Projective Hash Functions

Smooth projective hash function (SPHF) systems have been defined by Cramer and Shoup [CS02]
in order to build a chosen-ciphertext secure encryption scheme. They have thereafter been ex-
tended [GL03,ACP09,BPV12] and applied to several other primitives. Such a system is defined
on a language L, with five algorithms:

– Setup(1k) generates the system parameters, according to a security parameter k;
– HashKG(L) generates a hashing key hk for the language L;
– ProjKG(hk, L,W) derives the projection key hp, possibly depending on a word W ;
– Hash(hk, L,W) outputs the hash value from the hashing key;
– ProjHash(hp, L,W,w) outputs the hash value from the projection key and the witness w

that W ∈ L.

The correctness of the scheme assures that if W is in L with w as a witness, then the two
ways to compute the hash values give the same result: Hash(hk, L,W) = ProjHash(hp, L,W,w).
In our setting, these hash values will belong to a group G. The security is defined through
two different notions: the smoothness property guarantees that if W 6∈ L, the hash value is
statistically indistinguishable from a random element, even knowing hp; the pseudo-randomness
property guarantees that even for a word W ∈ L, but without the knowledge of a witness w,
the hash value is computationally indistinguishable from a random element, even knowing hp.

3 Double Linear Cramer-Shoup Encryption (DLCS)

As explained earlier, any IND-CCA labeled encryption scheme can be used as a non-malleable
and extractable labeled commitment scheme: one could use the Cramer-Shoup encryption scheme
(see the Appendix A.4), but we will focus on the DLin-based primitives, and thus the Linear
Cramer-Shoup scheme (see the Appendix A.3), we call LCS. Committed/encrypted elements will
either directly be group elements, or bit-strings on which we apply a reversible mapping G from
{0, 1}n to G. In order to add the equivocability, one can use a technique inspired from [Lin11].
See the Appendix B for more details, but we briefly present the commitment scheme we will use
in the rest of this paper in conjunction with SPHF.

APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A] 99

Commit(`,M ; r, s, a, b, t) : for (r, s, a, b, t)
$← Z5

p

(C, C′)← DLCSCom(`,M, 1G; r, s, a, b)
χ = HK(C′), C′′ = gt1ζ

χ C, C′′−−−−−−→
ε←−−−−−− ε

$← Z∗pε
?

6= 0 mod p
z = (zr = r + εa mod p, zs = s+ εb mod p)

Decommit(`, C, C′, ε) : C′, t−−−−−−→ χ = HK(C′), C′′ ?= gt1ζ
χ

With z = (zr, zs), implicit check of C · C′ε ?= LCS∗(`, ek,M, ξ; zr, zs)

Fig. 1. DLCSCom′ Commitment Scheme for SPHF

Linear Cramer-Shoup Commitment Scheme. The parameters, in the CRS, are a group
G of prime order p, with three independent generators (g1, g2, g3)

$← G3, a collision-resistant
hash function HK , and possibly an additional reversible mapping G from {0, 1}n to G to commit

bit-strings. From 9 scalars (x1, x2, x3, y1, y2, y3, z1, z2, z3)
$← Z9

p, one also sets, for i = 1, 2,
ci = gxii g

x3
3 , di = gyii g

y3
3 , and hi = gzii g

z3
3 . The public parameters consist of the encryption key

ek = (G, g1, g2, g3, c1, c2, d1, d2, h1, h2, HK), while the trapdoor for extraction is dk = (x1, x2, x3,
y1, y2, y3, z1, z2, z3). One can define the encryption process:

LCS(`, ek,M ; r, s) def= (u = (gr1, g
s
2, g

r+s
3), e = M · hr1hs2, v = (c1d

ξ
1)
r(c2d

ξ
2)
s)

where ξ = HK(`,u, e). When ξ is specified from outside, one denotes it LCS∗(`, ek,M, ξ; r, s).
The commitment to a message M ∈ G, or M = G(m) for m ∈ {0, 1}n, encrypts M under ek:
LCSCom(`,M ; r, s) def= LCS(`, ek,M ; r, s). The decommit process consists of M and (r, s) to check
the correctness of the encryption. It is possible to do implicit verification, without any decommit
information, but just an SPHF on the language of the ciphertexts of M that is privately shared
by the two players. Since the underlying encryption scheme is IND-CCA, this commitment
scheme is non-malleable and extractable.

Double Linear Cramer-Shoup Commitment Schemes. To make it equivocable, we double
the commitment process, in two steps. The CRS additionally contains a scalar ℵ $← Zp, one also
sets, ζ = gℵ1 . The trapdoor for equivocability is ℵ. The Double Linear Cramer-Shoup encryption
scheme, denoted DLCS and detailed in the Appendix B is

DLCS(`, ek,M,N ; r, s, a, b) def= (C←LCS(`, ek,M ; r, s), C′←LCS∗(`, ek, N, ξ; a, b))

where ξ = HK(`,u, e) is computed during the generation of C and transfered for the generation
of C′. As above, we denote DLCSCom denotes the use of DLCS with the encryption key ek. The
usual commit/decommit processes are described on Figure 6 in the Appendix B. On Figure 1,
one can find the DLCSCom′ scheme where one can implicitly check the opening with an SPHF.
These two constructions essentially differ with χ = HK(C′) (for the SPHF implicit check) instead
of χ = HK(M, C′) (for the explicit check). We stress that with this alteration, the DLCSCom′

scheme is not a real commitment scheme (not formally extractable/binding): in DLCSCom′, the
sender can indeed encrypt M in C and N 6= 1G in C′, and then, the global ciphertext C · C′ε
contains M ′ = MN ε 6= M , whereas one would have extracted M from C. But M ′ is unknown
before ε is sent, and thus, if one checks the membership of M ′ to a sparse language, it will
unlikely be true.

Multi-Message Schemes. One can extend these encryption and commitment schemes to
vectors of n messages (see the Appendix B). We will denote them n-DLCSCom′ or n-DLCSCom
for the commitment schemes. They consist in encrypting each message with independent random
coins in Ci = (ui, ei, vi) but the same ξ = HK(`, (ui), (ei)), together with independent companion

100 APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A]

ciphertexts C′i of 1G, still with the same ξ for the doubled version. In the latter case, n independent

challenges εi
$← Z∗p are then sent to lead to the full commitment (Ci · C′εii) with random coins

zri = ri+εiai and zsi = si+εibi. Again, if one of the companion ciphertext C′i does not encrypt 1G,
the full commitment encrypts a vector with at least one unpredictable component M ′i . Several
non-unity components in the companion ciphertexts would lead to independent components in
the full commitment. For languages sparse enough, this definitely turns out not to be in the
language.

4 SPHF for Implicit Proofs of Membership

In [ACP09], Abdalla et al. presented a way to compute a conjunction or a disjunction of languages
by some simple operations on their projection keys. Therefore all languages presented afterward
can easily be combined together. However as the original set of manageable languages was not
really developed, we are going to present several steps to extend it, and namely in order to cover
some languages useful in various AKE instantiations.

We will show that almost all the vast family of languages covered by the Groth-Sahai method-
ology [GS08] can be addressed by our approach too. More precisely, we can handle all the lin-
ear pairing product equations, when witnesses are committed using our above (multi-message)
DLCSCom′ commitment scheme, or even the non-equivocable LCSCom version. This will be
strong enough for our applications. For using them in black-box to build our LAKE protocol,
one should note that the projection key is computed from the ciphertext C when using the
simple LCSCom commitment, but also when using the DLCSCom′ version. The full commitment
C · C′ε is not required, but ξ only, which is known as soon as C is given (or the vector (Ci)i for
the multi-message version). Of course, the hash value will then depend on the full commitment
(either C for the LCSCom commitment, or C · C′ε for the DLCSCom′ commitment).

This will be relevant to our AKE problem: equality of two passwords, in PAKE protocols;
corresponding signing/verification keys associated with a valid signature on a pseudonym or a
hidden identity, in secret handshakes; valid credentials, in CAKE protocols. All those tests are
quite similar: one has to show that the ciphertexts are valid and that the plaintexts satisfy the
expected relations in a group. We first illustrate that with commitments of Waters signatures of
a public message under a committed verification key. We then explain the general method. The
formal proofs are provided in the Appendix C.

4.1 Commitments of Signatures

Let us consider the Waters signature [Wat05] in a symmetric bilinear group, as reviewed in the
Appendix A.3, and then we just need to recall that, in a pairing-friendly setting (p,G,GT , e),
with public parameters (F , g, h), and a verification key vk, a signature σ = (σ1, σ2) is valid with
respect to the message M under the key vk if it satisfies e(σ1, g) = e(h, vk) · e(F(M), σ2).

A similar approach has already been followed in [BPV12], however not with a Linear Cramer-
Shoup commitment scheme, nor with such general languages. We indeed first consider the lan-
guage of the signatures (σ1, σ2) ∈ G2 of a message M ∈ {0, 1}k under the verification key vk ∈ G,
where M is public but vk is private: L(pub, priv), where priv = vk and pub = M . One will thus
commit the pair (vk, σ1) ∈ G2 with the label ` = (M,σ2) using a 2-DLCSCom′ commitment and
then prove the commitment actually contains (vk, σ1) such that e(σ1, g) = e(h, vk) ·e(F(M), σ2).
We insist on the fact that σ1 only has to be encrypted, and not σ2, in order to hide the signature,
since the latter σ2 is a random group element. If one wants unlinkability between signature com-
mitments, one simply needs to re-randomize (σ1, σ2) before encryption. Hence σ2 can be sent in
clear, but bounded to the commitment in the label, together with the pub part of the language.
In order to prove the above property on the committed values, we will use conjunctions of SPHF:

APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A] 101

first, to show that each commitment is well-formed (valid ciphertexts), and then that the asso-
ciated plaintexts verify the linear pairing equation, where the committed values are underlined:
e(σ1, g) = e(h, vk)·e(F(M), σ2) Note that vk is not used as a committed value for this verification
of the membership of σ to the language since this is the verification key expected by the verifier,
specified in the private part priv, which has to be independently checked with respect to the
committed verification key. This is enough for the affiliation-hiding property. We could consider
the similar language where M ∈ {0, 1}k is in the word too: e(σ1, g) = e(h, vk) · e(F(M), σ2), and

then one should commit M , bit-by-bit, and then use a (k + 2)-DLCSCom′ commitment.

4.2 Linear Pairing Product Equations

Instead of describing in details the SPHF for the above examples, let us show it for a more
general framework: we considered

e(σ1, g) = e(h, vk) · e(F(M), σ2) or e(σ1, g) = e(h, vk) · e(F(M), σ2),

where the unknowns are underlined. These are particular instantiations of t simultaneous equa-
tions (∏

i∈Ak
e(Yi,Ak,i)

)
·
(∏

i∈Bk
Zizk,i

)
= Bk, for k = 1, . . . , t,

where Ak,i ∈ G, Bk ∈ GT , and zk,i ∈ Zp, as well as Ak ⊆ {1, . . . ,m} and Bk ⊆ {m + 1, . . . , n}
are public, but the Yi ∈ G and Zi ∈ GT are simultaneously committed using the multi-
message DLCSCom′ or LCSCom commitments scheme, in G or GT respectively. This is more
general than the relations covered by [CCGS10], since one can also commit scalars bit-by-
bit. In the Appendix C.4, we detail how to build the corresponding SPHF, and prove the
soundness of our approach. For the sake of clarity, we focus here to a single equation only,
since multiple equations are just conjunctions. We can even consider the simpler equation∏i=m
i=1 Zizi = B, since one can lift any ciphertext from G to a ciphertext in GT , setting Zi =

e(Yi,Ai), as well as, for j = 1, 2, 3, Gi,j = e(gj ,Ai) and for j = 1, 2, Hi,j = e(hj ,Ai),
Ci,j = e(cj ,Ai), Di,j = e(dj ,Ai), to lift all the group basis elements. Then, one transforms

Ci = LCS∗(`, ek,Yi, ξ; zi) = (ui = (g
zri
1 , g

zsi
2 , g

zri+zsi
3), ei = h

zri
1 h

zsi
2 · Yi, vi = (c1d

ξ
1)
zri · (c2dξ2)zsi)

into (Ui = (G
zri
i,1 , G

zsi
i,2 , G

zri+zsi
i,3), Ei = H

zri
i,1 H

zsi
i,2 ·Zi, Vi = (Ci,1D

ξ
i,1)

zri ·(Ci,2Dξ
i,2)

zsi). Encryptions
of Zi originally in GT use constant basis elements for j = 1, 2, 3, Gi,j = Gj = e(gj , g) and for
j = 1, 2, Hi,j = Hj = e(hj , g), Ci,j = Cj = e(cj , g), Di,j = Dj = e(dj , g).

The commitments have been generated in G and GT simultaneously using the m-DLCSCom′

version, with a common ξ, where the possible combination with the companion ciphertext to the
power ε leads to the above Ci, thereafter lifted to GT . For the hashing keys, one picks random
scalars (λ, (ηi, θi, κi, µi)i=1,...,m)

$← Z4m+1
p , and sets hki = (ηi, θi, κi, λ, µi). One then computes

the projection keys as hpi = (gηi1 g
κi
3 h

λ
1(c1d

ξ
1)
µi , gθi2 g

κi
3 h

λ
2(c2d

ξ
2)
µi) ∈ G2. The hash value is

∏

i

e(uηii,1 · uθii,2 · uκii,3 · eλi · v
µi
i ,Ai) · B−λ =

∏

i

e(hp
zri
i,1 hp

zsi
i,2 ,Ai),

where Ai is the constant used to compute Zi = e(Yi,Ai) and to lift ciphertexts from G to GT ,
or Ai = gzi if the ciphertext was already in GT . These evaluations can be computed either from
the commitments and the hashing keys, or from the projection keys and the witnesses. We insist
on the fact that, whereas the hash values are in GT , the projection keys are in G even if the
ciphertexts are initially in GT . We stress again that the projection keys require the knowledge of
ξ only: known from the LCSCom commitment or the first part C of the DLCSCom′ commitment.

102 APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A]

5 Language-Authenticated Key Exchange

5.1 The Ideal Functionality

We generalize the Password-Authenticated Key Exchange functionality Fpake (first provided
in [CHK+05]) to more complex languages: the players agree on a common secret key if and only
if they own words that lie in the languages the partners have in mind. More precisely, after an
agreement on pub between Pi and Pj (modeled here by the use of the split functionality, see
below), player Pi uses a word Wi belonging to Li = LRi(pub, privi) and it expects its partner Pj
to use a word Wj belonging to the language L′j = LRj (pub, priv

′
j), and vice-versa for Pj and

Pi. We assume relations Ri and Rj to be specified by the kind of protocol we study (PAKE,
Verifier-based PAKE, secret handshakes, . . .) and so the languages are defined by the additional
parameters pub, privi and privj only: they both agree on the public part pub, to be possibly parsed
in a different way by each player for each language according to the relations. Note however that
the respective languages do not need to be the same or to use similar relations: authentication
means could be totally different for the 2 players. The key exchange should succeed if and only
if the two following pairs of equations hold: (L′i = Li and Wi ∈ Li) and (L′j = Lj and Wj ∈ Lj).

Description. In the initial Fpake functionality [CHK+05], the adversary was given access to
a TestPwd-query, which modeled the on-line dictionary attack. But it is known since [BCL+05]
that it is equivalent to use the split functionality model [BCL+05], generate the NewSession-
queries corresponding to the corrupted players and tell the adversary (on behalf of the corrupted
player) whether the protocol should succeed or not. Both methods enable the adversary to try a
credential for a player (on-line dictionary attack). The second method (that we use here) implies
allowing S to ask NewSession-queries on behalf of the corrupted player, and letting it to be aware
of the success or failure of the protocol in this case: the adversary learns this information only
when it plays on behalf of a player (corruption or impersonation attempt). This is any way
an information it would learn at the end of the protocol. We insist that third parties will not
learn whether the protocol succeeded or not, as required for secret handshakes. To this aim, the
NewKey-query informs in this case the adversary whether the credentials are consistent with the
languages or not. In addition, the split functionality model guarantees from the beginning which
player is honest and which one is controlled by the adversary. This finally allows us to get rid
of the TestPwd-query. The Flake functionality is presented in Figure 2 and the corresponding
split functionality sFlake in Figure 3, where the languages are formally described and compared
using the pub and priv parts.

The security goal is to show that the best attack for the adversary is a basic trial execution
with a credential of its guess or choice: the proof will thus consist in emulating any real-life
attack by either a trial execution by the adversary, playing as an honest player would do, but
with a credential chosen by the adversary or obtained in any way; or a denial of service, where
the adversary is clearly aware that its behavior will make the execution fail.

5.2 A Generic UC-Secure LAKE Construction

Intuition. Using smooth projective hash functions on commitments, one can generically define a
LAKE protocol as done in [ACP09]. The basic idea is to make the player commit to their private
information (for the expected languages and the owned words), and eventually the smooth
projective hash functions will be used to make implicit validity checks of the global relation.

To this aim, we use the commitments and associated smooth projective hash functions as
described in Sections 3 and 4. More precisely, all examples of SPHF in Section 4 can be used
on extractable commitments divided into one or two parts (the non-equivocable LCSCom or the
equivocable DLCSCom′ commitments, see Figure 1). The relations on the committed values will

APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A] 103

The functionality Flake is parametrized by a security parameter k and a public parameter pub for the
languages. It interacts with an adversary S and a set of parties P1,. . . ,Pn via the following queries:

– New Session: Upon receiving a query (NewSession : sid, Pi, Pj ,Wi, Li = L(pub, privi), L
′
j =

L(pub, priv′j)) from Pi,

• If this is the first NewSession-query with identifier sid, record the tuple
(Pi, Pj ,Wi, Li, L

′
j , initiator). Send (NewSession; sid, Pi, Pj , pub, initiator) to S and Pj .

• If this is the second NewSession-query with identifier sid and there is a record
(Pj , Pi,Wj , Lj , L

′
i, initiator), record the tuple (Pj , Pi,Wj , Lj , L

′
i, initiator,Wi, Li, L

′
j , receiver).

Send (NewSession; sid, Pi, Pj , pub, receiver) to S and Pj .

– Key Computation: Upon receiving a query (NewKey : sid) from S, if there is a record of the
form (Pi, Pj ,Wi, Li, L

′
j , initiator,Wj , Lj , L

′
i, receiver) and this is the first NewKey-query for session

sid, then
• If (L′i = Li and Wi ∈ Li) and (L′j = Lj and Wj ∈ Lj), then pick a random key sk of length k

and store (sid, sk). In addition, if one player is corrupted, send (sid, success) to the adversary.
• Else, store (sid,⊥), and send (sid, fail) to the adversary if one player is corrupted.

– Key Delivery: Upon receiving a query (SendKey : sid, Pi, sk) from S, then

• if there is a record of the form (sid, sk′), then, if both players are uncorrupted, output (sid, sk′)
to Pi. Otherwise, output (sid, sk) to Pi.

• if there is a record of the form (sid,⊥), then pick a random key sk′ of length k and out-
put (sid, sk′) to Pi.

Fig. 2. Ideal Functionality Flake

Given the functionality Flake, the split functionality sFlake proceeds as follows:

– Initialization:

• Upon receiving (Init, sid, pubi) from party Pi, send (Init, sid, Pi, pubi) to the adversary.
• Upon receiving a message (Init, sid, Pi, H, pub, sidH) from S, where H = {Pi, Pj} is a set of party

identities, check that Pi has already sent (Init, sid, pubi) and that for all recorded (H ′, pub′, sidH′),
either H = H ′, pub = pub′ and sidH = sidH′ or H and H ′ are disjoint and sidH 6= sidH′ . If so, record
the pair (H, pub, sidH), send (Init, sid, sidH , pub) to Pi, and invoke a new functionality (Flake, sidH , pub)

denoted as F (H,pub)
lake and with set of honest parties H.

– Computation:

• Upon receiving (Input, sid,m) from party Pi, find the set H such that Pi ∈ H, the public value pub

recorded, and forward m to F (H,pub)
lake .

• Upon receiving (Input, sid, Pj , H,m) from S, such that Pj /∈ H, forward m to F (H,pub)
lake as if coming

from Pj .

• When F (H,pub)
lake generates an output m for party Pi ∈ H, send m to Pi. If the output is for Pj /∈ H or

for the adversary, send m to the adversary.

Fig. 3. Split Functionality sFlake

not be explicitly checked, since the values will never be revealed, but will be implicitly checked
using SPHF. It is interesting to note that in both cases (one-part or two-part commitment), the
projection key will only depend on the first part of the commitment.

As it is often the case in the UC setting, we need the initiator to use stronger primitives
than the receiver. They both have to use non-malleable and extractable commitments, but the
initiator will use a commitment that is additionally equivocable, the DLCSCom′ in two parts
((Ci, C′i) and Comi = Ci · C′iε), while the receiver will only need the basic LCSCom commitment
in one part (Comj = Cj).

As already explained, SPHF will be used to implicitly check whether (L′i = Li and Wi ∈ Li)
and (L′j = Lj and Wj ∈ Lj). But since in our instantiations private parameters priv and words
W will have to be committed, the structure of these commitments will thus be publicly known
in advance: commitments of P-elements and S-elements. Section 6 discusses on the languages
captured by our definition, and illustrates with some AKE protocols. However, while these P
and S sets are embedded in Gn from some n, it might be important to prove that the committed
values are actually in P and S (e.g., one can have to prove it commits bits, whereas messages

104 APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A]

Execution between Pi and Pj , with session identifier sid.

– Preliminary Round: each user generates a pair of signing/verification keys (SK,VK) and sends VK
together with its contribution to the public part of the language.

We denote by `i = (sid, ssid, Pi, Pj , pub,VKi,VKj) and by `j = (sid, ssid, Pi, Pj , pub,VKj ,VKi), where pub is
the combination of the contributions of the two players. The initiator now uses a word Wi in the language
L(pub, privi), and the receiver uses a word Wj in the language L(pub, privj), possibly re-randomized from
their long-term secrets?. We assume commitments and associated smooth projective hash functions exist
for these languages.

– First Round: user Pi (with random tape ωi) generates a multi-DLCSCom′ commitment on
(privi, priv

′
j ,Wi) in (Ci, C′i), where Wi has been randomized in the language, under the label `i. It

also computes a Pedersen commitment on C′i in C′′i (with random exponent t). It then sends (Ci, C′′i)
to Pj ;

– Second Round: user Pj (with random tape ωj) computes a multi-LCS commitment on (privj , priv
′
i,Wj)

in Comj = Cj , with witness r, where Wj has been randomized in the language, under the label `j . It then
generates a challenge ε on Ci and hashing/projection keys?? hki and hpi associated to Ci (which will be
associated to the future Comi). It finally signs all the flows using SKj in σj , and sends (Cj , ε, hpi, σj)
to Pi;

– Third Round: user Pi first checks the signature σj , computes Comi = Ci · C′iε and witness z (from ε
and ωi), it generates hashing/projection keys hkj and hpj associated to Comj . It finally signs all the
flows using SKi in σi, and sends (C′i, t, hpj , σi) to Pj ;

– Hashing: Pj first checks the signature σi and the correct opening of C′′i into C′i, it computes Comi =
Ci · C′iε.
Pi computes Ki and Pj computes Kj as follows:

Ki = Hash(hkj , {(priv′j , privi)} × L(pub, priv′j), `j ,Comj)

×ProjHash(hpi, {(privi, priv′j)} × L(pub, privi), `i,Comi; z)

Kj = ProjHash(hpj , {(privj , priv′i)} × L(pub, privj), `j ,Comj ; r)

×Hash(hki, {(priv′i, privj)} × L(pub, priv′i), `i,Comi)

? As explained in Section 1, recall that the languages considered depend on two possibly different relations,
namely Li = LRi(pub, privi) and Lj = LRj (pub, privj), but we omit them for the sake of clarity. We
assume they are both self-randomizable.

?? Recall that the SPHF is constructed in such a way that this projection key does not depend on C′i and is
indeed associated to the future whole Comi.

Fig. 4. Language-based Authenticated Key Exchange from a Smooth Projective Hash Function on Commitments

are first embedded as group elements in G of large order p). This will be an additional language-
membership to prove on the commitments.

This leads to a very simple protocol described on Figure 4. Note that if a player wants
to make external adversaries think he owns an appropriate word, as it is required for Secret
Handshakes, he can still play, but will compute everything with dummy words, and will replace
the ProjHash evaluation by a random value, which will lead to a random key at the end.

Security Analysis. Since we have to assume common pub, we make a first round (with flows
in each direction) where the players send their contribution, to come up with pub. These flows
will also be used to know if there is a player controlled by the adversary (as with the Split
Functionality [BCL+05]). In case the languages have empty pub, these additional flows are not
required, since the Split Functionality can be applied on the committed values. The signing key
for the receiver is not required anymore since there is one flow only from its side. This LAKE
protocol is secure against static corruptions. The proof is provided in the Appendix D, and is
in the same vein as the one in [CHK+05,ACP09]. However, it is a bit more intricate:

APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A] 105

– in PAKE, when one is simulating a player, and knows the adversary used the correct pass-
word, one simply uses this password for the simulated player. In LAKE, when one knows
the language expected by the adversary for the simulated player and has to simulate a
successful execution (because of success announced by the NewKey-query), one has to ac-
tually include a correct word in the commitment: smooth projective hash functions do not
allow the simulator to cheat, equivocability of the commitment is the unique trapdoor, but
with a valid word. The languages must allow the simulator to produce a valid word W in
L(pub, priv), for any pub and priv ∈ P provided by the adversary or the environment. This
will be the case in all the interesting applications of our protocol (see Section 6): if priv
defines a Waters’ verification key vk = gx, with the master key s such that h = gs, the
signing key is sk = hx = vks, and thus the simulator can sign any message; if such a master
key does not exist, one can restrict P, and implicitly check it with the SPHF (the additional
language-membership check, as said above). But since a random word is generated by the
simulator, we need the real player to derive a random word from his own word, and the
language to be self-randomizable.

– In addition, as already noted, our commitment DLCSCom′ is not formally binding (contrar-
ily to the much less efficient one used in [ACP09]). The adversary can indeed make the
extraction give M from Ci, whereas Comi will eventually contain M ′ if C′i does not encrypt
(1G)n. However, since the actual value M ′ depends on the random challenge ε, and the
language is assumed sparse (otherwise authentication is easy), the protocol will fail: this
can be seen as a denial of service from the adversary.

Theorem 1. Our LAKE scheme from Figure 4 realizes the sFlake functionality in the Fcrs-
hybrid model, in the presence of static adversaries, under the DLin assumption and the security
of the One-Time Signature.

Actually, from a closer look at the full proof, one can notice that Comj = Cj needs to be
extractable, but IND− CPA security is enough, which leads to a shorter ciphertext (2 group
elements less if one uses a Linear ciphertext instead of LCS). Similarly, one will not have to
extract Wi from Ci when simulating sessions where Pi is corrupted. As a consequence, only the
private parts of the languages have to be committed to in Comi in the first and third rounds,
whereas Wi can be encrypted independently with an IND− CPA encryption scheme in the third
round only (5 group elements less in the first round, and 2 group elements less in the third round
if one uses a Linear ciphertext instead of LCS).

6 Concrete Instantiations and Comparisons

In this section, we first give some concrete instantiations of several AKE protocols, using our
generic protocol of LAKE, and compare the efficiencies of those instantiations.

6.1 Possible Languages

As explained above, our LAKE protocol is provably secure for self-randomizable languages only.
While this notion may seem quite strong, most of the usual languages fall into it. For example,
in a PAKE or a Verifier-based PAKE scheme, the languages consist of a single word and so
trivially given a word, each user is able to deduce all the words in the language. One may be
a little more worried about Waters Signature in our Secret Handshake, and/or Linear pairing
equations. However the self-randomizability of the languages is easy to show:

– Given a Waters signature σ = (σ1, σ2) over a message m valid under a verification key
vk, one is able to randomize the signature into any signature over the same message m
valid under the same verification key vk simply by picking a random s and computing
σ′ = (σ1 · F(m)s, σ2 · gs).

106 APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A]

Pi uses a password Wi and Pj uses a password Wj . We denote ` = (sid, ssid, Pi, Pj).

– First Round: Pi (with random tape ωi) first generates a pair of signing/verification keys (SKi,VKi)
and a DLCSCom′ commitment on Wi in (Ci, C′i), under `i = (`,VKi). It also computes a Pedersen
commitment on C′i in C′′i (with random exponent t). It then sends (VKi, Ci, C′′i) to Pj ;

– Second Round: Pj (with random tape ωj) computes a LCSCom commitment on Wj in Comj = Cj , with
witness r, under the label `. It then generates a challenge ε on Ci and hashing/projection keys hki and
the corresponding hpi for the equality test on Comi (”Comi is a valid commitment of Wj”, this only
requires the value ξi computable thanks to Ci). It then sends (Cj , ε, hpi) to Pi;

– Third Round: user Pi can compute Comi = Ci · C′iε and witness z (from ε and ωi), it generates
hashing/projection keys hkj and hpj for the equality test on Comj . It finally signs all the flows using
SKi in σi and sends (C′i, t, hpj , σi) to Pj ;

– Hashing: Pj first checks the signature and the validity of the Pedersen commitment (thanks to t), it
computes Comi = Ci · C′iε. Pi computes Ki and Pj computes Kj as follows:

Ki = Hash(hkj , L
′
j , `,Comj) · ProjHash(hpi, Li, `i,Comi; z)

Kj = ProjHash(hpj , Lj , `,Comj ; r) · Hash(hki, L
′
i, `i,Comi)

Fig. 5. Password-based Authenticated Key Exchange

– For linear pairing equations, with public parameters Ai for i = 1, . . . ,m and γi for i = m+
1, . . . , n, and B, given (X1, . . . ,Xm,Zm+1, . . . ,Zn) verifying

∏m
i=1 e(Xi,Ai)·

∏n
i=m+1Z

γi
i = B,

one can randomize the word in the following way:

• If m < n, one simply picks random (X ′1, . . . ,X ′m), (Z ′m+1, . . . ,Z ′n−1) and sets Z ′n =

(B/(∏m
i=1 e(X ′i ,Ai) ·

∏n−1
i=m+1Z ′i

γi))1/γn ,

• Else, if m = n > 1, one picks random r1, . . . , rn−1 and sets X ′i = Xi · Arin , for i =
1, . . . ,m− 1 and X ′m = Xm ·

∏m−1
i=1 A−rii ,

• Else m = n = 1, this means only one word satisfies the equation. So we already have
this word.

As we can see most of the common languages manageable with a SPHF are already self-
randomizable. We now show how to use them in concrete instantiations.

6.2 Concrete Instantiations

Password-Authenticated Key Exchange. Using our generic construction, we can easily ob-
tain a PAKE protocol, as described on Figure 5, where we optimize from the generic construction,
since pub = ∅, removing the agreement on pub, but still keeping the one-time signature keys
(SKi,VKi) to avoid man-in-the-middle attacks since it has another later flow: Pi uses a password
Wi and expects Pj to own the same word, and thus in the language L′j = Li = {Wi}; Pj uses a
password Wj and expects Pi to own the same word, and thus in the language L′i = Lj = {Wj};
The relation is the equality test between privi and privj , which both have no restriction in G
(hence P = G). As the word Wi, the language private parameters privi of a user and priv′j of the
expected language for the other user are the same, each user can commit in the protocol to only
one value: its password.

We kept the general description and notations in Figure 5, but Cj can be a simply IND− CPA
encryption scheme. It is quite efficient and relies on the DLin assumption, with DLCS for (Ci, C′i)
and thus 10 group elements, but a Linear encryption for Cj and thus 3 group elements. Projection
keys are both 2 group elements. Globally, Pi sends 13 groups elements plus 1 scalar, a verification
key and a one-time signature, while Pj sends 5 group elements and 1 scalar: 18 group elements
and 2 scalars in total. We can of course instantiate it with the Cramer-Shoup and ElGamal
variants, under the DDH assumption: Pi sends 8 groups elements plus 1 scalar, a verification key
and a one-time signature, while Pj sends 3 group elements and 1 scalar (all group elements can
be in the smallest group): 11 group elements and 2 scalars in total.

APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A] 107

Verifier-based PAKE. The above scheme can be modified into an efficient PAKE protocol
that is additionally secure against server compromise: the so-called verifier-based PAKE, where
the client owns a password pw, while the server knows a verifier only, such as gpw, so that in
case of break-in to the server, the adversary will not immediately get all the passwords.

To this aim, as usually done, one first does a PAKE with gpw as common password, then
asks the client to additionally prove it can compute the Diffie-Hellman value hpw for a basis h
chosen by the server. Ideally, we could implement this trick, where the client Pj just considers the
equality test between the gpw and the value committed by the server for the language L′i = Lj ,
while the server Pi considers the equality test with (gpw, hpw), where h is sent as its contribution
to the public part of the language by the server Li = L′j . Since the server chooses h itself, it
chooses it as h = gα, for an ephemeral random α, and can thus compute hpw = (gpw)α. On
its side, the client can compute this value since it knows pw. The client could thus commit to
(gpw, hpw), in order to prove its knowledge of pw, whereas the server could just commit to gpw.
Unfortunately, from the extractability of the server commitment, one would just get gpw, which
is not enough to simulate the client.

To make it in a provable way, the server chooses an ephemeral h as above, and they both
run the previous PAKE protocol with (gpw, hpw) as common password, and mutually checked: h
is seen as the pub part, hence the preliminary flows are required.

Credential-Authenticated Key Exchange. In [CCGS10], the authors proposed instantia-
tions of the CAKE primitive for conjunctions of atomic policies that are defined algebraically

by relations of the form
∏k
j=1 g

Fj
j = 1 where the gj ’s are elements of an abelian group and Fj ’s

are integer polynomials in the variables committed by the users.
The core of their constructions relies on their practical UC zero-knowledge proof. There is no

precise instantiation of such proof, but it is very likely to be inefficient. Their proof technique in-
deed requires to transform the underlying Σ-protocols into corresponding Ω-protocols [GMY06]
by verifiably encrypting the witness. An Ω-protocol is a Σ-protocol with the additional prop-
erty that it admits a polynomial-time straight-line extractor. Since the witnesses are scalars in
their algebraic relations, their approach requires either inefficient bit-per-bit encryption of these
witnesses or Paillier encryption in which case the problem of using group with different orders
in the representation and in the encryption requires additional overhead.

Even when used with Σ-protocols, their PAKE scheme without UC-security, requires at
least two proofs of knowledge of representations that involve at least 30 group elements (if we
assume the encryption to be linear Cramer Shoup), and some extra for the last proof of existence
(cf. [CKS11]), where our PAKE requires less than 20 group elements. Anyway they say, their
PAKE scheme is less efficient than [CHK+05], which needed 6 rounds and around 30 modular
exponentiations per user, while our efficient PAKE requires less than 40 exponentiations, in
total, in only 3 rounds. Our scheme is therefore more efficient than the scheme from [CHK+05]
for the same security level (i.e. UC-security with static corruptions).

Secret-Handshakes. We can also instantiate a (linkable) Secret Handshakes protocol, using
our scheme with two different languages: Pi will commit to a valid signature σi on a message mi

(his identity for example), under a private verification key vki, and expects Pj to commit to a
valid signature on a message m′j under a private verification key vk′j ; but Pj will do analogously
with a signature σj on mj under vkj , while expecting a signature on m′i under vk′i. The public
parts of the signature (the second component) are sent in clear with the commitments.

In a regular Secret Handshakes both users should use the same languages. But here, we have
a more general situation (called dynamic matching in [AKB07]): the two participants will have
the same final value if and only if they both belong to the organization the other expects. If
one lies, our protocol guarantees no information leakage. Furthermore, the semantic security

108 APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A]

of the session is even guaranteed with respect to the authorities, in a forward-secure way (this
property is also achieved in [JL09] but in a weaker security model). Finally, our scheme supports
revocation and can handle roles as in [AKB07].

Standard secret handshakes, like [AKB07], usually work with credentials delivered by a
unique authority, this would remove our need for a hidden verification key, and private part of
the language. Both users would only need to commit to signatures on their identity/credential,
and show that they are valid. This would require a dozen of group elements with our approach.
Their construction requires only 4 elements under BDH, however it relies on the asymmetric
Waters IBE with only two elements, whereas the only security proof known for such IBE [Duc10]
requires an extra term in G2 which would render their technique far less efficient, as several extra
terms would be needed to expect a provably secure scheme. While sometimes less effective, our
LAKE approach can manage Secret Handshakes, and provide additional functionalities, like
more granular control on the credential as part of them can be expressly hidden by both the
users. More precisely, we provide affiliation-hiding property and let third parties unaware of the
success/failure of the protocol.

Unlinkable Secret-Handshakes. Moving the users’ identity from the public pub part to
individual private priv part, and combining our technique with [BPV12], it is also possible to
design an unlinkable Secret Handshakes protocol [JL09] with practical efficiency. It illustrates
the case where committed values have to be proven in a strict subset of G, as one has to commit
to bits: the signed message M is now committed and not in clear, it thus has to be done bit-
by-bit since the encoding G does not allow algebraic operations with the content to apply the
Waters function on the message. It is thus possible to prove the knowledge of a Waters signature
on a private message (identity) valid under a private verification key. Additional relations can
be required on the latter to make authentication even stronger.

Acknowledgments

This work was supported in part by the European Commission through the FP7-ICT-2011-
EU-Brazil Program under Contract 288349 SecFuNet and the ICT Program under Contract
ICT-2007-216676 ECRYPT II.

References

ACGP11. Michel Abdalla, Céline Chevalier, Louis Granboulan, and David Pointcheval. Contributory password-
authenticated group key exchange with join capability. In Aggelos Kiayias, editor, Topics in Cryptology
– CT-RSA 2011, volume 6558 of Lecture Notes in Computer Science, pages 142–160. Springer, February
2011.

ACP09. Michel Abdalla, Céline Chevalier, and David Pointcheval. Smooth projective hashing for conditionally
extractable commitments. In Shai Halevi, editor, Advances in Cryptology – CRYPTO 2009, volume
5677 of Lecture Notes in Computer Science, pages 671–689. Springer, August 2009.

AKB07. Giuseppe Ateniese, Jonathan Kirsch, and Marina Blanton. Secret handshakes with dynamic and fuzzy
matching. In ISOC Network and Distributed System Security Symposium – NDSS 2007. The Internet
Society, February / March 2007.

BBS04. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew Franklin, editor,
Advances in Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages
41–55. Springer, August 2004.

BCL+05. Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure computation without
authentication. In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of
Lecture Notes in Computer Science, pages 361–377. Springer, August 2005.

BDS+03. Dirk Balfanz, Glenn Durfee, Narendar Shankar, Diana K. Smetters, Jessica Staddon, and Hao-Chi
Wong. Secret handshakes from pairing-based key agreements. In IEEE Symposium on Security and
Privacy, pages 180–196. IEEE Computer Society, 2003.

APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A] 109

BFPV11. Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Signatures on random-
izable ciphertexts. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors,
PKC 2011: 14th International Workshop on Theory and Practice in Public Key Cryptography, volume
6571 of Lecture Notes in Computer Science, pages 403–422. Springer, March 2011.

BM92. Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based protocols secure
against dictionary attacks. In 1992 IEEE Symposium on Security and Privacy, pages 72–84. IEEE
Computer Society Press, May 1992.

BPV12. Olivier Blazy, David Pointcheval, and Damien Vergnaud. Round-optimal privacy-preserving protocols
with smooth projective hash functions. In Ronald Cramer, editor, TCC 2012, volume 7194 of Lecture
Notes in Computer Science, pages 94–111, Springer, March 2012.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
Annual Symposium on Foundations of Computer Science, pages 136–145. IEEE Computer Society
Press, October 2001.

CCGS10. Jan Camenisch, Nathalie Casati, Thomas Groß, and Victor Shoup. Credential authenticated identifi-
cation and key exchange. In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume 6223
of Lecture Notes in Computer Science, pages 255–276. Springer, August 2010.

CHK+05. Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKenzie. Universally
composable password-based key exchange. In Ronald Cramer, editor, Advances in Cryptology – EU-
ROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 404–421. Springer, May
2005.

CKP07. Ronald Cramer, Eike Kiltz, and Carles Padró. A note on secure computation of the Moore-Penrose
pseudoinverse and its application to secure linear algebra. In Alfred Menezes, editor, Advances in
Cryptology – CRYPTO 2007, volume 4622 of Lecture Notes in Computer Science, pages 613–630.
Springer, August 2007.

CKS11. Jan Camenisch, Stephan Krenn, and Victor Shoup. A framework for practical universally composable
zero-knowledge protocols. In Advances in Cryptology – ASIACRYPT 2011, Lecture Notes in Computer
Science, pages 449–467. Springer, December 2011.

CR03. Ran Canetti and Tal Rabin. Universal composition with joint state. In Dan Boneh, editor, Advances
in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 265–281.
Springer, August 2003.

CS98. Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. In Hugo Krawczyk, editor, Advances in Cryptology – CRYPTO’98, volume
1462 of Lecture Notes in Computer Science, pages 13–25. Springer, August 1998.

CS02. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen ci-
phertext secure public-key encryption. In Lars R. Knudsen, editor, Advances in Cryptology – EURO-
CRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 45–64. Springer, April / May
2002.

Duc10. Léo Ducas. Anonymity from asymmetry: New constructions for anonymous HIBE. In Josef Pieprzyk,
editor, Topics in Cryptology – CT-RSA 2010, volume 5985 of Lecture Notes in Computer Science,
pages 148–164. Springer, March 2010.

GL03. Rosario Gennaro and Yehuda Lindell. A framework for password-based authenticated key exchange.
In Eli Biham, editor, Advances in Cryptology – EUROCRYPT 2003, volume 2656 of Lecture Notes in
Computer Science, pages 524–543. Springer, May 2003. http://eprint.iacr.org/2003/032.ps.gz.

GMR88. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, April 1988.

GMY06. Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zero-knowledge protocols using
signatures. Journal of Cryptology, 19(2):169–209, April 2006.

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel P.
Smart, editor, Advances in Cryptology – EUROCRYPT 2008, volume 4965 of Lecture Notes in Com-
puter Science, pages 415–432. Springer, April 2008.

JL09. Stanislaw Jarecki and Xiaomin Liu. Private mutual authentication and conditional oblivious transfer.
In Shai Halevi, editor, Advances in Cryptology – CRYPTO 2009, volume 5677 of Lecture Notes in
Computer Science, pages 90–107. Springer, August 2009.

Lin11. Yehuda Lindell. Highly-efficient universally-composable commitments based on the DDH assumption.
In Kenneth G. Paterson, editor, Advances in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture
Notes in Computer Science, pages 446–466. Springer, May 2011.

Ped92. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Joan
Feigenbaum, editor, Advances in Cryptology – CRYPTO’91, volume 576 of Lecture Notes in Computer
Science, pages 129–140. Springer, August 1992.

Sha07. Hovav Shacham. A cramer-shoup encryption scheme from the linear assumption and from progressively
weaker linear variants. Cryptology ePrint Archive, Report 2007/074, 2007. http://eprint.iacr.org/
2007/074.pdf.

110 APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A]

Wat05. Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer,
editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer
Science, pages 114–127. Springer, May 2005.

A Preliminaries

A.1 Formal Definitions of the Primitives

We first recall the definitions of the basic tools, with the security notions with success/advantage
that all depend on a security parameter (which is omitted here for simplicity of notation).

Hash Function Family. A hash function family H is a family of functions HK from {0, 1}∗ to
a fixed-length output, either {0, 1}k or Zp. Such a family is said collision-resistant if for any

adversary A on a random function HK
$← H, it is hard to find a collision. More precisely, we

denote

SucccollH (A) = Pr[HK
$← H, (m0,m1)← A(HK) : HK(m0) = HK(m1)],

SucccollH (t) = max
A≤t
{SucccollH (A)}.

Labeled encryption scheme. A labeled public-key encryption scheme is defined by four algo-
rithms:

– Setup(1k), where k is the security parameter, generates the global parameters param of the
scheme;

– KeyGen(param) generates a pair of keys, the encryption key ek and the decryption key dk;
– Encrypt(`, ek,m; r) produces a ciphertext c on the input message m ∈ M under the label `

and encryption key ek, using the random coins r;
– Decrypt(`, dk, c) outputs the plaintext m encrypted in c under the label `, or ⊥.

An encryption scheme E should satisfy the following properties

– Correctness: for all key pair (ek, dk), any label `, all random coins r and all messages m,

Decrypt(`, dk,Encrypt(`, ek,m; r)) = m.

– Indistinguishability under chosen-
ciphertext attacks: this security notion
can be formalized by the following security
game, where the adversary A keeps some
internal state between the various calls
FIND and GUESS, and makes use of the
oracle ODecrypt:

• ODecrypt(`, c): This oracle outputs the
decryption of c under the label ` and
the challenge decryption key dk. The
input queries (`, c) are added to the
list CT .

Expind−cca−bE,A (k)

1. param← Setup(1k)
2. (ek, dk)← KeyGen(param)
3. (`∗,m0,m1)← A(FIND : ek,ODecrypt(·, ·))
4. c∗ ← Encrypt(`, ek,mb)
5. b′ ← A(GUESS : c∗,ODecrypt(·, ·))
6. IF (`∗, c∗) ∈ CT RETURN 0
7. ELSE RETURN b′

The advantages are

Advind−ccaE (A) = Pr[Expind−cca−1E,A (k) = 1]− Pr[Expind−cca−0E,A (k) = 1]

Advind−ccaE (t) = max
A≤t
{Advind−ccaE (A)}.

APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A] 111

Labeled commitment scheme. A labeled commitment scheme is defined by three algorithms:

– Setup(1k), where k is the security parameter, generates the global parameters param of the
scheme;

– Commit(`,m; r) produces a commitment c and the opening information d on the input
message m ∈M under the label `, using the random coins r;

– Decommit(`, c,m, d) checks the validity of the opening information d on the commitment c
for the message m under the label `. It answers 1 for true, and 0 for false.

A commitment scheme C should satisfy the following properties

– Correctness: for any label `, and all messages m, if (c, d) ← Commit(`,m; r), then we have
Decommit(`, c,m, d) = 1.

– Hiding : this security notion is similar to the indistinguishability under chosen-plaintext at-
tacks for encryption, which means that c does not help to distinguish between two candidates
m0 and m1 as committed values.

– Binding : this security notion is more an unforgeability notion, which means that for any com-
mitment c, it should be hard to open it in two different ways, which means to exhibit (m0, d0)
and (m1, d1), such that m0 6= m1 and Decommit(`, c,m0, d0) = Decommit(`, c,m1, d1) = 1.

The commitment algorithm can be interactive between the sender and the received, but the
hiding and the binding properties should still hold. Several additional properties are sometimes
required:

– Extractability : an indistinguishable Setup procedure also outputs a trapdoor that allows a
extractor to get the committed value m from any commitment c. More precisely, if c can be
open in a valid way, the extractor can get this value from the commitment.

– Equivocability : an indistinguishable Setup procedure also outputs a trapdoor that allows a
simulator to generate commitments that can thereafter be open in any way.

– Non-Malleability : it should be hard, from a commitment c to generate a new commitment
c′ 6= c whose committed values are in relation.

It is well-known that any IND-CCA encryption scheme leads to a non-malleable and extractable
commitment scheme [GL03].

Signature scheme. A signature scheme is defined by four algorithms:

– Setup(1k), where k is the security parameter, generates the global parameters param of the
scheme;

– KeyGen(param) generates a pair of keys, the verification key vk and the signing key sk;
– Sign(sk,m; s) produces a signature σ on the input message m, under the signing key sk, and

using the random coins s;
– Verif(vk,m, σ) checks whether σ is a valid signature on m, w.r.t. the public key vk; it outputs

1 if the signature is valid, and 0 otherwise.

A signature scheme S should satisfy the following properties

– Correctness: for all key pair (vk, sk), all random coins s and all messages m, we have the
equality Verif(vk,m,Sign(sk,m; s)) = 1.

– Existential unforgeability under (adaptive) chosen-
message attacks: this security notion can be formalized
by the following security game, where it makes use of the
oracle OSign:

• OSign(m): This oracle outputs a valid signature on
m under the signing key sk. The input queries m are
added to the list SM.

Expeuf−cma
S,A (k)

1. param← Setup(1k)
2. (vk, sk)← KeyGen(param)
3. (m∗, σ∗)← A(vk,OSign(·))
4. b← Verif(vk,m∗, σ∗)
5. IF M ∈ SM RETURN 0
6. ELSE RETURN b

112 APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A]

The success probabilities are

Succeuf−cma
S (A) = Pr[ExpeufS,A(k) = 1] Succeuf−cma

S (k, t) = max
A≤t
{Succeuf−cma

S (A)}.

Smooth Projective Hash Function. A smooth projective hash function system is defined on a
language L, with five algorithms:

– Setup(1k) generates the system parameters, according to a security parameter k;
– HashKG(L) generates a hashing key hk for the language L;
– ProjKG(hk, L,W) derives the projection key hp, possibly depending on a word W ;
– Hash(hk, L,W) outputs the hash value from the hashing key;
– ProjHash(hp, L,W,w) outputs the hash value from the projection key and the witness w

that W ∈ L.

The correctness of the scheme assures that if W is in L with w as a witness, then the two ways
to compute the hash values give the same result: Hash(hk, L,W) = ProjHash(hp, L,W,w). In our
setting, these hash values will belong to a group G. The security is defined through two different
notions, the smoothness and the pseudo-randomness properties, where we use the distribution
∆(L,W) = {(hk, hp), hk← HashKG(L), hp← ProjKG(hk, L,W)}:

– the smoothness property guarantees that if W 6∈ L, the hash value is statistically indistin-
guishable from a random element, even knowing hp:

{(hp, G), (hk, hp)← ∆(L,W), G← Hash(hk, L,W)}
≈s {(hp, G), (hk, hp)← ∆(L,W), G

$← G}.

We define by Advsmooth the statistical distance between the two distributions.
– the pseudo-randomness property guarantees that even for a word W ∈ L, but without the

knowledge of a witness w, the hash value is computationally indistinguishable from a random
element, even knowing hp:

{(hp, G), (hk, hp)← ∆(L,W), G← Hash(hk, L,W)}
≈c {(hp, G), (hk, hp)← ∆(L,W), G

$← G}.
We define by Advpr(t) the computational distance between the two distributions for t-time
distinguishers.

A.2 Computational Assumptions

The three classical assumptions we use along this paper are: the computational Diffie-Hellman
(CDH), the decisional Diffie-Hellman (DDH) and the decisional Linear (DLin) assumptions. Our
constructions essentially rely on the DLin assumption, that implies the CDH. It is the most
general since it (presumably) holds in many groups, with or without pairing. Some more efficient
instantiations will rely on the DDH assumption but in more specific groups.

Definition 2 (Computational Diffie-Hellman (CDH)). The Computational Diffie-Hellman
assumption says that, in a group (p,G, g), when we are given (ga, gb) for unknown random

a, b
$← Zp, it is hard to compute gab. We define by Succcdhp,G,g(t) the best advantage an adversary

can have in finding gab within time t.

Definition 3 (Decisional Diffie-Hellman (DDH)). The Decisional Diffie-Hellman assump-

tion says that, in a group (p,G, g), when we are given (ga, gb, gc) for unknown random a, b
$← Zp,

it is hard to decide whether c = ab mod p (a DH tuple) or c
$← Zp (a random tuple). We define

by Advddhp,G,g(t) the best advantage an adversary can have in distinguishing a DH tuple from a
random tuple within time t.

APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A] 113

Definition 4 (Decisional Linear Problem (DLin)). The Decisional Linear Problem [BBS04]
says that, in a group (p,G, g), when we are given (gx, gy, gxa, gyb, gc) for unknown random

x, y, a, b
$← Zp, it is hard to decide whether c = a + b mod p (a linear tuple) or c

$← Zp (a
random tuple). We define by Advdlinp,G,g(t) the best advantage an adversary can have in distin-
guishing a linear tuple from a random tuple within time t.

A.3 Some Primitives in Symmetric Groups – Based on DLin

Linear Cramer-Shoup (LCS) encryption scheme. The Linear Cramer-Shoup encryption
scheme [Sha07] can be tuned to a labeled public-key encryption scheme:

– Setup(1k) generates a group G of order p, with three independent generators (g1, g2, g3)
$←

G3;

– KeyGen(param) generates dk = (x1, x2, x3, y1, y2, y3, z1, z2, z3)
$← Z9

p, and sets, for i = 1, 2,
ci = gxii g

x3
3 , di = gyii g

y3
3 , and hi = gzii g

z3
3 . It also chooses a hash function HK in a collision-

resistant hash family H (or simply a Universal One-Way Hash Function). The encryption
key is ek = (c1, c2, d1, d2, h1, h2,HK).

– Encrypt(`, ek,M ; r, s), for a message M ∈ G and two random scalars r, s
$← Zp, the ciphertext

is C = (u = (gr1, g
s
2, g

r+s
3), e = M ·hr1hs2, v = (c1d

ξ
1)
r(c2d

ξ
2)
s), where v is computed afterwards

with ξ = HK(`,u, e).

– Decrypt(`, dk, C = (u, e, v)): one first computes ξ = HK(`,u, e) and checks whether ux1+ξy11 ·
ux2+ξy22 · ux3+ξy33

?= v. If the equality holds, one computes M = e/(uz11 u
z2
2 u

z3
3) and outputs

M . Otherwise, one outputs ⊥.

This scheme is indistinguishable against chosen-ciphertext attacks, under the DLin assumption
and if one uses a collision-resistant hash function H.

Waters signature. The Waters signature [Wat05] is defined as follows:

– Setup(1k): In a pairing-friendly setting (p,G, g,GT , e), one chooses a random vector f =

(f0, . . . , fk)
$← Gk+1 that defines the Waters hash function F(M) = f0

∏k
i=1 f

Mi
i for M ∈

{0, 1}k, and an extra generator h
$← G. The global parameters param consist of all these

elements (p,G, g,GT , e,f , h).

– KeyGen(param) chooses a random scalar x
$← Zp, which defines the public verification key

as vk = gx, and the secret signing key as sk = hx.

– Sign(sk,M ; s) outputs, for some random s
$← Zp, σ =

(
σ1 = sk · F(M)s, σ2 = gs

)
.

– Verif(vk,M, σ) checks whether e(σ1, g) ?= e(h, vk) · e(F(M), σ2).

This scheme is existentially unforgeable against (adaptive) chosen-message attacks [GMR88]
under the CDH assumption.

A.4 Some Primitives in Asymmetric Groups – Based on DDH

Cramer-Shoup encryption scheme. The Cramer-Shoup encryption scheme [CS98] can be
tuned into a labeled public-key encryption scheme:

– Setup(1k) generates a group G of order p, with a generator g

– KeyGen(param) generates (g1, g2)
$← G2, dk = (x1, x2, y1, y2, z)

$← Z5
p, and sets, c = gx11 g

x2
2 ,

d = gy11 g
y2
2 , and h = gz1 . It also chooses a collision-resistant hash function HK in a hash

family H (or simply a Universal One-Way Hash Function). The encryption key is ek =
(g1, g2, c, d, h,HK).

114 APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A]

– Encrypt(`, ek,M ; r), for a message M ∈ G and a random scalar r ∈ Zp, the ciphertext
is C = (`,u = (gr1, g

r
2), e = M · hr, v = (cdξ)r), where v is computed afterwards with

ξ = HK(`,u, e).

– Decrypt(`, dk, C): one first computes ξ = HK(`,u, e) and checks whether ux1+ξy11 ·ux2+ξy22
?= v.

If the equality holds, one computes M = e/(uz1) and outputs M . Otherwise, one outputs ⊥.

This scheme is indistinguishable against chosen-ciphertext attacks, under the DDH assumption
and if one uses a collision-resistant hash function H.

Waters signature (asymmetric). This variant of the Waters signature has been proposed
and proved in [BFPV11]:

– Setup(1k): In a bilinear group (p,G1, g1,G2, g1,GT , e), one chooses a random vector f =

(f0, . . . , fk)
$← Gk+1

1 , an extra generator h1
$← G1. The global parameters param consist of

(p,G1, g1,G2, g1,GT , e,f , h1).

– KeyGen(param) chooses a random scalar x
$← Zp, which defines the public vk = gx1 , and the

secret sk = hx1 .

– Sign(sk,M ; s) outputs, for some random s
$← Zp, σ =

(
σ1 = sk · F(M)s,σ2 = (gs1, g

s
1)
)
.

– Verif(vk,M, σ) checks whether e(σ1, g1) = e(h1, vk)·e(F(M), σ2,2), and e(σ2,1, g1) = e(g1, σ2,2).

This scheme is unforgeable under the following variant of the CDH assumption:

Definition 5 (The Advanced Computational Diffie-Hellman problem (CDH+)). In a
pairing-friendly environment (p,G1, g1,G2, g1,GT , e). The CDH+ assumption states that given
(g1, g1, g

a
1 , g

a
1, g

b
1), for random a, b ∈ Zp, it is hard to compute gab1 .

B Multi Double Linear Cramer-Shoup Commitment

B.1 Multi Double Linear Cramer-Shoup (n− DLCS) Encryption

We can extend the encryption scheme implicitly presented in Section 3 to vectors (Mi, Ni)i=1,...,n,
partially IND-CCA protected, with a common ξ. It of course also includes the n− LCS scheme
on vectors (Mi)i, when ignoring the C′ part, which is already anyway the case for the decryption
oracle:

– Setup(1k) generates a group G of order p, with three independent generators (g1, g2, g3)
$←

G3;
– KeyGen(param) generates dk = (x1, x2, x3, y1, y2, y3, z1, z2, z3)

$← Z9
p, and sets, for i = 1, 2,

ci = gxii g
x3
3 , di = gyii g

y3
3 , and hi = gzii g

z3
3 . It also chooses a collision-resistant hash function

HK . The encryption key is ek = (c1, c2, d1, d2, h1, h2,HK).
– Encrypt(`, ek,M ; r, s), for a vector M ∈ Gn and two vectors r, s ∈ Znp , computes

C = (C1, . . . , Cn), where Ci = (ui = (gri1 , g
si
2 , g

ri+si
3), ei = Mi · hri1 hsi2 , vi = (c1d

ξ
1)
ri(c2d

ξ
2)
si)

with the vi computed afterwards with ξ = HK(`,u1, . . . ,un, e1, . . . , en).
– Encrypt′(`, ek,N , ξ;a, b), for a vector N ∈ Gn and two vectors a, b ∈ Znp , computes

C′ = (C′1, . . . , C′n), where C′i = (αi = (gai1 , g
bi
2 , g

ai+bi
3), βi = Ni · hai1 hbi2 , γi = (c1d

ξ
1)
ai(c2d

ξ
2)
bi)

where the γi’s are computed with the above ξ = HK(`,u1, . . . ,un, e1, . . . , en), hence the
additional input.
One can use both simultaneously: on input (`, ek,M ,N ; r, s,a, b), the global encryption al-
gorithm first calls Encrypt(`, ek,M ; r, s) and to get C and ξ, and then calls Encrypt′(`, ek,N , ξ;a, b)
to get C′.

APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A] 115

– Decrypt(`, dk, C, C′): one first parses C = (C1, . . . , Cn) and C′ = (C′1, . . . , C′n), where Ci =
(ui, ei, vi) and C′i = (αi, βi, γi), for i = 1, . . . , n, computes ξ = HK(`,u1, . . . ,un, e1, . . . , en)

and checks whether, for i = 1, . . . , n, ux1+ξy1i,1 · ux2+ξy2i,2 · ux3+ξy3i,3
?= vi (but not for the γi’s).

If the equality holds, one computes Mi = ei/(u
z1
i,1u

z2
i,2u

z3
i,3) and Ni = βi/(α

z1
i,1α

z2
i,2α

z3
i,3), and

outputs (M = (M1, . . . ,Mn),N = (N1, . . . , Nn)). Otherwise, one outputs ⊥.
– PDecrypt(`, dk, C): is a partial decryption algorithm that does as above but working on the
C part only to get M = (M1, . . . ,Mn) or ⊥.

DLCS denotes the particular case where n = 1: DLCS(`, ek,M,N ; r, s, a, b) = (C, C′), with

C = (u = (gr1, g
s
2, g

r+s
3), e = M · hr1hs2, v = (c1d

ξ
1)
r(c2d

ξ
2)
s) = LCS(`, ek,M ; r, s),

C′ = (α = (ga1 , g
b
2, g

a+b
3), β = N · ha1hb2, γ = (c1d

ξ
1)
a(c2d

ξ
2)
b) = LCS∗(`, ek, N, ξ; a, b)

where ξ = HK(`,u, e).

B.2 Security of the Multi Double Linear Cramer Shoup Encryption

Security model. This scheme is indistinguishable against partial-decryption chosen-ciphertext
attacks, where a partial-decryption oracle only is available, but even when we allow the adversary
to choose M and N in two different steps (see the security game below), under the DLin
assumption and if one uses a collision-resistant hash function H.

Indistinguishability against partial-decryption chosen-ciphertext attacks for vectors, in two
steps: this security notion can be formalized by the following security game, where the adversary
A keeps some internal state between the various calls FINDM , FINDN and GUESS. In the first stage
FINDM , it receives the encryption key ek; in the second stage FINDN , it receives the encryption
of M b: C∗ = Encrypt(`, ek,M b); in the last stage GUESS it receives the encryption of N b: C′∗ =
Encrypt′(`, ek, ξ∗,N b), where ξ∗ is the value involved in C. During all these stages, it can make
use of the oracle ODecrypt(`, C), that outputs the decryption of C under the label ` and the
challenge decryption key dk, using PDecrypt(`, dk, C). The input queries (`, C) are added to the
list CT .

Expind−pd−cca−bE,A (k, n)

1. param← Setup(1k); (ek, dk)← KeyGen(param)
2. (`∗,M0,M1)← A(FINDM : ek,ODecrypt(·, ·))
3. C∗ ← Encrypt(`∗, ek,M b)
4. (N0,N1)← A(FINDN : C∗,ODecrypt(·, ·))
5. C′∗ ← Encrypt′(`∗, ek, ξ∗,N b)
6. b′ ← A(GUESS : C′∗,ODecrypt(·, ·))
7. IF (`∗, C∗) ∈ CT RETURN 0
8. ELSE RETURN b′

The advantages are, where qd is the number of decryption queries:

Advind−pd−ccaE (A) = Pr[Expind−pd−cca−1E,A (k, n) = 1]− Pr[Expind−pd−cca−0E,A (k, n) = 1]

Advind−pd−ccaE (n, qd, t) = max
A≤t

Advind−pd−ccaE (A).

Theorem 6. The Multiple n − DLCS encryption scheme is IND-PD-CCA if H is a collision-
resistant hash function family, under the DLin assumption in G:

Advind−pd−ccan−DLCS (n, qd, t) ≤ 4n×
(
Advdlinp,G,g(t) + SucccollH (t) +

qd
p

)
.

Corollary 7. The Multiple n−LCS encryption scheme is IND-CCA if H is a collision-resistant
hash function family, under the DLin assumption in G.

116 APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A]

Security proof. Let us be given a DLin challenge (g1, g2, g3, u1 = gr1, u2 = gs2, u3 = gt3), for
which we have to decide whether (u1, u2, u3) is a linear tuple in basis (g1, g2, g3), and thus
t = r + s mod p, or a random one. From an IND-PD-CCA adversary A against the encryption
scheme, we built a DLin distinguisher B. The latter first uses (g1, g2, g3) as the global parameters.

It also picks x1, x2, x3, y1, y2, y3, z1, z2, z3
$← Z9

p and sets ci = gxii g
x3
3 , di = gyii g

y3
3 , hi = gzii g

z3
3 , for

i = 1, 2. It chooses a collision-resistant hash function HK and provides A with the encryption
key ek = (c1, c2, d1, d2, h1, h2,HK).

– In the initial game G0,
• A’s decryption queries are answered by B, simply using the decryption key dk.

• When A submits the first challenge vectors M b = (Mb,1, . . . ,Mb,n) for b = 0, 1, with a

label `∗, B chooses a random bit b
$← {0, 1} and encrypts M b:

∗ it chooses two random vectors r∗, s∗ $← Znp
∗ it defines C∗i = (u∗i = (g

r∗i
1 , g

s∗i
2 , g

r∗i+s
∗
i

3), e∗i = Mb,i · hr
∗
i
1 h

s∗i
2 , v

∗
i = (c1d

ξ∗
1)r

∗
i (c2d

ξ∗
2)s

∗
i),

for i = 1, . . . , n, where the v∗i ’s are computed with the value ξ∗ = HK(`∗,u∗1, . . . ,u
∗
n,

e∗1, . . . , e
∗
n), and C∗ = (C∗1 , . . . , C∗n).

• When A submits the second challenge vectors N b = (Nb,1, . . . , Nb,n) for b = 0, 1,

∗ B chooses two random vectors a∗, b∗ $← Znp
∗ it defines C′∗i = (α∗i = (g

a∗i
1 , g

b∗i
2 , g

a∗i+b
∗
i

3), β∗i = Nb,i · ha
∗
i

1 h
b∗i
2 , γ

∗
i = (c1d

ξ∗
1)a

∗
i (c2d

ξ∗
2)b

∗
i),

for i = 1, . . . , n, where the γ∗i ’s are computed with the above ξ∗ = HK(`∗,u∗1, . . . ,u
∗
n,

e∗1, . . . , e
∗
n), and C′∗ = (C′∗1 , . . . , C′∗n).

• When A returns b′, B outputs b′ ?= b.

Pr
0

[1← B] = Pr
0

[b′ = b] = (Advind−pd−ccan−DLCS (A)− 1)/2.

– In game G1, where we assume t = r + s mod p, to encrypt the challenge vectors M b and
N b, B does as above, except for C∗1 : C∗1 = (u∗1 = (u1, u2, u3), e

∗
1 = Mb,1 · uz11 uz22 uz33 , v∗1 =

ux1+ξ
∗y1

1 ux2+ξ
∗y2

2 ux3+ξ
∗y3

3), which actually defines r∗1 = r and s∗1 = s.

u∗1 = (g
r∗1
1 , g

s∗1
2 , g

r∗1+s
∗
1

3) e∗1 = Mb,1 · (gr
∗
1

1)z1(g
s∗1
2)z2(g

r∗1+s
∗
1

3)z3 = Mb,1 · hr
∗
1
1 h

s∗1
2

v∗1 = (g
r∗1
1)x1+ξ

∗y1(g
s∗1
2)x2+ξ

∗y2(g
r∗1+s

∗
1

3)x3+ξ
∗y3 = (c1d

ξ∗
1)r

∗
1 (c2d

ξ∗
2)s

∗
1

The challenge ciphertexts are identical to the encryptions of M b and N b in G0. Decryption
queries are still answered the same way. Hence the gap between this game and the previous
game is 0.

Pr
1

[1← B] = Pr
0

[1← B] = (Advind−pd−ccan−DLCS (A)− 1)/2.

– In game G2, we now assume that t
$← Zp (a random tuple). First, we have to check that the

incorrect computation of v∗1 does not impact the probability to reject invalid ciphertexts,
then we prove that e∗1 is totally independent of Mb,1.

1. About the validity checks, ux1+ξy1i,1 · ux2+ξy2i,2 · ux3+ξy3i,3
?= vi, where ξ = HK(`,u1, . . . ,un,

e1, . . . , en), three cases can appear with respect to the challenge ciphertext equal to
C∗ = ((u∗1, e

∗
1, v
∗
1), . . . , (u∗n, e

∗
n, v
∗
n)):

(a) (`,u1, e1, . . . ,un, en) = (`∗,u∗1, e
∗
1, . . . ,u

∗
n, e
∗
n), then necessarily, for some i, vi 6= v∗i ,

then the check on index i will fail since one value only is acceptable;
(b) (`,u1, e1, . . . ,un, en) 6= (`∗,u∗1, e

∗
1, . . . ,u

∗
n, e
∗
n), but ξ = ξ∗, then the adversary has

generated a collision for the hash function HK .
(c) (`,u1, e1, . . . ,un, en) 6= (`∗,u∗1, e

∗
1, . . . ,u

∗
n, e
∗
n), and ξ 6= ξ∗: the ciphertext should be

accepted iff vi = ux1+ξy1i,1 · ux2+ξy2i,2 · ux3+ξy3i,3 , for i = 1, . . . , n. To make it acceptable,

APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A] 117

if we denote g2 = gβ21 and g3 = gβ31 , we indeed have

logg1 c1 = x1 +β3x3
logg1 d1 = y1 +β3y3
logg1 c2 = β2x2 +β3x3
logg1 d2 = β3y2 +β3y3

with in addition,

logg1 v
∗
1 = rx1 + sβ2x2 + tβ3x3 + rξ∗y1 + sξ∗β2y2 + tξ∗β3y3

logg1 v
∗
i = r∗i x1 + s∗iβ2x2 + (r∗i + s∗i)β3x3 + r∗i ξ

∗y1 + s∗i ξ
∗β2y2 + (r∗i + s∗i)ξ

∗β3y3
= r∗i logg1 c1 + s∗i logg1 c2 + ξ∗r∗i logg1 d1 + ξ∗s∗i logg1 c2 for i = 2, . . . , n

logg1 γ
∗
i = a∗ix1 + b∗iβ2x2 + (a∗i + b∗i)β3x3 + a∗i ξ

∗y1 + b∗i ξ
∗β2y2 + (a∗i + b∗i)ξ

∗β3y3
= a∗i logg1 c1 + b∗i logg1 c2 + ξ∗a∗i logg1 d1 + ξ∗b∗i logg1 c2 for i = 1, . . . , n

The 2n − 1 last relations are thus linearly dependent with the 4 above relations,
hence remains the useful relations

logg1 c1 = x1 +β3x3 (1)

logg1 d1 = y1 +β3y3 (2)

logg1 c2 = β2x2 +β3x3 (3)

logg1 d2 = β2y2 +β3y3 (4)

logg1 v
∗
1 = rx1 +sβ2x2 +tβ3x3 +rξ∗y1 +sξ∗β2y2 +tξ∗β3y3 (5)

One can note that for v∗1 to be predictable, because of the x1, x2 and y1, y2 compo-
nents, we need to have (5) = r (1) + s (3) + rξ∗ (2) + sξ∗ (4), and then t = r + s,
which is not the case, hence v∗1 looks random: in this game, v∗1 is perfectly uniformly
distributed in G.
Furthermore, for any vi in the decryption query, if ui = (gr

′
1 , g

s′
2 , g

t′
3) is not a linear

triple, then it should be such that

logg1 vi = r′x1 + s′β2x2 + t′β3x3 + r′ξy1 + s′ξβ2y2 + t′ξβ3y3.

Since the matrix 


1 0 β3 0 0 0
0 0 0 1 0 β3
0 β2 β3 0 0 0
0 0 0 0 β2 β3
a bβ2 cβ3 aξ∗ bξ∗β2 cξ∗β3
r′ s′β2 t′β3 r′ξ s′ξβ2 t′ξβ3




has determinant β22β
2
3(ξ∗ − ξ)(t − r − s)(t′ − r′ − s′) 6= 0, then the correct value

for vi is unpredictable: an invalid ciphertext will be accepted with probability 1/p.
2. Let us now consider the mask uz11 u

z2
2 u

z3
3 : its discrete logarithm in basis g1 is rz1+sβ2z2+

tβ3z3, whereas the informations about (z1, z2, z3) are h1 = gz11 g
z3
3 and h2 = gz22 g

z3
3 . The

matrix 


1 0 β3
0 β2 β3
r sβ2 tβ3




has determinant β2β3(t− r − s)(t′ − r′ − s′) 6= 0, then the value of the mask is unpre-
dictable: in this game, e∗1 is perfectly uniformly distributed in G.

118 APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A]

Since the unique difference between the two games is the linear/random tuple, unless a
collision is found for HK (probability bounded by SucccollH (t)) and or an invalid ciphertext is
accepted (probability bounded by qd/p), then

Pr
2

[1← B] ≥ Pr
1

[1← B]− Advdlinp,G,g(t)− SucccollH (t)− qd
p
.

– In game G3, to encrypt the challenge vectors M b and N b, B does as above, except for C∗1 :

for a random t∗1
$← Zp, u∗1 = (g

r∗1
1 , g

s∗1
2 , g

t∗1
3), e∗1

$← G, and v∗1
$← G. As just explained, this is

perfectly indistinguishable with the previous game:

Pr
3

[1← B] = Pr
2

[1← B] ≥ (Advind−pd−ccan−DLCS (A)− 1)/2− Advdlinp,G,g(t)− SucccollH (t)− qd
p
.

– In game G4, to encrypt the challenge vectors M b and N b, B does as above, except for C∗:
for a random vector t∗ $← Znp , for i = 2, . . . , n: u∗i = (g

r∗i
1 , g

s∗i
2 , g

t∗i
3), e∗i

$← G, and v∗i
$← G.

Thus replacing sequentially the C∗i ’s by random ones, as we’ve just done, we obtain

Pr
4

[1← B] ≤ Pr
3

[1← B]− (n− 1)

(
Advdlinp,G,g(t)− SucccollH (t)− qd

p

)
.

– In game G5, to encrypt the challenge vectors M b and N b, B does as above, except for C′∗:
for a random vector c∗ $← Znp , for i = 1, . . . , n: α∗i = (g

a∗i
1 , g

b∗i
2 , g

c∗i
3), β∗i

$← G, and γ∗i
$← G.

Thus replacing sequentially the C′∗i ’s by random ones, as we’ve just done, we obtain

Pr
5

[1← B] ≤ Pr
4

[1← B]− n
(
Advdlinp,G,g(t)− SucccollH (t)− qd

p

)
.

In this last game, it is clear that Pr5[1← B] = 1/2, since (M b,N b) is not used anymore:

Advind−pd−ccan−DLCS (A)− 1

2
− 2n×

(
Advdlinp,G,g(t)− SucccollH (t)− qd

p

)
≤ 1

2
,

which concludes the proof. ut

B.3 Double Linear Cramer-Shoup (DLCS) Commitment

Recently, Lindell [Lin11] proposed a highly efficient UC commitment. Our commitment strongly
relies on it, but does not need to be UC secure. We will then show that the decommitment
check can be done in an implicit way with an appropriate smooth projective hash function.
Basically, the technique consists in encrypting M in C = (u, e, v) = LCS(`,M ; r, s), also getting
ξ = HK(`,u, e), and then encrypting 1G in C′ = LCS∗(`, 1G, ξ; a, b), with the same ξ. For a given
challenge ε, we can see C · C′ε = LCS∗(`,M, ξ; r + εa, s + εb), where the computations are done
component-wise, as an encryption of M , still using the same above ξ. Note that Lindell [Lin11]
used Cε · C′, but our choice seems more natural, since we essentially re-randomize the initial
encryption C, but we have to take care of choosing ε 6= 0. It makes use of an equivocable
commitment: the Pedersen commitment [Ped92].

– Setup(1k) generates a group G of order p, with two independent generators g and ζ;

– Commit(m; r), for a message m
$← Zp and random coins r

$← Zp, produces a commitment
c = gmζr;

– Decommit(c,m; r) outputs m and r, which opens c into m, with checking ability: c ?= gmζr.

This commitment is computationally binding under the discrete logarithm assumption: two
different openings (m, r) and (m′, r′) for a commitment c, leads to the discrete logarithm of ζ
in basis g, that is equal to (m′ − m) · (r − r′)−1 mod p. Granted this logarithm as additional
information from the setup, one can equivocate any dummy commitment.

APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A] 119

Description. Our n-message vector commitment, which includes labels, is depicted on Figure 6,
where the computation between vectors are component-wise. We assume we commit vectors of
group elements, but they can come from the reversible transformation G. Note that for this
commitment scheme, we can use ε = (ε, . . . , ε). For the version with SPHF implicit verification,

according to the language, one can have to use independent components ε
$← (Z∗p)n.

– Setup(1k): A group G of prime order p, with ten independent generators

(g1, g2, g3, h1, h2, c1, c2, d1, d2, ζ)
$← G10, a collision-resistant hash function HK , and possibly

an additional reversible mapping G from {0, 1}k to G to commit to bit-strings. One can denote
ek = (c1, c2, d1, d1, h1, h2,HK);

– Commit(`,M ; r, s,a, b, t): for (r, s,a, b, t)
$← Z4n+1

p

(C, C′)← n− DLCS(`, ek,M , (1G)n; r, s,a, b)
χ = HK(M , C′), C′′ = gt1ζ

χ C, C′′−−−−−−−−−−−−−−−→
ε←−−−−−−−−−−−−−−− ε

$← Z∗p, ε← (ε, . . . , ε)
∏
i εi

?

6= 0 mod p
z = (r + ε · a mod p, s + ε · b mod p)
Erase(r, s,a, b)

– Decommit(`, C, C′, ε): C′, t,M , z−−−−−−−−−−−−−−−→ compute ξ from C
χ = HK(M , C′), C′′ ?= gt1ζ

χ

C · C′ε ?= n− LCS∗(`,M , ξ; zr, zs)

Fig. 6. n− DLCS Commitment Scheme

Analysis. Let us briefly show the properties of this commitment:

– Hiding property: M is committed in the Pedersen commitment C′′, that does not leak any
information, and in the n− LCS encryption C, that is indistinguishable, even with access to
the decryption oracle (extractability). This also implies non-malleability.

– Binding property: M , after having been hashed, is committed in the Pedersen commitment
C′′, that is computationally binding.

– Extractability: using the decryption key of the LCS encryption scheme, one can extract M
from C. Later, one has to open the ciphertext CC′ε with M ′, which can be different from M
in the case that C′ contains N 6= (1G)n. But then M ′ = M ·Nε, that is unpredictable at
the commit time of C′′. With probability at most 1/p, one can open the commitment with
a value M ′ different from M , if this value M ′ has been correctly anticipated in C′′.

– Equivocability: if one wants to open with M ′, one can compute N = (M ′/M)1/ε, encrypt
N in C′ = n − LCS∗(`,N , ξ;a, b), and update χ and t, using the Pedersen trapdoor for
equivocability.

To allow an implicit verification with SPHF, one omits to send M and z, but make an implicit
proof of their existence. Therefore, M cannot be committed/verified in C′′, which has an impact
on the binding property: C and C′′ are not binded to a specific M , even in a computational way.
However, as said above, if C′′ contains a ciphertext C′ of N 6= (1G)n, the actual committed value
will depend on ε: M ′ = MNε has its i-component, where Ni 6= 1G, uniformly distributed in G
when ε is uniformly distributed in Z∗p. In addition, if ε

$← (Z∗p)n, all these i-component where
Ni 6= 1G are randomly and independently distributed in G. Then, if the committed value has to
satisfy a specific relation, with very few solutions, M ′ will unlikely satisfy it.

120 APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A]

C Smooth Projective Hash Functions on More Complex Languages

C.1 Basic Relations

We first consider Diffie-Hellman pairs and linear tuples and show we can make proof of mem-
bership without using any pairing.

DDH pairs. Let us assume a user is given two elements g, h and then wants to send G =
ga, H = ha for a chosen a and prove that the pair (G,H) is well-formed with respect to (g, h).
We thus consider the language of Diffie Hellman tuples (g, h,G = ga, H = ha), with a as a
witness.

As done in [CS98], we define a projection key hp = gx1hx2 by picking two random scalars

x1, x2
$← Zp, which define the secret hashing key hk = (x1, x2). One can then compute the hash

value in two different ways:
ProjHash(hp, (g, h,G,H), a) def= hpa = (gax1hax2) = Gx1Hx2 def= Hash(hk, (g, h,G,H)).

Such SPHF is smooth: this can be seen by proceeding like in the Cramer-Shoup proof. Given
hp = gα, h = gβ, G = ga and H = ha

′
, the hash value is gγ that satisfies:

(
α
γ

)
=

(
1 β
a βa′

)
·
(
x1
x2

)

The determinant of this matrix is ∆ = β(a′ − a), that is zero if and only if we do have a valid
Diffie-Hellman tuple. Otherwise, from hp, γ is perfectly hidden, from an information theoretical
point of view, and so is Hash(hk, (g, h,G,H)) too.

DLin tuples. Let us consider three generators u, v, w, and a tuple U = ur, V = vs,W = wt one
wants to prove be linear (i.e. t = r+ s). We first define two projection keys hp1 = ux1wx3 , hp2 =
vx2wx3 , for random scalars that define the secret hashing key hk = (x1, x2, x3). One can then com-
pute the hash value in two different ways: ProjHash(hp1, hp2, (u, v, w, U, V,W), r, s) def= hpr1hp

s
2 =

(urx1vsx2wx3(r+s)) = Ux1V x2W x3 def= Hash(hk, (u, v, w, U, V,W)).

Once again this SPHF can be shown to be smooth: given hp1 = uα, hp2 = uβ, v = uγ ,
w = uδ, the hash value is uλ that satisfies:



α
β
λ


 =




1 0 δ
0 γ δ
r γs δt


 ·



x1
x2
x3




The determinant of this matrix is ∆ = γδ(t − s − r), that is zero if and only if we do have a
valid linear tuple.

C.2 Smooth Projective Hashing on Commitments

We now show that our commitments LCS or DLCS′ are well-suited for a use together with
smooth projective hash functions: instead of publishing z at the decommit phase, in order to
check whether C ·C′ε ?= LCS∗(`,M, ξ; zr, zs) (with ε = 0 in the LCS non-equivocable case, or with
ε 6= 0 in the DLCS′ case), one uses a smooth projective hash function to “implicitly” prove the
existence of a witness that the commitment actually contains the claimed (or assumed) value
M . We will thereafter be able to use this primitive in Language-Authenticated Key Exchange,
for complex languages.

APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A] 121

Smooth projective hash functions. We thus have a commitment, either C or C · C′ε, but we
use in both cases the notation C, and want to check whether there exists z = (zr, zs) such that

C = LCS∗(`,M, ξ; zr, zs) = (u = (gzr1 , g
zs
2 , g

zr+zs
3), e = M · hzr1 hzs2 , v = vzr1 v

zs
2),

where we denote v1 = c1d
ξ
1 and v2 = c2d

ξ
2. We note here that all the bases g1, g2, g3, h1, h2

but also v1, v2 are known as soon as ξ is known (the C part of the DLCS′ commitment). One

then generates hk = (η, θ, κ, λ, µ)
$← Z5

p, and derives the projection key that depends on ξ only:

hp = (hp1 = gη1g
κ
3h

λ
1v

µ
1 , hp2 = gθ2g

κ
3h

λ
2v

µ
2). Then, one can compute the hash value:

H = Hash(hk,M, C) def= uη1u
θ
2u
κ
3(e/M)λvµ = hpzr1 hpzs2

def= ProjHash(hp,M, C; zr, zs) = H ′.

Security properties. Let us claim and prove the security properties:

Theorem 8. Under the DLin assumption, the above smooth projective hash function is both
smooth and pseudo-random:

– Smoothness: Advsmooth
Π = 0;

– Pseudo-Randomness: AdvprΠ(t) ≤ Advdlinp,G,g(t).

Proof. For the correctness, one can easily check that if C contains M = M ′, then H = H ′:

H = uη1u
θ
2u
κ
3(e/M)λvµ = (gzr1)η(gzs2)θ(gzr+zs3)κ(hzr1 h

zs
2 M

′/M)λ(vzr1 v
zs
2)µ

= (gη1g
κ
3h

λ
1v

µ
1)zr · (gθ2gκ3hλ2vµ2)zs · (M ′/M)λ = hpzr1 hpzs2 · (M ′/M)λ = H ′ · (M/M ′)λ

Smoothness: if C is not a correct encryption of M , then H is unpredictable: let us denote M ′

and z′s such that C = (u = (gzr1 , g
zs
2 , g

zt
3), e = M ′hzr1 h

zs
2 , v = vzr1 v

z′s
2). Then, if we denote g2 = gβ21

and g3 = gβ31 , and h1 = gρ11 and h2 = gρ21 , but also v1 = gδ11 and v2 = gδ21 , and ∆ = logg1(M ′/M):

H = gηzr1 gβ2θzs1 gβ3κzt1 (M ′/M)λ(gρ1zr+ρ2zs1)λ(vzr1 v
z′s
2)µ

logg1 H = ηzr + β2θzs + β3κzt + λ(ρ1zr + ρ2zs) + µ(δ1zr + δ2z
′
s) + λ∆

The information leaked by the projected key is logg1 hp1 = η + β3κ+ ρ1λ+ δ1µ and logg1 hp2 =
β2θ + β3κ+ ρ2λ+ δ2µ, which leads to the matrix




1 0 β3 ρ1 δ1
0 β2 β3 ρ2 δ2
zr β2zs β3zt ∆+ ρ1zr + ρ2zs δ1zr + δ2z

′
s




One remarks that if zt 6= zr + zs mod p, then the three rows are not linearly dependent even
considering the 3 first components only, and then H is unpredictable. Hence, we can assume
that zt = zr + zs mod p. The third row must thus be the first multiplied by zr plus the second
multiplied by zs: ρ2zs = ∆ + ρ2zs mod p and zs = z′s mod p, which implies z′s = s and ∆ = 0,
otherwise, H remains unpredictable.

As a consequence, if C is not a correct encryption of W , H is perfectly unpredictable in G:

{(hp, H), hk = (η, θ, κ, λ, µ)
$← Z5

p, hp = (hp1 = gη1g
κ
3h

λ
1v

µ
1 , hp2 = gθ2g

κ
3h

λ
2v

µ
2), H ← Hash(hk,M, C)}

≈s {(hp, H), hk = (η, θ, κ, λ, µ)
$← Z5

p, hp = (hp1 = gη1g
κ
3h

λ
1v

µ
1 , hp2 = gθ2g

κ
3h

λ
2v

µ
2), H

$← G}.

122 APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A]

Pseudo-Randomness: we’ve just shown that if C is not a correct encryption of M , then H
is statistically unpredictable. Let us be given a triple (g1, g2, g3) together with another triple
u = (u1 = ga1 , u2 = gb2, u3 = gc3). We choose random exponents (x1, x2, x3, y1, y2, y3, z1, z2, z3),
and for i = 1, 2, we set ci = gxii g

x3
3 , di = gyii g

y3
3 , and hi = gzii g

z3
3 . We generate C = (u, e =

M · uz11 uz22 uz33 , v = ux1+ξy11 ux2+ξy22 ux3+ξy33). If c = a + b mod p (i.e., u is a linear tuple in basis
g), then C is a valid encryption of M , otherwise this is not, and we can apply the smoothness
property:

AdvprΠ(t) ≤ Advsmooth
Π + Advdlinp,G,g(t) ≤ Advdlinp,G,g(t).

ut

C.3 Single Equation

Let us assume that we have Yi committed in G, in ci, for i = 1, . . . ,m and Zi committed in GT ,
in Di, for i = m+ 1, . . . , n, and we want to show they simultaneously satisfy

(
m∏

i=1

e(Yi,Ai)
)
·
(

n∏

i=m+1

Zzi
i

)
= B

where Ai ∈ G, B ∈ GT , and zi ∈ Zp are public. As already said, the commitment can either be
the LCS or the DLCS′ version, but they both come up to a ciphertext C with the appropriate
random coins z:

ci = (ui = (g
zri
1 , g

zsi
2 , g

zri+zsi
3), ei = h

zri
1 h

zsi
2 · Yi, vi = (c1d

ξ
1)
zri · (c2dξ2)zsi)

for i=1,. . . ,m
which can be transposed into GT :

Ci = (Ui = (G
zri
i,1 , G

zsi
i,2 , G

zri+zsi
i,3), Ei = H

zri
i,1 H

zsi
i,2 · Zi, Vi = (Ci,1D

ξ
i,1)

zri · (Ci,2Dξ
i,2)

zsi)

for i=1,. . . ,m
where, for j = 1, 2, 3, Gi,j = e(gj ,Ai) and for j = 1, 2, Hi,j = e(hj ,Ai), Ci,j = e(cj ,Ai),
Di,j = e(dj ,Ai), but also, Zi = e(Yi,Ai), and

Di = (Ui = (G
zri
i,1 , G

zsi
i,2 , G

zri+zsi
i,3), Ei = H

zri
i,1 H

zsi
i,2 · Zi, Vi = (Ci,1D

ξ
i,1)

zri · (Ci,2Dξ
i,2)

zsi)

for i = m+ 1, . . . , n where, for j = 1, 2, 3, Gi,j = e(gj , g)
and for j = 1, 2, Hi,j = e(hj , g), Ci,j = e(cj , g), Di,j = e(dj , g)

where g is a generator of G and ξ = HK(u1, . . . ,um,Um+1, . . . ,Un, e1, . . . , em, Em+1, . . . , En):
G-elements are encrypted under ek = (g = (g1, g2, g3),h = (h1, h2), c = (c1, d1),d = (c2, d2)),
and GT -element are encrypted under EKi = (Gi = (Gi,1, Gi,2, Gi,3),H i = (Hi,1, Hi,2),Ci =
(Ci,1, Ci,2),Di = (Di,1, Di,2)). Note that an additional label ` can be included in the computation
of ξ.

For the hashing keys, one picks scalars (λ, (ηi, θi, κi, µi)i=1,...,n)
$← Z4n+1

p , and sets hki =
(ηi, θi, κi, λ, µi).

One then computes the projection keys as hpi = (gηi1 g
κi
3 h

λ
1(c1d

ξ
1)
µi , gθi2 g

κi
3 h

λ
2(c2d

ξ
2)
µi) ∈ G2.

The associated projection keys in GT are HPi = (e(hpi,1,Ai), e(hpi,2,Ai)), for i = 1, . . . , n, where
Ai = gzi for i = m+ 1, . . . , n.

The hash value is

H =

(∏

i

Uηii,1 · U θii,2 · Uκii,3 · Eλi · V
µi
i

)
· B−λ

=

(∏

i

HP
zri
i,1HP

zsi
i,2Zλi

)
· B−λ =

(∏

i

HP
zri
i,1HP

zsi
i,2

)((
m∏

i=1

e(Yi,Ai)
)(

n∏

i=m+1

Zi
)
/B
)λ

=
∏

i

HP
zri
i,1HP

zsi
i,2 =

(
m∏

i=1

e(hp
zri
i,1 ,Ai) · e(hp

zsi
i,2 ,Ai)

)
·
(
e(

n∏

i=m+1

hp
zri
i,1 , g

zi) · e(
n∏

i=m+1

hp
zsi
i,2 , g

zi)

)

APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A] 123

which can be computed either from the commitments and the hashing keys, or from the projec-
tion keys and the witnesses. We prove below the smoothness, but first extend it even more to
several equations.

C.4 Multiple Equations

Let us assume that we have Yi committed in G, in ci, for i = 1, . . . ,m and Zi committed in GT ,
in Di, for i = m+ 1, . . . , n, and we want to show they simultaneously satisfy


∏

i∈Ak
e(Yi,Ak,i)


 ·


∏

i∈Bk
Zzk,i
i


 = Bk, for k = 1, . . . , t.

where Ak,i ∈ G, Bk ∈ GT , and zk,i ∈ Zp, as well as Ak ⊆ {1, . . . ,m} and Bk ⊆ {m + 1, . . . , n}
are public. As above, from the commitments, one derives the global ξ, which can also involves
the label `, and one can also derive the commitments in GT , Ck,i that correspond to the en-
cryption of Zk,i = e(Yi,Ak,i) under the keys EKk,i = (Gk,i = (Gk,i,1, Gk,i,2, Gk,i,3),Hk,i =
(Hk,i,1, Hk,i,2),Ck,i = (Ck,i,1, Ck,i,2),Dk,i = (Dk,i,1, Dk,i,2)), where the capital letters Xk,i,j cor-
respond to the lower-case letters xj paired with Ak,i.

For the hashing keys, one picks scalars (λ, {ηi, θi, κi, µi}i=1,...,n)
$← Z4n+1

p , {εk}k=1,...,t
$← Ztp

and sets hk = ({hki = (ηi, θi, κi, λ, µi)}i=1,...,n, {εk}k=1,...,t). We insist on the fact that the εk’s
have to be sent after the commitments have been sent, or at least committed to (such as C
and C′′ which prevent from any modification). One then computes the projection keys as hpi =

(gηi1 g
κi
3 h

λ
1(c1d

ξ
1)
µi , gθi2 g

κi
3 h

λ
2(c2d

ξ
2)
µi) ∈ G2, together with εk. The associated projection keys in

GT are HPk,i = (e(hpi,1,Ak,i), e(hpi,2,Ak,i)), for k = 1, . . . , t and i = 1, . . . , n, where Ak,i = gzk,i

for i = m + 1, . . . , n, together with εk. The hash function and the projective hash function are
defined as:

H =
∏

k




 ∏

i∈Ak∪Bk
Uηik,i,1 · U

θi
k,i,2 · U

κi
k,i,3 · Eλk,i · V

µi
k,i


 · B−λk



εk

=
∏

k


 ∏

i∈Ak∪Bk
HP

zri
k,i,1 · HP

zsi
k,i,2



εk

·
∏

k


∏

i∈Ak
e(Yi,Ak,i) ·

∏

i∈Bk
Zzk,i
i · B−1k



λεk

H ′ =
∏

k


 ∏

i∈Ak∪Bk
HP

zri
k,i,1 · HP

zsi
k,i,2



εk

which can be computed either from the commitments and the hashing keys, or from the projec-
tion keys and the witnesses. They lead to the same values H ′ = H if

– for every k,
∏
i∈Ak e(Yi,Ak,i) ·

∏
i∈Bk Z

zk,i
i = Bk, which means that all the equations are

simultaneously satisfied;
– λ = 0, which is quite unlikely;
–
∏
k∆

εk
k = 1, where for every k, ∆k =

∏
i∈Ak e(Yi,Ak,i) ·

∏
i∈Bk Z

zk,i
i /Bk, which is also quite

unlikely since the ∆k’s are fixed before the εk’s are known.

C.5 Security Analysis

Smoothness. In this section, first we prove the smoothness of the SPHF built right before. For
k = 1, this proves the smoothness of the SPHF built to handle variables in one linear pairing
equation. The list of commitments C = (C1, . . . , Cn), which possibly results from the multiplica-
tion by the companion ciphertext when using the equivocable variant, should be considered in
the language if and only if:

124 APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A]

– the commitments are all valid Linear Cramer-Shoup ciphertexts (in either G or GT), with
the common and fixed ξ;

– the plaintexts satisfy the linear pairing product equations.

Let us assume that one of the commitments is not a valid ciphertext, this means that for some
index i ∈ {1, . . . , n}, the ciphertext (Ui = (Gri1 , G

si
2 , G

ti
3), Ei, Vi) in GT is such that either

ti 6= ri + si or Vi 6= (C1D
ξ
1)ri · (C2D

ξ
2)si . Then, the contribution of this ciphertext in the hash

value is (Uηii,1 ·U θii,2 ·Uκii,3 ·Eλi ·V
µi
i)ε

′
i , where ε′i =

∑
k,i∈Ak∪Bk εk, knowing the projection keys that

reveal, at most,

logg1 hpi,1 = ηi+x3 ·κi+x4 ·λ+(y1+ξy3) ·µi logg1 hpi,2 = x2 ·θi+x3 ·κi+x5 ·λ+(y2+ξy4) ·µi,
where g2 = gx21 g3 = gx31 h1 = gx41 h2 = gx51 c1 = gy11 c2 = gy21 d1 = gy31 d2 = gy41 .

This contribution is thus (Griηi+x2siθi+x3tiκi+ziµi1 · Eλi)ε
′
i , where Vi = Gzi1 . But even if all the

discrete logarithms were known, and also λ, one has to guess riηi + x2siθi + x3tiκi + ziµi, given
ηi + x3 · κi + (y1 + ξy3) · µi and x2 · θi + x3 · κi + (y2 + ξy4) · µi:


1 0 x3 (y1 + ξy3)
0 x2 x3 (y2 + ξy4)
ri x2si x3ti zi


 .

The first 3-column matrix has determinant is x2x3(ti − (ri + si)), that is non-zero as soon as
ti 6= ri + si. In this case, there is no way to guess the correct value better than by chance:
1/p. If ti = (ri + si), the third line is linearly dependent with the 2 first, if and only if zi =
ri(y1 + ξy3) + si(y2 + ξy4). Otherwise, one has no better way to guess the value than by chance
either. Hence the smoothness of this hash function when one commitment is not valid.

About the equation validity, the Ei’s of the involved ciphertexts contain plaintexts Yi or Zi,
and contribute to the hash value: from the projection keys, the k-th equation contributes to

Hk =


∏

i∈Ak
HPrik,i,1 · HP

si
k,i,2 ·

∏

i∈Bk

(
HPrii,1 · HPsii,2

)zk,i


εk

·


∏

i∈Ak
e(Yi,Ak,i) ·

∏

i∈Bk
Zzk,i
i · B−1k



λεk

Let us denote αk =
∏
i∈Ak e(Yi,Ak,i) ·

∏
i∈Bk Z

zk,i
i · B−1k , then the uncertainty about H is

(
∏
k α

εk
k)λ. As soon as one of the equations is not satisfied, one of the αk is different from

1. Since the εk’s are unknown at the commitment time, one cannot make the αk to compensate
themselves, but by chance: if one equation is not satisfied, the probability that

∏
k α

εk
k = 1 is

1/p. Except this negligible case, (
∏
k α

εk
k)λ is totally unpredictable since λ is random.

Pseudo-randomness. The pseudo-randomness can be proven under the DLin assumption:
with invalid ciphertexts, the smoothness guarantees unpredictability; without the witnesses, one
cannot distinguish a valid ciphertext from an invalid ciphertext.

C.6 Asymmetric Setting

Our approach has been presented in the symmetric setting (at least when pairing are required).
We can do the same in asymmetric bilinear groups, with e : G1×G2 → GT , and even more effi-
ciently, using the Cramer-Shoup encryption scheme, and the analogous n-message commitment
scheme, which security relies on the DDH assumption in either G1 or G2. In this setting, our
methodology can handle linear pairing product equations:

(
m∏

i=1

e(Xi,Bi)
)
·




n∏

j=1

e(Aj ,Yj)


 ·

(
o∏

k=1

Zzk
k

)
= gT ,

where Aj ,Bi, gT are public values, in G1, G2 and GT respectively, and Xi,Yj ,Zk are the unknown
values, committed in G1, G2 and GT respectively.

APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A] 125

D Security of the LAKE Protocol: Proof of Theorem 1

For the sake of simplicity, we give in Figure 7 an explicit version of the protocol described in
Figure 4. We omit the additional verification that all the committed values are in the correct
subsets P and S, since in the proof below we will always easily guarantee this membership. The
proof heavily relies on the properties of the commitments and smooth projective hash functions
given in Sections 3, 4 and Appendix B.

Initiator Pi Receiver Pj

(I0) (VKi, SKi)← KeyGen() (R0) (VKj , SKj)← KeyGen()
pre-flow

(VKi, pubi)−−−−−−−−−−−−−−−→→ pub ←−−−−−−−−−−−−−−− → pub
(VKj , pubj)

`i = (`, pub,VKi,VKj) `j = (`, pub,VKj ,VKi)

Pi owns Wi ∈ L(pub, privi) Pj owns Wj ∈ L(pub, privj)

(I1) Li = L(pub, privi), L
′
j = L(pub, priv′j)

Randomizes Wi into Vi
(Ci, C′i) = EqExtCommit(`i, (privi, priv

′
j , Vi); (ri, r

′
i))

C′′i = EqCommit((Ci, C′i), ti)
flow-one

(Ci, C′′i)−−−−−−−−−−−−−−−→
(R2) L′i = L(pub, priv′i), Lj = L(pub, privj)

Randomizes Wj into Vj
Comj = Cj = ExtCommit(`j , (privj , priv

′
i, Vj); rj)

ε
$←, hki $← HashKG(L′i)

hpi = ProjKG(hki, L
′
i,Comi)

flow-two

(Cj , ε, hpi, σj)←−−−−−−−−−−−−−−− σj = Sign(SKj , (`j , Cj , Ci, C′′i , ε, hpi))
(I3) Abort if

not Verif(VKj , (`j , Cj , Ci, C′′i , ε, hpi), σj)
zi = ri + εr′i, Comi = Ci · C′εi
hkj

$← HashKG(L′j), hpj = ProjKG(hkj , L
′
j ,Comj)

σi = Sign(SKi, (`i, Ci, C′i, Cj , ε, hpi, hpj))
If Wi /∈ Li sets ski random. Otherwise,
Hi = Hash(hkj , L

′
j , `j ,Comj)

H ′j = ProjHash(hpi, Li, `i,Comi; zi)
ski = Hi ·H ′j
Sets the session as accepted

and uses ski as a shared key

flow-three

(C′i, ti, hpj , σi)−−−−−−−−−−−−−−−→
(R4) Abort if

not Verif(VKi, (`i, Ci, C′i, Cj , ε, hpi, hpj), σi)
or not correct opening t for C′i in C′′i

If Wj /∈ Lj sets skj random.
Otherwise, does the following:

Comi = Ci · C′εi
Hj = Hash(hki, L

′
i, `i,Comi)

H ′i = ProjHash(hpj , Lj , `j ,Comj ; rj)
skj = H ′i ·Hj
Sets the session as accepted

and uses skj as a shared key

Fig. 7. Description of the language authenticated key exchange protocol for players (Pi, ssid), with index i, mes-
sage Wi ∈ Li = L(pub, privi) and expected language for Pj L

′
j = L(pub, priv′j) and (Pj , ssid), with index j, mes-

sage Wj ∈ Lj = L(pub, privj) and expected language for Pi L
′
i = L(pub, priv′i). The label is ` = (sid, ssid, Pi, Pj).

The random values used in the commitments (witnesses) are all included in (ri, r
′
i) and rj .

D.1 Notations

The protocol is played between an initiator, denoted to as Pi, and a receiver, Pj . Each player Pk
owns a public part pubk of a language. Those two public parts pubi and pubj will combine to
create the common public part pub of the language used in the protocol. Player Pk also owns a

126 APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A]

private part privk and a word Wk ∈ L(pub, privk)
1. It rerandomizes this word Wk into a word Vk

still in L(pub, privk): we assume the languages used to be self-randomizable, which allows such
a rerandomization.

We need three different types of commitments for this protocol:

– EqCommit is an equivocable commitment, such as Pedersen [Ped92], used to engage Pi on
its further committed values Ci and C′i with randomness ti: C′′i = EqCommit((Ci, C′i); ti);

– EqExtCommit is a labeled equivocable and extractable commitment, used by Pi to commit
to its private values (used in the smooth projective hash function) and asking Pj to send a
challenge value ε.
It is based on a double encryption scheme (Enci and Enc′i) that is partial-decryption chosen-
ciphertext secure (the latter one being strongly related to the former), verifying the following
properties, if we denote by + and · two group laws adapted to the schemes:

Ci = Enci(`i,mi; ri)
C′i = Enc′i(`i, ni; r

′
i)

Comi = Enc′i(`i,mi · nεi ; ri + εr′i) = CiC′iε

In the particular cases of (multi) Double-Cramer-Shoup or Double-Linear-Cramer-Shoup,
Ci is a real ciphertext with the correct ξ value, to guarantee non-malleability, but C′i and
Comi use the ξ value of Ci. This is the reason why projection keys can be computed as soon
as Ci is known.

– ExtCommit is a labeled extractable commitment, used by Pj to commit to its private
values (used in the smooth projective hash function). It is based on a chosen-ciphertext
secure encryption scheme Encj which can be equal to Enci or different: Comj = Cj =
ExtCommit(`j ,mj ; rj) = Encj(`j ,mj ; rj)

Again, note that the projected keys of the smooth projective hash functions depend on Ci and Cj
only, and do not need Comi, justifying it can be computed by Pj in (R2), before having actually
received C′i and thus being able to compute Comi.

D.2 Sketch of Proof

The proof follows that of [CHK+05] and [ACP09], but with a different approach since we
want to prove that the best attack the adversary can perform is to play as an honest player
would do with a chosen credential (pubi, privi, priv

′
j ,Wi) —when trying to impersonate Pi— or

(pubj , privj , priv
′
i,Wj) —when trying to impersonate Pj—. In order to prove Theorem 1, we need

to construct, for any real-world adversary A (controlling some dishonest parties), an ideal-world
adversary S (interacting with dummy parties and the split functionality sFlake) such that no
environment Z can distinguish between an execution with A in the real world and S in the ideal
world with non-negligible probability.

The split functionality sFlake is defined in Section 5, following [BCL+05]. In particular, we
assume that at the beginning of the protocol, S receives from it the contribution pubi of Pi to
the public language pub as answer to the Init query sent by the environment on behalf of this
player. The preflow phase will determine the whole public language pub.

When initialized with security parameter k, the simulator first generates the CRS for the
commitment (public parameters but also extraction and equivocation trapdoors), as well as
the possibly required trapdoors to be able to generate, for any pub, a word inside or outside

1 Since pub is unknown before the beginning of the protocol, one can imagine that Pk knows several words Wk,
corresponding to different possibilities for the public part pub` its partner can choose. Once pub is set, Pk chooses
a word Wk ∈ L(pub, privk) among them or aborts the protocol if this public value does not correspond to one
it had in mind.

APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A] 127

the language L(pub, priv) when priv is known. It then initializes the real-world adversary A,
giving it these values. The simulator then starts its interaction with the environment Z, the
functionality sFlake and its subroutine A.

Since we are in the static-corruption model, the adversary can only corrupt players before
the execution of the protocol. We assume players to be honest or not at the beginning, and they
cannot be corrupted afterwards. However, this does not prevent the adversary from modifying
flows coming from the players. Indeed, since we are in a weak authenticated setting, when a player
acts dishonestly (even without being aware of it), it is either corrupted, hence the adversary
knows its private values and acts on its behalf; or the adversary tries to impersonate it with
chosen/guessed inputs. In both cases, we say the player is A-controlled. Following [CHK+05],
we say that a flow is oracle-generated if it was sent by an honest player and arrives without
any alteration to the player it was meant to. We say it is non-oracle-generated otherwise, that
is if it was sent by a A-controlled player (which means corrupted, or which flows have been
modified by the adversary). The one-time signatures are aimed at avoiding changes of players
during a session: if pre-flow is oracle-generated for Pi, then flow-one and flow-three cannot be
non-oracle-generated without causing the protocol to fail because of the signature, for which
the adversary does not know the signing key. Similarly, for Pj . On the other hand, if pre-flow
is non-oracle-generated for Pi, then flow-one and flow-three cannot be oracle-generated without
causing the protocol to fail, since the honest player would sign wrong flows (the flows the player
sent before the adversary alters them). In both cases, the verifications of the signatures will fail
at Steps (I3) or (R4) and Pi or Pj will abort. One can note that if there is one flow only in
the protocol for one player, its signature is not required, which is the case for Pj when there is
no pub to agree on at the beginning. But this is just an optimization that can be occasionally
applied, as for the PAKE protocol. We do not consider it here.

To deal with both cases of A-controlled players (either corrupted or impersonated by the
adversary), we use the Split Functionality model (see Section 2). We thus add a pre-flow which
will help us know which players are honest and which ones are A-controlled. If one player is
honest and the other one corrupted, the adversary will send the pre-flow on behalf of the latter,
and the simulator will have to send the pre-flow on behalf of the former. But in the case where
both players are honest at the beginning of the protocol, both pre-flow will have to be sent
by S on behalf of these players and the adversary can then decide to modify one of these flows.
This models the fact that the adversary can decide to split a session between Pi and Pj by
answering itself to Pi, and thus trying to impersonate Pj with respect to Pi, and doing the
same with Pj . Then, the Split Functionality model ensures that two independent sessions are
created (with sub-session identifiers). We can thus study these sessions independently, which
means that we can assume, right after the pre-flow, that either a player is honest if its pre-flow
is oracle-generated, or A-controlled if the pre-flow is non-oracle-generated. Since we want to
show that the best possible attack for the adversary (by controlling a player) consists in playing
honestly with a trial credential, we have to show that the view of the environment is unchanged
if we simulate this dishonest player as an honest player with respect to ideal functionality. The
simulator then has to transform its flows into queries to the Ideal Functionality sFlake, and
namely the NewSession-query. Still, the A-controlled player is not honest, and can have a bad
behavior when sending the real-life flows, but then either it has no strong impact, and it is
similar to an honest behavior, or it will make the protocol fail: we cannot avoid the adversary
to make denial of service attack, and the adversary will learn nothing.

As explained in [BCL+05] and [ACGP11], where the simulator actually had access to a
TestPwd query to the functionality, it is equivalent to grant the adversary the right to test a
password (here a credential) for Pi while trying to play on behalf of Pj (i.e., use a TestPwd query)
or to use the split functionality model and generate the NewSession queries corresponding to the

128 APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A]

A-controlled players and see how the protocol terminates, since it corresponds to a trial of one
credential by the adversary (one-line dictionary attack).

The proof will thus consist in generating ideal queries (and namely the NewSession) when
receiving non-oracle-generated flows from A-controlled players, and generating real messages for
the honest players (whose NewSession queries will be received from the environment). This will
be done in a indistinguishable way for the environment.

We assume from now on that we know in which case we are (i.e.how many players are A-
controlled), and the pub part is fixed. We then describe the simulator for each of these cases,
while it has generated the pre-flow for the honest players by generating (VK,SK)← KeyGen(),
and thus knows the signing keys. We denote by Li = L(pub, privi) the language used by Pi, and
by L′j = L(pub, priv′j) the language that Pi expects Pj to use. We use the same notations in the
reverse direction. As explained in Section 1, recall that the languages considered depend on two
possibly different relations: Li = LRi(pub, privi) and Lj = LRj (pub, privj), but we omit them
for the sake of clarity. Note that the simulator will use the NewKey query to learn whether the
protocol is a success or a failure (in case a player is A-controlled). This will enable it to check
whether the LAKE should fulfill, that is, whether the two users play with compatible words
and languages, i.e.. priv′i = privi, priv

′
j = privj , Wi ∈ Li and Wj ∈ Lj . For the most part, the

interaction is implemented by the simulator S just following the protocol on behalf of all the
honest players.

D.3 Description of the Simulators

Initialization and Simulation of pre-flow. This is the beginning of the simulation of the
protocol, where S has to send the message pre-flow on behalf of each non-corrupted player2.

Step (I0). When receiving the first (Init : ssid, Pi, Pj , pubi) from sFlake as answer to the Init
query sent by the environment on behalf of Pi, S starts simulating the new session of the
protocol for party Pi, peer Pj , session identifier ssid. S chooses a key pair (SKi,VKi) for a one-
time signature scheme and generates a pre-flow message with the values (VKi, pubi). It gives
this message to A on behalf of (Pi, ssid).

Step (R0). When receiving the second (Init : ssid, Pj , Pi, pubj) from sFlake as answer to the
Init query sent by the environment on behalf of Pj , S starts simulating the new session of the
protocol for party Pj , peer Pi, session identifier ssid. S chooses a key pair (SKj ,VKj) for a one-
time signature scheme and generates a pre-flow message with the values (VKj , pubj). It gives
this message to A on behalf of (Pj , ssid).

Splitting the Players. As just said, thanks to the Split Functionality model, according to
which flows were transmitted or altered by A, we know from the pre-flow which player(s) is
(are) honest and which player(s) is (are) A-controlled, and the public part pub. We can consider
each case independently after the initial split, during which S generated the signing keys of the
honest players. Thanks to the signature in the last flows for each player, if the adversary tries
to take control on behalf of a honest user for some part of the execution (without learning the
internal states, since we exclude adaptive corruptions), the verification will fail. Then we can
assume that the sent flows are the received flows.

One can note that the prior agreement on pub allows to simulate Pi before having received
any information from Pj , and also without knowing whether the protocol should be a success
or not. Without such an agreement, the simulator would not know which value to use for pub
whereas it cannot change its mind later, since it is sent in clear. Everything else is committed:
either in an equivocable way on behalf of Pi so that we can change it later when we know the real

2 Note that S only has to send one of these flows if one player is corrupted.

APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A] 129

status of the session; or in a non-equivocable way on behalf of Pj since we can check the status
of the session before making this commitment. Of course, both commitments are extractable. In
the whole proof, in case the extraction fails, the simulator acts as if the simulation should fail.
Indeed, the language of the smooth projective hash function not only verifies the equations, but
also that the ciphertext is valid, and this verification will fail.

We come back again to the case of our equivocable commitment with SPHF that is not a
really extractable/binding commitment since the player can open it in a different way one would
extract it, in case the second ciphertext does not encrypt 1G: if extraction leads to an inconsistent
tuple, there is little chance that with the random ε it becomes consistent; if extraction leads
to a consistent tuple, there is little chance that with the random ε it remains consistent, and
then the real-life protocol will fail, whereas the ideal-one was successful at the NewKey-time.
But then, because of the positive NewKey-answer, the SendKey-query takes the key-input into
consideration, that is random on the initiator side because of the SPHF on an invalid word, and
thus indistinguishable from the environment point of view from a failed session: this is a denial
of service, the adversary should already be aware of.

Hence, the three simulations presented below exploit the properties of our commitments and
SPHF to make the view of the environment indistinguishable from a real-life attack, just using
the simulator S that is allowed to interact with the ideal functionality on behalf of players, but
in an honest way only, since the functionality is perfect and does not know bad behavior.

During all these simulations, S knows the equivocability trapdoor of the commitment and
the decryption keys of the two encryption schemes.

Case 1: Pi is A-controlled and Pj is honest. In this case, S has to simulate the concrete
messages in the real-life from the honest player Pj , for which it has simulated the pre-flow
and thus knows the signing key, and has to simulate the queries to the functionality as if the
A-controlled player Pi was honest.

Step (I1). This step is taken care of by the adversary, who sends its flow-one, from which
S extracts (privi, priv

′
j) only. No need to extract Wi, but one generates a random valid Vi ∈

L(pub, privi) (we have assumed the existence of a trapdoor in the CRS to generate such valid
words). S sends the query (NewSession : ssid′, Pi, Pj , Vi, Li = L(pub, privi), L

′
j = L(pub, priv′j),

initiator) to Flake on behalf of Pi.

Step (R2). The NewSession query for this player (Pj , ssid
′) has been automatically transferred

from the split functionality sFlake to Flake (transforming the session identifier from ssid to
ssid′). S receives the answer (NewSession : ssid, Pj , Pi, pub, receiver) and makes a call NewKey to
the functionality to check the success of the protocol. It actually tells whether the languages are
consistent, but does not tell anything about the validity of the word submitted by the adversary
for Pi. It indeed receives the answer in the name of Pi. In case of a success, S generates a word
Vj ∈ L(pub, priv′j) and uses privj = priv′j and priv′i = privi for this receiver session (we have
assumed the existence of a trapdoor in the CRS to generate such valid words) and produces
a commitment Cj on the tuple (privj , priv

′
i, Vj). Otherwise, S produces a commitment Cj on a

dummy tuple (privj , priv
′
i, Vj). It then generates a challenge value ε and the hashing keys (hki, hpi)

on Ci. It sends the flow-two message (Cj , ε, hpi, σj) to A on behalf of Pj , where σj is the signature
on all the previous information.

Step (I3). This step is taken care of by the adversary, who sends its flow-three.

Step (R4). Upon receiving m = (flow-three, C′i, t, hpj , σi), S makes the verification checks, and
possibly aborts. In case of correct checks, S already knows whether the protocol should succeed,
thanks to the NewKey query. If the protocol is a success, then S computes receiver session key
honestly, and makes a SendKey to Pj . Otherwise, S makes a SendKey to Pj with a random key
that will anyway not be used.

130 APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A]

Case 2: Pi is honest and Pj is A-controlled. In this case, S has to simulate the concrete
messages in the real-life from the honest player Pi, for which it has simulated the pre-flow
and thus knows the signing key, and has to simulate the queries to the functionality as if the
A-controlled player Pj was honest.

Step (I1). The NewSession query for this player (Pi, ssid
′) has been automatically transferred

from the split functionality sFlake to Flake (transforming the session identifier from ssid to
ssid′). S receives the answer (NewSession : ssid, Pi, Pj , pub, initiator) and generates a flow-one
message by committing to a dummy tuple (privi, priv

′
j , Vi). It gives this commitment (Ci, C′′i)

to A on behalf of (Pi, ssid
′).

Step (R2). This step is taken care of by the adversary, who sends its flow-two = (flow-two, Cj , ε,
hpi, σj), from which S first checks the signature, and thereafter extracts the committed triple
(privj , priv

′
i,Wj). S then sends the query (NewSession : ssid′, Pj , Pi,Wj , Lj = L(pub, privj), L

′
i =

L(pub, priv′i), receiver) to Flake on behalf of Pj .

Step (I3). S makes a NewKey query to the functionality to know whether the protocol should
succeed. It indeed receives the answer in the name of Pj . In case of a success, S generates a word
Vi ∈ L(pub, priv′i) and uses privi = priv′i for this initiator session (we have assumed the existence
of a trapdoor in the CRS to generate such valid words) and then uses the equivocability trapdoor
to update C′i and t in order to contain the new consistent tuple (privi, priv

′
j , Vi) with respect to the

challenge ε. If the protocol should be a success, then S computes initiator session key honestly,
and makes a SendKey to Pi. Otherwise, S makes a SendKey to Pi with a random key that will
anyway not be used. S sends the flow-three message (C′i, t, hpj , σi) to A on behalf of Pi, where
σi is the signature on all the previous information.

Step (R4). This step is taken care of by the adversary.

Case 3: Pi and Pj are honest. In this case, S has to simulate the concrete messages in
the real-life from the two honest players Pi and Pj , for which it has simulated the pre-flow and
thus knows the signing keys. But since no player is controlled by A, the NewKey query will not
provide any answer to the simulator. But thanks to the semantic security of the commitments,
dummy values can be committed, no external adversary will make any difference.

Step (I1). The NewSession query for this player (Pi, ssid
′) has been automatically transferred

from the split functionality sFlake to Flake (transforming the session identifier from ssid to
ssid′). S receives the answer (NewSession : ssid, Pi, Pj , pub, initiator) and generates a flow-one
message by committing to a dummy tuple (privi, priv

′
j , Vi). It gives this commitment (Ci, C′′i)

to A on behalf of (Pi, ssid
′).

Step (R2). The NewSession query for this player (Pi, ssid
′) has been automatically transferred

from the split functionality sFlake to Flake (transforming the session identifier from ssid to ssid′).
S receives the answer (NewSession : ssid, Pj , Pi, pub, receiver) and generates a commitment Cj
on a dummy tuple (privj , priv

′
i, Vj). It then generates a challenge value ε and the hashing keys

(hki, hpi) on Ci. It sends the flow-two message (Cj , ε, hpi, σj) to A on behalf of Pj , where σj is
the signature on all the previous information.

Step (I3). When the session (Pi; ssid′) receives the message m = (flow-two, Cj , ε, hpi, σj) from
its peer session (Pj ; ssid′), the signature is necessarily correct. Then, S makes a SendKey to Pi
with a random key that will anyway not be used, since no player is corrupted. S sends the flow-
three message (C′i, t, hpj , σi) to A on behalf of Pi, where σi is the signature on all the previous
information.

Step (R4). When the session (Pj ; ssid′) receives the message m = (flow-three, C′i, t, hpj , σi) from
its peer session (Pi; ssid′), the signature is necessarily correct. S makes a SendKey to Pj with a
random key that will anyway not be used, since no player is corrupted.

APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A] 131

D.4 Description of the Games

We now provide the complete proof by a sequence of games, where we replace the triple
(privi, priv

′
j , Vi) by the notation Ti, and the triple (privj , priv

′
i, Vj) by the notation Tj , with

component-wise operations to simplify notations. Similarly, for cleaner notations, we use non-
vector notations for the ciphertexts, the random coins and the challenge ε, but all the compu-
tations are assumed to be performed component-wise, and thus implicitly use vectors.

We insist that we are considering static corruptions only, and with the split-functionality,
we already know which players are corrupted and verification keys for the one-time signatures
are known to the two players, and fixed: either honestly generated (honest player) or adversary-
generated (corrupted players).

Game G0: This is the real game, where every flow from honest players are generated correctly
by the simulator which knows the inputs sent by the environment to the players. There is no
use of the ideal functionality for the moment.

Game G1: In this game, the simulator knows the decryption key for Ci when generating the
CRS. But this game is almost the same as the previous one except the way skj is generated when
Pi is corrupted and Pj honest. In all the other cases, the simulator does as in G0 by playing
honestly (still knowing its private values). When Pi is corrupted and Pj honest, S does as before
until (R4), but then, it extracts the values committed to by the adversary in Comi (using the
decryption key for Ci) and checks whether the private parts of the languages are consistent with
the values sent to Pj by the environment. If the languages are not consistent (or decryption
rejects), Pj is given a random session key skj .

This game is statistically indistinguishable from the former one thanks to the smoothness of
the SPHF on Comi.

Game G2: In this game, the simulator still knows the decryption key for Ci when generating
the CRS. This game is almost the same as the previous one except that S extracts the values
committed to by the adversary in Ci to check consistency of the languages, and does not wait
until Comi. If the languages are not consistent (or decryption rejects), Pj is given a random
session key skj .

The game is indistinguishable from the previous one except if Comi contains consistent values
whereas Ci does not, but because of the unpredictability of ε, and the Pedersen commitment that
is computationally binding under the discrete logarithm problem, the probability is bounded by
1/q.

The distance between the two games is thus bounded by the probability to break the binding
property of the Pedersen commitment.

Game G3: In this game, the simulator still knows the decryption key for Ci when generating
the CRS, as in G2. Actually, in the above game, when Pi is corrupted and Pj honest, if extracted
languages from Ci are not consistent, Pj does not have to compute hash values. The random
coins are not needed anymore. In this game, in this particular case, S generates Cj with dummy
values T ′j .

This game is computationally indistinguishable from the former one thanks to the IND− CPA
property of the encryption scheme involved in Cj . To prove this indistinguishability, one makes
q hybrid games, where q is the number of such sessions where Pi is corrupted and Pj is honest
but extracted languages from Ci are not consistent with inputs to Pj . More precisely, in the k-th
hybrid game Gk (for 1 ≤ k ≤ q), in all such sessions before the k-th one, Cj is generated by
encrypting T ′j , in all sessions after the k-th one, Cj is generated by encrypting Tj , and in the
k-th session, Cj is generated by calling the left-or-right encryption oracle on (Tj , T

′
j). It is clear

that the game G2 correponds to G1 with the “left” oracle, and the game G3 corresponds to Gq
with the “right” oracle. And each time, Gk with the right oracle is identical to Gk+1 with the

132 APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A]

“left” oracle, while every game Gk is an IND− CPA game. It is possible to use the encryption
oracle because the random coins are not needed in these sessions.

Game G4: In this game, the simulator still knows the decryption key for Ci when generating
the CRS, as in G2. Now, when Pi is corrupted and Pj honest, if extracted languages from Ci
are consistent, S knows privj and priv′i (the same as the values sent by the environment). It
furthermore generates a random valid word Vj , and uses it to generate the ciphertext Cj instead
of re-randomizing the word Wj sent by the environment. S can compute the correct value skj
from the random coins, and gives it to Pj .

This game is perfectly indistinguishable from the former one thanks to the self-randomizable
property of the language.

Note that the value skj computed by S can be computed by the adversary if the latter indeed
sent a valid word Wi in Ci (that is not explicitly checked in this game). Otherwise, skj looks
random from the smoothness of the SPHF. As a consequence, on this game, sessions where Pi
is corrupted and Pj is honest look ideal, while one does not need anymore the inputs from the
environment sent to Pj to simulate honest players.

Game G5: We now consider the case where Pi is honest. The simulator has to simulate Pi
behavior. To do so, it will know the equivocability trapdoor for the Pedersen commitment. But
for other cases, the simulator still knows the decryption key for Ci when generating the CRS.
In (I1), the simulator still encrypts Ti = (privi, priv

′
j , Vi) from the environment to produce Ci. It

chooses at random a dummy value C′i and computes honestly the equivocable commitment C′′i ,
knowing the random value ti. In (I3), after receiving ε from Pj , it chooses random coins zi and
computes Comi as the encryption of Ti = (privi, priv

′
j , Vi) with the random coins zi. (Since this

is a double encryption scheme, it uses the redundancy from Ci: namely for DLCS, it uses ξ from
Ci). Thanks to the homomorphic property, it can compute C′i as (Comi/Ci)1/ε, and equivocate
C”i. C′i should be an encryption of 1G under the random coins r′i that are implicitly defined, but
unknown.

Thanks to the properties of the different commitments recalled in Section D.1, and the
perfect-hiding property of the Pedersen commitment, this is a perfect simulation. It then com-
putes the hash values honestly, using zi.

Game G6: In this game, the simulator still knows the decryption key for Ci and the equivo-
cability trapdoor for the Pedersen commitment when generating the CRS. When Pi is honest,
S generates the commitment Ci by choosing dummy values T ′i instead of Ti. Everything else is
unchanged from G5.

This game is thus indistinguishable from the former one thanks to the IND− CCA property
of the encryption scheme involved in Ci. As for the proof of indistinguishability of Game G3, we
do a sequence of hybrid games, where Ci is generated be either encrypting Ti or T ′i , or asking the
left-or-right oracle on (Ti, T

′
i). We replace the decryption key for Ci by access to the decryption

oracle on Ci. Then, one has to take care that no decryption query is asked on one of the challenge
ciphertexts involved in the sequence of games. This would mean that the adversary would replay
in another session a ciphertext oracle-generated in another session. Because of the label which
contains the verification key oracle-generated, one can safely reject the ciphertext.

Game G7: In this game, the simulator still knows the decryption key for Ci and the equivoca-
bility trapdoor for the Pedersen commitment when generating the CRS. When Pi is honest, S
generates the commitment Ci by choosing dummy values T ′i . It then computes C′i by encrypting
the value (Ti/T

′
i)

1/ε with randomness zi − ri/ε. This leads to the same computations of Ci and
C′i as in the former game. The rest is done as above.

This game is perfectly indistinguishable from the former one.

Game G8: In this game, the simulator still knows the decryption key for Ci and the equivo-
cability trapdoor for the Pedersen commitment when generating the CRS. When Pi and Pj are

APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A] 133

both honest (both initiation flows where oracle-generated), if the words and languages are cor-
rect, players are both given the same random session key ski = skj . If the words and languages
are not compatible, random independent session keys are given.

Since the initiation flows (I0 and R0) contained oracle-generated verification keys, unless
the adversary managed to forge signatures, all the flows are oracle-generated. First, because of
the pseudo-randomness of the SPHF, Hi is unpredictable, and independent of H ′j , hence ski
looks random. Then, if the words and languages are compatible, we already has skj = ski in the
previous game. However, if they are not compatible, either H ′i is independent of Hi, or H ′j is
independent of Hj , and in any case, skj where already independent of ski in the previous game.

This game is thus computationally indistinguishable from the former one, under the pseudo-
randomness of the two SPHF.

Game G9: In this above game, the hash values do not have to be computed anymore when
Pi and Pj are both honest. The random coins are not needed anymore.

In this game, the simulator still knows the decryption key for Ci and the equivocability
trapdoor for the Pedersen commitment when generating the CRS. When Pi and Pj are both
honest, S generates C′i and Cj with dummy values T ′i and T ′j . In this game, sessions where Pi and
Pj are both honest look ideal, while one does not need anymore the inputs from the environment
sent to Pi and Pj to simulate honest players.

This game is computationally indistinguishable from the former one thanks to the IND− CPA
and IND− PD− CCA properties of the encryption schemes involved in Cj and C′i. For the proof on
indistinguishability between the two games, we make two successive sequences of hybrid games,
as for the proof of indistinguishability of Game G3. One with the IND− PD− CCA game: a
sequence of hybrid games, where Ci is generated by encrypting T ′i , and C′i by encrypting either
Ti or T ′i , but in the critical session, one asks for the left-or-right oracle Encrypt on (T ′i , T

′
i), and

the left-or-right oracle Encrypt′ on (Ti, T
′
i). The decryption key for Ci is replaced by an access to

the decryption oracle on Ci. As above, one has to take care that no decryption query is asked on
a challenge ciphertext C′i, but the latter cannot be valid since it is computed from Ci values not
controlled by the adversary. The second hybrid sequence uses IND− CPA games on Cj exactly
as in the proof of indistinguishability of Game G3.

Game G10: In this game, the simulator still knows the decryption key for Ci and the equivoca-
bility trapdoor for the Pedersen commitment when generating the CRS, but also the decryption
key for Cj . When Pi is honest and Pj corrupted, S extracts the values committed to by the
adversary in Cj . It checks whether they are consistent with the values sent to Pi by the environ-
ment. If the words and languages are not consistent (or decryption rejects), Pi is given a random
session key ski.

This game is statistically indistinguishable from the former one thanks to the smoothness of
the SPHF.

Game G11: In this game, the simulator still knows the decryption keys for Ci and Cj and the
equivocability trapdoor for the Pedersen commitment when generating the CRS.

In the above game, when Pi is honest and Pj corrupted, if extracted values from Cj are not
consistent, Pi does not have to compute hash values. The random coins are not needed anymore.
In this game, in this particular case, S generates C′i with dummy values T ′i .

This game is computationally indistinguishable from G10 thanks to the IND− PD− CCA
property of the encryption scheme involved in C′i. The proof uses the same sequence of hy-
brid games with the IND− PD− CCA game on (Ci, C′i) as in the proof of indistinguishability of
Game G9.

Game G12: In this game, the simulator still knows the decryption keys for Ci and Cj and the
equivocability trapdoor for the Pedersen commitment when generating the CRS. Now, when Pi
is honest and Pj corrupted, if extracted values from Cj are consistent, S knows privi and priv′j

134 APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A]

DLin G Zp Exp.

LCSCom 5n 0 7n+ 2
DLCSCom 10n+ 1 2 18n+ 6

Equality 2 0 14
LPPE 2n+ 1 0 10n+ 11

CSCom G Zp Exp.

CSCom 4n 0 4n+ 1
DCSCom 8n+ 1 2 12n+ 5

Equality 1 0 10
LPPE n+ 1 0 7n+ 9

Table 1. Computational and Communication Costs

(the same as the values sent by the environment). It furthermore generates a random valid word
Vi, and uses it to generate the ciphertext C′i instead of re-randomizing the word Wj sent by the
environment. S can compute the correct value ski from the random coins, and gives it to Pi. In
this game, sessions where Pi is honest and Pj is corrupted look ideal, while one does not need
anymore the inputs from the environment sent to Pi to simulate honest players.

This game is perfectly indistinguishable from the former one thanks to the self-randomizable
property of the language.

Game G13: In this game, S now uses the ideal functionality: NewSession-queries for honest
players are automatically forwarded to the ideal functionality, for corrupted players, they are
done by S using the values extracted from Ci or Cj . In order to check consistency of the words
and languages, S asks for a NewKey. When one player is corrupted, it learns the outcome: success
or failure. It can continue the simulation in an appropriate way.

E Complexity

In the Table 1, we give the number of elements to be sent (group elements or scalars) and
the number of exponentiations to compute for each operation (commitment and SPHF), where
we consider the Equality Test, and the Linear Pairing Product Equations. One has to commit
all the private inputs, and then the cost for relations is just the additional overhead due to the
projection keys and hashing computations once the elements are already committed: an LCSCom
commitment is 5 group elements, and a DLCSCom′ is twice more, plus the Pedersen commitment
(one group element), the challenge ε (a scalar) and the opening t (a scalar). Note that a simple
Linear commitment is just 3 group elements.

If the global language is a conjunction of several languages, one should simply add all the
costs, and consider the product of all the sub-hashes as the final hash value from the SPHF.

PAKE. Two users want to prove to each other they possess the same password. In this case
Wi = priv′j = privi = privj = priv′i = Wj . So Pi will commit to his password, and thus a unique
DLCSCom commitment for Wi, privi and priv′i. Pj can use a simple Linear commitment. They
then send projection keys for equality tests: 13 group elements and 2 scalars for Comi and 5
group elements for Comj , plus VKi and σi. This leads to 18 group elements and two scalars our
PAKE scheme. The DDH-based variant would use 11 group elements and 2 scalars only in total,
which is far more efficient than existing solutions, and namely [ACP09] that uses a bit-per-bit
commitment to provide equivocability.

Verifier-based PAKE. As explained earlier, we do a PAKE with the common password
(gpw, hpw), where h has been chosen by the server: the commitment Comi needs 21 group ele-
ments plus 2 scalars, and 4 additional group elements to check it; the commitment Comj needs
6 group elements, and 4 additional elements to check it. Because of the ephemeral h, one has
to send in total 35 group elements and 2 scalars, plus the one-time signatures. The DDH-based
variant would use 25 group elements and 2 scalars only in total.

APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A] 135

Secret Handshake. The users want to check their partner possesses a valid signature on their
public identity or pseudonym (in pub) under some valid but private verification key (affiliation-
hiding). More precisely, Pi wants to prove he possesses a valid signature σ on the public message
m (his identity or a pseudonym) under a private verification key vk: we thus have m in the pub
part, privi = vk and W = σ. This is the same for Pj . Using Waters signature, σ = (σ1, σ2), where
σ1 only has to be encrypted, because σ2 does not contain any information, it can thus be sent
in clear. In addition, as noticed from the security proof, σ2 does not need to be encrypted in an
IND− PD− CCA manner, but with a simple IND− CPA encryption scheme in the third round.
To achieve unlinkability, one can rerandomize this signature σ to make the σ2 values different
and independent each time.

As a consequence, the committed values are: vk that can be any group element, since with
the master secret key s such that h = gs for the global parameters of the Waters signature
(see the Appendix A.3) one can derive the signing key associated to any verification key, and
thus generate a valid word in the language; and σ1 in IND− CPA only. One additionally sends
σ2 in clear, and so 14 group elements plus 2 scalars for Comi, and 7 group elements for Comj .
The languages to be verified are privi = priv′i, on the committed privi = vki with the expected
priv′i = vk′i, and the Linear Pairing Product Equation for the committed signature σi, but under
the expected vk′i: 5 group elements for the projection keys in both directions: 31 group elements
plus 2 scalars are sent in total.

136 APPENDIX A. EFFICIENT UC-SECURE LAKE [BBC+13A]

Appendix B

New Techniques for SPHFs and
Efficient One-Round PAKE Protocols
[BBC+13b]

This is the Full Version of the part on Smooth Projective Hash Functions of the Extended Abstract “New
Techniques for SPHFs and Efficient One-Round PAKE Protocols” that appears in Advances in Cryptology
– Proceedings of CRYPTO 2013 (18–22 august 2013, Santa Barbara, California, USA), R.Canetti and
J. A. Garay Eds. Springer-Verlag, LNCS 8042, pages 449–475.

Authors

Fabrice Ben Hamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, Damien Vergnaud

Abstract

Password-Authenticated Key Exchange (PAKE) has received deep attention in the last few years, with
a recent improvement by Katz and Vaikuntanathan, and their one-round protocols: the two players just
have to send simultaneous flows to each other, that depend on their own passwords only, to agree on a
shared high entropy secret key. To this aim, they followed the Gennaro and Lindell’s approach, with a
new kind of Smooth-Projective Hash Functions (SPHFs). They came up with the first concrete one-round
PAKE, secure in the Bellare, Pointcheval, and Rogaway’s model, but at the cost of a simulation-sound
NIZK, which makes the overall construction not really efficient.

This paper follows their path with a new efficient instantiation of SPHF on Cramer-Shoup cipher-
texts. It then leads to the design of the most efficient PAKE known so far: a one-round PAKE with two
simultaneous flows consisting of 6 group elements each only, in any DDH-group without any pairing. We
thereafter show a generic construction for SPHFs, in order to check the validity of complex relations on
encrypted values. This allows to extend this work on PAKE to the more general family of protocols,
termed Langage-Authenticated Key Exchange (LAKE) by Ben Hamouda, Blazy, Chevalier, Pointcheval,
and Vergnaud, but also to blind signatures. We indeed provide the most efficient blind Waters’ signature
known so far.

1 Introduction
Authenticated Key Exchange protocols are quite important primitives for practical applica-
tions, since they enable two parties to generate a shared high entropy secret key, to be later used
with symmetric primitives in order to protect communications, while interacting over an insecure
network under the control of an adversary. Various authentication means have been proposed,
and the most practical one is definitely a shared low entropy secret, or a password they can
agree on over the phone, hence PAKE, for Password-Authenticated Key Exchange. The most fa-
mous instantiation has been proposed by Bellovin and Merritt [BM92], EKE for Encrypted Key
Exchange, which simply consists of a Diffie-Hellman key exchange [DH76], where the flows are
symmetrically encrypted under the shared password. Overall, the equivalent of 2 group elements
have to be sent.

A first formal security model was proposed by Bellare, Pointcheval and Rogaway [BPR00]
(the BPR model), to deal with off-line dictionary attacks. It essentially says that the best attack
should be the on-line exhaustive search, consisting in trying all the passwords by successive
executions of the protocol with the server. Several variants of EKE with BPR-security proofs have
been proposed in the ideal-cipher model or the random-oracle model [Poi12]. Katz, Ostrovsky
and Yung [KOY01] proposed the first practical scheme (KOY), provably secure in the standard
model under the DDH assumption. This is a 3-flow protocol, with the client sending 5 group
elements plus a verification key and a signature, for a one-time signature scheme, and the server
sending 5 group elements. It has been generalized by Gennaro and Lindell [GL03] (GL), making
use of smooth projective hash functions.

Smooth Projective Hash Functions (SPHFs) were introduced by Cramer and Shoup [CS02]
in order to achieve IND-CCA security from IND-CPA encryption schemes, which led to the first
efficient IND-CCA encryption scheme provably secure in the standard model under the DDH
assumption [CS98]. They can be seen as a kind of implicit designated-verifier proofs of mem-
bership [ACP09, BPV12]. Basically, SPHFs are families of pairs of functions (Hash,ProjHash)
defined on a language L. These functions are indexed by a pair of associated keys (hk, hp), where
hk, the hashing key, can be seen as the private key and hp, the projection key, as the public
key. On a word W ∈ L, both functions should lead to the same result: Hash(hk,L,W) with the
hashing key and ProjHash(hp,L,W,w) with the projection key only but also a witness w that
W ∈ L. Of course, if W 6∈ L, such a witness does not exist, and the smoothness property states
that Hash(hk,L,W) is independent of hp. As a consequence, even knowing hp, one cannot guess
Hash(hk,L,W).

One-Round PAKE in the BPR Model. Gennaro and Lindell [GL03] (GL) extended the
initial definition of smooth projective hash functions for an application to PAKE. Their ap-
proach has thereafter been adapted to the Universal Composability (UC) framework by Canetti et
al. [CHK+05], but for static corruptions only. It has been improved by Abdalla, Chevalier and
Pointcheval [ACP09] to resist to adaptive adversaries. But the 3-flow KOY protocol remains the
most efficient protocol BPR-secure under the DDH assumption.

More recently, the ultimate step for PAKE has been achieved by Katz and Vaikuntanathan
[KV11] (KV), who proposed a practical one-round PAKE, where the two players just have to
send simultaneous flows to each other, that depend on their own passwords only. More precisely,
each flow just consists of an IND-CCA ciphertext of the password and an SPHF projection key for
the correctness of the partner’s ciphertext (the word is the ciphertext and the witness consists
of the random coins of the encryption). The shared secret key is eventually the product of the
two hash values, as in the KOY and GL protocols. Because of the simultaneous flows, one flow
cannot explicitly depend on the partner’s flow, which makes impossible the use of the Gennaro
and Lindell SPHF (later named GL-SPHF), in which the projection key depends on the word (the
ciphertext here). On the other hand, the adversary can wait for the player to send his flow first,
and then adapt its message, which requires stronger security notions than the initial Cramer

138 APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B]

and Shoup SPHF (later named CS-SPHF), in which the smoothness does not hold anymore if
the word is generated after having seen the projection key. This led Katz and Vaikuntanathan
to provide a new definition for SPHF (later named KV-SPHF), where the projection key depends
on the hashing key only, and the smoothness holds even if the word is chosen after having
seen the projection key. Variations between CS-SPHF, GL-SPHF and KV-SPHF are in the way
one computes the projection key hp from the hashing key hk and the word W , but also in the
smoothness property, according to the freedom the adversary has to choose W , when trying to
distinguish the hash value from a random value. As a side note, while CS-SPHF is close to the
initial definition, useful for converting an IND-CPA encryption scheme to IND-CCA, GL-SPHFs and
KV-SPHFs did prove quite useful too: we will use KV-SPHFs for our one-round PAKE protocols
and a GL-SPHF for the blind signature scheme.

As just explained, the strongest definition of SPHF, which gives a lot of freedom to the
adversary, is the recent KV-SPHF. However, previous SPHFs known on Cramer-Shoup ciphertexts
were GL-SPHFs only. For their one-round PAKE, Katz and Vaikuntanathan did not manage to
construct such a KV-SPHF for an efficient IND-CCA encryption scheme. They then suggested to
use the Naor and Yung approach [NY90], with an ElGamal-like encryption scheme and a simu-
lation-sound non-interactive zero-knowledge (SS-NIZK) proof [Sah99]. Such an SS-NIZK proof is
quite costly in general. They suggested to use Groth-Sahai [GS08] proofs in bilinear groups and
the linear encryption [BBS04] which leads to a PAKE secure under the DLin assumption with a
ciphertext consisting of 66 group elements and a projection key consisting of 4 group elements.
As a consequence, the two players have to send 70 group elements each, which is far more costly
than the KOY protocol, but it is one-round only.

More recent results on SS-NIZK proofs or IND-CCA encryption schemes, in the discrete log-
arithm setting, improved on that: Libert and Yung [LY12] proposed a more efficient SS-NIZK
proof of plaintext equality in the Naor-Yung-type cryptosystem with ElGamal-like encryption.
The proof can be reduced from 60 to 22 group elements and the communication complexity
of the resulting PAKE is decreased to 32 group elements per user. Jutla and Roy [JR12] pro-
posed relatively-sound NIZK proofs as an efficient alternative to SS-NIZK proofs to build new
publicly-verifiable IND-CCA encryption schemes. They can then decrease the PAKE communica-
tion complexity to 20 group elements per user. In any case, one can remark that all one-round
PAKE schemes require pairing computations.

Language-Authenticated Key Exchange. A generalization of AKE protocols has been re-
cently proposed, so-called Language-Authenticated Key Exchange (LAKE) [BBC+13]: it allows
two users, Alice and Bob, each owning a word in a specific language, to agree on a shared high
entropy secret if each user knows a word in the language the other thinks about. More precisely,
they first both agree on public parameters pub, Bob will think about priv for his expected Al-
ice’s value of priv, Alice will do the same with priv ′ for Bob’s private value priv′; eventually, if
priv = priv and priv ′ = priv′, and if they both know words in the appropriate languages, then the
key agreement will succeed. In case of failure, no information should leak to the players about
the reason of failure, except that the inputs did not satisfy the relations, or the languages were
not consistent. Eavesdroppers do not even learn the outcome.

This formalism encompasses PAKE, and their first construction follows the GL approach for
PAKE: each player commits to the private values (his own value priv, and his expected partner’s
value priv ′) as well as his own word, and projection keys are sent to compute random values
that will be the same if and only if everything is consistent. To achieve one-round LAKE, one
also needs KV-SPHF on ciphertexts for plaintext-equality tests (equality of the private values
and expected private values) and for language-membership.

Achievements. Our main contribution is the description of an instantiation of KV-SPHF on
Cramer-Shoup ciphertexts, and thus the first KV-SPHF on an efficient IND-CCA encryption
scheme. We thereafter use it within the above KV framework for one-round PAKE [KV11], in the

APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B] 139

BPR security model. Our scheme just consists of 6 group elements in each direction under the
DDH assumption (4 for the ciphertext, and 2 for the projection key). This has to be compared
with the 20 group elements, or more, in the best constructions discussed above, which all need
pairing-friendly groups and pairing computations, or with the KOY protocol that has a similar
complexity but with three sequential flows.

We also present the first GL-SPHFs/KV-SPHFs able to handle multi-exponentiation equa-
tions without requiring pairings. Those SPHFs are thus quite efficient. They lead to two appli-
cations. First, our new KV-SPHFs enable several efficient instantiations of one-round Language-
Authenticated Key-Exchange (LAKE) protocols [BBC+13]. Our above one-round PAKE scheme
is actually a particular case of a more general one-round LAKE scheme, for which we provide a
BPR-like security model and a security proof. Our general constructions also cover Credential-
Authenticated Key Exchange [CCGS10]. Second, thanks to a new GL-SPHF, we improve on the
blind signature scheme presented in [BPV12], from 5` + 6 group elements in G1 and 1 group
element in G2 to 3` + 7 group elements in G1 and 1 group element in G2, for an `-bit message
to be blindly signed with a Waters signature [Wat05]. Our protocol is round-optimal, since it
consists of two flows, and leads to a classical short Waters signature.

As a side contribution, we introduce a new generic framework to construct SPHFs aiming
at making easier the construction and the proof of SPHFs on complex languages. Using this
framework, we were able to construct SPHFs for any language handled by the Groth-Sahai NIZK
proofs, and so for any NP-language. The main idea of this framework consists in considering
languages as subspaces of some large vector space over cyclic groups and is already present in
Section 7.4.1 of the full version of [CS02]. Our generic framework is slightly more general as it
allows us to consider bilinear and multilinear groups, and not just cyclic groups.

Outline of the Paper. In Section 2, we first revisit the different definitions for SPHFs pro-
posed in [CS02,GL03,KV11], denoted respectively CS-SPHFs, GL-SPHFs and KV-SPHFs. While
CS-SPHF was the initial definition useful for converting an IND-CPA encryption scheme to
IND-CCA, GL-SPHFs and KV-SPHFs did prove quite useful too: we will use a KV-SPHF for
our PAKE/LAKE application and a GL-SPHF for the blind signature. In Section 2.4, we intro-
duce our main contribution, the construction of a KV-SPHF on Cramer-Shoup ciphertexts. This
KV-SPHF leads to the construction of our efficient one-round PAKE in Section 2.5. In Section 3,
we present a simplified version of our generic framework (fully described in Appendix D). We
then show our efficient SPHFs on multi-exponentiation equations and on bit encryption, without
pairings, in Section 4. Finally, in Section 5, we introduce our two other constructions based on
these SPHFs: our one-round LAKE and our blind signature scheme.

2 New SPHF on Cramer-Shoup Ciphertexts and PAKE

In this section, we first recall the definitions of SPHFs and present our classification based on
the dependence between words and keys. According to this classification, there are three types of
SPHFs: the (almost) initial Cramer and Shoup [CS02] type (CS-SPHF) introduced for enhancing
an IND-CPA encryption scheme to IND-CCA, the Gennaro and Lindell [GL03] type (GL-SPHF)
introduced for PAKE, and the Katz and Vaikuntanathan [KV11] type (KV-SPHF) introduced for
one-round PAKE.

Then, after a quick review on the Cramer-Shoup encryption scheme, we introduce our new
KV-SPHF on Cramer-Shoup ciphertexts which immediately leads to a quite efficient instantiation
of the Katz and Vaikuntanathan one-round PAKE [KV11], secure in the BPR model.

140 APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B]

2.1 General Definition of SPHFs

Let us consider a language L ⊆ Set, and some global parameters for the SPHF, assumed to be
in the common random string (CRS). The SPHF system for the language L is defined by four
algorithms:

– HashKG(L) generates a hashing key hk for the language L;
– ProjKG(hk,L, C) derives the projection key hp, possibly depending on the word C;
– Hash(hk,L, C) outputs the hash value of the word C from the hashing key;
– ProjHash(hp,L, C, w) outputs the hash value of the word C from the projection key hp, and

the witness w that C ∈ L.

The correctness of the SPHF assures that if C ∈ L with w a witness of this membership, then the
two ways to compute the hash values give the same result: Hash(hk,L, C) = ProjHash(hp,L, C, w).
On the other hand, the security is defined through the smoothness, which guarantees that, if
C 6∈ L, the hash value is statistically indistinguishable from a random element, even knowing hp.
For that, we use the classical notion of statistical distance recalled in Appendix A.2.

2.2 Smoothness Adaptivity and Key Word-Dependence

This paper will exploit the very strong notion KV-SPHF. Informally, while the GL-SPHF definition
allows the projection key hp to depend on the word C, the KV-SPHF definition prevents the
projection key hp from depending on C, as in the original CS-SPHF definition. In addition, the
smoothness should hold even if C is chosen as an arbitrary function of hp. This models the fact
the adversary can see hp before deciding which word C it is interested in. More formal definitions
follow, where we denote Π the range of the hash function.

CS-SPHF. This is almost1 the initial definition of SPHF, where the projection key hp does not
depend on the word C (word-independent key), but the word C cannot be chosen after having
seen hp for breaking the smoothness (non-adaptive smoothness). More formally, a CS-SPHF is
ε-smooth if ProjKG does not use its input C and if, for any C ∈ S et\L, the two following
distributions are ε-close:

{(hp, H) | hk $← HashKG(L); hp← ProjKG(hk,L,⊥); H ← Hash(hk,L, C)}
{(hp, H) | hk $← HashKG(L); hp← ProjKG(hk,L,⊥); H

$← Π}.

GL-SPHF. This is a relaxation, where the projection key hp can depend on the word C (word-
dependent key). More formally, a GL-SPHF is ε-smooth if, for any C ∈ Set\L, the two following
distributions are ε-close:

{(hp, H) | hk $← HashKG(L); hp← ProjKG(hk,L, C); H ← Hash(hk,L, C)}
{(hp, H) | hk $← HashKG(L); hp← ProjKG(hk,L, C); H

$← Π}.

KV-SPHF. This is the strongest SPHF, in which the projection key hp does not depend on the
word C (word-independent key) and the smoothness holds even if C depends on hp (adaptive
smoothness). More formally, a KV-SPHF is ε-smooth if ProjKG does not use its input C and, for
any function f onto Set\L, the two following distributions are ε-close:

{(hp, H) | hk $← HashKG(L); hp← ProjKG(hk,L,⊥); H ← Hash(hk,L, f(hp))}
{(hp, H) | hk $← HashKG(L); hp← ProjKG(hk,L,⊥); H

$← Π}.
1 In the initial definition, the smoothness was defined for a word C randomly chosen from S et\L, and not
necessarily for any such word.

APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B] 141

Remark 1. One can see that a perfectly smooth (i.e., 0-smooth) CS-SPHF is also a perfectly
smooth KV-SPHF, since each value H has exactly the same probability to appear, and so adap-
tively choosing C does not increase the above statistical distance. However, as soon as a weak
word C can bias the distribution, f can exploit it.

2.3 SPHFs on Languages of Ciphertexts

We could cover languages as general as those proposed in [BBC+13], but for the sake of clarity,
and since the main applications need some particular cases only, we focus on SPHFs for languages
of ciphertexts, whose corresponding plaintexts verify some relations. We denote these languages
LofCfull-aux.

The parameter full-aux will parse in two parts (crs, aux): the public part crs, known in advance,
and the private part aux, possibly chosen later. More concretely, crs represents the public values:
it will define the encryption scheme (and will thus contain the global parameters and the public
key of the encryption scheme) with the global format of both the tuple to be encrypted and the
relations it should satisfy, and possibly additional public coefficients; while aux represents the
private values: it will specify the relations, with more coefficients or constants that will remain
private, and thus implicitly known by the sender and the receiver (as the expected password, for
example, in PAKE protocols).

To keep aux secret, hp should not leak any information about it. We will thus restrict HashKG
and ProjKG not to use the parameter aux, but just crs. This is a stronger restriction than required
for our purpose, since one can use aux without leaking any information about it. But we already
have quite efficient instantiations, and it makes everything much simpler to present.

2.4 SPHFs on Cramer-Shoup Ciphertexts

Labeled Cramer-Shoup Encryption Scheme (CS). The CS labeled encryption scheme is
recalled in Appendix A.3. We briefly review it here. We combine all the public information in
the encryption key. We thus have a group G of prime order p, with two independent generators
(g1, g2)

$← G2, a hash function HK
$← H from a collision-resistant hash function family onto Z∗p,

and a reversible mapping G from {0, 1}n to G. From 5 scalars (x1, x2, y1, y2, z)
$← Zp5, one also

sets c = gx11 g
x2
2 , d = gy11 g

y2
2 , and h = gz1 . The encryption key is ek = (G, g1, g2, c, d, h,HK), while

the decryption key is dk = (x1, x2, y1, y2, z). For a message m ∈ {0, 1}n, with M = G(m) ∈ G,
the labeled Cramer-Shoup ciphertext is:

C def= CS(`, ek,M ; r) def= (u = (gr1, g
r
2), e = M · hr, v = (cdξ)r),

with ξ = HK(`,u, e) ∈ Z∗p. If one wants to encrypt a vector of group elements (M1, . . . ,Mn),
all at once in a non-malleable way, one computes all the individual ciphertexts with a common
ξ = HK(`,u1, . . . ,un, e1, . . . , en) for v1, . . . , vn. Hence, everything done on tuples of ciphertexts
will work on ciphertexts of vectors. In addition, the Cramer-Shoup labeled encryption scheme
on vectors is IND-CCA under the DDH assumption.

The (known) GL-SPHF for CS. Gennaro and Lindell [GL03] proposed an SPHF on labeled
Cramer-Shoup ciphertexts: the hashing key just consists of a random tuple hk = (η, θ, µ, ν)

$← Z4
p.

The associated projection key, on a ciphertext C = (u = (u1, u2) = (gr1, g
r
2), e = G(m) · hr, v =

(cdξ)r), is hp = gη1g
θ
2h

µ(cdξ)ν ∈ G. Then, one can compute the hash value in two different ways,
for the language LofCek,m of the valid ciphertexts of M = G(m), where crs = ek is public but
aux = m is kept secret:

H def= Hash(hk, (ek,m), C) def= uη1u
θ
2(e/G(m))µvν

= hpr def= ProjHash(hp, (ek,m), C, r) def= H ′.

142 APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B]

– Players U and U ′ both use ek = (G, g1, g2, c, d, h,HK);
– U , with password pw, chooses hk = (η1, η2, θ, µ, ν)

$← Z5
p,

computes hp = (hp1 = gη11 gθ2h
µcν , hp2 = gη21 dν), sets ` = (U,U ′, hp),

and generates C = (u = (gr1 , g
r
2), e = G(pw) · hr, v = (cdξ)r) with r a random scalar in Zp and

ξ = HK(`,u, e).
U sends hp ∈ G2 and C ∈ G4 to U ′;

– Upon receiving hp′ = (hp′1, hp
′
2) ∈ G2 and C′ = (u′ = (u′1, u

′
2), e

′, v′) ∈ G4 from U ′, U sets `′ =
(U ′, U, hp′) and ξ′ = HK(`′,u′, e′) and computes

skU = u′1
(η1+ξ

′η2)u′2
θ
(e′/G(pw))µv′ν · (hp′1hp′2

ξ
)r.

Fig. 1. One-Round PAKE based on DDH

A (new) KV-SPHF for CS. We give here the description of the first known KV-SPHF on labeled
Cramer-Shoup ciphertexts: the hashing key just consists of a random tuple hk = (η1, η2, θ, µ, ν)

$←
Z5
p; the associated projection key is the pair hp = (hp1 = gη11 g

θ
2h

µcν , hp2 = gη21 d
ν) ∈ G2. Then

one can compute the hash value in two different ways, for the language LofCek,m of the valid
ciphertexts of M = G(m) under ek:

H = Hash(hk, (ek,m), C) def= u
(η1+ξη2)
1 uθ2(e/G(m))µvν

= (hp1hp
ξ
2)
r def= ProjHash(hp, (ek,m), C, r) = H ′.

Theorem 2. The above SPHF is a perfectly smooth (i.e., 0-smooth) KV-SPHF.

The proof can be found in Section D.3 as an illustration of our new framework.

2.5 An Efficient One-Round PAKE

Review of the Katz and Vaikuntanathan’s PAKE. As explained earlier, Katz and Vaikun-
tanathan recently proposed a one-round PAKE in [KV11]. Their general framework follows Gen-
naro and Lindell [GL03] approach: each player sends an encryption of the password, and then
uses an SPHF on the partner’s ciphertext to check whether it actually contains the same pass-
word. The two hash values are multiplied to produce the session key. If the encrypted passwords
are the same, the different ways to compute the hash values (Hash and ProjHash) give the same
results. If the passwords differ, the smoothness makes the values computed by each player inde-
pendent. To this aim, the authors need an SPHF on a labeled IND-CCA encryption scheme. To
allow a SPHF-based PAKE scheme to be one-round, the ciphertext and the SPHF projection key
for verifying the correctness of the partner’s ciphertext should be sent together, before having
seen the partner’s ciphertext: the projection key should be independent of the ciphertext. In ad-
dition, the adversary can wait until it receives the partner’s projection key before generating the
ciphertext, and thus a stronger smoothness is required. This is exactly why we need a KV-SPHF
in this one-round PAKE framework.
Our Construction. Our KV-SPHF on Cramer-Shoup ciphertexts can be used in the Katz and
Vaikuntanathan framework for PAKE [KV11]. It leads to the most efficient PAKE known so far,
and it is one-round. Each user indeed only sends 6 elements of G (see Figure 1), instead of 70 ele-
ments of G for the Katz and Vaikuntanathan’s instantiation using a Groth-Sahai SS-NIZK [GS08],
or 20 group elements for the Jutla and Roy’s [JR12] improvement using a relatively-sound NIZK.

The formal security result follows from the Theorem 4 in Section 5.1. We want to insist
that our construction does not need pairing-friendly groups, and the plain DDH assumption is
enough, whereas the recent constructions made heavy use of pairing-based proofs à la Groth-
Sahai. Under the DLin assumption (which is a weaker assumption in any group), still without
requiring pairing-friendly groups, our construction would make each user to send 9 group elements
only.

APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B] 143

3 Generic Framework for SPHFs

3.1 Introduction

In Appendix D, we propose a formal framework for SPHFs using a new notion of graded rings,
derived from [GGH12]. It enables to deal with cyclic groups, bilinear groups (with symmetric or
asymmetric pairings), or even groups with multi-linear maps. In particular, it helps to construct
concrete SPHFs for quadratic pairing equations over ciphertexts, which enable to construct effi-
cient LAKE [BBC+13] for any language handled by the Groth-Sahai NIZK proofs, and so for any
NP-language (see Section 5.1).

However, we focus here on cyclic groups, with the basic intuition only, and provide some
illustrations. While we keep the usual multiplicative notation for the cyclic group G, we use an
extended notation: r � u = u � r = ur, for r ∈ Zp and u ∈ G, and u ⊕ v = u · v, for u, v ∈ G.
Basically, ⊕ and � correspond to the addition and the multiplication in the exponents, that are
thus both commutative. We then extend this notation in a natural way when working on vectors
and matrices.

Our goal is to deal with languages of ciphertexts LofCfull-aux: we assume that crs is fixed and
we write Laux = LofCfull-aux ⊆ Set where full-aux = (crs, aux).

3.2 Language Representation

For a language Laux, we assume there exist two positive integers k and n, a function Γ : Set 7→
Gk×n, and a family of functions Θaux : S et 7→ G1×n, such that for any word C ∈ S et, (C ∈
Laux)⇐⇒ (∃λ ∈ Z1×k

p such that Θaux(C) = λ�Γ (C)). In other words, we assume that C ∈ Laux,
if and only if, Θaux(C) is a linear combination of (the exponents in) the rows of some matrix
Γ (C). For a KV-SPHF, Γ is supposed to be a constant function (independent of the word C).
Otherwise, one gets a GL-SPHF.

We furthermore require that a user, who knows a witness w of the membership C ∈ Laux, can
efficiently compute the above linear combination λ. This may seem a quite strong requirement
but this is actually verified by very expressive languages over ciphertexts such as ElGamal,
Cramer-Shoup and variants.

We briefly illustrate it on our KV-SPHF on CS: C = (u1 = gr1, u2 = gr2, e = M ·hr, v = (cdξ)r),
with k = 2, aux = M and n = 5:

Γ =

(
g1 1 g2 h c
1 g1 1 1 d

)
λ = (r, rξ)

λ� Γ = (gr1, g
rξ
1 , g

r
2, h

r, (cdξ)r)

ΘM (C) = (u1, u
ξ
1, u2, e/M, v).

Essentially, one tries to make the first columns of Γ (C) and the first components of Θaux(C) to
completely determine λ. In our illustration, the first two columns with u1 = gr1 and uξ1 = grξ1
really imply λ = (r, rξ), and the three last columns help to check the language membership: we
want u2 = gr2, e/M = hr, and v = (cdξ)r, with the same r as for u1.

3.3 Smooth Projective Hash Function

With the above notations, the hashing key is a vector hk = α = (α1, . . . , αn)ᵀ $← Znp , while the
projection key is, for a word C, hp = γ(C) = Γ (C)� α ∈ Gk (if Γ depends on C, this leads to
a GL-SPHF, otherwise, one gets a KV-SPHF). Then, the hash value is:

Hash(hk, full-aux, C) def= Θaux(C)�α = λ� γ(C) def= ProjHash(hp, full-aux, C, w).

Our above Γ , λ, and ΘM immediately lead to our KV-SPHF on CS from the Section 2.4: with
hk = (η1, η2, θ, µ, ν)

$← Z5
p, the product with Γ leads to: hp = (hp1 = gη11 g

θ
2h

µcν , hp2 = gη21 d
ν) ∈

G2, and

144 APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B]

H = Hash(hk, (ek,m), C) def= u
(η1+ξη2)
1 uθ2(e/G(m))µvν

= (hp1hp
ξ
2)
r def= ProjHash(hp, (ek,m), C, r) = H ′.

The generic framework detailed in Appendix D also contains a security analysis that proves
the above generic SPHF is perfectly smooth: Intuitively, for a word C 6∈ Laux and a projection
key hp = γ(C) = Γ (C) � α, the vector Θaux(C) is not in the linear span of Γ (C), and thus
H = Θaux(C)�α is independent from Γ (C)�α = hp.

4 Concrete Constructions of SPHFs

In this section, we illustrate more our generic framework, by constructing more evolved SPHFs
without pairings. More complex constructions of SPHFs, namely for any language handled by
the Groth-Sahai NIZK proofs, are detailed in Appendix D.

4.1 KV-SPHF for Linear Multi-Exponentiation Equations

We present several instantiations of KV-SPHFs, in order to illustrate our framework, but also
to show that our one-round PAKE protocol from Section 2.5 can be extended to one-round
LAKE [BBC+13]. In PAKE/LAKE, we use SPHFs to prove that the plaintexts associated with
some ElGamal-like ciphertexts verify some relations. The communication complexity of these
protocols depends on the ciphertexts size and of the projection keys size. We first focus on
ElGamal ciphertexts, and then explain how to handle Cramer-Shoup ciphertexts.

Notations. We work in a group G of prime order p, generated by g, in which we assume the DDH
assumption to hold. We define ElGamal encryption scheme with encryption key ek = (g, h = gx).
We are interested in languages on the ciphertexts C1,i = (u1,i = gr1,i , e1,i = hr1,i · Xi), for
X1, . . . , Xn1 ∈ G, and C2,j = (u2,j = gr2,j , e2,j = hr2,j · gyj), for y1, . . . , yn2 ∈ Zp, such that:

n1∏

i=1

Xai
i ·

n2∏

j=1

A
yj
j = B, with crs = (p,G, ek, A1, . . . , An2)

aux = (a1, . . . , an1 , B) ∈ Zn1
p ×G.

(1)

We insist that, here, the elements (A1, . . . , An2) ∈ Gn2 are known in advance, contrarily to
equation (2) in Appendix D.4, where they are in aux and make the SPHF to use pairings.

In the following, i and j will always range from 1 to n1 and from 1 to n2 respectively in all
the products

∏
i,
∏
j and tuples (·)i, (·)j . We can define the following elements, and namely the

(2n2 + 1, 2n2 + 2)-matrix Γ that uses the knowledge of the elements (Aj)j :

Γ =




g 1 . . . 1 1 . . . 1 h

1
...
1

g

1
. . .
1
g

h

1
. . .
1
h

1
...
1

1
...
1

1 g

1
. . .
1
g

A−11
...

A−1n2




Θaux(C) =
(∏

i u
ai
1,i, (u2,j)j , (e2,j)j ,

∏
i e
ai
1,i/B

)

λ = (
∑

i air1,i, (r2,j)j , (yj)j)

λ� Γ =
(
g
∑
i air1,i , (gr2,j)j , (h

r2,j · gyj)j , h
∑
i air1,i/

∏
j A

yj
j

)

APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B] 145

We recall that in the matrix, 1 is the neutral element in G and can thus be ignored. When
one considers the discrete logarithms, they become 0, and thus the matrix is triangular. The
three diagonal blocks impose the value of λ, and the last column defines the relation: the last
component ofΘaux(C) is

∏
i e
ai
1,i/B = h

∑
i air1,i ·∏iX

ai
i /B, which is equal to the last component of

λ�Γ = h
∑
i air1,i/

∏
j A

yj
j , if and only if the relation (1) is satisfied. It thus leads to the following

KV-SPHF, with hp1 = gηhν , (hp2,j = gθjhµj)j , and (hp3,j = gµjA−νj)j , for hk = (η, (θj)j , (µj)j , ν):

H =
∏

i
(uη1,ie

ν
1,i)

ai ·
∏

j
(u
θj
2,je

µj
2,j)/B

ν = hp
∑
i air1,i

1 ·
∏

j
(hp

r2,j
2,j · hp

yj
3,j) = H ′.

As a consequence, the ciphertexts and the projection keys (which have to be exchanged in a
protocol) globally consist of 2n1 + 4n2 + 1 elements from G.
Ciphertexts with Randomness Reuse. A first improvement consists in using multiple in-
dependent encryption keys for encrypting the yj ’s: ek2,j = (g, h2,j = gx2,j), for j = 1, . . . , n2.
This allows to reuse the same random coins [BBS03]. We are interested in languages on the
ciphertexts (C1,i = (u1,i = gr1,i , e1,i = hr1,i · Xi))i, for (Xi)i ∈ Gn1 , with (r1,i)i ∈ Zn1

p , and
C2 = (u2 = gr2 , (e2,j = hr22,j · gyj)j), for (yj)j ∈ Zn2

p , still satisfying the same relation (1). This
improves on the length of the ciphertexts, from 2n1 + 2n2 group elements in G to 2n1 + n2 + 1.
The matrix Γ can then be compressed into:

Γ =




g 1 1 . . . 1 h

1 g h2,1 . . . h2,n2 1

1
...
1

1
...
1

g

1
. . .
1
g

A−11
...

A−1n2




Θaux(C) =
(∏

i u
ai
1,i, u2, (e2,j)j ,

∏
i e
ai
1,i/B

)

λ = (
∑

i air1,i, r2, (yj)j)

λ� Γ = (g
∑
i air1,i , gr2 , (hr22,jg

yj)j , h
∑
i air1,i/

∏
j A

yj
j)

where again, because of the diagonal blocks in Γ , λ is implied by all but last components of
Θaux(C). The last component of Θaux(C) is then

∏
i e
ai
1,i/B =

∏
i h

air1,iXai
i /B and thus equal

to the last component of λ � Γ , multiplied by
∏
iX

ai
i ·

∏
j A

yj
j /B that is equal to 1 if and

only if the relation (1) is satisfied. It thus leads to the following KV-SPHF, with (hp1 = gηhν ,
hp2 = gθ ·∏j h

µj
2,j , and (hp3,j = gµjA−νj)j , for hk = (η, θ, (µj)j , ν):

H =
∏

i
(uη1,ie

ν
1,i)

ai ·
∏

j
e
µj
2,j · u

η
2/B

ν = hp
∑
i air1,i

1 · hpr22 ·
∏

j
hp

yj
3,j = H ′.

Globally, the ciphertexts and the projection keys consist of 2n1 + 2n2 + 3 elements from G. This
has to be compared with 2n1 + 4n2 + 1 elements from G in the previous construction.
Moving all the constant values from aux to crs. In some cases, all the constant values, Aj
and ai can be known in advance and public. The matrix Γ can then exploit their knowledge. We
apply the randomness-reuse technique for the whole ciphertext, for both (Xi)i and (yj)j , with
independent encryption keys (h1,i)i and (h2,j)j in G. A unique random r produces u = gr, and
(e1,i)i and (e2,j)j . This reduces the length of the ciphertext to n1 + n2 + 1 group elements in G,
but also the size of the matrix Γ :

Γ =




g h2,1 . . . h2,n2

∏
i h

ai
1,i

1
...
1

g

1
. . .
1
g

A−11
...

A−1n2




Θaux(C) =
(
u, (e2,j)j ,

∏
i e
ai
1,i/B

)
λ = (r, (yj)j)

λ� Γ = (gr, (hr2,jg
yj)j ,

∏
i h

air
1,i /

∏
j A

yj
j)

Projection keys become more compact, with only n2 + 1 group elements in G: hp1 = gη1 ·
∏
j h

µj
2,j ·

(
∏
i h

ai
1,i)

ν , and (hp2,j = gµjA−νj)j , for hk = (η, (µj)j , ν): H = uη ·∏ie
νai
1,i ·

∏
je
µj
2,j/B

ν = hpr1 ·∏
jhp

yj
2,j = H ′. Globally, the ciphertexts and the projection keys consist of n1 + 2n2 + 2 elements

from G.

146 APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B]

4.2 From ElGamal to Cramer-Shoup Encryption

In order to move from ElGamal ciphertexts to Cramer-Shoup ciphertexts, if one already has
Γ , Θaux and Λ, to guarantee that the ElGamal plaintexts satisfy a relation, one simply has to
make a bigger matrix, diagonal per blocks, with blocks Γ and smallers (Γk)k for every ciphertext
(uk, u

′
k, ek, vk)k, where

Γk =

(
g 1 g′ c
1 g 1 d

)
λk = (rk, rkξk)

ΘM (Ck) = (uk, u
ξk
k , u

′
k, vk)

λk � Γk = (grk , grkξk , g′rk , (cdξk)rk)

The initial matrix Γ guarantees the relations on the ElGamal pairs (uk, ek), and the matrices Γk
add the internal relations on the Cramer-Shoup ciphertexts. In the worst case, hk is increased
by 4n scalars and hp by 2n group elements, for n ciphertexts. But some more compact matrices
can be obtained in many cases, with much shorter hashing and projection keys, by merging some
lines or columns in the global matrix. But this is a case by case optimization.

4.3 Generalizations

The SPHF constructions from this section are all done without requiring any pairing, but are still
KV-SPHF, allowing us to handle non-quadratic multi-exponentiation equations without pairings.
To further extend our formalism, we describe in the next section a concrete application to blind
signatures (while with a GL-SPHF), and we present more languages in Appendix D.4.

However, as above for Cramer-Shoup ciphertexts, if one wants to satisfy several equations at
a time, one just has to first consider them independently and to make a global matrix with each
sub-language-matrix in a block on the diagonal. The hashing keys and the projection keys are
then concatenated, and the hash values are simply multiplied. Optimizations can be possible, as
shown in Appendix C for the SPHF involved in the blind signature.

4.4 GL-SPHF on Bit Encryption

As shown in Appendix D, our general framework allows to construct KV-SPHFs for any language
handled by the Groth-Sahai NIZK proofs. But, while these KV-SPHFs encompass the language
of ciphertexts encrypting a bit, they require pairing evaluations. We show here a more efficient
GL-SPHF for bit encryption, which does not need pairings.

Let us consider an ElGamal ciphertext C = (u = gr, e = hrgy), in which one wants to prove
that y ∈ {0, 1}. We can define the following matrix that depends on C, hence a GL-SPHF:

Γ (C) =



g h 1 1
1 g u e/g
1 1 g h


 Θaux(C) = (u, e, 1, 1) λ = (r, y,−ry)

λ� Γ (C) = (gr, hrgy, (u/gr)y, (e/ghr)y)

Because of the triangular block in Γ (C), one sees that Θaux(C) = λ � Γ (C) if and only if
gy(y−1) = 1, and thus that y ∈ {0, 1}. With hp1 = gνhθ, hp2 = gθuη(e/g)λ, and hp3 = gηhλ, for
hk = (ν, θ, η, λ): H = uνeθ = hpr1 · hpy2/hpry3 = H ′.

5 More Applications of SPHFs

5.1 One-Round LAKE

Since we have shown that our framework allows to design KV-SPHFs for complex languages, we
extend our PAKE protocol to LAKE [BBC+13]. To this aim, we provide a new security model,
inspired from BPR [BPR00] and a complete security proof, which implies the security of our
PAKE protocol from Section 2.5.

APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B] 147

Review of Language-Authenticated Key Exchange. LAKE is a general framework [BBC+13]
that generalizes AKE primitives: each player U owns a word W in a certain language L and ex-
pects the other player to own a word W ′ in a language L′. If everything is compatible (i.e., the
languages are the expected languages and the words are indeed in the appropriate languages),
the players compute a common high-entropy secret key, otherwise they learn nothing about the
partner’s values. In any case, external eavesdroppers do not learn anything, even not the outcome
of the protocol: did it succeed or not?

More precisely, we assume the two players have initially agreed on a common public part pub
for the languages, but then they secretly parametrize the languages with the private parts priv:
Lpub,priv is the language they want to use, and Lpub,priv ′ is the language they assume the other
player will use. In addition, each player owns a word W in his language. We will thus have to
use SPHFs on ciphertexts on W , priv and priv ′, with a common crs = (ek, pub) and aux with the
private parameters. For simple languages, this encompasses PAKE and Verifier-based PAKE. We
refer to [BBC+13] for more applications of LAKE.

A New Security Model for LAKE. The first security model for LAKE [BBC+13] has been
given in the UC framework [Can01], as an extension of the UC security for PAKE [CHK+05]. In
this paper, we propose an extension of the PAKE security model presented by Bellare, Pointcheval,
and Rogaway [BPR00] model for LAKE: the adversary A plays a find-then-guess game against n
players (Pi)i=1,...,n. It has access to several instancesΠs

U for each player U ∈ {Pi} and can activate
them (in order to model concurrent executions) via several queries: Execute-queries model passive
eavesdroppings; Send-queries model active attacks; Reveal-queries model a possible bad later use
of the session key; the Test-query models the secrecy of the session key. The latter query has to
be asked to a fresh instance (which basically means that the session key is not trivially known
to the adversary) and models the fact that the session key should look random for an outsider
adversary.

Our extension actually differs from the original PAKE security model [BPR00] when defining
the quality of an adversary. The goal of an adversary is to distinguish the answer of the Test-query
on a fresh instance: a trivial attack is the so-called on-line dictionary attack which consists in
trying all the possibilities when interacting with a target player. For PAKE schemes, the advantage
of such an attack is qs/N , where qs is the number of Send-queries and N the number of possible
passwords. A secure PAKE scheme should guarantee this is the best attack, or equivalently that
the advantage of any adversary is bounded by qs × 2−m, where m is the min-entropy of the
password distribution. In our extension, for LAKE, the trivial attack consists in trying all the
possibilities for priv, priv ′ with a word W in Lpub,priv.

Definition 3 (Security for LAKE). A LAKE protocol is claimed (t, ε)-secure if the advantage of
any adversary running in time t is bounded by qs×2−m×SuccL(t)+ε, where m is the min-entropy
of the pair (priv, priv′), and SuccL(t) is the maximal success an adversary can get in finding a
word in any Lpub,priv within time t.

Note that the min-entropy of the pair (priv, priv′) might be conditioned to the public information
from the context.

Our Instantiation. Using the same approach as Katz and Vaikuntanathan for their one-round
PAKE [KV11], one can design the scheme proposed on Figure 2, in which both users U and U ′

use the encryption key ek and the public part pub. This defines crs = (ek, pub). When running
the protocol, U owns a word W for a private part priv, and thinks about a private part priv ′ for
U ′, while U ′ owns a word W ′ for a private part priv′, and thinks about a private priv for U .

This gives a concrete instantiation of one-round LAKE as soon as one can design a KV-SPHF on
the language LofC(ek,pub),(priv,priv ′) = {(`, C) | ∃r, ∃W, C = Encrypt(`, ek, (priv, priv ′,W); r) and W ∈
Lpub,priv}. More precisely, each player encrypts (priv, priv ′,W) as a vector, which thus leads to
C = (C1, C2, C3). We then use the combination of three SPHFs: two on equality-test for the

148 APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B]

– Players U and U ′ both use ek and agreed on pub.
– U , with (priv, priv ′,W), generates hk = HashKG(ek, pub)

and hp = ProjKG(hk, (ek, pub),⊥).
U computes ` = (U,U ′, hp) and C = Encrypt(`, ek, (priv, priv ′,W); r), with r a random scalar in Zp,
and sends hp, C to U ′.

– Upon receiving hp′, C′ from U ′, it sets `′ = (U ′, U, hp′),
U computes H = Hash(hk, ((ek, pub), (priv ′, priv)), (`′, C′)),

H ′ = ProjHash(hp′, ((ek, pub), (priv, priv ′)), (`, C), r), and sk = H ·H ′.

For crs = (ek, pub) and aux = (priv, priv ′),

LofCcrs,aux =

{
(`, C)

∣∣∣∣
∃r,∃W, C = Encrypt(`, ek, (priv, priv ′,W); r)

and W ∈ Lpub,priv

}
.

Fig. 2. One-Round LAKE

plaintexts priv (for C1) and priv ′ (for C2), and one on LofC(ek,pub),priv for the ciphertext C3 of
W ∈ Lpub,priv.

We stress that hk and hp can depend on crs but not on aux, hence the notations used in the
Figure 2. Using a similar proof as in [KV11], one can state the following theorem (more details
on the security model and the full proof can be found in Appendix B):

Theorem 4. If the encryption scheme is IND-CCA, and LofC(ek,pub),(priv,priv ′) languages admit
KV-SPHFs, then our LAKE protocol is secure.

From LAKE to PAKE. One can remark that this theorem immediately proves the security
of our PAKE from Figure 1: one uses priv = priv′ = pw and pub = ∅, for the language of the
ciphertexts of pw.

5.2 Two-Flow Waters Blind Signature

Blind signature schemes, introduced by Chaum in 1982 [Cha83], allow a person to get a signature
by another party without revealing any information about the message being signed. A blind
signature can then be publicly verified using the unblinded message.

In [BPV12], the authors presented a technique to do efficient blind signatures using an SPHF:
it is still the most efficient Waters blind signature known so far. In addition, the resulting signa-
ture is a classical Waters signature (see Appendix C.1 for the definition of Waters signatures).

The construction basically consists in encrypting the message bit-by-bit under distinct bases,
that will allow the generation of a masked Waters hash of the message. Thereafter, the signer will
easily derive a masked signature the user will eventually unmask. However, in order to generate
the masked signature, the signer wants some guarantees on the ciphertexts, namely that some
ciphertexts contain a bit (in order to allow extractability) and that another ciphertext contains
a Diffie-Hellman value. Using our new techniques, we essentially improve on the proof of bit
encryption by using the above randomness-reuse technique.

Definition. Before showing our new construction, let us first recall the definition of blind sig-
natures.

A blind signature scheme BS is defined by three algorithms (BSSetup,BSKeyGen,BSVerif)
and one interactive protocol BSProtocol〈S,U〉:
– BSSetup(1K), generates the global parameters param of the system;
– BSKeyGen(param) is a probabilistic polynomial-time algorithm that generates a pair of keys

(vk, sk) where vk is the public (verifying) key and sk is the secret (signing) key;
– BSProtocol〈S(sk),U(vk,M)〉: this is a probabilistic polynomial-time interactive protocol be-

tween the algorithms S(sk) and U(vk,M), for a messageM ∈ {0, 1}n. It generates a signature
σ on M under vk related to sk for the user.

APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B] 149

Expbl−bBS,S∗(K)
1. param← BSSetup(1K)
2. (vk,M0,M1)← A(FIND : param)
3. σb ← BSProtocol〈A,U(vk,Mb)〉
4. σ1−b ← BSProtocol〈A,U(vk,M1−b)〉
5. b∗ ← S∗(GUESS : σ0, σ1);
6. RETURN b∗ = b

Blindness property

ExpufBS,U∗(K)
1. (param)← BSSetup(1K)
2. (vk, sk)← BSKeyGen(param)
3. For i = 1, . . . , qs, BSProtocol〈S(sk),A(INIT : vk)〉
4.

(
(m1, σ1), . . . , (mqs+1, σqs+1)

)
← A(GUESS : vk);

5. IF ∃i 6= j,mi = mj OR ∃i,Verif(pk,mi, σi) = 0 RETURN 0
6. ELSE RETURN 1

Unforgeability

Fig. 3. Security Games for BS

– BSVerif(vk,M, σ) is a deterministic polynomial-time algorithm which outputs 1 if the signa-
ture σ is valid with respect to m and vk, 0 otherwise.

A blind signature scheme BS should satisfy the two following security notions: the blindness
condition that is a guarantee for the signer, and the unforgeability that is a guarantee for the
signer. The blindness states that a malicious signer should not be able to link the final signa-
tures output by the user to the individual valid interactions with the user. We insist on valid
executions which end with a valid signature σ of the message used by U under the key vk. The
signer could of course send a wrong answer which would lead to an invalid signature in one ex-
ecution of BSProtocol〈S(sk),U(vk,M)〉. Then, it could easily distinguish a valid signature from
an invalid one, and thus valid execution of the protocol and the invalid one. However this mali-
cious behaviour is a kind of denial of service and is out of scope of this work. Therefore, in this
paper blindness formalizes that one valid execution is indistinguishable for the signer from other
valid executions. This notion was formalized in [HKKL07] and termed a posteriori blindness.
The unforgeability property insures that an adversary, interacting freely with an honest signer,
should not be able to produce q + 1 valid signatures after at most q complete interactions with
the honest signer (for any q polynomial in the security parameter).

These security notions are precised by the security games presented on Figure 3, where the
adversary keeps some internal state between the various calls INIT, FIND and GUESS.

Construction. Here, we give a sketch of the protocol (in which i always ranges from 1 to `,
except if stated otherwise) and its communication cost:

– Setup(1K), where K is the security parameter, generates a pairing-friendly system (p,G1,G2,
GT , e; g1, g2), with g1 and g2 generators of G1 and G2 respectively, a random generator
hs ∈ G1 as well as independent generators u = (ui)i∈{0,...,`} ∈ G`+1

1 for the Waters hash
function F(M) = u0

∏
i u

Mi
i , for M = (Mi)i ∈ {0, 1}`, and finally random scalars (xi)i ∈ Z`p.

It also sets ek = (hi)i = (gxi1)i and gs =
∏
i hi. It outputs the global parameters param =

(p,G1,G2,GT , e, g1, g2, ek, gs, hs,u). Essentially, g1 and ek compose the encryption key for
an ElGamal ciphertext on a vector, applying the randomness-reuse technique, while gs, g2
and hs are the bases used for the Waters signature;

– KeyGen(param) picks at random x ∈ Zp, sets the signing key sk = hxs and the verification
key vk = (gxs , g

x
2);

– BSProtocol〈S(sk),U(vk,M)〉 runs as follows, where U wants to get a signature on M =
(Mi)i ∈ {0, 1}`:
• Message Encryption: U chooses a random r ∈ Zp and encrypts uMi

i for all the i’s with
the same random r: c0 = gr1 and (ci = hriu

Mi
i)i. U also encrypts vkr1, into d0 = gs1,

d1 = hs1vk
r
1, with a different random s: It eventually sends (c0, (ci)i, (d0, d1)) ∈ G`+3

1 ;
• Signature Generation: S first computes the masked Waters hash of the message c =
u0
∏
i ci = (

∏
i hi)

rF(M) = grsF(M), and generates the masked signature (σ′1 = hxsc
t =

hxsg
rt
s F(M)t, σ2 = (gts, g

t
2)) for a random t

$← Zp;

150 APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B]

• SPHF: S needs the guarantee that each ElGamal ciphertext (c0, ci) encrypts either 1 or
ui under the key (g1, hi), and (d0, d1) encrypts the Diffie-Hellman value of (g1, c0, vk1)
under the key (g1, h1). The signer chooses a random hk = (η, (θi)i, (νi)i, γ, (µi)i, λ) and
sets hp1 = gη1 ·

∏
ih
θi
i · vkλ1 , (hp2,i = uθii c

νi
0 (ci/ui)

µi)i, (hp3,i = gθi1 h
µi
i)i, and hp4 = gγ1h

λ
1 ,

then H = cη0 ·
∏
ic
θi
i ·d

γ
0 ·dλ1 = hpr1 ·

∏
ihp

Mi
2,i ·hp−rMi

3,i ·hps4 = H ′ ∈ G1. This SPHF is easily
obtained from the above GL-SPHF on bit encryption, as shown in Appendix C;
• Masked Signature: S sends (hp, Σ = σ′1 ·H,σ2) ∈ G2`+3

1 ×G2;
• Signature Recovery: Upon receiving (hp, Σ, σ2), using his witnesses and hp, U computes
H ′ and unmasks σ′1. Thanks to the knowledge of r, it can compute σ1 = σ′1 · (σ2,1)−r.
Note that if H ′ = H, then σ1 = hxsF(M)t, which together with σ2 = (gts, g

t
2) is a valid

Waters signature on M ;
– Verif(vk,M, (σ1, (σ2,1, σ2,2)), checks whether both e(σ2,1, g2) = e(gs, σ2,2) and e(σ1, g2) =
e(h, vk2) · e(F(M), σ2,2) are satisfied or not.

Security Proof. The security proof is similar to the one in [BPV12] and is given in Ap-
pendix C.2.

Complexity. The whole process requires only 3`+ 7 elements in G1 (`+ 3 for the ciphertexts,
2` + 4 for the projection key, Σ and σ2,1) and 1 in G2 (σ2,2). This is more efficient than the
instantiation from [BPV12] (5` + 6 elements in G1 and 1 in G2) already using an SPHF, and
much more efficient than the instantiation from [BFPV11] (6`+ 7 elements in G1 and 6`+ 5 in
G2) using a Groth-Sahai [GS08] NIZK proof.

Acknowledgments

We would like to thank Jonathan Katz for his helpful comments and anonymous referees of
Crypto 2013 for their valuable inputs. We also thank Victor Shoup for pointing out to us that
the main idea of our generic framework was already present in the full version of [CS02].

This work was supported in part by the French ANR-12-INSE-0014 SIMPATIC Project
and in part by the European Commission through the FP7-ICT-2011-EU-Brazil Program under
Contract 288349 SecFuNet. The second author was funded by a Sofja Kovalevskaja Award of
the Alexander von Humboldt Foundation and the German Federal Ministry for Education and
Research.

References

ACP09. Michel Abdalla, Céline Chevalier, and David Pointcheval. Smooth projective hashing for conditionally
extractable commitments. In Shai Halevi, editor, Advances in Cryptology – CRYPTO 2009, volume
5677 of Lecture Notes in Computer Science, pages 671–689. Springer, August 2009.

BBC+13. Fabrice Ben Hamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud. Ef-
ficient uc-secure authenticated key-exchange for algebraic languages. In Kaoru Kurosawa and Goichiro
Hanaoka, editors, PKC 2013: 16th International Conference on Practice and Theory in Public-Key
Cryptography, volume 7778 of Lecture Notes in Computer Science, pages 272–291. Springer, 2013.

BBS03. Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. Randomness re-use in multi-recipient en-
cryption schemes. In Yvo Desmedt, editor, PKC 2003: 6th International Workshop on Theory and
Practice in Public Key Cryptography, volume 2567 of Lecture Notes in Computer Science, pages 85–99.
Springer, January 2003.

BBS04. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew Franklin, editor,
Advances in Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages
41–55. Springer, August 2004.

BFPV11. Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Signatures on random-
izable ciphertexts. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors,
PKC 2011: 14th International Workshop on Theory and Practice in Public Key Cryptography, volume
6571 of Lecture Notes in Computer Science, pages 403–422. Springer, March 2011.

APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B] 151

BM92. Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based protocols secure
against dictionary attacks. In 1992 IEEE Symposium on Security and Privacy, pages 72–84. IEEE
Computer Society Press, May 1992.

BPR00. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure against
dictionary attacks. In Bart Preneel, editor, Advances in Cryptology – EUROCRYPT 2000, volume
1807 of Lecture Notes in Computer Science, pages 139–155. Springer, May 2000.

BPV12. Olivier Blazy, David Pointcheval, and Damien Vergnaud. Round-optimal privacy-preserving protocols
with smooth projective hash functions. In Ronald Cramer, editor, TCC 2012: 9th Theory of Cryptog-
raphy Conference, volume 7194 of Lecture Notes in Computer Science, pages 94–111. Springer, March
2012.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
Annual Symposium on Foundations of Computer Science, pages 136–145. IEEE Computer Society
Press, October 2001.

CCGS10. Jan Camenisch, Nathalie Casati, Thomas Groß, and Victor Shoup. Credential authenticated identifi-
cation and key exchange. In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume 6223
of Lecture Notes in Computer Science, pages 255–276. Springer, August 2010.

Cha83. David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest, and
Alan T. Sherman, editors, Advances in Cryptology – CRYPTO’82, pages 199–203. Plenum Press, New
York, USA, 1983.

CHK+05. Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKenzie. Universally
composable password-based key exchange. In Ronald Cramer, editor, Advances in Cryptology – EU-
ROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 404–421. Springer, May
2005.

CS98. Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. In Hugo Krawczyk, editor, Advances in Cryptology – CRYPTO’98, volume
1462 of Lecture Notes in Computer Science, pages 13–25. Springer, August 1998.

CS02. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen ci-
phertext secure public-key encryption. In Lars R. Knudsen, editor, Advances in Cryptology – EURO-
CRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 45–64. Springer, April / May
2002.

DH76. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, 22(6):644–654, 1976.

GGH12. Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices and
applications. Cryptology ePrint Archive, Report 2012/610, 2012. http://eprint.iacr.org/.

GL03. Rosario Gennaro and Yehuda Lindell. A framework for password-based authenticated key exchange.
In Eli Biham, editor, Advances in Cryptology – EUROCRYPT 2003, volume 2656 of Lecture Notes in
Computer Science, pages 524–543. Springer, May 2003. http://eprint.iacr.org/2003/032.ps.gz.

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel P.
Smart, editor, Advances in Cryptology – EUROCRYPT 2008, volume 4965 of Lecture Notes in Com-
puter Science, pages 415–432. Springer, April 2008.

HK08. Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their applications. In David
Wagner, editor, Advances in Cryptology – CRYPTO 2008, volume 5157 of Lecture Notes in Computer
Science, pages 21–38. Springer, August 2008.

HKKL07. Carmit Hazay, Jonathan Katz, Chiu-Yuen Koo, and Yehuda Lindell. Concurrently-secure blind signa-
tures without random oracles or setup assumptions. In Salil P. Vadhan, editor, TCC 2007: 4th Theory of
Cryptography Conference, volume 4392 of Lecture Notes in Computer Science, pages 323–341. Springer,
February 2007.

JR12. Charanjit S. Jutla and Arnab Roy. Relatively-sound NIZKs and password-based key-exchange. In Marc
Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012: 15th International Workshop on
Theory and Practice in Public Key Cryptography, volume 7293 of Lecture Notes in Computer Science,
pages 485–503. Springer, May 2012.

KOY01. Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient password-authenticated key exchange
using human-memorable passwords. In Birgit Pfitzmann, editor, Advances in Cryptology – EURO-
CRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages 475–494. Springer, May 2001.

KV11. Jonathan Katz and Vinod Vaikuntanathan. Round-optimal password-based authenticated key ex-
change. In Yuval Ishai, editor, TCC 2011: 8th Theory of Cryptography Conference, volume 6597 of
Lecture Notes in Computer Science, pages 293–310. Springer, March 2011.

LY12. Benoît Libert and Moti Yung. Non-interactive CCA-secure threshold cryptosystems with adaptive
security: New framework and constructions. In Ronald Cramer, editor, TCC 2012: 9th Theory of
Cryptography Conference, volume 7194 of Lecture Notes in Computer Science, pages 75–93. Springer,
March 2012.

NY90. Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks.
In 22nd Annual ACM Symposium on Theory of Computing. ACM Press, May 1990.

152 APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B]

Poi12. David Pointcheval. Password-based authenticated key exchange (invited talk). In Marc Fischlin,
Johannes Buchmann, and Mark Manulis, editors, PKC 2012: 15th International Workshop on Theory
and Practice in Public Key Cryptography, volume 7293 of Lecture Notes in Computer Science, pages
390–397. Springer, May 2012.

Sah99. Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In
40th Annual Symposium on Foundations of Computer Science, pages 543–553. IEEE Computer Society
Press, October 1999.

Wat05. Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer,
editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer
Science, pages 114–127. Springer, May 2005.

A Preliminaries

A.1 Formal Definitions of the Basic Primitives

We first recall the definitions of some of the basic tools, with the corresponding security notions
and their respective success/advantage.

Hash Function Family. A hash function family H is a family of functions HK from {0, 1}∗ to
a fixed-length output, either {0, 1}K or Zp. Such a family is said collision-resistant if for any
adversary A on a random function HK

$← H, it is hard to find a collision. More precisely, we
denote

SucccollH (A) = Pr[HK
$← H, (m0,m1)← A(HK) : HK(m0) = HK(m1)],

SucccollH (t) = max
A≤t
{SucccollH (A)},

where the latter notation means the maximum over the adversaries running within time t.

Labeled Encryption Scheme. A labeled public-key encryption scheme E is defined by four algo-
rithms:

– Setup(1K), where K is the security parameter, generates the global parameters param of the
scheme;

– KeyGen(param) generates a pair of keys, the encryption key ek and the decryption key dk;
– Encrypt(`, ek,m; r) produces a ciphertext c on the input message m ∈ M under the label `

and encryption key ek, using the random coins r;
– Decrypt(`, dk, c) outputs the plaintext m encrypted in c under the label `, or ⊥ for an invalid

ciphertext.

An encryption scheme E should satisfy the following properties

– Correctness: for all key pair (ek, dk), any label `, all random coins r and all messages m,

Decrypt(`, dk,Encrypt(`, ek,m; r)) = m.

– Indistinguishability under chosen-ciphertext
attacks: this security notion can be formal-
ized by the following security game, where
the adversary A keeps some internal state
between the various calls FIND and GUESS,
and makes use of the oracle ODecrypt:

• ODecrypt(`, c): This oracle outputs the
decryption of c under the label ` and
the challenge decryption key dk. The
input queries (`, c) are added to the
list CT .

Expind-cca−bE,A (K)

1. param← Setup(1K)
2. (ek, dk)← KeyGen(param)
3. (`∗,m0,m1)← A(FIND : ek,ODecrypt(·, ·))
4. c∗ ← Encrypt(`∗, ek,mb)
5. b′ ← A(GUESS : c∗,ODecrypt(·, ·))
6. IF (`∗, c∗) ∈ CT RETURN 0
7. ELSE RETURN b′

APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B] 153

The advantages are

Advind-ccaE (A) = Pr[Expind-cca−1E,A (K) = 1]− Pr[Expind-cca−0E,A (K) = 1]

Advind-ccaE (t) = max
A≤t
{Advind-ccaE (A)}.

A.2 Statistical and Computational Distances

Let D1 and D2 be two probability distributions over a finite set S and let X and Y be two
random variables with these two respective distributions.
Statistical Distance. The statistical distance between D1 and D2 is also the statistical distance
between X and Y :

Dist(D1,D2) = Dist(X,Y) =
∑

x∈S
|Pr [X = x]− Pr [Y = x]| .

If the statistical distance between D1 and D2 is less than or equal to ε, we say that D1 and D2

are ε-close or are ε-statistically indistinguishable. If the D1 and D2 are 0-close, we say that D1

and D2 are perfectly indistinguishable.
Computational Distance. We say that D1 and D2 are (t, ε)-computationally indistinguishable,
if, for every probabilistic algorithm A running in time at most t:

|Pr [A(X) = 1]− Pr [A(Y) = 1]| ≤ ε.

We can note that for any t and ε, D1 and D2 are (t, ε)-computationally indistinguishable, if they
are ε-close.

A.3 Concrete Instantiations

All the analyses in this paper could be instantiated with ElGamal-like schemes, based on either
the Decisional Diffie-Hellman (DDH) assumption, or the Decisional Linear (DLin) assumption.
But we focus on the former only:

Definition 5 (Decisional Diffie-Hellman (DDH)). The Decisional Diffie-Hellman assump-
tion says that, in a group (p,G, g), when we are given (ga, gb, gc) for unknown random a, b

$← Zp,
it is hard to decide whether c = ab mod p (a DH tuple) or c $← Zp (a random tuple). We define by
Advddhp,G,g(t) the best advantage an adversary can have in distinguishing a DH tuple from a random
tuple within time t.

Cramer-Shoup (CS) Encryption Scheme [CS98]: it can be turned into a labeled public-key
encryption scheme:

– Setup(1K) generates a group G of order p, with a generator g
– KeyGen(param) generates (g1, g2)

$← G2, dk = (x1, x2, y1, y2, z)
$← Z5

p, and sets, c = gx11 g
x2
2 ,

d = gy11 g
y2
2 , and h = gz1 . It also chooses a Collision-Resistant hash function HK in a hash

family H (or simply a Universal One-Way Hash Function). The encryption key is ek =
(g1, g2, c, d, h,HK).

– Encrypt(`, ek,M ; r), for a message M ∈ G and a random scalar r ∈ Zp, the ciphertext
is C = (`,u = (gr1, g

r
2), e = M · hr, v = (cdξ)r), where v is computed afterwards with

ξ = HK(`,u, e).
– Decrypt(`, dk, C): one first computes ξ = HK(`,u, e) and checks whether ux1+ξy11 ·ux2+ξy22

?= v.
If the equality holds, one computes M = e/uz1 and outputs M . Otherwise, one outputs ⊥.

This scheme is indistinguishable against chosen-ciphertext attacks, under the DDH assumption
and the collision-resistance / universal one-wayness of the hash function H.

154 APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B]

B Security Proof for LAKE

B.1 Security Model

In this paper, we focus on efficiency and propose (in Section 5.1) an extension of the PAKE
security model presented by Bellare-Pointcheval-Rogaway [BPR00] model for PAKE, between n
players in the presence of an adversary. The adversary A plays a find-then-guess game against
n players (Pi)i=1,...,n. It has access to several instances Πs

U for each player U ∈ {Pi} and can
activate them (in order to model concurrent executions) via several queries, described below:

– Execute(U, s, U ′, t): one outputs the transcript of an execution of the protocol between the
instance Πs

U of U and the instance Πt
U ′ of U

′. It models passive eavesdropping attacks;
– Send(U, s, U ′, t,m): one sends the message m to the instance Πt

U ′ of U
′ in the name of the

instance Πs
U of U . It models active attacks;

– Reveal(U, s): if the instance Πs
U of U has “accepted”, one outputs the session key, otherwise

one outputs ⊥. It models a possible bad later use of the session key;
– Test(U, s): one first flips a coin b $← {0, 1}, if b = 1 one outputs Reveal(U, s), otherwise one

outputs a truly random key. It models the secrecy of the session key.

We say that Πs
U and Πt

U ′ have matching conversations if inputs-outputs of the former correspond
to the outputs-inputs of the latter and vice-versa. They are then called partners. We say that
an instance is fresh if the key exists and is not trivially known by the adversary: more precisely,
Πs
U is fresh if

– Πs
U has accepted the session, which is required to compute a session key;

– Πs
U has not been asked a Reveal-query;

– no Πt
U ′ with matching conversations with Πs

U has been asked a Reveal-query.

A key exchange protocol is then said secure if keys are indistinguishable from random keys for
adversaries. Formally, the adversary is allowed to ask as many Execute, Send and Reveal-queries
as it likes, and then only one Test-query to a fresh instance Πs

U of a player. The adversary wins
if it has guessed correctly the bit b in this query.

B.2 Proof of Theorem 4

This proof follows the one from [KV11]. It starts from the real attack game, in a Game 0:
Adv0(A) = ε. We incrementally modify the simulation to make possible the trivial attacks only. In
the first games, all the honest players have their own values, and the simulator knows and can use
them. Following [KV11], we can assume that there are two kinds of Send-queries: Send0(U, s, U ′)-
queries where the adversary asks the instance Πs

U to initiate an execution with an instance of U ′.
It is answered by the flow U ′ should send to communicate with U ; Send1(U, s,m)-queries where
the adversary sends the message m to the instance Πs

U . It gives no answer back, but defines the
session key, for possible later Reveal or Test-queries.

Game G1: We first modify the way Execute-queries are answered: we replace C and C ′ by
encryptions of a fixed messageM0, that parses as two private parts P and P ′ and a wordW ,
such that W is not in the language induced by (pub, P). Since the hashing keys are known,
the common session key is computed as

sk = Hash(hk, ((ek, pub), priv ′), C ′)× Hash(hk′, ((ek, pub), priv), C).

Since we could have first modified the way to compute sk, that has no impact at all from
the soundness of the SPHF, the unique difference comes from the different ciphertexts. This
is anyway indistinguishable under the IND-CPA property of the encryption scheme, for each
Execute-query. Using a classical hybrid technique, one thus gets |Adv1(A)−Adv0(A)| ≤ negl().

APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B] 155

Game G2: We modify again the way Execute-queries are answered: we replace the common
session key by a truly random value. Since the languages are not satisfied, the smoothness
guarantees indistinguishability: |Adv2(A)− Adv1(A)| ≤ negl().

Game G3: We now modify the way one answers the Send1-queries, by using a decryption
oracle, or alternatively knowing the decryption key. More precisely, when a message (hp, C)
is sent, three cases can appear:
– it has been generated (altered) by the adversary, then one first decrypts the ciphertext

to get (priv′, priv ,W ′) used by the adversary. Then
• If they are correct (W ′ ∈ Lpub,priv′) and consistent with the receiver’s values (priv′ =
priv ′, priv = priv) —event Ev— one declares that A succeeds (saying that b′ = b)
and terminates the game;
• if they are not both correct and consistent with the receiver’s values, one chooses sk

at random.
– it is a replay of a previous flow sent by the simulator, then, in particular, one knows the

hashing keys, and one can compute the session keys using all the hashing keys.
The first case can only increase the advantage of the adversary in case Ev happens (which
probability is computed in G6). The second change is indistinguishable under the adaptive-
smoothness and thus only increases the advantage of the adversary by a negligible term. The
third change does not affect the way the key is computed, so finally: Adv2(A) ≤ Adv3(A) +
negl().

Game G4: We modify again the way one answers the Send1-queries. More precisely, when a
message (hp, C) is sent, two cases can appear:
– if there is an instance Πt

U ′ partnered with Πs
U that receives this flow, then set the key

identical to the key for Πt
U ′ ;

– otherwise, one chooses sk at random.
The former case remains identical since the message is a replay of a previous flow, and
the latter is indistinguishable, as in [KV11], thanks to the adaptive-smoothness and their
technical lemma that proves that all the hash values are random looking even when hashing
keys and ciphertexts are re-used: |Adv4(A)− Adv3(A)| ≤ negl().

Game G5: We now modify the way one answers the Send0-queries: instead of encrypting the
correct values, one does as in G1 for Execute-queries, and encrypts M0. Since for simulat-
ing the Send1-queries decryptions are required, indistinguishability relies on the IND-CCA
security of the encryption scheme: |Adv5(A)− Adv4(A)| ≤ negl().

Game G6: For all the hashing and projection keys, we now use the dummy private inputs.
Since we restricted hk and hp not to depend on aux, the distributions of these keys are
independent of the auxiliary private inputs: |Adv6(A)− Adv5(A)| ≤ negl().
If one combines all the relations, one gets Adv6(A) ≥ Adv0(A)− negl() = ε− negl().

One can note that in this final game, the values of the honest players are not used anymore
during the simulation, but just for declaring whether the adversary has won or not (event Ev).
Otherwise, non-partnered players have random and independent keys, and thus unless the sim-
ulator stops the simulation, the advantage in the last game is exactly 0: Adv6(A) = Pr[Ev]. And
thus, we have ε ≤ Pr[Ev] + negl().

Let us recall that Ev means that the adversary has encrypted (priv′, priv ,W ′) that are correct
(W ′ ∈ Lpub,priv′) and consistent with the receiver’s values (priv′ = priv ′, priv = priv). Since the
values for the honest players are never used during the simulation, we can assume we choose
them at the very end only to check whether event Ev happened:

Pr[Ev] = Pr[∃k : priv′(k) = priv ′ik , priv(k) = privik ,W
′(k) ∈ Lpub,priv′ik

]

where k lists all the Send1-queries with adversary-generated messages in which the ciphertexts
decrypt to (priv′(k), priv(k),W ′(k)), and ik is the index of the recipient of k-th Send1-query: it

156 APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B]

has first to guess the private values, and then once it has guessed them it has to find a word in
the language:

Pr[Ev] ≤ qs
2m
× SuccL(t),

where m is the minimal min-entropy on the joint distributions of the (priv, priv ′) for any two
players U,U ′ who want to communicate, and SuccL(t) is the best success an adversary can get
in finding a word in a language Lpub,priv. Then, by combining all the inequalities, one gets

ε ≤ qs
2m
× SuccL(t) + negl().

C Blind Signature

In this appendix, we give details on our two-flow Waters blind signature scheme outlined in
Section 5.2. We first present the asymmetric variant of Waters signatures proposed in [BFPV11]
and then recall the formal security definitions of blind signatures and of their security properties.
Using the formalism from Appendix D, we describe in details the SPHF used in the scheme and
finally prove the security of our scheme.

C.1 Waters Signature (Asymmetric Setting)

In 2011, Blazy, Fuchsbauer, Pointcheval and Vergnaud [BFPV11] proposed the following variant
of Waters signatures in an asymmetric pairing-friendly environment:

– Setup(1K): in a pairing-friendly environment (p,G1, g1,G2, g2,GT , e), one chooses a random
vector u = (u0, . . . , u`)

$← G`+1
1 , and for convenience, we denote F(M) = u0

∏`
i=1 u

Mi
i

for M = (Mi)i ∈ {0, 1}`. We also need two extra generators (gs, hs)
$← G2

1. The global
parameters param consist of all these elements (p,G1, g1,G2, g2,GT , e, gs, hs,u).

– KeyGen(param) chooses a random scalar x $← Zp, which defines the public key as vk =
(gxs , g

x
2) = (vk1, vk2), and the secret key is set as sk = hxs .

– Sign(sk,M ; s) outputs, for some random t
$← Zp, σ =

(
σ1 = sk · F(M)t, σ2 = (σ2,1 =

gts, σ2,2 = gt2)).
– Verif(vk,M, σ) checks whether e(σ1, g2) = e(hs, vk2)·e(F(M), σ2,2), and e(σ2,1, g2) = e(gs, σ2,2).

This scheme is unforgeable against (adaptive) chosen-message attacks under the following variant
of the CDH assumption, which states that CDH is hard in G1 when one of the random scalars is
also given as an exponentiation in G2:

Definition 6 (The Advanced Computational Diffie-Hellman problem (CDH+)). In a
pairing-friendly environment (p,G1, g1,G2, g2,GT , e). The CDH+ assumption states that given
(g1, g2, g

a
1 , g

a
2 , g

b
1), for random a, b ∈ Zp, it is hard to compute gab1 .

C.2 Underlying SPHF in the Blind Signature Scheme

Following [BPV12], our scheme makes use of an SPHF in the interactive signing protocol to insure
(in an efficient way) that the user actually knows the signed message. As outlined in Section 5.2,
during the interactive process of the blind signature protocol, we have:

– General setting: a pairing-friendly system (p,G1,G2,GT , e), with g1 and g2 generators of G1

and G2 respectively;
– Encryption parameters: random scalars (xi)i ∈ Z`p with (hi = gxi1)i, where i ranges from 1

to `, as everywhere in the following. Then, ek = (hi)i;

APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B] 157

– Signature parameters: independent generators u = (ui)i∈{0,...,`} ∈ G`+1
1 for the Waters func-

tion, gs =
∏
i hi, and a random generator hs ∈ G1, then sk = hxs and vk = (gxs , g

x
2), for a

random scalar x.

The user has generated c0 = gr1 and ci = hriu
Mi
i for i = 1, . . . , `, as well as d0 = gs1, d1 = hs1vk

r
1.

In the following simulation, we will extract (Mi)i from C = (c0, (ci)i), and we thus need to be
sure that this message can be extracted. In addition, the simulator will also need to know vkr1 to
generate the blinded signature, hence its encryption in (d0, d1). But this has to be checked, with
the following language membership, where we use notations from Appendix D:

1. each (c0, ci) encrypts a bit;

Γ (C) =




g1 h1 . . . h` 1 . . . 1 1 . . . 1

1
...
1

u1

1
. . .
1
u`

c0

1
. . .
1
c0

c1/u1

1
. . .

1
c`/u`

1
...
1

1 g1

1
. . .
1
g1

h1

1
. . .
1
h`




Θaux(C) = (c0, (ci)i, (1)i, (1)i)

λ = (r, (Mi)i, (−rMi)i)

λ · Γ (C) = (gr1, (h
r
iu
Mi
i)i, (c

Mi
0 g−rMi

1)i, ((ci/uih
r
i)
Mi)i).

2. the ciphertext (d0, d1) encrypts the Diffie-Hellman value of (g1, c0, vk1);

Γ =

(
g1 1 vk1
1 g1 h1

)
Θaux(C) = (c0, d0, d1) λ = (r, s)
λ · Γ = (gr1, g

s
1, vk

r
1h
s
1)

The two matrices can be compressed with a common row/column: the same witness r is indeed
used in both matrices, the two corresponding rows can be merged; the first column is the same
in both matrices, it can thus be a common one:

Γ (C) =




g1 h1 . . . h` 1 . . . 1 1 1 . . . 1 vk1
1
...
1

u1

1
. . .
1
u`

c0

1
. . .
1
c0

1
...
1

c1/u1

1
. . .

1
c`/u`

1
...
1

1
...
1

1 g1

1
. . .
1
g1

1
...
1

h1

1
. . .
1
h`

1
...
1

1 1 . . . 1 1 . . . 1 g1 1 . . . 1 h1




Θaux(C) = (c0, (ci)i, (1)i, d0, (1)i, d1)

λ = (r, (Mi)i, (−rMi)i, s)

λ · Γ (C) = (gr1, (h
r
iu
Mi
i)i, (c

Mi
0 g−rMi

1)i, g
s
1, ((ci/uih

r
i)
Mi)i, vk

r
1h
s
1).

This leads to, with hk = (η, {θi}i, {νi}i, γ, {µi}i, λ),

hp1 = gη1 ·
∏

i
hθii · vkλ1 (hp2,i = uθii c

νi
0 (ci/ui)

µi)i (hp3,i = gνi1 h
µi
i)i hp4 = gγ1h

λ
1

H = cη0 ·
∏

i
cθii · d

γ
0 · dλ1 = hpr1 ·

∏
i
hpMi

2,i · hp−rMi
3,i · hps4 = H ′.

The signers thus usesH to mask his blinded signature (σ′1, σ2). But since σ2 is just a random pair,
only σ′1 needs to be masked. Without it, one cannot forge a signature, but it can be unmasked
by the user with H ′, if the values (c0, (ci)i, (d0, d1)) are in the correct language, and thus are
correct ciphertexts.

One can note that the projection key consists of 2`+ 2 group elements in G1, and the hash
value is in G1. No pairings are needed for this SPHF. Since Γ depends on C, this is a GL-SPHF,
but this is enough for our interactive protocol.

158 APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B]

C.3 Security proofs

Proposition 7. Our blind signature scheme is blind under the DDH assumption in G1
2:

AdvblBS,A(K) ≤ 2× (`+ 1)× AdvDDH
p,G1,g1(K).

Proof. Let us consider an adversary A against the blindness of our scheme. We build an adversary
B against the DDH assumption in G1.

Game G0: In a first game G0, we run the standard protocol:
– BSSetup(1k), B generates (p,G1,G2,GT , e) with g1 and g2 generators of G1 and G2

respectively. It also generates independent generators u = (ui)i∈{0,...,`} ∈ G`+1
1 for the

Waters function and sets ek = (hi)i and gs =
∏
i hi. It generates hs = gαs ∈ G1 and

defines the global parameters as param = (p,G1,G2,GT , e, g1, g2, ek, gs, hs,u);
– The adversary A generates a verification key vk = (vk1, vk2) ∈ G1 × G2 such that
e(vk1, g2) = e(gs, vk2) and two `-bit messages M0,M1.

– A and B run twice the interactive issuing protocol, first on the message M b, and then
on the message M1−b:
• B chooses a random r ∈ Zp and encrypts uMi

i for all the i’s with the same random

r: c0 = gr1 and (ci = hriu
Mb
i

i)i. B also encrypts vkr1, into d0 = gs1, d1 = hs1vk
r
1 and

sends (c0, (ci)i, (d0, d1)) to A.
• A then outputs (hp, Σ = σ′1 ×H,σ2)
• B, using its witnesses and hp, computes H ′ and unmasks σ′1 = Σ/H which together

with σ2 should be a valid Waters Signature onM b. It then randomizes the signature
with s′ to get Σb.

The same is done a second time with M1−b to get Σ1−b.
– B publishes (Σ0, Σ1).
– Eventually, A outputs b′.

We denote by ε the advantage of A in this game. By definition, we have:

ε = AdvblBS,A(k) = Pr
G0

[b′ = 1|b = 1]− Pr
G0

[b′ = 1|b = 0] = 2× Pr
G0

[b′ = b]− 1.

Game G1: In a second game G1, we modify the way B extracts the signatures Σb and Σ1−b.
Since B knows the scalar α such that hs = gαs it can compute the secret key sk = vkα1
associated to vk = (vk1, vk2). One can note that, since we focus on valid executions with
the signer, and due to the re-randomization of Waters signatures which leads to random
signatures, B can generates itself random signatures on M b and M1−b using sk. This game
is perfectly indistinguishable from the previous one:

Pr
G1

[b′ = b] = Pr
G0

[b′ = b].

Game G2: In this final game, we replace all the ciphertexts sent by B by encryption of random
group elements in G1. For proving indistinguishability with the previous game, we use the
hybrid technique for ElGamal ciphertexts with randomness re-use [BBS03]:

ε ≤ 2× (`+ 1)× AdvDDH
p,G1,g1(K) + 2× Pr

G2

[b′ = b]− 1.

In this last game, the two executions are thus perfectly indistinguishable, and thus PrG2 [b′ =
b] = 1/2 and we get the bound claimed in the proposition. ut
2 This assumption is sometimes referred to as the XDH assumption.

APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B] 159

Proposition 8. Our blind signature scheme is unforgeable under the CDH+ assumption.

AdvufBS,A(K) ≤ Θ


SuccCDH+

p,G1,g1,G2,g2(K)

qs
√
`


 .

Proof. Let A be an adversary against the Unforgeability of the scheme. We assume that this
adversary is able after qs signing queries to output at least qs + 1 valid signatures on different
messages (for some qs polynomial in the security parameter). We now build an adversary B
against the CDH+ assumption.

– B is first given a CDH+ challenge (gs, g2, g
x
s , g

x
2 , hs) in a pairing-friendly environment (p,

G1, g1,G2, g2,GT , e)

– B emulates BSSetup: it picks a random position j $← {0, . . . , `}, random indices y0, . . . , y`
$←

{0, . . . , 2qs − 1} and random scalars z0, . . . , z`
$← Zp and publishes u = (ui)i∈{0,...,`} ∈ G`+1

for the Waters function, where u0 = hy0−2jqss gz0s and ui = hyis gzis for i ∈ {1, . . . , `}. It sets
g1 = gγs and ek = (hi)i with hi = gai1 ∈ G1 for i ∈ {1, . . . , `} for some known random
scalars a1, . . . , a` and γ = 1/

∑
i ai mod p. It keeps secret the associated decryption key

dk = (a1, . . . , a`) ∈ Z`p and outputs the global param = (p,G1,G2,GT , e, g1, g2, ek, gs, hs,u).
– B then emulates BSKeyGen: it publishes vk = (gxs , g

x
2) from the challenge as its verification

key (one can note that recovering the signing key hxs is the goal of our adversary B);
– A can now interact qs times with the signer, playing the interactive protocol BSProtocol〈S,A〉:
• A sends the bit-per-bit encryptions ci for i ∈ {1, . . . , `}, and the extra ciphertext (d0, d1)

hiding Y the verification key vk1 raised to the randomness;
• Thanks to dk, B is able to extract M from the bit-per-bit ciphertexts (either the de-

cryption leads to ui and so Mi = 1, or to g1 and so Mi = 0), and Y = vkr1 from the
additional ciphertext (d0, d1). One can also compute c1/γ0 = grs .
• If one of the extracted terms is not of the right form (either not a bit in the ci, or

(gs, g
r
s , vk1, Y) is not a Diffie-Hellman tuple, which occurs if e(grs , vk2) 6= e(Y, g2) and

can thus be checked with a pairing computation), then A has submitted a “word” not
in the appropriate language for the SPHF. Therefore through the smoothness property
of the SPHF, it is impossible from a theoretic point of view that the adversary extracts
anything from B’s answer, therefore B simply sends a random element Σ in G1 together
with a valid random pair (gt1, g

t
2).

• If (gs, g
r
s , vk1, Y) is a Diffie-Hellman tuple, one knows that Y = vkr1.

B computes H = −2jqs + y0 +
∑
yiMi and J = z0 +

∑
ziMi, F(M) = hHs g

J
s . If H ≡ 0

mod p, it aborts, else it sets

σ = (vk
−J/H
1 Y −1/H(F(M)c

1/γ
0)s, (vk

−1/H
1 gs1, vk

−1/H
2 gs2)),

for some random scalar s. Setting t = s−x/H, we can see this is indeed a valid signature
(as output as the end of the signing interactive protocol), since we have:

σ1 = vk
−J/H
1 Y −1/H(F(M)c

1/γ
0)s = vk

−J/H
1 g−xr/Hs (hHs g

J
s g

r
s)
s

= g−xJ/Hs g−xr/Hs (hHs g
J
s g

r
s)
t(hHs g

J
s g

r
s)
x/H = hx(hHgJs g

r
s)
t

= sk · δt where δ = F(M)× grs
σ2,1 = vk

−1/H
1 gs1 = g

−x/H
1 gs1 = gt1

σ2,2 = vk
−1/H
2 gs2 = g

−x/H
2 gs2 = gt2

• B then acts honestly to send the signature through the SPHF.

160 APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B]

After a qs queries, A outputs a valid signature σ∗ on a new message M∗ with non negligible
probability.

– As before B computes H∗ = −2jqs+ y0 +
∑
yiM

∗
i and J∗ = z0 +

∑
ziM

∗
i , F(M) = hH

∗
gJ
∗

1 .
– If H∗ 6≡ 0 mod p, B aborts. Otherwise σ∗ = (sk · F(M∗)t, gts, g

t
2) = (sk · gtJ∗s , gts, g

t
2) and so

σ∗1/σ
∗
2
J∗ = sk = hxs . Therefore if A’s signature is valid and if H∗ 6≡ 0 mod p, B solves its

CDH+ challenge.

The probability that all the H 6≡ 0 mod p for all the simulations, but H∗ ≡ 0 mod p in the
forgery is the (1, qs)-programmability of the Waters function. A full proof showing that it happens
with probability in Θ(SuccCDH

p,G1,g1,G2,g2(K)/qs
√
`) can be found in [HK08]. ut

D Generic Framework for SPHFs and New Constructions

In this appendix, we introduce our full generic framework for SPHFs using a new notion of
graded rings, derived from [GGH12]. It enables to deal with cyclic groups, bilinear groups (with
symmetric or asymmetric pairings), or even groups with multi-linear maps. Namely, it handles
all the previous constructions from [BBC+13].

Before introducing graded rings and our generic framework, we briefly recall the definition of
bilinear groups. The last three subsections are dedicated to instantiations. The last instantiation
can deal with any quadratic pairing product equation over ciphertexts, which encompasse all
languages handled by Groth-Sahai NIZKs, and so can deal with any NP language. We can see
that our generic scheme greatly simplify the construction and the presentation of all the SPHFs
presented in these last subsections.

This appendix is very formal and technical. We strongly recommend the reader to first read
Sections D.3 and 4 where we give the intuition.

D.1 Bilinear Groups

Let us consider three multiplicative cyclic groups G1,G2,GT of prime order p. Let g1 and g2 be
two generators of G1 and G2 respectively. (p,G1,G2,GT , e, g1, g2) or (p,G1,G2,GT , e) is called
a bilinear setting if e : G1 × G2 −→ GT is a bilinear map (called a pairing) with the following
properties:

– Bilinearity. For all (a, b) ∈ Z2
p, we have e(ga1 , gb2) = e(g1, g2)

ab;
– Non-degeneracy. The element e(g1, g2) generates GT ;
– Efficient computability. The function e is efficiently computable.

It is called a symmetric bilinear setting if G1 = G2 = G. In this case, we denote it (p,G,GT , e)
and we suppose g = g1 = g2. Otherwise, if G1 6= G2, it is called an asymmetric bilinear setting
one otherwise.

D.2 Graded Rings

Our graded rings are a practical way to manipulate elements of various groups involved with
pairings, and more generally, with multi-linear maps. This is a slight variant of the notion of
graded encoding proposed in [GGH12], where each element has only one representation, instead
of a set of representations, and where we can add two elements even with different indexes.
Indexes Set. As in [GGH12], let us consider a finite set of indexes Λ = {0, . . . , κ}τ ⊂ Nτ . In
addition to considering the addition law + over Λ, we also consider Λ as a bounded lattice, with
the two following laws:

sup(v,v′) = (max(v1,v
′
1), . . . ,max(vτ ,v

′
τ)) inf(v,v′) = (min(v1,v

′
1), . . . ,min(vτ ,v

′
τ)).

We also write v < v′ (resp. v ≤ v′) if and only if for all i ∈ {1, . . . , τ}, vi < v′i (resp. vi ≤ v′i).
Let 0̄ = (0, . . . , 0) and > = (κ, . . . , κ), be the minimal and maximal elements.

APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B] 161

Graded Ring. The (κ, τ)-graded ring for a commutative ring R is the set G = Λ × R =
{[v, x] |v ∈ Λ, x ∈ R}, where Λ = {0, . . . , κ}τ , with two binary operations (+, ·) defined as
follows:

– for every u1 = [v1, x1], u2 = [v2, x2] ∈ G: u1 + u2
def= [sup(v1,v2), x1 + x2];

– for every u1 = [v1, x1], u2 = [v2, x2] ∈ G: u1 · u2 def= [v1 + v2, x1 · x2] if v1 + v2 ∈ Λ, or ⊥
otherwise, where ⊥ means the operation is undefined and cannot be done.

We remark that · is only a partial binary operation and we use the following convention: ⊥+u =
u + ⊥ = u · ⊥ = ⊥ · u = ⊥, for any u ∈ G ∪ {⊥}. We then denote Gv the additive group
{u = [v′, x] ∈ G |v′ = v}. We will make natural use of vector and matrix operations over graded
ring elements.
Cyclic Groups and Pairing-Friendly Settings. In the sequel, we consider graded rings over
R = Zp only, because we will use the vector space structure over Zp in the proof of the smoothness
of our generic construction of SPHF (see Section D.3). This means we cannot directly deal with
constructions in [GGH12] yet. Nevertheless, graded rings enable to easily deal with cyclic groups
G of prime order p, and bilinear groups.

Cyclic Group In this case, κ = τ = 1: elements [0, x] of index 0 correspond to scalars x ∈ Zp and
elements [1, x] of index 1 correspond to group elements gx ∈ G.

Symmetric Bilinear Group. Let (p,G,GT , e) be a symmetric bilinear group, and g be a generator
of G. We can represent this bilinear group by a graded ring G with κ = 2 and τ = 1. More
precisely, we can consider the following map: [0, x] corresponds to x ∈ Zp, [1, x] corresponds to
gx ∈ G and [2, x] corresponds to e(g, g)x ∈ GT .

Asymmetric Bilinear Group. Let (p,G1,G2,GT , e) be an asymmetric bilinear group, and g1 and
g2 be generators of G1 and G2 respectively. We can represent this bilinear group by a graded
ring G with κ = 1 and τ = 2. More precisely, we can consider the following map: [(0, 0), x]
corresponds to x ∈ Zp, [(1, 0), x] corresponds to gx1 ∈ G1, [(0, 1), x] corresponds to gx2 ∈ G2 and
[(1, 1), x] corresponds to e(g1, g2)x ∈ GT .

Notations. We have chosen an additive notation for the group law in Gv. On the one hand, this a
lot easier to write generic things done, but, on the other hand, it is a bit cumbersome for bilinear
groups to use additive notations. Therefore, when we provide an example with a bilinear group
(p,G1,G2,GT , e), we use multiplicative notation · for the law in G1, G2 and GT , and additive
notation + for the law in Zp, as soon as it is not too complicated. But when needed, we will also
use the notation ⊕ and � which correspond to the addition law and the multiplicative law of
the corresponding graded rings. In other words, for any x, y ∈ Zp, u1, v1 ∈ G1, u2, v2 ∈ G2 and
uT , vT ∈ GT , we have:

x⊕ y = x+ y x� y = x · y = xy

u1 ⊕ v1 = u1 · v1 = u1v1 x� u1 = ux1

u2 ⊕ v2 = u2 · v2 = u2v2 x� u1 = ux1

uT ⊕ vT = uT · vT u1 � u2 = e(u1, u2) x� uT = uxT .

The element 1 will always denote the neutral element in either G1, G2 or GT (depending on
the context) and not 1 ∈ Zp, which is not used in our constructions.

D.3 Generic Framework for GL-SPHF/KV-SPHF

In this section, we exhibit a generic framework for SPHF for languages of ciphertexts. This is an
extension of the framework described in Section 3 to graded rings. We assume that crs is fixed
and we write Laux = LofCfull-aux ⊆ Set where full-aux = (crs, aux).

162 APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B]

Language Representation. For a language Laux, we assume there exist two positive integers k
and n, a function Γ : Set 7→ Gk×n, and a family of functions Θaux : Set 7→ G1×n, such that for any
word C ∈ Set, (C ∈ Laux) ⇐⇒ (∃λ ∈ G1×k such that Θaux(C) = λ · Γ (C)). If Γ is a constant
function (independent of the word C), this defines a KV-SPHF, otherwise this is a GL-SPHF.
However, in any case, we need the indexes of the components of Γ (C) to be independent of C.

We furthermore require that a user, who knows a witness w of the membership C ∈ Laux,
can efficiently compute λ.

Smooth Projective Hash Function. With the above notations, the hashing key is a vector
hk = α = (α1, . . . , αn)ᵀ $← Znp , while the projection key is, for a word C, hp = γ(C) = Γ (C) ·α ∈
Gk (if Γ does not depend on C, hp does not depend on C either). Then, the hash value is:

H = Hash(hk, full-aux, C) def= Θaux(C) ·α =λ · γ(C) def= ProjHash(hp, full-aux, C, w) = H ′.

The set Π of hash values is exactly GvH , the set of graded elements of index vH , the maximal
index of the elements of Θaux(C).

In addition, the following security analysis proves that the above generic SPHF is perfectly
smooth, and thus proves the Theorem 2 as a particular case. We insist that if Γ really depends
on C this construction yields a GL-SPHF, whereas when Γ is a constant matrix, we obtain a
KV-SPHF, but perfectly smooth in both cases.

Security Analysis. In order to prove the smoothness of the above SPHF, we consider a word
C 6∈ Laux and a projection key hp = γ(C) = Γ (C) · α: ∀λ ∈ G1×k, Θaux(C) 6= λ · Γ (C). Using
the projection L : G → Zp;u = [v, x] 7→ x, which can be seen as the discrete logarithm, and
which can be applied component-wise on vectors and matrices, this means that L(Θaux(C)) is
linearly independent from the rows of L(Γ (C)). As a consequence, since α is uniformly random,
L(Θaux(C)) · α is a random variable independent from L(γ(C)) = L(Γ (C)) · α, and so from
hp = γ(C), since the index of γ(C) is a constant and thus L(γ(C)) completely defines γ(C).
Therefore, H is a uniform element of GvH given hp, aux and C.

D.4 Instantiations

A First Example with Pairings.

Notations. We consider the same kind of equation as in the body of the paper (Section 4.1), but
on possibly two different groups G1 and G2, of the same prime order p, generated by g1 and g2,
respectively, with a possible bilinear map into GT . We assume the DDH assumption hold in both
G1 and G2. We define ElGamal encryption schemes with encryption keys ek1 = (g1, h1 = gx11)
and ek2 = (g2, h2 = gx22) on each group. We are interested in languages on the ciphertexts C1,i =
(u1,i = g

r1,i
1 , e1,i = h

r1,i
1 ·Xi), for X1, . . . , Xn1 ∈ G1, and C2,j = (u2,j = g

r2,j
2 , e2,j = h

r2,j
2 · gyj2), for

y1, . . . , yn2 ∈ Zp, such that:

n1∏

i=1

Xai
i ·

n2∏

j=1

A
yj
j = B, with crs = (p,G1,G2,GT , e, ek1, ek2)

aux = (a1, . . . , an1 , A1, . . . , An2 , B) ∈ Zn2
p ×Gn2+1

1 .

(2)

We insist that here, contrarily to equation (1) in Section 4.1, the group elements (A1, . . . , An2)
are part of aux, and thus not known in advance. The matrix Γ cannot depend on them anymore:

Γ =




g1 1 . . . 1 h1
1
...
1

g2

1
. . .
1
g2

h2
...
h2




APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B] 163

Θaux(C) =
(∏

i u
ai
1,i, (e(Aj , u2,j))j ,

∏
i e(e

ai
1,i, g2) ·

∏
j e(Aj , e2,j)/e(B, g2)

)

λ = (
∑

i air1,i, (A
r2,j
j)j)

λ · Γ =
(
g
∑
i air1,i

1 , (e(Aj , g
r2,j
2))j , e(h

∑
i air1,i

1 , g2) ·
∏
j e(A

r2,j
j , h2)

)

We recall that in the matrix, 0 means [v, 0] for the appropriate index v, and thus 1G1 = g01 ∈ G1

in the first line and column, but 1G2 = g02 ∈ G2 in the diagonal block. In addition, in the product
λ · Γ , when adding two elements, they are first lifted in the minimal common higher ring, and
when multiplying two elements, we either make a simple exponentiation (scalar with a group
element) or a pairing (two group elements from different groups).

Because of the diagonal blocks in Γ , λ is implied by all but last components of Θaux(C),
then the last column defines the relation: the last component of Θaux(C) is

∏
i e(h

r1,iai
1 Xai , g2) ·∏

j e(Aj , h
r2,j
2 g

yj
2)/e(B, g2), which is equal to the last component of λ · Γ , multiplied by the

expression below, that is equal to 1 if and only if the relation (2) is satisfied:
∏

i
e(Xai , g2) ·

∏
j
e(Aj , g

yj
2)/e(B, g2) = e

(∏
i
Xai ·

∏
j
A
yj
j /B, g2

)
.

It thus leads to the following KV-SPHF, with hp1 = gν1h
λ
1 and (hp2,j = g

θj
2 h

λ
2)j , for hk =

(ν, (θj)j , λ):

H =
∏

i
e((uν1,ie

λ
1,i)

ai , g2) ·
∏

j
e(Aj , u

θj
2,je

λ
2,j) · e(B−λ, g2)

= e(hp
∑
i air1,i

1 , g2) ·
∏

j
e(A

r2,j
j , hp2,j) = H ′.

As a consequence, the ciphertexts and the projection keys (which have to be exchanged in a
protocol) globally consist of 2n1 + 1 elements from G1 and 3n2 elements from G2, and pairings
are required for the hash value.

Ciphertexts with Randomness Reuse. We can apply the same improvement as in Section 4.1 by
using multiple independent encryption keys in G2, ek2,j = (g2, h2,j = g

x2,j
2), for j = 1, . . . , n2.

This allows to reuse the same random coins [BBS03]. We are interested in languages on the
ciphertexts (C1,i = (u1,i = g

r1,i
1 , e1,i = h

r1,i
1 · Xi))i, for (Xi)i ∈ Gn1

1 , with (r1,i)i ∈ Zn1
p , and

C2 = (u2 = gr22 , (e2,j = hr22,j · g
yj
2)j), for (yj)j ∈ Zn2

p , with r2 ∈ Zp, still satisfying the same
relation (2). This improves on the length of the ciphertexts of the gyi ’s, from 2n2 group elements
in G2 to n2 + 1 in G2. A similar KV-SPHF as before can be derived, just modifying the last
column vector (h2)j by (h2,j)j :

Γ =




g1 1 . . . 1 h1
1
...
1

g2

1
. . .
1
g2

h2,1
...

h2,n2




Θaux(C) =
(∏

i u
ai
1,i, (e(Aj , u2,j))j ,

∏
i e(e

ai
1,i, g2) ·

∏
j e(Aj , e2,j)/e(B, g2)

)

λ = (
∑

i air1,i, (A
r2
j)j)

λ · Γ =
(
g
∑
i air1,i

1 , (e(Aj , g
r2
2))j , e(h

∑
i air1,i

1 , g2) ·
∏
j e(A

r2
j , h2,j)

)

It leads to the following KV-SPHF, with hp1 = gν1h
λ
1 and (hp2,j = g

θj
2 h

λ
2,j)j , for hk = (ν, (θj)j , λ):

H =
∏

i
e((uν1,ie

λ
1,i)

ai , g2) ·
∏

j
e(Aj , u

θj
2,je

λ
2,j) · e(B−λ, g2)

= e(hp
∑
i air1,i

1 , g2) ·
∏

j
e(Ar2j , hp2,j) = H ′.

164 APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B]

Globally, the ciphertexts and the projection keys consist of 2n1 +1 elements from G1 and 2n2 +1
elements from G2, but pairings are still required for the hash value. The prior knowledge of the
Aj ’s allows to avoid pairings, as shown in Section 4.1.

SPHF for Linear Pairing Equations over Ciphertexts. Let us now construct an KV-SPHF
for a linear pairing equation in an asymmetric bilinear group (p,G1,G2,GT , g1, g2) over ElGamal
commitments. This will actually be a particular case of the construction of the next section
for quadratic pairing equation. It is thus a warm-up for this more technical instantiation. The
construction can obviously be extended to systems of linear pairing equations, and to other
commitments schemes using the same methods as in Section 4. It can also be slightly simplified
in the case of symmetric bilinear groups.

Notations. Let (p,G1,G2,GT , e) be a (asymmetric) bilinear group. Let g1, g2 be generators of
G1,G2 respectively, and let gT = e(g1, g2). Let ek1 = (g1, h1 = gx11), ek2 = (g2, h2 = gx22) and
ekT = (gT , hT = gxTT) be ElGamal key for encryption scheme in, respectively, G1, G2 and GT .

We are interested in languages of commitments (C1,i)i of (X1,i)i ∈ Gn1
1 , (C2,j)j of (X2,j)j ∈

Gn2
2 , and (CT,k)i of (XT,k)k ∈ GnT

T such that:

∏
i
e(X1,i, A2,i) ·

∏
j
e(A1,j , X2,j) ·

∏
k
X
aT,k
T,k = B, (3)

with aux = ((A1,j)j , (A2,i)i, (aT,k)k) ∈ Gn2
1 ×Gn1

2 × ZnTp . This can also be written:

(
n1⊕

i=1

A2,i �X1,i

)
⊕




n2⊕

j=1

A1,j �X2,j


⊕

(
nT⊕

k=1

aT,k �XT,k

)
= B.

Let us also write, for any ω ∈ {1, 2, T} and ι ∈ {1, . . . , nω}: Cω,ι = (uω,ι = g
rω,ι
ω , eω,ι = h

rω,ι
ω Xω,ι).

Words of Set are tuple C = (Cω,ι)ω∈{1,2,T}, ι∈{1,...,nω}.

Basic Scheme in GT . Let us consider

Γ =



g1 1 1 h1
1 g2 1 h2
1 1 gT hT




Θ(C) =

(⊕
iA2,i � u1,i,

⊕
j A1,j � u2,j ,

⊕
k aT,k � uT,k,

(
⊕

iA2,i � e1,i)⊕
(⊕

j A1,j � e2,j
)
⊕ (
⊕

k aT,k � eT,k)	B

)
.

Because of the diagonal block in Γ , one can note that the unique possibility is

λ = (
⊕

i

A2,i � r1,i,
⊕

j

A1,j � r2,j ,
⊕

k

rT,k) = (
∏

i

A
r1,i
2,i ,

∏

j

A
r2,j
1,j ,

∑

k

rT,k).

We then have λ� Γ = Θ(C) if and only if

∏
i
e(h

r1,i
1 , A2,i) ·

∏
j
e(A1,j , h

r2,j
2) ·

∏
k
h
rT,k
T =

∏
i
e(e1,i, A2,i) ·

∏
j
e(A1,j , e2,j) ·

∏
k
e
aT,k
T,k /B

and thus if and only if Equation (3) is true, i.e., the word is in the language. Furthermore, if we
set γ1 = gα1

1 hα
4

1 , γ2 = gα2
2 hα

4

2 , and γ3 = gα3
T hα

4

T , we have

APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B] 165

H =

(
n1∏

i=1

e(u1,i, A2,i)

)α1

·




n2∏

j=1

e(A1,j , u2,j)



α2

·
(
nT∏

k=1

u
aT,k
T,k

)α3

×




n1∏

i=1

e(e1,i, A2,i) ·
n2∏

j=1

e(A1,j , e2,j) ·
nT∏

k=1

e
aT,k
T,k /B



α4

= e(γ1,
∏

i
A
r1,i
2,i) · e(

∏
j
A
r2,j
1,j , γ2) · γ

∑
k rT,k

3 = H ′.

Variant. The above scheme is not efficient enough for practical use because elements in GT are
often big and operations in GT are often slow. If hT = e(h1, g2), then the last row of Γ can be
(0, 0, g1, h1) which enables faster hashing and shorter projection key. We remark this modified
encryption scheme in GT is IND-CPA as soon as DDH is hard in G1, which we need to suppose
for the ElGamal encryption scheme in G1 to be IND-CPA. So this variant is always more efficient
when using ElGamal encryption.

However, if DDH is easy, as in symmetric bilinear group, this variant may not be interesting,
since it requires to use the linear encryption scheme in GT instead of the ElGamal one.

SPHF for Quadratic Pairing Equations over Ciphertexts. In this section, we present
a KV-SPHF for language of ElGamal commitments verifying a quadratic pairing equation. As
usual, it can be extended to systems of quadratic pairing equations, and to other commitments
schemes. We use the same notations as in the previous construction.

Example. Before showing the generic construction, we describe it on a simple example: we are
interested in languages of the ciphertexts C1 = (u1 = gr11 , e1 = hr11 X1) and C2 = (u2 = gr22 , e2 =
hr22 X2), that encrypt two values X1 and X2 such that e(X1, X2) = B where B is some constant
in GT and aux = B. We remark the equation e(X1, X2) = B can also be written X1 �X2 = B.
Let us consider

Γ =



g1 � g2 1 1 h1 � h2

1 g1 1 h1
1 1 g2 h2


 Θ(C) = (−u1 � u2, u1 � e2, e1 � u2, e1 � e2 	B)

= (e(u1, u2)
−1, e(u1, e2), e(e1, u2), e(e1, e2)/B).

Because of the diagonal block in Γ , one can note that the unique possibility is

λ = (−r1r2, r1 � e2, r2 � e1) = (−r1r2, er12 , er21).

We have λ�Γ = Θ(C) if and only if e(h1, h2)−r1r2 ·e(h1, er12) ·e(er21 , h2) = e(e1, e2)/B, and thus,

B = e(e1, e2)/(e(h
r1
1 , X2) · e(e1, hr22))

= e(e1, X2)/e(h
r1
1 , X2) = e(X1, X2)

For the sake of completeness, if γ1 = e(g1, g2)
α1e(h1, h2)

α4 , γ2 = gα2
1 hα4

1 , and γ3 = gα3
2 hα4

2 , the
corresponding hash value is:

H = e(u1, u2)
−α1 · e(u1, e2)α2 · e(e1, u2)α3 · (e(e1, e2)/B)α4 = γ−r1r21 · e(γ2, er12) · e(er21 , γ3).

Notations. Let us now introduce notation to handle any quadratic equation. In addition to
previous notations, as in Section D.4, we also write ekT = (gT , hT = gxTT) a public key for
ElGamal encryption scheme in GT . We are interested in languages of commitments (C1,i)i of
(X1,i)i ∈ Gn1

1 , (C2,j)j of (X2,j)j ∈ Gn2
2 , and (CT,k)i of (XT,k)k ∈ GnT

T such that:
∏

i
e(X1,i, A2,i) ·

∏
j
e(A1,j , X2,j) ·

∏
i

∏
j
e(X1,i, X2,j)

ai,j ·
∏

k
X
aT,k
T,k = B, (4)

166 APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B]

with aux = ((A2,i)i, (A1,j)j , (ai,j)i,j , (aT,k)k) ∈ Gn1
1 ×Gn2

2 × Zn1n2+nT
p . This can also be written:

(
n1⊕

i=1

A2,i �X1,i

)
⊕




n2⊕

j=1

A1,j �X2,j


⊕




n1⊕

i=1

n2⊕

j=1

ai,j �X1,i �X2,j


⊕

(
nT⊕

k=1

aT,k �XT,k

)
= B.

Let us also write, for any ω ∈ {1, 2, T} and ι ∈ {1, . . . , nω}: Cω,ι = (uω,ι = g
rω,ι
ω , eω,ι = h

rω,ι
ω Xω,ι).

Basic Scheme in GT . Let us consider the following matrix, with a diagonal block

Γ =




g1 � g2 1 1 1 h1 � h2
1 g1 1 1 h1
1 1 g2 1 h2
1 1 1 gT hT




With Θ(C) equals to



⊕
i

⊕
j −ai,j � u1,i � u2,j ,

(⊕
i

⊕
j ai,j � u1,i � e2,j

)
⊕ (
⊕

iA2,i � u1,i) ,(⊕
i

⊕
j ai,j � e1,i � u2,j

)
⊕
(⊕

j A1,j � u2,j
)
,
⊕

i aT,i � uT,i,(⊕
i

⊕
j ai,j � e2,i � e2,j

)
⊕ (
⊕

iA2,i � e1,i)⊕
(⊕

j A1,j � e2,j
)
⊕ (
⊕

k aT,k � eT,k)	B




the requirement λ� Γ = Θ(C) implies

λ =



⊕

i

⊕
j −ai,j � r1,i � r2,j ,

(⊕
i

⊕
j r1,i � ai,j � e2,j

)
⊕ (
⊕

iA2,i � r1,i) ,(⊕
i

⊕
j r2,i � ai,j � e1,j

)
⊕
(⊕

j A1,j � r2,j
)
,
⊕

k rT,k




=
(∑

i

∑
j ai,jr1,ir2,j ,

∏
i

∏
j e

r1,iai,j
2,j ·∏iA

r1,i
2,i ,

∏
i

∏
j e

r2,iai,j
1,j ·∏j A

r2,j
1,j ,

∑
k rT,k

)
,

and it is satisfied, if and only if Equation (4) is true, i.e., the word is in the language.

Variant. The same trick as the one used in the variant of the SPHF for linear pairing equation
can be used to avoid having too many elements of the projection key in GT .

APPENDIX B. NEW SPHFS AND ONE-ROUND PAKE [BBC+13B] 167

Appendix C

SPHF-Friendly Non-Interactive
Commitments [ABB+13]

This is the Full Version of the Extended Abstract that appears in Advances in Cryptology — Proceedings
of ASIACRYPT’2013 (1 – 5 December 2013, Bangalore, India), Kazue Sako and Palash Sarkar Eds.,
Springer-Verlag, Part I, LNCS 8269, pages 214–234.

Authors

Michel Abdalla, Fabrice Ben Hamouda, Olivier Blazy, Céline Chevalier, David Pointcheval

Abstract

In 2009, Abdalla et al. proposed a reasonably practical password-authenticated key exchange (PAKE)
secure against adaptive adversaries in the universal composability (UC) framework. It exploited the
Canetti-Fischlin methodology for commitments and the Cramer-Shoup smooth projective hash functions
(SPHFs), following the Gennaro-Lindell approach for PAKE. In this paper, we revisit the notion of non-
interactive commitments, with a new formalism that implies UC security. In addition, we provide a quite
efficient instantiation. We then extend our formalism to SPHF-friendly commitments. We thereafter
show that it allows a blackbox application to one-round PAKE and oblivious transfer (OT), still secure in
the UC framework against adaptive adversaries, assuming reliable erasures and a single global common
reference string, even for multiple sessions. Our instantiations are more efficient than the Abdalla et al.
PAKE in Crypto 2009 and the recent OT protocol proposed by Choi et al. in PKC 2013. Furthermore, the
new PAKE instantiation is the first one-round scheme achieving UC security against adaptive adversaries.

1 Introduction

Commitment schemes are one of the most fundamental primitives in cryptography, serving as
a building block for many cryptographic applications such as zero-knowledge proofs [GMW91]
and secure multi-party computation [GMW87]. In a typical commitment scheme, there are two
main phases. In a commit phase, the committer computes a commitment C for some message x
and sends it to the receiver. Then, in an opening phase, the committer releases some information
δ to the receiver which allows the latter to verify that C was indeed a commitment of x. To be
useful in practice, a commitment scheme should satisfy two basic security properties. The first
one is hiding, which informally guarantees that no information about x is leaked through the
commitment C. The second one is binding, which guarantees that the committer cannot generate
a commitment C that can be successfully opened to two different messages.
Smooth Projective Hash Functions (SPHFs) were introduced by Cramer and Shoup [CS02]
as a means to design chosen-ciphertext-secure public-key encryption schemes. In addition to pro-
viding a more intuitive abstraction for their original public-key encryption scheme in [CS98], the
notion of SPHF also enabled new efficient instantiations of their scheme under different complex-
ity assumptions, such as quadratic residuosity. Due to its usefulness, the notion of SPHF was
later extended to several other contexts, such as password-authenticated key exchange (PAKE)
[GL03], oblivious transfer (OT) [Kal05,CKWZ13], and blind signatures [BPV12,BBC+13].
Password-Authenticated Key Exchange (PAKE) protocols were proposed in 1992 by Bellovin
and Merritt [BM92] where authentication is done using a simple password, possibly drawn from
a small space subject to exhaustive search. Since then, many schemes have been proposed and
studied. SPHFs have been extensively used, starting with the work of Gennaro and Lindell
[GL03] which generalized an earlier construction by Katz, Ostrovsky, and Yung (KOY) [KOY01],
and followed by several other works [CHK+05,ACP09]. More recently, a variant of SPHFs pro-
posed by Katz and Vaikuntanathan even allowed the construction of one-round PAKE schemes
[KV11,BBC+13].

The first ideal functionality for PAKE protocols in the UC framework [Can01,CK02] was
proposed by Canetti et al. [CHK+05], who showed how a simple variant of the Gennaro-Lindell
methodology [GL03] could lead to a secure protocol. Though quite efficient, their protocol was
not known to be secure against adaptive adversaries, that are capable of corrupting players at any
time, and learn their internal states. The first ones to propose an adaptively secure PAKE in the
UC framework were Barak et al. [BCL+05] using general techniques from multi-party computation
(MPC). Though conceptually simple, their solution results in quite inefficient schemes.

The first reasonably practical adaptively secure PAKE was proposed by Abdalla et al. [ACP09],
following the Gennaro-Lindell methodology with the Canetti-Fischlin commitment [CF01]. They
had to build a complex SPHF to handle the verification of such a commitment. Thus, the com-
munication complexity was high and the protocol required four rounds. No better adaptively
secure scheme has been proposed so far.
Oblivious Transfer (OT) was introduced in 1981 by Rabin [Rab81] as a way to allow a receiver
to get exactly one out of k messages sent by another party, the sender. In these schemes, the
receiver should be oblivious to the other values, and the sender should be oblivious to which
value was received. Since then, several instantiations and optimizations of such protocols have
appeared in the literature, including proposals in the UC framework [NP01,CLOS02].

More recently, new instantiations have been proposed, trying to reach round-optimality [HK07],
or low communication costs [PVW08]. The 1-out-of-2 OT scheme by Choi et al. [CKWZ13] based
on the DDH assumption seems to be the most efficient one among those that are secure against
adaptive corruptions in the CRS model with erasures. But it does not scale to 1-out-of-k OT,
for k > 2.

170 APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13]

1.1 Properties of Commitment Schemes

Basic Properties. In addition to the binding and hiding properties, certain applications may
require additional properties from a commitment scheme. One such property is equivocability
[Bea96], which guarantees that a commitment C can be opened in more than a single way
when in possession of a certain trapdoor information. Another one is extractability, which allows
the computation of the message x committed in C when in possession of a certain trapdoor
information. Yet another property that may also be useful for cryptographic applications is non-
malleability [DDN00], which ensures that the receiver of a unopened commitment C for a message
x cannot generate a commitment for a message that is related to x.

Though commitment schemes satisfying stronger properties such as non-malleability, equivo-
cability, and extractability may be useful for solving specific problems, they usually stop short of
guaranteeing security when composed with arbitrary protocols. To address this problem, Canetti
and Fischlin [CF01] proposed an ideal functionality for commitment schemes in the universal
composability (UC) framework [Can01] which guarantees all these properties simultaneously and
remain secure even under concurrent compositions with arbitrary protocols. Unfortunately, they
also showed that such commitment schemes can only be realized if one makes additional setup
assumptions, such as the existence of a common reference string (CRS) [CF01], random oracles
[HMQ04], or secure hardware tokens [Kat07].
Equivocable and Extractable Commitments. As the work of Canetti and Fischlin [CF01],
this work also aims to build non-interactive commitment schemes which can simultaneously guar-
antee non-malleability, equivocability, and extractability properties. To this end, we first define
a new notion of commitment scheme, called E2-commitments, for which there exists an alterna-
tive setup algorithm, whose output is computationally indistinguishable from that of a normal
setup algorithm and which outputs a common trapdoor that allows for both equivocability and
extractability: this trapdoor not only allows for the extraction of a committed message, but it
can also be used to create simulated commitments which can be opened to any message.

To define the security of E2-schemes, we first extend the security notions of standard equiv-
ocable commitments and extractable commitments to the E2-commitment setting: Since the use
of a common trapdoor for equivocability and extractability could potentially be exploited by an
adversary to break the extractability or equivocability properties of an E2-commitment scheme,
we define stronger versions of these notions, which account for the fact that the same trapdoor
is used for both extractability or equivocability. In particular, in these stronger notions, the
adversary is given oracle access to the simulated commitment and extractor algorithms.

Finally, after defining the security of E2-schemes, we further show that these schemes remain
secure even under arbitrary composition with other cryptographic protocols. More precisely, we
show that any E2–commitment scheme which meets the strong versions of the equivocability or
extraction notions is a non-interactive UC-secure (multiple) commitment scheme in the presence
of adaptive adversaries, assuming reliable erasures and a single global CRS.
SPHF-Friendly Commitments. In this work, we are interested in building non-interactive
E2-commitments, to which smooth projective hash functions can be efficiently associated. Unfor-
tunately, achieving this goal is not so easy due to the equivocability property of E2-commitments.
To understand why, let X be the domain of an SPHF function and let L be some underlying
NP language such that it is computationally hard to distinguish a random element in L from a
random element in X \ L. A key property of these SPHF functions that makes them so useful
for applications such as PAKE and OT is that, for words C in L, their values can be computed
using either a secret hashing key hk or a public projected key hp together a witness w to the
fact that C is indeed in L. A typical example of a language in which we are interested is the
language Lx corresponding to the set of elements {C} such that C is a valid commitment of x.
Unfortunately, when commitments are equivocable, the language Lx containing the set of valid
commitments of x may not be well defined since a commitment C could potentially be opened to

APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13] 171

any x. To get around this problem and be able to use SPHFs with E2-commitments, we show that
it suffices for an E2-commitment scheme to satisfy two properties. The first one is the stronger
version of the equivocability notion, which guarantees that equivocable commitments are com-
putationally indistinguishable from normal commitments, even when given oracle access to the
simulated commitment and extractor algorithms. The second one, which is called robustness,
is new and guarantees that commitments generated by polynomially-bounded adversaries are
perfectly binding. Finally, we say that a commitment scheme is SPHF-friendly if it satisfies both
properties and if it admits an SPHF on the languages Lx.

1.2 Contributions

A new SPHF-friendly E2-commitment construction. First, we define the notion of SPHF-
friendly E2-commitment together with an instantiation. The new construction, which is called E2C
and described in Section 4, is inspired by the commitment schemes in [CF01,CLOS02,ACP09].
Like the construction in [ACP09], it combines a variant of the Cramer-Shoup encryption scheme
(as an extractable commitment scheme) and an equivocable commitment scheme to be able to
simultaneously achieve both equivocability and extractability. However, unlike the construction
in [ACP09], we rely on Haralambiev’s perfectly hiding commitment [Har11, Section 4.1.4], instead
of the Pedersen commitment [Ped92].

Since the opening value of Haralambiev’s scheme is a group element that can be encrypted in
one ElGamal-like ciphertext to allow extractability, this globally leads to a better communication
and computational complexity for the commitment. The former is linear in m · K, where m
is the bit-length of the committed value and K, the security parameter. This is significantly
better than the extractable commitment construction in [ACP09] which was linear in m · K2,
but asymptotically worse than the two proposals in [FLM11] that are linear in K, and thus
independent of m. However, we point out the latter proposals in [FLM11] are not SPHF-friendly
since they are not robust.

We then show in Theorem 4 that a labeled E2-commitment satisfying stronger notions of
equivocability and extractability is a non-interactive UC-secure commitment scheme in the pres-
ence of adaptive adversaries, assuming reliable erasures and a single global CRS, and we apply
this result to our new construction.
One-round adaptively secure PAKE. Second, we provide a generic construction of a one-
round UC-secure PAKE from any SPHF-friendly commitment, verifying an additional property
called strong pseudo-randomness. The UC-security holds against adaptive adversaries, assuming
reliable erasures and a single global CRS, as shown in Section 6. In addition to being the first
one-round adaptively secure PAKE, our new scheme also enjoys a much better communication
complexity than previous adaptively secure PAKE schemes. For instance, in comparison to the
PAKE in [ACP09], which is currently the most efficient adaptively secure PAKE, the new scheme
gains a factor of K in the overall communication complexity, where K is the security parameter.
However, unlike their scheme, our new construction requires pairing-friendly groups.
Three-round adaptively secure 1-out-of-k OT. Third, we provide a generic construction of
a three-round UC-secure 1-out-of-k OT from any SPHF-friendly commitment. The UC-security
holds against adaptive adversaries, assuming reliable erasures and a single global CRS, as shown
in Section 7. Besides decreasing the total number of rounds with respect to existing OT schemes
with similar security levels, our resulting protocol also has a better communication complexity
than the best known solution so far [CKWZ13]. Moreover, our construction is more general and
provides a solution for 1-out-of-k OT schemes while the solution in [CKWZ13] only works for
k = 2.

Due to space restrictions, complete proofs and some details were postponed to the Appendix.

172 APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13]

Exphid-bA (K)

ρ
$← SetupCom(1K)

(`, x0, x1, state)
$← A(ρ)

(C, δ)
$← Com`(xb)

return A(state, C)

ExpbindA (K)

ρ
$← SetupCom(1K)

(C, `, x0, δ0, x1, δ1)
$← A(ρ)

if ¬VerCom`(C, x0, δ0) then return 0

if ¬VerCom`(C, x1, δ1) then return 0
return x0 6= x1

Fig. 1. Hiding and Binding Properties

2 Basic Notions for Commitments

We first review the basic definitions of non-interactive commitments, with some examples. Then,
we consider the classical additional notions of equivocability and extractability. In this paper, the
qualities of adversaries will be measured by their successes and advantages in certain experiments
Expsec or Expsec-b (between the cases b = 0 and b = 1), denoted Succsec(A,K) and Advsec(A,K)
respectively, while the security of a primitive will be measured by the maximal successes or
advantages of any adversary running within a time bounded by some t in the appropriate ex-
periments, denoted Succsec(t) and Advsec(t) respectively. Adversaries can keep state during the
different phases. We denote $← the outcome of a probabilistic algorithm or the sampling from a
uniform distribution. See Appendix A.1 for more details.

2.1 Non-Interactive Labeled Commitments

A non-interactive labeled commitment scheme C is defined by three algorithms:

– SetupCom(1K) takes as input the security parameter K and outputs the global parameters,
passed through the CRS ρ to all other algorithms;

– Com`(x) takes as input a label ` and a message x, and outputs a pair (C, δ), where C
is the commitment of x for the label `, and δ is the corresponding opening data (a.k.a.
decommitment information). This is a probabilistic algorithm;

– VerCom`(C, x, δ) takes as input a commitment C, a label `, a message x, and the opening
data δ and outputs 1 (true) if δ is a valid opening data for C, x and `. It always outputs 0
(false) on x = ⊥.

Using the experiments ExphidA (K) and ExpbindA (K) defined in Figure 1, one can state the basic
properties:

– Correctness: for all correctly generated CRS ρ, all commitments and opening data hon-
estly generated pass the verification VerCom test: for all `, x, if (C, δ)

$← Com`(x), then
VerCom`(C, x, δ) = 1;

– Hiding Property : the commitment does not leak any information about the committed value.
C is said (t, ε)-hiding if AdvhidC (t) ≤ ε.

– Binding Property : no adversary can open a commitment in two different ways. C is said
(t, ε)-binding if SuccbindC (t) ≤ ε.

Correctness is always perfectly required, and one can also require either the binding or the hiding
property to be perfect.

The reader can remark that labels are actually useless in the hiding and the binding prop-
erties. But they will become useful in E2-commitment schemes introduced in the next section.
This is somehow similar to encryption scheme: labels are useless with encryption schemes which
are just IND-CPA, but are very useful with IND-CCA encryption schemes.

APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13] 173

2.2 Perfectly Binding Commitments: Public-Key Encryption

To get perfectly binding commitments, classical instantiations are public-key encryption schemes,
which additionally provide extractability (see below). The encryption algorithm is indeed the
commitment algorithm, and the random coins become the opening data that allow to check
the correct procedure of the commit phase. The hiding property relies on the indistinguishabil-
ity (IND-CPA), which is computationally achieved, whereas the binding property relies on the
correctness of the encryption scheme and is perfect.

Let us define the ElGamal-based commitment scheme:

– SetupCom(1K) chooses a cyclic group G of prime order p, g a generator for this group and a
random scalar z $← Zp. It sets the CRS ρ = (G, g, h = gz);

– Com(M), for M ∈ G, chooses a random element r $← Zp and outputs the pair (C = (u =
gr, e = hr ·M), δ = r);

– VerCom(C = (u, e),M, δ = r) checks whether C = (u = gr, e = hr ·M).

This commitment scheme is hiding under the DDH assumption and perfectly binding. It is even
extractable using the decryption key z: M = e/uz. However, it is not labeled. The Cramer-
Shoup encryption scheme [CS98] admits labels and is extractable and non-malleable, thanks to
the IND-CCA security level. It is reviewed in Appendix B, with some extensions, since we will use
it later in our applications.

2.3 Perfectly Hiding Commitments

The Pedersen scheme [Ped92] is the most famous perfectly hiding commitment: Com(m) =

gmhr for a random scalar r $← Zp and a fixed basis h ∈ G. The binding property relies on
the DL assumption. Unfortunately, the opening value is the scalar r, which makes it hard to
encrypt/decrypt efficiently, as required in our construction below. Haralambiev [Har11, Sec-
tion 4.1.4] recently proposed a new commitment scheme, called TC4 (without label), with a
group element as opening value:

– SetupCom(1K) chooses an asymmetric pairing-friendly setting (G1, g1,G2, g2,GT , p, e), with
an additional independent generator T ∈ G2. It sets the CRS ρ = (G1, g1,G2, g2, T,GT , p, e);

– Com(x), for x ∈ Zp, chooses a random element r $← Zp and outputs the pair (C = gr2T
x, δ =

gr1);
– VerCom(C, x, δ) checks whether e(g1, C/T x) = e(δ, g2).

This commitment scheme is clearly perfectly hiding, since the groups are cyclic, and for any
C ∈ G2, x ∈ Zp, there exists δ ∈ G1 that satisfies e(g1, C/T x) = e(δ, g2). More precisely, if
C = gu2 and T = gt2, then δ = gu−tx1 opens C to any x. The binding property holds under the
DDH assumption in G2, as proven in [Har11, Section 4.1.4].

2.4 Equivocable Commitments

An equivocable commitment scheme C extends on the previous definition, with SetupCom, Com,
VerCom, and a second setup SetupComT(1K) that additionally outputs a trapdoor τ , and

– SimCom`(τ) that takes as input the trapdoor τ and a label ` and outputs a pair (C, eqk),
where C is a commitment and eqk an equivocation key;

– OpenCom`(eqk, C, x) that takes as input a commitment C, a label `, a message x, and an
equivocation key eqk for this commitment, and outputs an opening data δ for C and ` on x.

174 APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13]

Expsim-ind-bA (K)

(ρ, τ)
$← SetupComT(1K)

(`, x, state)
$← ASCom·(τ,·)(ρ)

if b = 0 then (C, δ)
$← Com`(x)

else (C, δ)
$← SCom`(τ, x)

return ASCom·(τ,·)(state, C, δ)

Expbind-extA (K)

(ρ, τ)
$← SetupComT(1K)

(C, `, x, δ)
$← AExtCom·(τ,·)(ρ)

x′ ← ExtCom`(τ, C)
if x′ = x then return 0
else return VerCom`(C, x, δ)

Fig. 2. Simulation Indistinguishability and Binding Extractability

Let us denote SCom the algorithm that takes as input the trapdoor τ , a label ` and a message
x and which outputs (C, δ)

$← SCom`(τ, x), computed as (C, eqk)
$← SimCom`(τ) and δ ←

OpenCom`(eqk, C, x). Three additional properties are then associated: a correctness property,
and two indistinguishability properties, which all together imply the hiding property.

– Trapdoor Correctness: all simulated commitments can be opened on any message: for all `, x,
if (C, eqk) $← SimCom`(τ) and δ ← OpenCom`(eqk, C, x), then VerCom`(C, x, δ) = 1;

– Setup Indistinguishability : one cannot distinguish the CRS ρ generated by SetupCom from the
one generated by SetupComT. C is said (t, ε)-setup-indistinguishable if the two distributions
for ρ are (t, ε)-computationally indistinguishable. We denote Advsetup-indC (t) the distance
between the two distributions.

– Simulation Indistinguishability : one cannot distinguish a real commitment (generated by
Com) from a fake commitment (generated by SCom), even with oracle access to fake commit-
ments. C is said (t, ε)-simulation-indistinguishable if Advsim-indC (t) ≤ ε (see the experiments
Expsim-ind-bA (K) in Figure 2).

More precisely, when the trapdoor correctness is satisfied, since commitments generated by
SimCom are perfectly hiding (they can be opened in any way using OpenCom), AdvhidC (t) ≤
Advsetup-indC (t) + Advsim-indC (t).

Definition 1 (Equivocable Commitment). A commitment scheme C is said (t, ε)-equivocable
if, first, the basic commitment scheme satisfies the correctness property and is both (t, ε)-binding
and (t, ε)-hiding, and, secondly, the additional algorithms guarantee the trapdoor correctness and
make it both (t, ε)-setup-indistinguishable and (t, ε)-simulation-indistinguishable.
One denotes AdvequivC (t) the maximum of SuccbindC (t), Advsetup-indC (t), and Advsim-indC (t); it should
be upper-bounded by ε.

2.5 Extractable Commitments

An extractable commitment scheme C also extends on the initial definition, with SetupCom, Com,
VerCom, as well as the second setup SetupComT(1K) that additionally outputs a trapdoor τ , and

– ExtCom`(τ, C) which takes as input the trapdoor τ , a commitment C, and a label `, and
outputs the committed message x, or ⊥ if the commitment is invalid.

As above, three additional properties are then associated: a correctness property, and the setup
indistinguishability, but also an extractability property, which implies, together with the setup
indistinguishability, the binding property:

– Trapdoor Correctness: all commitments honestly generated can be correctly extracted: for
all `, x, if (C, δ) $← Com`(x) then ExtCom`(C, τ) = x;

– Setup Indistinguishability : as above;
– Binding Extractability : one cannot fool the extractor, i.e., produce a commitment and a valid

opening data to an input x while the commitment does not extract to x. C is said (t, ε)-
binding-extractable if Succbind-extC (t) ≤ ε (see the experiment Expbind-extA (K) in Figure 2).

APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13] 175

More precisely, when one breaks the binding property with (C, `, x0, δ0, x1, δ1), if the extraction
oracle outputs x′ = x0, then one can output (C, `, x1, δ1), otherwise one can output (C, `, x0, δ0).
In both cases, this breaks the binding-extractability: AdvbindC (t) ≤ Advsetup-indC (t)+Succbind-extC (t).

Definition 2 (Extractable Commitment). A commitment scheme C is said (t, ε)-extractable
if, first, the basic commitment scheme satisfies the correctness property and is both (t, ε)-binding
and (t, ε)-hiding, and, secondly, the additional algorithms guarantee the trapdoor correctness and
make it both (t, ε)-setup-indistinguishable and (t, ε)-binding-extractable.
One denotes AdvextC (t) the maximum of AdvhidC (t), Advsetup-indC (t), and Succbind-extC (t); it should
be upper-bounded by ε.

3 Equivocable and Extractable Commitments

3.1 E2-Commitments: Equivocable and Extractable

Public-key encryption schemes are perfectly binding commitments that are additionally ex-
tractable. The Pedersen and Haralambiev commitments are perfectly hiding commitments that
are additionally equivocable. But none of them have the two properties at the same time. This
is now our goal.

Definition 3 (E2-Commitment). A commitment scheme C is said (t, ε)-E2(equivocable and
extractable) if the indistinguishable setup algorithm outputs a common trapdoor that allows both
equivocability and extractability. If one denotes Adve

2

C (t) the maximum of the values Advsetup-indC (t),
Advsim-indC (t), and Succbind-extC (t), then it should be upper-bounded by ε.

But with such a common trapdoor, the adversary could exploit the equivocation queries to
break extractability and extraction queries to break equivocability. Stronger notions can thus
be defined, using the experiments Exps-sim-ind-bA (K) and Exps-bind-extA (K) in Figure 3, in which
SCom is supposed to store each query/answer (`, x, C) in a list Λ and ExtCom-queries on such
an SCom-output (`, C) are answered by x (as it would be when using Com instead of SCom).

– Strong Simulation Indistinguishability : one cannot distinguish a real commitment (generated
by Com) from a fake commitment (generated by SCom), even with oracle access to the
extraction oracle (ExtCom) and to fake commitments (using SCom). C is said (t, ε)-strongly-
simulation-indistinguishable if Advs-sim-indC (t) ≤ ε;

– Strong Binding Extractability (informally introduced in [CLOS02] as “simulation extractabil-
ity”): one cannot fool the extractor, i.e., produce a commitment and a valid opening data
(not given by SCom) to an input x while the commitment does not extract to x, even with
oracle access to the extraction oracle (ExtCom) and to fake commitments (using SCom). C
is said (t, ε)-strongly-binding-extractable if Succs-bind-extC (t) ≤ ε.

They both imply the respective weaker notions since they just differ by giving access to the
ExtCom-oracle in the former game, and to the SCom oracle in the latter. We insist that ExtCom-
queries on SCom-outputs are answered by the related SCom-inputs. Otherwise, the former game
would be void. In addition, VerCom always rejects inputs with x = ⊥, which is useful in the
latter game.

3.2 UC-Secure Commitments

The security definition for commitment schemes in the UC framework was presented by Canetti
and Fischlin [CF01], refined by Canetti [Can05]. The ideal functionality is presented in Figure 4,
where a public delayed output is an output first sent to the adversary S that eventually decides if
and when the message is actually delivered to the recipient. In case of corruption of the committer,

176 APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13]

Exps-sim-ind-bA (K)

(ρ, τ)
$← SetupComT(1K);

(`, x, state)
$← ASCom·(τ,·),ExtCom·(τ,·)(ρ)

if b = 0 then (C, δ)
$← Com`(x)

else (C, δ)
$← SCom`(τ, x)

return ASCom·(τ,·),ExtCom·(τ,·)(state, C, δ)

Exps-bind-extA (K)

(ρ, τ)
$← SetupComT(1K)

(C, `, x, δ)
$← ASCom·(τ,·),ExtCom·(τ,·)(ρ)

x′ ← ExtCom`(τ, C)
if (`, x′, C) ∈ Λ then return 0

if x′ = x then return 0
else return VerCom`(C, x, δ)

Fig. 3. Strong Simulation Indistinguishability and Strong Binding Extractability

The functionality Fcom is parametrized by a security parameter k. It interacts with an adversary S and a
set of parties P1,. . . ,Pn via the following queries:
Commit phase: Upon receiving a query (Commit, sid, ssid, Pi, Pj, x) from party Pi: record the
tuple (sid, ssid, Pi, Pj , x) and generate a public delayed output (Receipt, sid, ssid, Pi, Pj) to Pj . Ignore further
Commit-message with the same ssid from Pi.
Decommit phase. Upon receiving a query (Reveal, sid, ssid, Pi, Pj) from party Pi: ignore the
message if (sid, ssid, Pi, Pj , x) is not recorded; otherwise mark the record (sid, ssid, Pi, Pj) as revealed and
generate a public delayed output (Revealed, sid, ssid, Pi, Pj , x) to Pj . Ignore further Reveal-message with
the same ssid from Pi.

Fig. 4. Ideal Functionality for Commitment Scheme Fcom

if this is before the Receipt-message for the receiver, the adversary chooses the committed
value, otherwise it is provided by the ideal functionality, according to the Commit-message. Note
this is actually the multiple-commitment functionality that allows multiple executions of the
commitment protocol (multiple ssid’s) for the same functionality instance (one sid). This avoids
the use of joint-state UC [CR03].

Theorem 4. A labeled E2-commitment scheme C, that is in addition strongly-binding-extractable
or strongly-simulation-indistinguishable, is a non-interactive UC-secure commitment scheme in
the presence of adaptive adversaries, assuming reliable erasures and authenticated channels.
More precisely, for any environment, its advantage in distinguishing the ideal world (with the ideal
functionality from Figure 4) and the real world (with the commitment scheme C) is bounded by
both Advsetup-indC (t)+qs ·Advsim-indC (t)+Succs-bind-extC (t) and Advsetup-indC (t)+qs ·Advs-sim-indC (t)+
Succbind-extC (t), where qs is the number of concurrent sessions and t its running time.

Proof. The full proof with the cost of the reduction are given in Appendix D, but let us provide
here the simulator:

– when receiving a commitment C from the adversary, and thus either freshly generated by
the adversary or a replay of a commitment C generated by the simulator in another session
(with a different label), the simulator extracts the committed value x, and uses it to send a
Commit message to the ideal functionality. A dummy value is used in case of bad extraction;

– when receiving a Receipt-message, which means that an honest player has committed a
value, the simulator generates (C, eqk) $← SimCom`(τ), with ` = (sid, ssid, Pi, Pj), to send C
during the commit phase of the honest player;

– when receiving (x, δ), if the verification succeeds, the simulator asks for a Reveal query to
the ideal functionality;

– when receiving a Revealed-message on x, it then generates δ ← OpenCom`(eqk, C, x) to
actually open the commitment.

Any corruption just reveals x earlier, which allows a correct simulation of the opening. ut

APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13] 177

4 A Construction of Labeled E2-Commitment Scheme

4.1 Labeled Cramer-Shoup Encryption on Vectors

For our construction we use a variant of the Cramer-Shoup encryption scheme for vectors of
messages. Let G be a cyclic group of order p, with two independent generators g and h. The
secret decryption key is a random vector sk = (x1, x2, y1, y2, z)

$← Z5
p and the public encryp-

tion key is pk = (g, h, c = gx1hx2 , d = gy1hy2 , f = gz, H), where H is randomly chosen in a
collision-resistant hash function family H (actually, second-preimage resistance is enough). For
a message-vector M = (Mi)i=1,...,m ∈ Gm, the multi-Cramer-Shoup encryption is defined as
m-MCS`pk(M ; (ri)i) = (CS`pk(Mi, θ; ri) = (ui = gri , vi = hri , ei = f ri · Mi, wi = (cdθ)ri))i,
where θ = H(`, (ui, vi, ei)i) is the same for all the wi’s to ensure non-malleability contrary to
what we would have if we had just concatenated Cramer-Shoup ciphertexts of the Mi’s. Such
a ciphertext C = (ui, vi, ei, wi)i is decrypted by Mi = ei/u

z
i , after having checked the validity

of the ciphertext, wi ?= ux1+θy1i vx2+θy2i , for i = 1, . . . ,m. This multi-Cramer-Shoup encryption
scheme, denoted MCS, is IND-CCA under the DDH assumption. It even verifies a stronger property
VIND-PO-CCA (for Vector-Indistinguishability with Partial Opening under Chosen-Ciphertext At-
tacks), where the random coins ri, of the common coordinates in the two challenge vectors, are
published with the challenge ciphertext (partial-opening of the random coins, see Appendix B
for more details). This will be useful for the security proof of our commitment E2C (see below):

Advvind-po-ccaMCS (m, qd, γ, t) ≤ 2γ · AdvddhG (t) + SucccollH (t) +
m(γ + 1)qd

p
, (1)

where m is the length of the encrypted vectors, qd is the maximal number of decryption queries,
and γ the bound on the number of distinct components in the two challenge vectors; and where
AdvddhG and SucccollH (t) are respectively the maximum advantage of an adversary against the DDH
problem and the maximum probability for an adversary to find a collision for H $← H, in time t.

4.2 Construction

In this section, we provide a concrete construction E2C, inspired from [CF01,CLOS02,ACP09],
with the above multi-Cramer-Shoup encryption (as an extractable commitment scheme) and the
TC4 Haralambiev’s equivocable commitment scheme [Har11, Section 4.1.4]. The latter will allow
equivocability while the former will provide extractability:

– SetupComT(1K) generates a pairing-friendly setting (G1, g1,G2, g2,GT , p, e), with another
independent generator h1 of G1. It then generates the parameters of a Cramer-Shoup-based
commitment in G1: x1, x2, y1, y2, z

$← Zp and H $← H, and sets pk = (g1, h1, c = gx11 h
x2
1 , d =

gy11 h
y2
1 , f1 = gz1 , H). It then chooses a random scalar t $← Zp, and sets T = gt2. The CRS ρ

is set as (pk, T) and the trapdoor τ is the decryption key (x1, x2, y1, y2, z) (a.k.a. extraction
trapdoor) together with t (a.k.a. equivocation trapdoor). For SetupCom(1K), the CRS is
generated the same way, but forgetting the scalars, and thus without any trapdoor;

– Com`(M), for M = (Mi)i ∈ {0, 1}m and a label `, works as follows:
• For i = 1, . . . ,m, it chooses a random scalar ri,Mi

$← Zp, sets ri,1−Mi = 0, and commits
to Mi, using the TC4 commitment scheme with ri,Mi as randomness: ai = g

ri,Mi
2 TMi ,

and sets di,j = g
ri,j
1 for j = 0, 1, which makes di,Mi the opening value for ai to Mi; Let

us also write a = (a1, . . . , am), the tuple of commitments.
• For i = 1, . . . ,m and j = 0, 1, it gets b = (bi,j)i,j = 2m-MCS`

′
pk(d; s), that is (ui,j , vi,j ,

ei,j , wi,j)i,j , where d = (di,j)i,j computed above, s = (si,j)i,j
$← Z2m

p , and `′ = (`,a).
The commitment is C = (a, b), and the opening information is the m-tuple δ = (s1,M1 , . . . ,
sm,Mm).

178 APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13]

– VerCom`(C,M , δ) checks the validity of the ciphertexts bi,Mi with si,Mi and θ computed on
the full ciphertext C, extracts di,Mi from bi,Mi and si,Mi , and checks whether e(g1, ai/TMi) =
e(di,Mi , g2), for i = 1, . . . ,m.

– SimCom`(τ) takes as input the equivocation trapdoor, namely t, and outputs C = (a, b) and
eqk = s, where
• For i = 1, . . . ,m, it chooses a random scalar ri,0

$← Zp, sets ri,1 = ri,0 − t, and commits
to both 0 and 1, using the TC4 commitment scheme with ri,0 and ri,1 as respective
randomness: ai = g

ri,0
2 = g

ri,1
2 T , and di,j = g

ri,j
1 for j = 0, 1, which makes di,j the

opening value for ai to the value j ∈ {0, 1}. This leads to a;
• b is built as above: b = (bi,j)i,j = 2m-MCS`

′
pk(d; s), with random scalars (si,j)i,j .

– OpenCom`(eqk, C,M) simply extracts the useful values from eqk = s to make the opening
value δ = (s1,M1 , . . . , sm,Mm) in order to open to M = (Mi)i.

– ExtCom`(τ, C) takes as input the extraction trapdoor, namely the Cramer-Shoup decryption
key. Given b, it can decrypt all the bi,j into di,j and check whether e(g1, ai/T j) = e(di,j , g2)
or not. If, for each i, exactly one j =Mi satisfies the equality, then the extraction algorithm
outputs (Mi)i, otherwise (no correct decryption or ambiguity with several possibilities) it
outputs ⊥.

4.3 Security Properties

The above commitment scheme E2C is a labeled E2-commitment, with both strong-simulation-
indistinguishability and strong-binding-extractability, under the DDH assumptions in both G1

and G2. It is thus a UC-secure commitment scheme. The stronger VIND-PO-CCA security notion
for the encryption scheme is required because the SCom/Com oracle does not only output the
commitment (and thus the ciphertexts) but also the opening values which include the random
coins of the encryption, but just for the plaintext components that are the same in the two
vectors, since the two vectors only differ for unnecessary data (namely the di,1−Mi ’s) in the
security proof. More details can be found in the full proof, in Appendix D, which leads to
Advsetup-indE2C (t) = 0, Advs-sim-indE2C (t) ≤ Advvind-po-ccaMCS (2m, qd,m, t), and Succs-bind-extE2C (t) ≤ qc ·
Advs-sim-indE2C (t)+AdvddhG2

(t), where qc is the number of SCom-queries and qd the number of ExtCom-
queries.

5 SPHF-Friendly Commitments

5.1 Smooth Projective Hash Functions

Projective hash function families were first introduced by Cramer and Shoup [CS02], but we
here use the definitions of Gennaro and Lindell [GL03], provided to build secure password-based
authenticated key exchange protocols, together with non-malleable commitments.

Let X be the domain of these functions and let L be a certain subset of this domain (a lan-
guage). A key property of these functions is that, for words C in L, their values can be computed
by using either a secret hashing key hk or a public projection key hp but with a witness w of the
fact that C is indeed in L:

– HashKG(L) generates a hashing key hk for the language L;
– ProjKG(hk, L, C) derives the projection key hp, possibly depending on the word C;
– Hash(hk, L, C) outputs the hash value from the hashing key, on any word C ∈ X;
– ProjHash(hp, L, C,w) outputs the hash value from the projection key hp, and the witness w,

for C ∈ L.

APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13] 179

ExprobustA (K)

(ρ, τ)
$← SetupComT(1K)

(C, `)
$← ASCom·(τ,·),ExtCom·(τ,·)(ρ)

x′ ← ExtCom`(τ, C)
if (`, x′, C) ∈ Λ then return 0

if ∃x 6= x′, ∃δ, VerCom`(C, x, δ) then return 1
else return 0

Fig. 5. Robustness

The set of hash values is called the range of the SPHF and is denoted Π. The correctness
of the SPHF assures that if C ∈ L with w a witness of this fact, then Hash(hk, L, C) =
ProjHash(hp, L, C,w). On the other hand, the security is defined through the smoothness, which
guarantees that, if C 6∈ L, Hash(hk, L, C) is statistically indistinguishable from a random element,
even knowing hp.

Note that HashKG and ProjKG can just depend partially on L (a superset L′) and not at
all on C: we then note HashKG(L′) and ProjKG(hk, L′,⊥) (see [BBC+13] for more details on
GL-SPHF and KV-SPHF and language definitions).

5.2 Robust Commitments

For a long time, SPHFs have been used to implicitly check some statements, on language mem-
bership, such as “C indeed encrypts x”. This easily extends to perfectly binding commitments
with labels: Lx = {(`, C)| ∃δ, VerCom`(C, x, δ) = 1}. But when commitments are equivocable,
this intuitively means that a commitment C with the label ` contains any x and is thus in all the
languages Lx. In order to be able to use SPHFs with E2-commitments, we want the commitments
generated by polynomially-bounded adversaries to be perfectly binding, and thus to belong to
at most one language Lx. We thus need a robust verification property for such E2-commitments.

Definition 5 (Robustness). One cannot produce a commitment and a label that extracts to x′

(possibly x′ = ⊥) such that there exists a valid opening data to a different input x, even with
oracle access to the extraction oracle (ExtCom) and to fake commitments (using SCom). C is said
(t, ε)-robust if SuccrobustC (t) ≤ ε, according to the experiment ExprobustA (K) in Figure 5.

It is important to note that the latter experiment ExprobustA (K) may not be run in polynomial
time. Robustness implies strong-binding-extractability.

5.3 Properties of SPHF-Friendly Commitments

We are now ready to define SPHF-friendly commitments, which admit an SPHF on the languages
Lx = {(`, C)| ∃δ, VerCom`(C, x, δ) = 1}, and to discuss about them:

Definition 6 (SPHF-Friendly Commitments). An SPHF-friendly commitment is an E2-
commitment that admits an SPHF on the languages Lx, and that is both strongly-simulation-
indistinguishable and robust.

Let us consider such a family F of SPHFs on languages Lx for x ∈ X, with X a non trivial set
(with at least two elements), with hash values in the set G. From the smoothness of the SPHF
on Lx, one can derive the two following properties on SPHF-friendly commitments, modeled
by the experiments in Figure 6. The first notion of smoothness deals with adversary-generated
commitments, that are likely perfectly binding from the robustness, while the second notion
of pseudo-randomness deals with simulated commitments, that are perfectly hiding. They are
inspired by the security games from [GL03].

180 APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13]

In both security games, note that when hk and hp do not depend on x nor on C, and when
the smoothness holds even if the adversary can choose C after having seen hp (i.e., the SPHF is
actually a KV-SPHF [BBC+13]), they can be generated from the beginning of the games, with
hp given to the adversary much earlier.

Smoothness of SPHF-Friendly Commitments. If the adversaryA, with access to the oracles
SCom and ExtCom, outputs a fresh commitment (`, C) that extracts to x′ ← ExtCom`(τ, C), then
the robustness guarantees that for any x 6= x′, (`, C) 6∈ Lx (excepted with small probability),
and thus the distribution of the hash value is statistically indistinguishable from the random
distribution, even when knowing hp. In the experiment Expc-smoothA (K), we let the adversary
choose x, and we have: Advc-smoothC,F (t) ≤ SuccrobustC (t) + AdvsmoothF .

Pseudo-Randomness of SPHF on Robust Commitments. If the adversary A is given a
commitment C by SimCom with label `, adversary-chosen, even with access to the oracles SCom
and ExtCom, then for any x, it cannot distinguish the hash value of (`, C) on language Lx from a
random value, even being given hp, since C could have been generated as Com`(x′′) for some x′′ 6=
x, which excludes it to belong to Lx, under the robustness. In the experiment Expc-ps-randA (K), we
let the adversary choose (`, x), and we have: Advc-ps-randC,F (t) ≤ Advs-sim-indC (t) + SuccrobustC (t) +

AdvsmoothF .

Strong Pseudo-Randomness. Besides these two properties which hold for any SPHF-friendly
commitment, we need a third property for our one-round PAKE protocol. This property, called
strong pseudo-randomness, is defined by the experiment Expc-s-ps-randA (K) depicted in Figure 6.
It is a strong version of the pseudo-randomness where the adversary is also given the hash value
of a commitment of its choice (obviously not generated by SCom or SimCom though, hence the
test with Λ which also contains (C, `, x)). This property only makes sense when the projection
key does not depend on the word C to be hashed. It thus applies to KV-SPHF only.

5.4 Our Commitment Scheme E2C is SPHF-Friendly

In order to be SPHF-friendly, the commitment first needs to be strongly-simulation-indistinguishable
and robust. We have already shown the former property, and the latter is also proven in Ap-
pendix D. One additionally needs an SPHF able to check the verification equation: using the no-
tations from Section 4.2, C = (a, b) is a commitment ofM = (Mi)i, if there exist δ = (s1,M1 , . . . ,

sm,Mm) and (d1,M1 , . . . , dm,Mm) such that bi,Mi = (ui,Mi , vi,Mi , ei,Mi , wi,Mi) = CS`
′
pk(di,Mi , θ; si,Mi)

(with a particular θ) and e(g1, ai/TMi) = e(di,Mi , g2), for i = 1, . . . ,m. Since e is non-degenerated,
we can eliminate the need of di,Mi , by lifting everything in GT , and checking that, first, the ci-
phertexts are all valid:

e(ui,Mi , g2) = e(g
si,Mi
1 , g2) e(vi,Mi , g2) = e(h

si,Mi
1 , g2) e(wi,Mi , g2) = e((cdθ)si,Mi , g2)

and, second, the plaintexts satisfy the appropriate relations:

e(ei,Mi , g2) = e(f
si,Mi
1 , g2) · e(g1, ai/TMi).

From these expressions we derive several constructions of such SPHFs in Appendix C, and focus
here on the most interesting ones for the following applications:

APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13] 181

Expc-smooth-bA (K)

(ρ, τ)
$← SetupComT(1K)

(C, `, x, state)
$← ASCom·(τ,·),ExtCom·(τ,·)(ρ); x′ ← ExtCom`(τ, C)

if (`, x′, C) ∈ Λ then return 0

hk
$← HashKG(Lx); hp← ProjKG(hk, Lx, (`, C))

if b = 0 ∨ x′ = x then H ← Hash(hk, Lx, (`, C))

else H $← Π
return ASCom·(τ,·),ExtCom·(τ,·)(state, hp, H)

Expc-ps-rand-bA (K)

(ρ, τ)
$← SetupComT(1K)

(`, x, state)
$← ASCom·(τ,·),ExtCom·(τ,·)(ρ); C $← SimCom`(τ)

hk
$← HashKG(Lx); hp← ProjKG(hk, Lx, (`, C))

if b = 0 then H ← Hash(hk, Lx, (`, C))

else H $← Π
return ASCom·(τ,·),ExtCom·(τ,·)(state, C, hp, H)

Expc-s-ps-rand-bA (K)

(ρ, τ)
$← SetupComT(1K)

(`, x, state)
$← ASCom·(τ,·),ExtCom·(τ,·)(ρ); C $← SimCom`(τ)

hk
$← HashKG(Lx); hp← ProjKG(hk, Lx,⊥)

if b = 0 then H ← Hash(hk, Lx, (`, C))

else H $← Π
(`′, C′, state) $← ASCom·(τ,·),ExtCom·(τ,·)(state, C, hp, H)
if (`′, ?, C′) ∈ Λ then H ′ ←⊥
else H ′ ← Hash(hk, Lx, (`

′, C′)

return ASCom·(τ,·),ExtCom·(τ,·)(H ′)

Fig. 6. Smoothness, Pseudo-Randomness and Strong Pseudo-Randomness

182 APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13]

Table 1. Comparison with existing non-interactive UC-secure commitments with a single global CRS (m =
bit-length of the committed value, K = security parameter)

SPHF-Friendly Commitment C Decommitment δ Assumption

[ACP09]a yes (m+ 16mK)×G 2mK× Zp DDH
[FLM11], 1 no 5×G 16×G DLIN
[FLM11], 2 no 37×G 3×G DLIN
this paper yes 8m×G1 + m×G2 m× Zp SXDH
a slight variant without one-time signature but using labels for the IND-CCA security of the
multi-Cramer-Shoup ciphertexts, as in our new scheme, and supposing that an element
in the cyclic group G has size 2K, to withstand generic attacks.

– First, when C is sent in advance (known when generating hp), as in the OT protocol described
in Section 7, for hk = (η, α, β, µ, ε)

$← Z5
p, and hp = (ε, hp1 = gη1h

α
1 f

β
1 (cd

θ)µ) ∈ Zp ×G1:

H = Hash(hk,M , C)

def=
∏
i

(
e(uηi,Mi

· vαi,Mi
, g2) · (e(ei,Mi , g2)/e(g1, ai/T

Mi))β · e(wµi,Mi
, g2)

)εi−1

= e(
∏
i hp

si,Miε
i−1

1 , g2)
def= ProjHash(hp,M , C, δ) = H ′.

– Then, when C is not necessarily known for computing hp, as in the one-round PAKE, de-
scribed in Section 6, for hk = (ηi,1, ηi,2, αi, βi, µi)i

$← Z5m
p , and hp = (hpi,1 = g

ηi,1
1 hαi1 f

βi
1 c

µi , hpi,2 =

g
ηi,2
1 dµi)i ∈ G2m

1 :

H = Hash(hk,M , C)
def=
∏
i

(
e(u

(ηi,1+θηi,2)
i,Mi

· vαii,Mi
, g2) · (e(ei,Mi , g2)/e(g1, ai/T

Mi))βi · e(wµii,Mi
, g2)

)

= e(
∏
i(hpi,1hp

θ
i,2)

si,Mi , g2)
def= ProjHash(hp,M , C, δ) = H ′.

This SPHF verifies the strong pseudo-randomness property, as shown in Appendix D.2. More
precisely, we have: Succc-s-ps-randE2C,F (t) ≤ 2 · SuccrobustE2C (t) + 2 · Succs-bind-extE2C (t) + 2 · AdvsmoothF .

5.5 Complexity and Comparisons

As summarized in Table 1, the communication complexity is linear in m · K (where m is the
bit-length of the committed value and K is the security parameter), which is much better
than [ACP09] that was linear in m · K2, but asymptotically worse than the two proposals
in [FLM11] that are linear in K, and thus independent of m (as long as m = O(K)).

Basically, the first scheme in [FLM11] consists of a Cramer-Shoup-like encryption C of the
message x, and a perfectly-sound Groth-Sahai [GS08] NIZK π that C contains x. The actual com-
mitment is C and the opening value on x is δ = π. The trapdoor-setup provides the Cramer-Shoup
decryption key and changes the Groth-Sahai setup to the perfectly-hiding setting. The indistin-
guishable setups of the Groth-Sahai mixed commitments ensure the setup-indistinguishability.
The extraction algorithm uses the Cramer-Shoup decryption algorithm, while the equivocation
uses the simulator of the NIZK. The IND-CCA security notion for C and the computational
soundness of π make it strongly-binding-extractable, the IND-CCA security notion and the zero-
knowledge property of the NIZK provide the strong-simulation-indistinguishability. It is thus
UC-secure. However, the verification is not robust: because of the perfectly-hiding setting of
Groth-Sahai proofs, for any ciphertext C and for any message x, there exists a proof π that
makes the verification of C on x. As a consequence, it is not SPHF-friendly. The second con-
struction is in the same vein: they cannot be used in the following applications.

APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13] 183

Table 2. Comparison with existing UC-secure PAKE schemes

Adaptive One-round Communication complexity Assumption

[ACP09]a yes no 2× (2m+ 22mK)×G + OTSb DDH
[KV11] no yes ≈ 2× 70×G DLIN
[BBC+13] no yes 2× 6×G1 + 2× 5×G2 SXDH
this paper yes yes 2× 10m×G1 + 2×m×G2 SXDH
a with the commitment variant of note “a” of Table 1.
b OTS: one-time signature (public key size and signature size) to link the flows in the

PAKE protocol.

6 Password-Authenticated Key Exchange

6.1 A Generic Construction

The ideal functionality of a Password-Authenticated Key Exchange (PAKE) is depicted in Ap-
pendix A.3. It has been proposed in [CHK+05]. In Figure 7, we describe a one-round PAKE
that is UC-secure against adaptive adversaries, assuming erasures. It can be built from any
SPHF-friendly commitment scheme (that is E2, strongly-simulation-indistinguishable, and robust
as described in Section 5), if the SPHF is actually a KV-SPHF [BBC+13] and the algorithms
HashKG and ProjKG do not need to know the committed value π (nor the word (`, C) itself), for
which the SPHF verifies the strong pseudo-randomness property. We thus denote Lπ the language
of the pairs (`, C), where C is a commitment that opens to π under the label `, and L the union
of all the Lπ (L does not depend on π). The proof of the following theorem, with the cost of the
reduction, are given in Appendix D.

Theorem 7. The Password-Authenticated Key-Exchange described on Figure 7 is UC-secure in
the presence of adaptive adversaries, assuming erasures, as soon as the commitment scheme is
SPHF-friendly with a KV-SPHF.

6.2 Concrete Instantiation

Using our commitment E2C introduced Section 4 together with the second SPHF described Sec-
tion 5 (which satisfies the above requirements for HashKG and ProjKG), one gets a quite efficient
protocol, described in Appendix E. More precisely, for m-bit passwords, each player has to send
hp ∈ G2m

1 and C ∈ G8m
1 ×Gm

2 , which means 10m elements from G1 and m elements from G2. In
Table 2, we compare our new scheme with some previous UC-secure PAKE.

CRS: ρ $← SetupCom(1K).
Protocol execution by Pi with πi:
1. Pi generates hki $← HashKG(L), hpi ← ProjKG(hki, L,⊥)

and erases any random coins used for the generation
2. Pi computes (Ci, δi) $← Com`i(πi) with `i = (sid, ssid, Pi, Pj , hpi)
3. Pi stores δi, completely erases random coins used by Com

and sends hpi, Ci to Pj

Key computation: Upon receiving hpj , Cj from Pj
1. Pi computes H ′i ← ProjHash(hpj , Lπi , (`i, Ci), δi)

and Hj ← Hash(hki, Lπi , (`j , Cj)) with `j = (sid, ssid, Pj , Pi, hpj)
2. Pi computes ski = H ′i ·Hj and erases everything else, except πi.

Fig. 7. UC-Secure PAKE from an SPHF-Friendly Commitment

184 APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13]

7 Oblivious Transfer

7.1 A Generic Construction

The ideal functionality of an Oblivious Transfer (OT) protocol is depicted in Appendix A.3. It
is inspired from [CKWZ13]. In Figure 8, we describe a 3-round OT that is UC-secure against
adaptive adversaries, and a 2-round variant which is UC-secure against static adversaries. They
can be built from any SPHF-friendly commitment scheme, where Lt is the language of the
commitments that open to t under the associated label `, and from any IND-CPA encryption
scheme E = (Setup,KeyGen,Encrypt,Decrypt) with plaintext size at least K, and from any Pseudo-
Random Generator (PRG) F with input size equal to plaintext size, and output size equal to the
size of the messages in the database. Details on encryption schemes and PRGs can be found in
Appendix A.2. Notice the adaptive version can be seen as a variant of the static version where
the last flow is sent over a somewhat secure channel, as in [CKWZ13]; and the preflow and pk
and c are used to create this somewhat secure channel.

The proof of the following theorem, with the cost of the reduction, are given in Appendix D.

CRS: ρ $← SetupCom(1K), param $← Setup(1K).
Pre-flow (for adaptive security only):
1. Pi generates a key pair (pk, sk) $← KeyGen(param) for E
2. Pi stores sk, completely erase random coins used by KeyGen, and sends pk to Pi

Index query on s:
1. Pj chooses a random value S, computes R ← F (S) and encrypts S under pk: c $← Encrypt(pk, S) (for

adaptive security only; for static security: c =⊥, R = 0)
2. Pj computes (C, δ) $← Com`(s) with ` = (sid, ssid, Pi, Pj)
3. Pj stores δ, completely erases S and random coins used by Com and Encrypt, and sends C and c to Pi

Database input (m1, . . . ,mk):
1. Pi decrypts S ← Decrypt(sk, c) and gets R← F (S) (for static security: R = 0)
2. Pi computes hkt $← HashKG(Lt), hpt ← ProjKG(hkt, Lt, (`, C)),

Kt ← Hash(hkt, Lt, (`, C)), and Mt ← R⊕Kt ⊕mt, for t = 1, . . . , k
3. Pi erases everything except (hpt,Mt)t=1,...,k and sends (hpt,Mt)t to Pj

Data recovery:
Upon receiving (hpt,Mt)t=1,...,k, Pj computes Ks ← ProjHash(hps, Ls, (`, C), δ) and gets ms ← R⊕Ks ⊕Ms.
Then Pj erases everything except ms and s

Fig. 8. UC-Secure 1-out-of-k OT from an SPHF-Friendly Commitment (for Adaptive and Static Security)

Theorem 8. The two Oblivous Transfer schemes described in Figure 8 are UC-secure in the
presence of adaptive adversaries and static adversaries respectively, assuming reliable erasures
and authenticated channels, as soon as the commitment scheme is SPHF-friendly.

7.2 Concrete Instantiation and Comparison

Using our commitment E2C introduced Section 4 together with the first SPHF described Section 5,
one gets the protocol described in Appendix E, where the number of bits of the commited value
is m = dlog ke. For the statically secure version, the communication cost is, in addition to the
database m that is sent in M in a masked way, 1 element of Zp and k elements of G1 (for hp,
by using the same scalar ε for all hpt’s) for the sender, while the receiver sends dlog ke elements
of G2 (for a) and d8 log ke elements of G1 (for b), in only two rounds. In the particular case of
k = 2, the scalar can be avoided since the message consists of 1 bit, so our construction just
requires: 2 elements from G1 for the sender, and 1 from G2 and 8 from G1 for the receiver, in

APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13] 185

two rounds. For the same security level (static corruptions in the CRS, with erasures), the best
known solution from [CKWZ13] required to send at least 23 group elements and 7 scalars, in 4
rounds. If adaptive security is required, our construction requires 3 additional elements in G1

and 1 additional round, which gives a total of 13 elements in G1, in 3 rounds. This is also more
efficient then the best known solution from [CKWZ13], which requires 26 group elements and 7
scalars, in 4 rounds.

Acknowledgments

We thank Ralf Küsters for his comments on a preliminary version. This work was supported
in part by the French ANR-12-INSE-0014 SIMPATIC Project and in part by the European
Commission through the FP7-ICT-2011-EU-Brazil Program under Contract 288349 SecFuNet.
The third author was funded by a Sofja Kovalevskaja Award of the Alexander von Humboldt
Foundation and the German Federal Ministry for Education and Research.

References

ACP09. Michel Abdalla, Céline Chevalier, and David Pointcheval. Smooth projective hashing for conditionally
extractable commitments. In Shai Halevi, editor, Advances in Cryptology – CRYPTO 2009, volume
5677 of Lecture Notes in Computer Science, pages 671–689. Springer, August 2009. (Pages 1, 3, 9,
14, and 15.)

BBC+13. Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud. New
techniques for SPHFs and efficient one-round PAKE protocols. In Ran Canetti and Juan A. Garay,
editors, CRYPTO (1), volume 8042 of Lecture Notes in Computer Science, pages 449–475. Springer,
2013. Full version available on the Cryptology ePrint Archive as reports 2013/034 and 2013/341.
(Pages 1, 11, 12, 15, 24, 25, and 26.)

BCL+05. Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure computation without
authentication. In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of
Lecture Notes in Computer Science, pages 361–377. Springer, August 2005. (Page 1.)

Bea96. Donald Beaver. Adaptive zero knowledge and computational equivocation (extended abstract). In 28th
Annual ACM Symposium on Theory of Computing, pages 629–638. ACM Press, May 1996. (Page 2.)

BM92. Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based protocols secure
against dictionary attacks. In 1992 IEEE Symposium on Security and Privacy, pages 72–84. IEEE
Computer Society Press, May 1992. (Page 1.)

BPV12. Olivier Blazy, David Pointcheval, and Damien Vergnaud. Round-optimal privacy-preserving protocols
with smooth projective hash functions. In Ronald Cramer, editor, TCC 2012: 9th Theory of Cryptog-
raphy Conference, volume 7194 of Lecture Notes in Computer Science, pages 94–111. Springer, March
2012. (Page 1.)

Can01. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
Annual Symposium on Foundations of Computer Science, pages 136–145. IEEE Computer Society
Press, October 2001. (Pages 1 and 2.)

Can05. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. Cryptol-
ogy ePrint Archive, Report 2000/067, 2005. http://eprint.iacr.org/. (Page 7.)

CF01. Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian, editor, Advances
in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 19–40.
Springer, August 2001. (Pages 1, 2, 3, 7, and 9.)

CHK+05. Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKenzie. Universally
composable password-based key exchange. In Ronald Cramer, editor, Advances in Cryptology – EU-
ROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 404–421. Springer, May
2005. (Pages 1, 15, and 20.)

CK02. Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange and secure channels.
In Lars R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, volume 2332 of Lecture
Notes in Computer Science, pages 337–351. Springer, April / May 2002. (Page 1.)

CKWZ13. Seung Geol Choi, Jonathan Katz, Hoeteck Wee, and Hong-Sheng Zhou. Efficient, adaptively secure,
and composable oblivious transfer with a single, global crs. In Kaoru Kurosawa and Goichiro Hanaoka,
editors, Public Key Cryptography, volume 7778 of Lecture Notes in Computer Science, pages 73–88.
Springer, 2013. (Pages 1, 3, 16, 17, and 20.)

CLOS02. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party
and multi-party secure computation. In 34th Annual ACM Symposium on Theory of Computing, pages
494–503. ACM Press, May 2002. (Pages 1, 3, 7, and 9.)

186 APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13]

CR03. Ran Canetti and Tal Rabin. Universal composition with joint state. In Dan Boneh, editor, Advances
in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 265–281.
Springer, August 2003. (Page 8.)

CS98. Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, Advances in Cryptology – CRYPTO’98,
volume 1462 of Lecture Notes in Computer Science, pages 13–25. Springer, August 1998. (Pages 1
and 5.)

CS02. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen ci-
phertext secure public-key encryption. In Lars R. Knudsen, editor, Advances in Cryptology – EURO-
CRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 45–64. Springer, April / May
2002. (Pages 1 and 10.)

DDN00. Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM Journal on Com-
puting, 30(2):391–437, 2000. (Page 2.)

FLM11. Marc Fischlin, Benoît Libert, and Mark Manulis. Non-interactive and re-usable universally composable
string commitments with adaptive security. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances
in Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes in Computer Science, pages 468–485.
Springer, December 2011. (Pages 3 and 14.)

GL03. Rosario Gennaro and Yehuda Lindell. A framework for password-based authenticated key exchange.
In Eli Biham, editor, Advances in Cryptology – EUROCRYPT 2003, volume 2656 of Lecture Notes in
Computer Science, pages 524–543. Springer, May 2003. http://eprint.iacr.org/2003/032.ps.gz.
(Pages 1, 10, and 11.)

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game, or a completeness
theorem for protocols with honest majority. In Alfred Aho, editor, 19th Annual ACM Symposium on
Theory of Computing, pages 218–229. ACM Press, May 1987. (Page 1.)

GMW91. Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity or
all languages in NP have zero-knowledge proof systems. Journal of the ACM, 38(3):691–729, 1991.
(Page 1.)

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel P.
Smart, editor, Advances in Cryptology – EUROCRYPT 2008, volume 4965 of Lecture Notes in Com-
puter Science, pages 415–432. Springer, April 2008. (Page 14.)

Har11. Kristiyan Haralambiev. Efficient Cryptographic Primitives for Non-Interactive Zero-Knowledge Proofs
and Applications. PhD thesis, New York University, 2011. (Pages 3, 5, and 9.)

HK07. Omer Horvitz and Jonathan Katz. Universally-composable two-party computation in two rounds. In
Alfred Menezes, editor, Advances in Cryptology – CRYPTO 2007, volume 4622 of Lecture Notes in
Computer Science, pages 111–129. Springer, August 2007. (Page 1.)

HMQ04. Dennis Hofheinz and Jörn Müller-Quade. Universally composable commitments using random oracles.
In Moni Naor, editor, TCC 2004: 1st Theory of Cryptography Conference, volume 2951 of Lecture
Notes in Computer Science, pages 58–76. Springer, February 2004. (Page 2.)

Kal05. Yael Tauman Kalai. Smooth projective hashing and two-message oblivious transfer. In Ronald Cramer,
editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer
Science, pages 78–95. Springer, May 2005. (Page 1.)

Kat07. Jonathan Katz. Universally composable multi-party computation using tamper-proof hardware. In
Moni Naor, editor, Advances in Cryptology – EUROCRYPT 2007, volume 4515 of Lecture Notes in
Computer Science, pages 115–128. Springer, May 2007. (Page 2.)

KOY01. Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient password-authenticated key exchange
using human-memorable passwords. In Birgit Pfitzmann, editor, Advances in Cryptology – EURO-
CRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages 475–494. Springer, May 2001.
(Page 1.)

KV11. Jonathan Katz and Vinod Vaikuntanathan. Round-optimal password-based authenticated key ex-
change. In Yuval Ishai, editor, TCC 2011: 8th Theory of Cryptography Conference, volume 6597 of
Lecture Notes in Computer Science, pages 293–310. Springer, March 2011. (Pages 1 and 15.)

NP01. Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In 12th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 448–457. ACM-SIAM, January 2001. (Page 1.)

Ped92. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Joan
Feigenbaum, editor, Advances in Cryptology – CRYPTO’91, volume 576 of Lecture Notes in Computer
Science, pages 129–140. Springer, August 1992. (Pages 3 and 5.)

PVW08. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable
oblivious transfer. In David Wagner, editor, Advances in Cryptology – CRYPTO 2008, volume 5157
of Lecture Notes in Computer Science, pages 554–571. Springer, August 2008. (Page 1.)

Rab81. Michael O. Rabin. How to exchange secrets with oblivious transfer. Technical Report TR81, Harvard
University, 1981. (Page 1.)

APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13] 187

A Notations

We first recall the classical definitions on distances of distribution, and the notions of success
and advantage. We then review the basic cryptographic tools, with the corresponding security
notions.

A.1 Distances, Advantage and Success

Statistical Distance. Let D0 and D1 be two probability distributions over a finite set S and
let X0 and X1 be two random variables with these two respective distributions. The statistical
distance between D0 and D1 is also the statistical distance between X0 and X1:

Dist(D0,D1) = Dist(X0, X1) =
∑

x∈S
|Pr [X0 = x]− Pr [X1 = x]| .

If the statistical distance between D0 and D1 is less than or equal to ε, we say that D0 and D1

are ε-close or are ε-statistically indistinguishable. If the D0 and D1 are 0-close, we say that D0

and D1 are perfectly indistinguishable.

Success/Advantage. When one considers an experiment ExpsecA (K) in which an adversary A
plays a security game SEC, we denote Succsec(A,K) = Pr [ExpsecA (K) = 1] the success probability
of this adversary. We additionally denote Succsec(t) = maxA≤t{Succsec(A,K)}, the maximal
success any adversary running within time t can get.

When one considers a pair of experiments Expsec-bA (K), for b = 0, 1, in which an adversary A
plays a security game SEC, we denote Advsec(A,K) = Pr

[
Expsec−0A (K) = 1

]
−Pr

[
Expsec−1A (K) = 1

]

the advantage of this adversary. We additionally denote Advsec(t) = maxA≤t{Advsec(A,K)}, the
maximal advantage any adversary running within time t can get.

Computational Distance. Let D0 and D1 be two probability distributions over a finite
set S and let X0 and X1 be two random variables with these two respective distributions.
The computational distance between D0 and D1 is the best advantage an adversary can get
in distinguishing X0 from X1: AdvD0,D1(A,K) = Pr [A(X0) = 1] − Pr [A(X1) = 1], and thus
AdvD0,D1(t) = maxA≤t{AdvD0,D1(A,K)}. When AdvD0,D1(t) ≤ ε, we say that D0 and D1 are
(t, ε)-computationally indistinguishable.

We can note that for two distributions D0 and D1 that are ε-close, for any t and ε, D0 and
D1 are (t, ε)-computationally indistinguishable.

A.2 Formal Definitions of the Basic Primitives

Hash Function Family. A hash function family H is a family of functions Hk from {0, 1}∗ to
a fixed-length output, either {0, 1}K or Zp. Such a family is said collision-resistant if for any
adversary A on a random function H

$← H, it is hard to find a collision. More precisely, we
denote

SucccollH (A,K) = Pr
[
H

$← H, (m0,m1)← A(H) : H(m0) = H(m1)
]
.

Labeled Encryption Scheme. A labeled public-key encryption scheme E is defined by four algo-
rithms:

– Setup(1K), where K is the security parameter, generates the global parameters param of the
scheme;

– KeyGen(param) generates a pair of keys, the public encryption key pk and the private de-
cryption key sk;

188 APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13]

– Encrypt`(pk,m; r) produces a ciphertext c on the input message m ∈ M under the label `
and encryption key pk, using the random coins r;

– Decrypt`(sk, c) outputs the plaintext m encrypted in c under the label `, or ⊥ for an invalid
ciphertext.

An encryption scheme E should satisfy the following properties

– Correctness: for all key pair (pk, sk), any label `, all random coins r and all messages m,

Decrypt`(sk,Encrypt`(pk,m; r)) = m.

– Indistinguishability under chosen-ciphertext attacks:
this security notion IND-CCA can be formalized by the
following experiments Expind-cca-bA (K), where the ad-
versary A transfers some internal state state between
the various calls FIND and GUESS, and makes use of
the oracle ODecrypt:

• ODecrypt`(c): This oracle outputs the decryption
of c under the label ` and the challenge decryp-
tion key sk. The input queries (`, c) are added to
the list CTXT.

Expind-cca-bA (K)

param $← Setup(1K)
(pk, sk)

$← KeyGen(param)
(`∗,m0,m1, state) ← AODecrypt·(·)(FIND :

pk)
c∗ ← Encrypt`

∗
(pk,mb)

b′ ← AODecrypt·(·)(state, GUESS : c∗)
if (`∗, c∗) ∈ CTXT then return 0
else return b′

According to the previous section, these experiments implicitly define the two advantages
Advind-ccaE (A,K) and Advind-ccaE (t). One sometimes uses Advind-ccaE (qd, t) to bound the num-
ber of decryption queries.

Pseudo-Random Generators (PRGs). A pseudo-random generator (PRG) is a function F so that
for a randomly chosen seed S

$← {0, 1}K outputs a random-looking value in {0, 1}`, for some
` > K.

The quality of a PRG is measured by the computational distance AdvprgF (t) between the
distributions of the outputs on random inputs from random values in {0, 1}`.

A.3 Ideal Functionalities

UC-Secure Oblivious Transfer. The ideal functionality of an Oblivious Transfer (OT) protocol
is depicted in Figure 9. It is inspired from [CKWZ13].
UC-Secure Password-Authenticated Key Exchange. We present the PAKE ideal function-
ality FpwKE on Figure 10). It was described in [CHK+05]. The main idea behind this functionality
is as follows: If neither party is corrupted and the adversary does not attempt any password guess,
then the two players both end up with either the same uniformly-distributed session key if the
passwords are the same, or uniformly-distributed independent session keys if the passwords are
distinct. In addition, the adversary does not know whether this is a success or not. However, if
one party is corrupted, or if the adversary successfully guessed the player’s password (the session
is then marked as compromised), the adversary is granted the right to fully determine its session
key. There is in fact nothing lost by allowing it to determine the key. In case of wrong guess (the
session is then marked as interrupted), the two players are given independently-chosen random
keys. A session that is nor compromised nor interrupted is called fresh, which is its initial
status.

Finally notice that the functionality is not in charge of providing the password(s) to the par-
ticipants. The passwords are chosen by the environment which then hands them to the parties as
inputs. This guarantees security even in the case where two honest players execute the protocol

APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13] 189

The functionality F(1,k)-OT is parameterized by a security parameter K. It interacts with
an adversary S and a set of parties P1,. . . ,Pn via the following queries:
– Upon receiving an input (Send, sid, ssid, Pi, Pj, (m1, . . . ,mk)) from party
Pi, with mi ∈ {0, 1}K: record the tuple (sid, ssid, Pi, Pj , (m1, . . . ,mk)) and reveal
(Send, sid, ssid, Pi, Pj) to the adversary S. Ignore further Send-message with the same
ssid from Pi.

– Upon receiving an input (Receive, sid, ssid, Pi, Pj, s) from party Pj, with s ∈
{1, . . . , k}: record the tuple (sid, ssid, Pi, Pj , s), and reveal (Receive, sid, ssid, Pi, Pj)
to the adversary S. Ignore further Receive-message with the same ssid from Pj .

– Upon receiving a message (Sent, sid, ssid, Pi, Pj) from the adversary S:
ignore the message if (sid, ssid, Pi, Pj , (m1, . . . ,mk)) or (sid, ssid, Pi, Pj , s) is not
recorded; otherwise send (Sent, sid, ssid, Pi, Pj) to Pi and ignore further Sent-message
with the same ssid from the adversary.

– Upon receiving a message (Received, sid, ssid, Pi, Pj) from the adversary S:
ignore the message if (sid, ssid, Pi, Pj , (m1, . . . ,mk)) or (sid, ssid, Pi, Pj , s) is not
recorded; otherwise send (Received, sid, ssid, Pi, Pj ,ms) to Pj and ignore further
Received-message with the same ssid from the adversary.

Fig. 9. Ideal Functionality for 1-out-of-k Oblivious Transfer F(1,k)-OT

with two different passwords: This models, for instance, the case where a user mistypes its pass-
word. It also implies that the security is preserved for all password distributions (not necessarily
the uniform one) and in all situations where the password, are related passwords, are used in
different protocols. Also note that allowing the environment to choose the passwords guarantees
forward secrecy.

In case of corruption, the adversary learns the password of the corrupted player, after the
NewKey-query, it additionally learns the session key.

B Cramer-Shoup Encryption on Vectors

B.1 The Computational Assumption

Definition 9 (Decisional Diffie-Hellman (DDH)). The Decisional Diffie-Hellman assump-
tion says that, in a group (p,G, g), when we are given (ga, gb, gc) for unknown random a, b

$← Zp,
it is hard to decide whether c = ab mod p (a DH tuple) or c $← Zp (a random tuple).

We denote by AdvddhG (t) the best advantage an adversary can have in distinguishing a DH tuple
from a random tuple in the group G within time t.

B.2 Description of the Cramer Shoup Encryption on Vectors

Labeled Cramer-Shoup Encryption. The labeled Cramer-Shoup encryption scheme works
in a cyclic group G of prime order p, with two independent generators g and h. For random
scalars x1, x2, y1, y2, z

$← Zp, we set sk = (x1, x2, y1, y2, z) to be the private decryption key
and pk = (g, h, c = gx1hx2 , d = gy1hy2 , f = gz, H) to be the public encryption key, where H is a
random collision-resistant hash function fromH (actually, second-preimage resistance is enough).

If M ∈ G, the Cramer-Shoup encryption is defined as CS`pk(M ; r) = (u = gr, v = hr, e =

f r ·M,w = (cdθ)r), where θ = H(`, u, v, e). Such a ciphertext C = (u, v, e, w) is decrypted by
M = e/uz, after having checked the validity of the ciphertext: w ?= ux1+θy1vx2+θy2 .

This encryption scheme is well-known to be IND-CCA under the DDH assumption.
Labeled Cramer-Shoup Encryption on Vectors. The above scheme can be extended to en-
crypt vectors of group elementsM = (M1, . . . ,Mm) ∈ Gm:m-MCS`pk(M ; r) = (CS`pk(Mi; ri))i =

(ui = gri , vi = hri , ei = f ri ·Mi, wi = (cdθ)ri)i, where θ = H(`, (ui, vi, ei)i), with indices range in

190 APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13]

The functionality FpwKE is parameterized by a security parameter k. It interacts with an
adversary S and a set of parties P1,. . . ,Pn via the following queries:
– Upon receiving a query (NewSession, sid, ssid, Pi, Pj, π) from party Pi:

Send (NewSession, sid, ssid, Pi, Pj) to S. If this is the first NewSession query, or if
this is the second NewSession query and there is a record (sid, ssid, Pj , Pi, π

′), then
record (sid, ssid, Pi, Pj , π) and mark this record fresh.

– Upon receiving a query (TestPwd, sid, ssid, Pi, π
′) from the adversary S:

If there is a record of the form (Pi, Pj , π) which is fresh, then do: If pw = pw′, mark
the record compromised and reply to S with “correct guess”. If π 6= π′, mark the record
interrupted and reply with “wrong guess”.

– Upon receiving a query (NewKey, sid, ssid, Pi, sk) from the adversary S:
If there is a record of the form (sid, ssid, Pi, Pj , π), and this is the first NewKey query
for Pi, then:
• If this record is compromised, or either Pi or Pj is corrupted, then out-

put (sid, ssid, sk) to player Pi.
• If this record is fresh, and there is a record (Pj , Pi, π

′) with π′ = π, and a key sk′

was sent to Pj , and (Pj , Pi, π) was fresh at the time, then output (sid, ssid, sk′)
to Pi.

• In any other case, pick a new random key sk′ of length K and send (sid, ssid, sk′)
to Pi.

Either way, mark the record (sid, ssid, Pi, Pj , π) as completed.

Fig. 10. Ideal Functionality for PAKE FpwKE

{1, . . . ,m}. Such a ciphertext C = (ui, vi, ei, wi)i with label ` is decrypted by Mi = ei/u
z
i , after

having checked the validity of the ciphertext: wi ?= ux1+θy1i vx2+θy2i for i = 1, . . . ,m.
This encryption scheme MCS is also IND-CCA under the DDH assumption. More precisely, if

qd is the number of decryption queries,

Advind-ccaMCS (m, qd, t) ≤ 2m× AdvddhG (t) + SucccollH (t) +
m(m+ 1)qd

p
.

Proof. Let us be given a tuple (g, h, u, v) ∈ G4. We choose random scalars x1, x2, y1, y2, z
$← Zp,

and set sk = (x1, x2, y1, y2, z) and pk = (g, h, c = gx1hx2 , d = gy1hy2 , f = gz, H), where H is
a random collision-resistant hash function from H. We now consider an IND-CCA adversary on
m-element vectors.

Game G0: With the above setup, we play the IND-CCA game where the challenge ciphertext is
on M , that is chosen at random among the two vectors outputted by the adversary in the
FIND stage.

Game G1: In this game, instead of setting f = gz, one sets f = gz1hz2 , which essentially means
that z = z1 + sz2, where h = gs. Then, the decryption works as follows: Mi = ei/(u

z1
i v

z2
i),

after having checked the validity of the ciphertext: wi ?= ux1+θy1i vx2+θy2i for i = 1, . . . ,m,
relatively to the label `.
One can note that the decryption algorithm yields the same result for correct ciphertexts
(i.e., ciphertexts such that, for i = 1, . . . ,m, ui = gri and vi = hri for some ri): uz1i v

z2
i =

(gri)z1(hri)z2 = (gri)z1+sz2 = uzi . Let us show that any adversary (even unbounded) cannot
generate an incorrect ciphertext which passes the validity test wi ?= ux1+θy1i vx2+θy2i , for all i,
with non-negligible probability. Let us indeed consider such incorrect ciphertext. For some
index i, wi = ux1+θy1i vx2+θy2i , but ui = gri and vi = hr

′
i with ri 6= r′i. By taking the discrete

logarithm in base g, and by setting δi = r′i − ri, we get:

log c = x1 + sx2 log d = y1 + sy2
logwi = ri(x1 + θy1) + sr′i(x2 + θy2) = ri(log c+ θ log d) + sδi(x2 + θy2).

APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13] 191

Since c and d do not reveal any information about x2 and y2, sδi(x2 + θy2) is unpredictable
and thus the correct value for wi is unpredicatble too. An incorrect ciphertext is declared
valid with probability less thanm/p, and thus the distance between the two games is bounded
by mqd/p, where qd is the number of decryption queries.

Game G2: In this game the challenge ciphertext is generated following the new decryption
approach: C∗ = (u∗i , v

∗
i , e
∗
i = u∗i

z1v∗i
z2 ·Mi, w

∗
i = u∗i

x1+θ∗y1v∗i
x2+θ∗y2)i, where we have the

equality θ∗ = H(`∗, (u∗i , v
∗
i , e
∗
i)i), with all the tuples (g, h, u∗i , v

∗
i) being DH tuples. As already

shown above, since truly DH tuples are used, this makes no difference.
Game G3: In this game, the challenge ciphertext C∗ = (u∗i , v

∗
i , e
∗
i , w

∗
i)i, uses tuples (u∗i , v

∗
i ,

e∗i , w
∗
i) randomly and independently chosen in G4.

In order to bound the distance between the two games, we use a sequence of hybrid games:
in Gj , for i ≤ j, (g, h, u∗i , v∗i) are DH tuples and e∗i = u∗i

z1v∗i
z2 ·Mi, w∗i = u∗i

x1+θ∗y1v∗i
x2+θ∗y2 ,

where θ∗ = H(`, (u∗i , v
∗
i , e
∗
i)i), while for i > j, tuples (u∗i , v

∗
i , e
∗
i , w

∗
i) are randomly and inde-

pendently chosen in G4. One can note that G0 is exactly G3, while Gm is G2.
Let us modify a little bit Gj into G′j , in which (g, h, u, v) is a DH tuple and u∗j = u, v∗j = v,
e∗j = u∗j

z1v∗j
z2 ·Mj , w∗j = u∗j

x1+θ∗y1v∗j
x2+θ∗y2 . This does not change anything. We now alter it

into G′′j , where (g, h, u, v) is a random tuple. In such a case, e∗j = uz1vz2 ·Mj = uzhδz2 ·Mj ,
where δ = r′ − r, with u = gr and v = hr

′ , and thus δ 6= 0 with overwhelming probability,
as well as z2 6= 0. In addition, z2 is totally unpredictable, unless some incorrect ciphertexts
are decrypted.
As a conclusion, unless some incorrect ciphertexts are decrypted, e∗j is totally unpredictable.
But an incorrect ciphertext C = (ui, vi, ei, wi)i is decrypted if for some i

log c = x1 + sx2 log d = y1 + sy2
logw∗j = r(x1 + θ∗y1) + sr′(x2 + θ∗y2)
logwi = ri(x1 + θy1) + sr′i(x2 + θy2)

whereas δi = r′i − ri 6= 0. The determinant of the system is s2δδi(θ∗ − θ), which is non-zero,
unless θ∗ = θ. But two cases only are possible:
– if (`, (ui, vi, ei)i) 6= (`∗, (u∗i , v

∗
i , e
∗
i)i), θ

∗ = θ leads to a collision for H;
– if (`, (ui, vi, ei)i) = (`∗, (u∗i , v

∗
i , e
∗
i)i), then the query is not allowed.

Therefore, the determinant being non-zero, wi is unpredictable and thus the probability that
at least one incorrect ciphertext is declared valid is bounded by mqd/p.
In addition, w∗j is also unpredictable. This means that G′′j is exactly Gj−1. but the distance
between the two games is bounded bymqd/p+2AdvddhG (t), assuming no collision for H. Even-
tually, the distance between G2 and G3 is bounded by m2qd/p+2mAdvddhG (t) + SucccollH (t).

This concludes the proof since in the last game, the values e∗i are independent of the message,
and thus of the bit involved in the security game: the advantage of the adversary is 0. ut

We now provide a stronger security notion for encryption of vectors, which is useful for our
application to E2-commitments.

B.3 Vector-Indistinguishability with Partial Opening, under Chosen-Ciphertext
Attacks

New Security Notion. In our applications, when encrypting vectors, the adversary will get
some of the random coins used for encryption. We thus define a stronger security notion:

192 APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13]

Vector-indistinguishability with partial opening, un-
der chosen-ciphertext attacks: this security notion
VIND-PO-CCA can be formalized by the following ex-
periments Exp

vind-po-cca-b
A (K), where the adversary

A keeps some internal state between the various
calls FIND and GUESS, and makes use of the above
ODecrypt oracle. However, Encrypt∗ has an addi-
tional input∆, that consists of the common values in
M0 andM1, and ⊥ at the places of distinct values.
It also outputs the values r that allow to check that
C∗ actually encrypts a vector M that corresponds
to ∆ (i.e., that is equal to ∆ for places different than
⊥). The exact definition of these values r depend on
the actual encryption scheme.

Expvind-po-cca-bA (K)

param $← Setup(1K)
(pk, sk)

$← KeyGen(param)
(`∗,M0,M1, state)

$←
AODecrypt·(·)(FIND : pk)

∆ =M0 ∩M1

(C∗, r) $← Encrypt∗`
∗
(pk,∆,M b)

b′ $← AODecrypt·(·)(state, GUESS : C∗, r)
if (`∗, C∗) ∈ CTXT then return 0
else return b′

This models the fact that when distinct random coins are used for each components of the vector,
the random coins of the common components can be revealed, it should not help to distinguish
which vector has been encrypted.

These experiments Exp
vind-po-cca-b
A (K) define the two advantages Advvind-po-ccaE (A,K) and

Advvind-po-ccaE (t). As above, we will use Advvind-po-ccaE (m, qd, γ, t) to make precise the length m
of the vectors, and to bound by qd the number of decryption queries and by γ the number of
distinct values in the pairs of vectors.
Labeled Cramer-Shoup Encryption on Vectors. For the Cramer-Shoup encryption on vec-
tors MCS, the values r output by Encrypt∗ are the random coins ri corresponding to to the
common components of M0 and M1 (i.e., for i such that M0,i = M1,i = ∆i). These values are
sufficient to check that C∗ actually encrypts a vector corresponding to ∆.

We can prove that MCS is VIND-PO-CCA using a slight variant of the IND-CCA proofs given in
Section B.2. More precisely, we use the same games except that for i such that M0,i = M1,i, in
Games G2 and G3, we compute u∗i and v∗i as in Game G1: u∗i = gri and v∗i = hri for a random
scalar ri. The hybrid technique to prove the indistinguishability of G2 and G3 uses γ steps only
(instead of m steps), with γ the number of distinct components. Finally, we get:

Advvind-po-ccaMCS (m, qd, γ, t) ≤ 2γ × AdvddhG (t) + SucccollH (t) +
m(γ + 1)qd

p
.

C Useful SPHFs

In this appendix, we show three constructions of SPHF for E2C and summarize their costs. We
use the framework from [BBC+13].

C.1 Construction of the SPHFs

The language we are interested in is the language of valid commitments C = (a, b) ∈ Gm
2 ×G8m

1

under label ` of some fixed vector M , where the witness is the decommitment information
δ = s = (si,Mi)i ∈ Zmp . More precisely, a word C is in the language if and only if there exists δ
and d = (di,Mi)i ∈ Gm

1 such that, for all i = 1, . . . ,m:

bi,Mi = CS`
′
pk(di,Mi , θ; si,Mi) and e(g1, ai/T

Mi) = e(di,Mi , g2),

with `′ = (`,a) and θ = H(`′, (ui,j , vi,j , ei,j)i,j). If we set bi,j = (ui,j , vi,j , ei,j , wi,j)i,j , we can
write the previous conjunction as: for all i = 1, . . . ,m,

(ui,Mi , vi,Mi , ei,Mi , wi,Mi) = (g
si,Mi
1 , h

si,Mi
1 , f

si,Mi
1 · di,Mi , (cd

θ)si,Mi)

and e(g1, ai/T
Mi) = e(di,Mi , g2).

APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13] 193

Since e is non-degenerated, we finally remark that we can eliminate the need of di,Mi , by lifting
everything in GT , and checking that, first, the ciphertexts are all valid and, second, the plaintexts
satisfy the appropriate relations:

(e(ui,Mi , g2), e(vi,Mi , g2), e(wi,Mi , g2)) = (e(g
si,Mi
1 , g2), e(h

si,Mi
1 , g2), e((cd

θ)si,Mi , g2))

e(ei,Mi , g2) = e(f
si,Mi
1 , g2) · e(g1, ai/TMi).

From these expressions we can derive three SPHFs.

KV-SPHF. A KV-SPHF is a SPHF for which hp does not depend on C and the smoothness holds
even if the adversary can see hp before choosing C (see [BBC+13] for a precise definition). Let
us first show how to construct a KV-SPHF checking the previous condition for only a fixed index
i. For this purpose, we use the following matrices (for the framework of [BBC+13]:

Γ =

(
g1 0 h1 f1 c
0 g1 0 0 d

)
(2)

λi = (g
si,Mi
2 , g

si,Miθ

2)

λi · Γ = (e(g
si,Mi
1 , g2), e(g

si,Miθ

1 , g2), e(h
si,Mi
1 , g2), e(f

si,Mi
1 , g2), e((cd

θ)si,Mi , g2))

Θi(C) = (e(ui,Mi , g2), e(u
θ
i,Mi

, g2), e(vi,Mi , g2), e(ei,Mi , g2)/e(g1, ai/T
Mi), e(wi,Mi , g2))

With hk = (η1, η2, α, β, µ)
$← Z5

p, we get hp = (hp1 = gη11 h
α
1 f

β
1 c

µ, hp2 = gη21 d
µ) ∈ G2

1.
Eventually, to check that C actually commits to M = (Mi)i, we can define a KV-SPHF, as

follows:

hk = (ηi,1, ηi,2, αi, βi, µi)i
$← Z5m

p hp = (hpi,1 = g
ηi,1
1 hαi1 f

βi
1 c

µi , hpi,2 = g
ηi,2
1 dµi)i ∈ G2m

1 ,

H = Hash(hk,M , C) def=
∏
i

(
e(u

(ηi,1+θηi,2)
i,Mi

· vαii,Mi
, g2) · (e(ei,Mi , g2)/e(g1, ai/T

Mi))βi · e(wµii,Mi
, g2)

)

= e(
∏
i(hpi,1hp

θ
i,2)

si,Mi , g2)
def= ProjHash(hp,M , C, (si,Mi)i) = H ′.

Since δ = (si,Mi)i, this will allow the one-round PAKE, described in Section 6.

CS-SPHF. When C is sent before hp, we can use a CS-SPHF instead of a KV-SPHF (for which
the smoothness holds only when the adversary cannot see hp before choosing C). Here is a more
efficient CS-SPHF, with a common projection key for all the components, but an additional
random ε1:

Γ =

(
g1 0 h1 f1 c
0 g1 0 0 d

)
λ =

(∏
i g
si,Miε

i−1

2 , g
si,Miθε

i−1

2

)

λ · Γ =
(
e(
∏
i g
si,Miε

i−1

1 , g2), e(
∏
i g
si,Miθε

i−1

1 , g2), e(
∏
i h

si,Miε
i−1

1 , g2),

e(
∏
i f

si,Miε
i−1

1 , g2), e(
∏
i(cd

θ)si,Miε
i−1
, g2)

)

Θ(C) =
(∏

i e(u
εi−1

i,Mi
, g2), e(

∏
i u

θεi−1

i,Mi
, g2), e(

∏
i v
εi−1

i,Mi
, g2),

∏
i(e(ei,Mi , g2)/e(g1, ai/T

Mi))ε
i−1
, e(

∏
iw

εi−1

i,Mi
, g2)

)
,

which leads to

hk = (η1, η2, α, β, µ, ε)
$← Z6

p hp = (ε, hp1 = gη11 h
α
1 f

β
1 c

µ, hp2 = gη21 d
µ) ∈ Zp ×G2

1,

H = Hash(hk,M , C) def=
∏
i

(
e(u

(η1+θη2)
i,Mi

· vαi,Mi
, g2) · (e(ei,Mi , g2)/e(g1, ai/T

Mi))β · e(wµi,Mi
, g2)

)εi−1

= e(
∏
i(hp1hp

θ
2)
si,Miε

i−1
, g2)

def= ProjHash(hp,M , C, (si,Mi)i) = H ′.

1 Actually, it is possible to choose ε $← {0, 1}K.

194 APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13]

More precisely, following the framework from [BBC+13], since hp is not known at the time C is
generated, to prove that the resulting CS-SPHF is smooth, we just need to prove that for any
invalid C (not in the language), the probability that Θ(C) is not a linear combination of the
rows of Γ (C) is overwhelming, over the random choice of ε. Indeed, if Θ(C) is independent of
rows of Γ (C), H is completely unpredictable even given hp.

Let us indeed consider an invalid commitment C, and let us write bi,Mi = (ui,Mi , vi,Mi , ei,Mi ,

wi,Mi)i = (gsi1 , h
ti
1 , f

s′i
1 · di,j , (cdθ)s

′′
i)i, with di,Mi such that e(di,Mi , g2) = e(g1, ai/T

Mi), which is
always possible if we suppose g1, h1, f1 and cdθ are all generators2. Then, since C is invalid,
there exists some i∗, such that either ti∗ 6= si∗ or s′i∗ 6= si∗ or s′′i∗ 6= si∗ . Let us suppose ti∗ 6= si∗ .
The other cases are similar. Then we remark that for Θ(C) to be linearly dependent of rows of
Γ , it is necessary that e(

∏
i v
εi−1

i,Mi
, g2) = e(h

si
∑
i ε
i−1

1 , g2), since the first coefficient of the linear

combination is necessary λ1 = g
∑
i siε

i−1

2 =
∏
i g
siε

i−1

2 . This implies that:
∑

i tiε
i−1 =

∑
i siε

i−1,
by looking at the discrete logarithm in base e(g1, g2). In other words ε has to be a root of the
m-degree polynomial

∑
i(ti − si)Xi, which is not null because ti? 6= si? . This polynomial has at

most m roots, and so at most m distinct ε (among the p possible ε in Zp) lead to a Θ(C) linearly
dependent of rows of Γ . Finally, we conclude that, with probablity at least 1 − m/p, Θ(C) is
independent of rows of Γ . This proves the smoothness of the SPHF.

GL-SPHF. When C is sent in advance, and thus known when generating hp, as in the Oblivious
Transfer protocol described in Section 7, we can use a more efficient GL-SPHF instead of a
CS-SPHF:

Γ (C) =
(
g1 h1 f1 (cd

θ)
)

λi = g
si,Mi
2

λi · Γ (C) = (e(g
si,Mi
1 , g2), e(h

si,Mi
1 , g2), e(f

si,Mi
1 , g2), e((cd

θ)si,Mi , g2))
Θi(C) = (e(ui,Mi , g2), e(vi,Mi , g2), e(ei,Mi , g2)/e(g1, ai/T

Mi), e(wi,Mi , g2))

and:

hk = (η, α, β, µ, ε)
$← Z5

p hp = (ε, hp1 = gη1h
α
1 f

β
1 (cd

θ)µ) ∈ Zp ×G1,

H = Hash(hk,M,C) def=
∏
i

(
e(uηi,Mi

· vαi,Mi
, g2) · (e(ei,Mi , g2)/e(g1, ai/T

Mi))β · e(wµi,Mi
, g2)

)εi−1

= e(
∏
i hp

si,Miε
i−1

1 , g2)
def= ProjHash(hp,M,C, (si,Mi)i) = H ′.

C.2 Complexity

In Table 3, we summarize the cost of the various SPHFs. We remark that in the CS-SPHF and
GL-SPHF, if m = 1, we do not need ε. That is why this case is handled separately. In all cases,
the hash value consists of 1 group element in GT . In practice we use an entropy extractor on this
hash value.

D Security Proofs

Each flow in the concrete protocols should include the tuple (sid, ssid, Pi, Pj), but we omit it
for the sake of simplicity. This tuple is needed for the queries the simulator to asks to the ideal
functionality (in the description of the ideal games at the end of each sequence of games below).

2 It is easy to extend to the case where some of them are not generators (i.e., are equal to 1).

APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13] 195

Table 3. Cost of the three SPHFs for E2C

hk hp

KV-SPHF 5m× Zp 2m×G1

CS-SPHF (for m = 1) 5× Zp 2×G1

CS-SPHF (for m ≥ 2) 6× Zp 2×G1 + 1× Zp
GL-SPHF (for m = 1) 4× Zp 1×G1

GL-SPHF (for m ≥ 2) 5× Zp 1×G1 + 1× Zp

D.1 Proof of Theorem 4 (UC-Secure Commitment from a Labeled
E2-Commitment)

We first prove this theorem in the case the labeled E2-commitment scheme C is additionally
strongly-binding-extractable, and explain afterwards the difference when the commitment is
strong-simulation-indistinguishable.
With Strong-Binding-Extractability. We thus exhibit a sequence of games. The sequence
starts from the real game, where the adversary A interacts with real players and ends with
the ideal game, where we have built a simulator S that makes the interface between the ideal
functionality F and the adversary A.

Essentially, one first makes the setup algorithm additionally output the trapdoor (setup-
indistinguishability); one can then replace all the commitment queries by simulated (fake) com-
mitments (simulation-indistinguishability). Eventually, when simulating the receiver, the simula-
tor extracts the committed value x (using ExtCom), which should be the same as the one that will
be open later (strong-binding-extractability). One can then split the simulation, to open it when
required only with the appropriate information: the committed value sent be the environment is
not required anymore. More details follow:

Game G0: This is the real game.
Game G1: In this game, the simulator generates correctly every flows from the honest players,

as they would do themselves, knowing the inputs x sent by the environment to the senders.
In case of corruption, the simulator can give the internal data generated on behalf of the
honest players.

Game G2: In this game, we just replace the setup algorithm SetupCom by SetupComT that
additionally outputs the trapdoor (ρ, τ) $← SetupComT(1K), but nothing else changes, which
does not alter much the view of the environment under setup indistinguishability. Corruptions
are handled the same way.

Game G3: We first deal with honest senders: we replace all the commitments (C, δ) $← Com`(x)
with ` = (sid, ssid, Pi, Pj) in Step 1. of the commit phase of honest players by simu-
lated commitments (C, δ)

$← SCom`(τ, x), which means (C, eqk)
$← SimCom`(τ) and δ ←

OpenCom`(eqk, C, x). We then store (`, x, C) in Λ.
With an hybrid proof, applying the Expsim-ind security game for each step, in which SCom is
used as an atomic operation in which the simulator does not see the intermediate values, and
in particular the equivocation key, one can show the indistinguishability of the two games.
In case of corruption of the sender, one learns the already known value x.

Game G4: We now deal with honest receivers: when receiving a fresh commitment C from the
adversary or a replay from another session (and thus under a different label), the simulator
extracts the committed value x. If the adversary later opens to a different value at the
decommit phase, the simulator rejects it. If it was accepted in the previous game, then one
breaks the strong-binding-extractability.
More generally, the trapdoor correctness ensures that valid decommitments (accepted in
the previous game) will be accepted in this game too, which makes almost no difference
between the two games, but with probability bounded by Succs-bind-extC (t). Note that in

196 APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13]

the experiment Exps-bind-ext, the adversary has access to both the fake commitment oracle
(SCom) and the extraction oracle (ExtCom), which are indeed required here.

Game G5: We do not use anymore the knowledge of x: the simulator knows the trapdoor τ
and generates (C, eqk)

$← SimCom`(τ), with ` = (sid, ssid, Pi, Pj), to send C during the
commit phase of honest players. When receiving a Revealed-message on x, it then generates
δ ← OpenCom`(eqk, C, x) to actually open the commitment. We essentially break the atomic
SCom in the two separated processes SimCom and OpenCom. This does not change anything
from the previous game except that Λ is first filled with (`,⊥, C) at the commit time and
then updated to (`, x, C) at the opening time. In case of corruption of the sender, one learns
the committed value that is thereafter used at the decommit phase for x.

Game G6: We can now make use of the functionality, which leads to the following simulator:
– when receiving a commitment C from the adversary, and thus either freshly generated

by the adversary or a replay of a commitment C generated by the simulator in another
session (with a different label), the simulator extracts the committed value x, and uses
it to send a Commit message to the ideal functionality. A dummy value is used in case
of bad extraction;

– when receiving a Receipt-message, which means that an honest player has committed
a value, the simulator generates (C, eqk)

$← SimCom`(τ), with ` = (sid, ssid, Pi, Pj), to
send C during the commit phase of the honest player;

– when receiving (x, δ), if the verification succeeds, the simulator asks for a Reveal query
to the ideal functionality;

– when receiving a Revealed-message on x, it then generates δ ← OpenCom`(eqk, C, x) to
actually open the commitment.

Any corruption just reveals x earlier, which allows a correct simulation of the opening.

With Strong-Simulation-Indistinguishability. In the other case, where the labeled E2-
commitment is additionally strongly-simulation-indistinguishable, we can just first simulate the
receiver before modifying the simulation of the sender with fake commitments: one will first
apply extractability and then strong-simulation-indistinguishability. This concretely means that
we swap G3 and G4. This leads to the same simulator in G6.
Cost of the Reductions. More precisely, for any environment, its advantage in distinguish-
ing the ideal world (with the ideal functionality from Figure 4) and the real world (with the
commitment scheme C) is bounded by both Advsetup-indC (t)+ qs ·Advsim-indC (t)+ Succs-bind-extC (t)

and Advsetup-indC (t) + qs · Advs-sim-indC (t) + Succbind-extC (t), where qs is the number of concurrent
sessions and t its running time.

D.2 Proofs for Sections 4.3 and 5.4 (Security Properties of our E2C Commitment)

Setup-indistinguishability. this is trivially satisfied since the two setup algorithms are exactly
the same but just output the trapdoor or not, and thus Advsetup-indE2C (t) = 0 for any t.
(t, ε)-strong-simulation-indistinguishability. Let us build a sequence of games from the se-
curity experiment with b = 1 to the experiment with b = 0. We stress that SCom does not only
output C = (a, b), but also δ = ((di,Mi , si,Mi)i), where the si,j ’s are the random coins in the
multi-Cramer-Shoup encryption.

1. We first start with the real game with b = 1 (use of SCom for the challenge commitment),
with all the trapdoors to emulate the oracles;

2. the simulator now knows the equivocation trapdoor to emulate the SCom-oracle, but has
just access to the decryption oracle to emulate the ExtCom-oracle;

3. for the challenge oracle on x = (xi)i, the simulator uses ri,1−xi = 0, which leads to the
plaintexts di,1−xi = 1 that are thereafter encrypted under the Cramer-Shoup encryption

APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13] 197

scheme. Applying the VIND-PO-CCA security of the MCS encryption scheme, in which the m
components of the vector that correspond to the committed vector x are the same in the two
2m-long vectors, one can note that the bias is upper-bounded by Advvind-po-ccaMCS (2m, qd,m, t),
where qd the number of extraction queries. The two vectors submitted to the encryption
oracle Encrypt∗ in the security game VIND-PO-CCA are (d1,0, d1,1, . . . , dm,0, dm,1), where the
di,xi ’s keep the same in the two games, but the di,1−xi ’s are all replaced by 1 in the second
game. Then, the Encrypt∗ oracle additionally outputs the si,xi ’s (that correspond to the
common components), which allows to output δ.

4. giving back all the trapdoors to the simulator, we are in the real game with b = 0 (use of
Com for the challenge commitment).

In conclusion, one thus gets Advs-sim-indE2C (t) ≤ Advvind-po-ccaMCS (2m, qd,m, t).
Strong binding extractability. Let us build a sequence of games from the security experiment
to an attack to the DDH in G2.

1. we first start with the real game, with all the trapdoors to emulate the oracles;
2. the simulator replaces all the SCom-oracle queries by Com-oracle queries. With an hybrid

proof, where we replace sequentially the SCom emulations by Com emulations, as above, one
introduces a bias upperbounded by qc·Advs-sim-indE2C (t), and thus qc·Advvind-po-ccaMCS (2m, qd,m, t),
where qc is the number of SCom-queries and qd the number of extract queries;

3. the simulator does not need any more the equivocation trapdoor, but can still extract the
correct di,xj , by decrypting the Cramer-Shoup ciphertexts, to open the commitment with
e(g1, ai/T

xi) = e(di,xi , g2). When the adversary breaks the strong-binding-extractability, it
provides C with a valid opening (M , δ), whereas C extracts to M ′ 6=M (possibly ⊥).
Since opening/verification in one way is possible M , this means that the Cramer-Shoup
decryption gives at least one valid opening for each ai. But because of the different extraction
output M ′, extraction technique is ambiguous on C: for an index i, it can provide two
different opening values for ai, which breaks the DDH assumption in G2.

In conclusion, one thus gets Succs-bind-extE2C (t) ≤ qc ·Advvind-po-ccaMCS (2m, qd,m, t)+AdvddhG2
(t), where

qc is the number of SCom-queries and qd the number of extract queries.
Robustness. In the above proof of strong-binding-extractability, as soon as different opening
values exist, by decrypting the Cramer-Shoup ciphertexts, one breaks the DDH assumption in
G2: SuccrobustE2C (t) ≤ qc · Advind-ccaMCS (t) + AdvddhG2

(t), where qc is the number of SCom-queries.
Strong pseudo-randomness. For the sake of simplicity, we write x = M and x′ = M ′. We
also write: C = (a, b) and C ′ = (a′, b′). To prove the strong pseudo-randomness, we use the
following sequence of games:

Game G0: This game is the experiment Expc-s-ps-rand-0A .
Game G1: In this game, before computing H ′, we compute M ′ ← ExtCom`′(τ, C ′) and we

abort if for some i, the decryptions of b′i,0 and b′i,1 give valid opening values of a′i for 0 and
1 respectively. In other words, if C ′ is not perfectly binding, we abort.3

This game is indistinguishable from the previous one, using the proof of robustness.
Game G2: In this game, if M ′ 6=M , we replace H ′ by a random value.

This game is indistinguishable from the previous one thanks to the smoothness of the SPHF,
the fact that M ′ 6= M and C ′ is perfectly binding (otherwise, we would have aborted), so
that (`′, C ′) /∈ LM , and thanks to the fact that H could have been computed as follows:
δ ← OpenCom`(eqk, C,M) and H ← ProjHash(hp, LM , (`, C), δ).

3 Actually, we may abort more often than that, but at least, if the commitment C′ is honestly generated, we do
not abort.

198 APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13]

Game G3: In this game, we replace (C, eqk)
$← SimCom`(τ) by C

$← Com`(M ′′) for some
arbitrary M ′′ 6= M . This game is indistinguishable thanks to strong simulation indistin-
guishability (since eqk is not used, SimCom could have been replaced by SCom with a M ′′

as message).
Game G4: In this game, when M ′ 6=M , we replace H by a random value.

This game is indistinguishable from the previous one thanks to the smoothness of the SPHF,
and the fact that C is a real commitment of M ′′ 6=M and so that (`, C) /∈ LM .
Notice that we could not have done this if M ′ =M , since, in this case, we still need to use
hk to compute the hash value H ′ of C ′. We are handling this (tricky) case in the following
game.

Game G5: In this game, we replace H by a random value, in the case M ′ = M . So now H
will be completely random, in all cases (since it was already the case when M ′ 6=M).
Let θ = H(`, (ui,j , vi,j , ei,j)i,j) and θ′ = H(`′, (u′i,j , v

′
i,j , e

′
i,j)i,j). Finally, we write s′i,j =

log u′i,j for all i, j, log being the discrete logarithm in base g1. There are two cases:

1. for all i, v′i,Mi
= h

s′i,Mi
1 . In this case, since C ′ extracts to M , this means that

w′i,Mi
= u′x1+θ

′y1
i,Mi

· v′x2+θ
′y′2

i,Mi
,

and so from the definition of c and d, we have that:

w′i,Mi
= (c · dθ′)s

′
i,Mi .

This means that (`′, C ′) ∈ LM , and its hash value H ′ could be computed knowing only
hp and (s′i,Mi

)i. Therefore, the hash value H of C looks random by smoothness.

2. for some i, v′i,Mi
6= h

s′i,Mi
1 . Then since vi,Mi = h

si,Mi
1 , the rows of the matrix Γ in

Equation 2 (page 25) and the two vectors Θi(C) and Θi(C ′) are linearly independent.
Then, even given access to the hash value H ′ of C ′ and the projection key hp, the hash
value H of C looks perfectly random.

The following games are just undoing the modifications we have done, but keeping H picked
at random

Game G6: In this game, we now compute C as originally using SimCom. This game is indis-
tinguishable thanks to strong simulation indistinguishability.

Game G7: In this game, if M ′ 6=M , we compute H ′ as originally (as the hash value of C ′).
This game is indistinguishable from the previous one thanks to the smoothness of the SPHF.

Game G8: In this game, we do not extract M ′ from C ′ nor abort when C ′ is not perfectly
binding. Thanks to the robustness, this game is indistinguishable from the previous one.
We remark that this game is exactly the experiment Expc-s-ps-rand-1A .

Finally, one thus gets Succc-s-ps-randE2C,F (t) ≤ 2 · SuccrobustE2C (t) + 2 · Succs-bind-extE2C (t) + 2 · AdvsmoothF .

D.3 Proof of Theorem 7 (UC-Secure PAKE from an SPHF-Friendly Commitment)

To prove this theorem, we exhibit a sequence of games. The sequence starts from the real game,
where the adversary A interacts with real players and ends with the ideal game, where we have
built a simulator S that makes the interface between the ideal functionality FpwKE and the
adversary A.

For the sake of simplicity, since the protocol is fully symmetric in Pi and Pj , we describe the
simulation for player Pi in order to simplify the notations.

We say that a flow is oracle-generated if the pair (hp, C) was sent by an honest player (or the
simulator) and received without any alteration by the adversary. It is said non-oracle-generated
otherwise.

APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13] 199

Game G0: This is the real game.
Game G1: First, in this game, the simulator generates correctly every flow from the honest

players, as they would do themselves, knowing the inputs πi and πj sent by the environment
to the players. In case of corruption, the simulator can give the internal data generated on
behalf of the honest players.
In the following, Step 1. is always generated honestly by the simulator, since the hashing
and projection keys do not depend on any private value.

Game G2: We now replace the setup algorithm SetupCom by SetupComT that additionally
outputs the trapdoor (ρ, τ)

$← SetupComT(1K), but nothing else changes, which does not
alter much the view of the environment under setup indistinguishability. Corruptions are
handled the same way.

Game G3: In the next two games, we deal with the case where Pi receives a flow oracle-
generated from Pj, and they have distinct passwords. In this case, S has received
the password πj of Pj at the corruption time of Pj (πj was anyway already known), and
knows the corresponding opening data δj , generated with the commitment by the Com-call.
If this password is the same, it does not change anything. If the passwords are distinct,
then S computes H ′i as before, but chooses Hj at random: this means that we replace
Hash(hki, Lπi , (`j , Cj)) by a random value, while Cj has been simulated by Com with an
opening value δj for πj 6= πi.
With an hybrid proof, applying the Expc-smooth security game, with x = πi and x′ = πj
(since Cj is generated by Com on πj , it thus extracts on x′ = πj), one proves this game is
indistinguishable from the former one.

Game G4: We conclude for this case: if the passwords are distinct, Pi chooses a random key.
Since this is a simple syntactical change from the former game, this game is perfectly indis-
tinguishable from it.

Game G5: In this game, we simulate the commitments sent by the honest players using
the trapdoors generated by the setup algorithm SetupComT. More precisely, we replace the
commitment (Ci, δi)

$← Com`i(πi) sent by an honest Pi with `i = (sid, Pi, Pj , hpi) in Step 2.
by a simulated commitment (Ci, δi)

$← SCom`i(τ, πi), which means (Ci, eqki)
$← SimCom`i(τ)

and δi ← OpenCom`i(eqki, Ci, πi). We then store (`i, πi, Ci, δi) in Λ.
With an hybrid proof, applying the Expsim-ind security game for each player, in which SCom
is used as an atomic operation in which the simulator does not see the intermediate values,
and in particular the equivocation key, one can show the indistinguishability of the two
games.
In case of corruption of the honest player Pi, one learns the already known value πi. If the
corruption occurs before the erasures, we are able to provide the adversary with coherent
values (δi has been computed using the correct value πi). If the corruption occurs in the end,
we are able to give the adversary the (honestly computed) session key. Unless we precise it,
all the corruptions are dealt with in the same way in the following games.

Game G6: In this game, we deal with the case where Pi receives a flow oracle-generated
from Pj, and they have identical passwords. When Pi receives an oracle-generated
flow from Pj , the simulator checks whether the two passwords sent by the environment for
Pi and Pj are identical. If so, S computes both hash values using Hash and not ProjHash.
More precisely, it computes H ′i = Hash(hkj , Lπj , (`i, Ci)) (with `i = (sid, Pi, Pj , hpi)). If the
passwords are distinct, it does not change anything. Recall that it is able to do so since it
generated the hashing keys on their behalf.
Thanks to the correctness of the SPHF, this game is indistinguishable from the former one.

Game G7: Still in this case, we replace H ′i (and Hi if Pj received the oracle-generated flow
generated flow sent by Pi) by a random value.
To prove this game is indistinguishable from the previous one, we consider two cases:

200 APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13]

– Pj received the oracle-generated flow generated by Pi. In this case, hkj is only used to
compute Hi = H ′i, and since δi is no more used, we can apply the pseudo-randomness
game on Ci to prove that Hi = H ′i is indistinguishable from random;

– Pj received a non-oracle-generated flow (hp′i, C
′
i). In this case hkj is only used to compute

H ′i = Hash(hkj , Lπi , (`i, Ci)) and Hi = Hash(hkj , Lπi , (`i, C
′
i)). In this case, we can apply

the strong pseudo-randomness game to prove that H ′i still looks random.
Game G8: We conclude for this case: S sends a random key to Pi.

Since this is a simple syntactical change from the former game, this game is perfectly indis-
tinguishable from it.

Game G9: In the next two games, we deal with the case where Pi receives a non-oracle-
generated flow (hpj , Cj). Since this pair is fresh, either Cj is new or hpj (and thus the
label) is new. In both cases, S can extract the committed value π′j on behalf of Pj .
If this password is the same than that of Pi (which the simulator can easily check, still having
access to the private values sent by the environment), S still computes both Hj and H ′i as
before.
Otherwise (or if the extraction fails), the S computesH ′i as before, but choosesHj at random:
Under the smoothness, with an hybrid proof, applying the Expc-smooth security game for each
such hash value, one can show the indistinguishability of the two games.

Game G10: Finally, when Pi receives a non-oracle-generated flow (hpj , Cj) that extracts to a
different password than that of Pi (or for which extraction fails), then S sets the session key
of Pi as random.
Since this is a simple syntactical change from the former game, this game is perfectly indis-
tinguishable from it.

Game G11: We do not use anymore the knowledge of πi when simulating an honest
player Pi. The simulator generates (Ci, eqki)

$← SimCom`i(τ), with `i = (sid, Pi, Pj , hpi),
to send Ci. It then stores (`i,⊥, Ci, eqki) in Λ. We essentially break the atomic SCom in
the two separated processes SimCom and OpenCom. This does not change anything from
the previous game since δi is never revealed. Λ is first filled with (`i,⊥, Ci, eqki), it can be
updated with correct values in case of corruption of Pi. Indeed, in case of corruption, S
recovers the password πi and computes δi ← OpenCom`i(eqki, Ci, πi), which it is able to give
to the adversary.
The private values of Pi are thus not used anymore in Step 1. and Step 2. The simulator
only needs them to choose how to set the session key of the players. In the ideal game, this
will be replaced by a NewKey-query that will automatically deal with equality or difference
of the passwords, or TestPwd-query for non-oracle-generated-flows.
This game is perfectly indistinguishable from the former one.

Game G12: This is the ideal game. Now, the simulator does not know the private values
of the honest players anymore, but can make use of the ideal functionality. We showed in
Game G11 that the knowledge of the private values is not needed anymore by the simulator,
provided it can ask queries to the ideal functionality:
Initialization: When initialized with security parameter K, the simulator first runs the

commitment setup algorithm (ρ, τ)
$← SetupComT(1K), and initializes the real-world

adversary A, giving it ρ as common reference string.
Session Initialization: When receiving a message (NewSession, sid, ssid, Pi, Pj) from FpwKE ,
S executes the protocol on behalf of Pi as follows:
1. S generates honestly hki

$← HashKG(L) and hpi ← ProjKG(hki, L,⊥);
2. S computes (Ci, eqki)

$← SimCom`i(τ) with `i = (sid, Pi, Pj , hpi);
3. S sends (sid, Pi, Pj , hpi, Ci) to Pj .

If Pi gets corrupted, S recovers the password πi and computes δi ← OpenCom`i(eqk, Ci, πi),
which it is able to give to the adversary.

Key Computation: When receiving a flow (hpj , Cj):

APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13] 201

– if the flow (Cj , hpj) is non-oracle-generated, S extracts the password π′j (or set it
as a dummy value in case of failure of extaction). S then asked for a TestPwd-query
to the functionality to check whether π′j is the password of Pi. If this password is
correct, S sets πi = π′j , computes δi ← OpenCom`i(eqki, Ci, πi), as well as Hj and
H ′i, and then ski, that is passed to the NewKey-query (compromised case). If the
password is incorrect, S asks the NewKey-query with a random key (interrupted
case).

– if the flow (Cj , hpj) is oracle-generated but the associated Pj has been corrupted,
then S has recovered its password πj and δj . It can thus compute skj , that is passed
to the NewKey-query (corrupted case).

– if the flow (Cj , hpj) is oracle-generated and the associated Pj is still uncorrupted, S
asks the NewKey-query with a random key (normal case).

One can remark that the NewKey-queries will send back the same kinds of session keys to
the environment as in GameG11: if a player is corrupted, the really computed key is sent
back, in case of impersonation attempt, the TestPwd-query will address the appropriate
situation (correct or incorrect guess), and if the two players are honest, the NewKey-query
also addresses the appropriate situation (same or different passwords).

More precisely, we have proven that for any environment, its advantage in distinguishing the ideal
world (ideal functionality from Figure 10) and the real world (protocol from Figure 7) is bounded
by Advsetup-indC (t)+ q×

(
2 · Advs-sim-indC (t) + 3 · AdvrobustC (t) + 2 · AdvsmoothF + Advc-s-ps-randC,F

)
, in

which q is the number of activated players and t its running time.

D.4 Proof of Theorem 8 (UC-Secure OT from an SPHF-Friendly Commitment)

To prove this theorem, we exhibit a sequence of games. The sequence starts from the real game,
where the adversary A interacts with real players and ends with the ideal game, where we have
built a simulator S that makes the interface between the ideal functionality F and the adversary
A. We prove the adaptive version of the protocol. The proof of the static version can be obtained
by removing the parts related to adaptive version from the proof below.

Essentially, one first makes the setup algorithm additionally output the trapdoor (setup-
indistinguishability); one can then replace all the commitment queries by simulated (fake) com-
mitments (simulation-indistinguishability). When the sender submits the values (hpi,Mi)i the
simulator can extract all the message thanks to the trapdoor and get the witnesses for each
indices. This allows to simulate the Send-query to the ideal functionality. Eventually, when sim-
ulating the honest senders, the simulator extracts the committed value s, to set hps and Ms

consistent with ms, the other values can be random. More details follow:

Game G0: This is the real game.
Game G1: In this game, the simulator generates correctly every flow from the honest players,

as they would do themselves, knowing the inputs (m1, . . . ,mk) and s sent by the environment
to the sender and the receiver. In all the subsequent games, the players use the label ` =
(sid, ssid, Pi, Pj). In case of corruption, the simulator can give the internal data generated
on behalf of the honest players.

Game G2: In this game, we just replace the setup algorithm SetupCom by SetupComT that
additionally outputs the trapdoor (ρ, τ) $← SetupComT(1K), but nothing else changes, which
does not alter much the view of the environment under setup indistinguishability. Corruptions
are handled the same way.

Game G3: We first deal with honest senders Pi: when receiving a commitment C, the simu-
lator extracts the committed value s. Instead of computing the key Kt, for t = 1, . . . , k with
the hash function, it chooses Kt

$← G for t 6= s.

202 APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13]

With an hybrid proof, applying the smoothness (see Figure 6 – left), for every honest sender,
on every index t 6= s, since C is extracted to s, for any t 6= s, the hash value is indistinguish-
able from a random value.
In case of corruption, everything has been erased. This game is thus indistinguishable from
the previous one under the smoothness.

Game G4: Still in this case, when receiving a commitment C, the simulator extracts the com-
mitted value s. Instead of proceeding as the sender would do on (m1, . . . ,mk), the simulator
proceeds on (m′1, . . . ,m

′
k), with m

′
s = ms, but m′t = 0 for all t 6= s. Since the masks Kt, for

t 6= s, are random, this game is perfectly indistinguishable from the previous one.
Game G5: We now deal with honest receivers Pj : we replace all the commitments (C, δ) $←

Com`(s) with ` = (sid, ssid, Pi, Pj) in Step 1 of the index query phase of honest receivers
by simulated commitments (C, δ) $← SCom`(τ, s), which means (C, eqk) $← SimCom`(τ) and
δ ← OpenCom`(eqk, C, s). We then store (`, s, C, δ) in Λ.
With an hybrid proof, applying the Exps-sim-ind security game for each session, in which
SCom is used as an atomic operation in which the simulator does not see the intermediate
values, and in particular the equivocation key, one can show the indistinguishability of the
two games. In case of corruption of the receiver, one learns the already known value s.

Game G6: We deal with the generation of R for honest senders Pi on honestly-
generated queries (adaptive case only): if Pi and Pj are honest at least until Pi received
the second flow, the simulator sets R = F (S′) for both Pi and Pj , with S′ a random value,
instead of R = F (S).
With an hybrid proof, applying the IND-CPA property for each session, one can show the
indistinguishability of this game with the previous one.

Game G7: Still in the same case, the simulator sets R as a random value, instead of R = F (S′).
With an hybrid proof, applying the PRF property for each session, one can show the indis-
tinguishability of this game with the previous one.

Game G8: We now deal with the generation of Ks for honest senders Pi on honestly-
generated queries:
– in the static case (the pre-flow is not necessary, and thus we assume R = 0) the simulator

chooses Ks
$← G (for t 6= s, the simulator already chooses Kt

$← G), where s is the index
given by the ideal functionality to the honest receiver Pj .
With an hybrid proof, applying the pseudo-randomness (see Figure 6 – right), for every
honest sender, the hash value is indistinguishable from a random value, because the
adversary does not know any decommitments information δ for C;

– in the adaptive case, and thus with the additional random mask R, one can send a
random Ms, and Ks can be computed later (when Pj actually receives its flow).
As above, but only of Pj has not been corrupted before receiving its flow, the simulator
chooses Ks

$← G. With an hybrid proof, applying the pseudo-randomness (see Figure 6 –
right), for every honest sender, the hash value is indistinguishable from a random value,
because the adversary does not know any decommitments information δ for C. If the
player Pj involved in the pseudo-randomness game gets corrupted (but δ is unknown)
we are not in this case, and we can thus abort it.
In case of corruption of Pi, everything has been erased. In case of corruption of the
receiver Pj , and thus receiving the value ms, the simulator chooses R (because it was a
random value unknown to the adversary and all the other Kt are independent random
values too) such that

R⊕ ProjHash(hps, Ls, (`, C), δs)⊕Ms = ms.

This game is thus indistinguishable from the previous one under the pseudo-randomness.

APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13] 203

Game G9: Still in this case, the simulator proceeds on (m′1, . . . ,m
′
k), withm

′
t = 0 for all i. Since

the masks Kt⊕R, for any t = 1, . . . , k, are independent random values (the Kt, for t 6= s are
independent random values, and Ks is also independently random in the static case, while R
is independently random in the adaptive case), this game is perfectly indistinguishable from
the previous one.
We remark that it is therefore no more necessary to know the index s given by the ideal
functionality to the honest receiver Pj , to simulate Pi (but it is still necessary to simulate
Pj).

Game G10: We do not use anymore the knowledge of s when simulating an honest receiver
Pj : the simulator generates (C, eqk)

$← SimCom`(τ), with ` = (sid, ssid, Pi, Pj), to send
C during the index query phase of honest receivers. It then stores (`,⊥, C, eqk) in Λ. We
essentially break the atomic SCom in the two separated processes SimCom and OpenCom.
This does not change anything from the previous game since δ is never revealed. Λ is first
filled with (`,⊥, C, eqk), it can be updated with correct values in case of corruption of the
receiver.
When it thereafter receives (Send, sid, ssid, Pi, Pj , (hp1,M1, . . . , hpk,Mk)) from the adversary,
the simulator computes, for i = 1, . . . , k, δi ← OpenCom`(eqk, C, i), Ki ← ProjHash(hpi,
(`, Li), C, δi) and mi = Ki ⊕R⊕Mi. This provides the database submitted by the sender.

Game G11: We can now make use of the functionality, which leads to the following simulator:
– when receiving a Send-message from the ideal functionnality, which means that an honest

sender has sent a pre-flow, the simulator generates a key pair (pk, sk) $← KeyGen(1K) and
sends pk as pre-flow;

– after receiving a pre-flow pk (from an honest or a corrupted sender) and a Receive-
message from the ideal functionality, which means that an honest receiver has sent an
index query, the simulator generates (C, eqk)

$← SimCom`(τ) and c
$← Encrypt(pk, S),

with ` = (sid, ssid, Pi, Pj) and R a random value, to send C and c during the index query
phase of the honest receiver;

– when receiving a commitment C and a ciphertext c, generated by the adversary (from
a corrupted receiver), the simulator extracts the committed value s, and uses it to send
a Receive-message to the ideal functionality (and also decrypts the ciphertext c as S,
and computes R = F (S));

– when receiving (hp1,M1, . . . , hpk,Mk) from the adversary (a corrupted sender), the sim-
ulator computes, for i = 1, . . . , k, δi ← OpenCom`(eqk, C, i), Ki ← ProjHash(hpi, Li,
(`, C), δi) and mi = Ki ⊕ R ⊕Mi. It uses them to send a Send-message to the ideal
functionality.

– when receiving a Received-message from the ideal functionality, together with ms, on
behalf of a corrupted receiver, from the extracted s, instead of proceeding as the sender
would do on (m1, . . . ,mk), the simulator proceeds on (m′1, . . . ,m

′
k), with m

′
s = ms, but

m′i = 0 for all i 6= s;
– when receiving a commitment C and a ciphertext c, generated by an honest sender

(i.e., by the simulator itself), the simulator proceeds as above on (m′1, . . . ,m
′
k), with

m′i = 0 for all i, but it chooses R uniformly at random instead of choosing it as
R = F (S); in case of corruption afterward, the simulator will adapt R such that
R ⊕ ProjHash(hps, Ls, (`, C), δs)⊕Ms = ms, where ms is the message actually received
by the receiver.

Any corruption either reveals s earlier, which allows a correct simulation of the receiver,
or reveals (m1, . . . ,mk) earlier, which allows a correct simulation of the sender. When the
sender has sent his flow, he has already erased all his random coins. However, there would
have been an issue when the receiver is corrupted after the sender has sent is flow, but before
the receiver receives it, since he has kept δs: this would enable the adversary to recover ms

from Ms and hps. This is the goal of the epheremal mask R that provides a secure channel.

204 APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13]

As a consequence, the distance between the first and the last games is bounded by

Advsetup-indC (t) + qs

(
Advind-cpaE (t) + AdvprgF (t) + Advs-sim-indC (t)

+(k − 1)Advc-smoothC,F (t) + Advc-ps-randC,F (t)
)

≤ Advsetup-indC (t) + qs ×
(
Advind-cpaE (t) + AdvprgF (t) + 2 · Advs-sim-indC (t)

+k · (AdvrobustC (t) + AdvsmoothF)
)
,

where qs is the number of concurrent sessions and t the running time of the distinguisher.

E Concrete Instantiations

UC-Secure Password-Authenticated Key Exchange.A concrete instantiation of our generic
PAKE construction from Figure 7 is presented in Figure 11.

CRS : (p,G1, g1,G2, g2,GT , e, h1, f1, c, d, T)
Pi(πi ∈ {0, 1}m) `i = (sid, Pi, Pj), `j = (sid, Pj , Pi) Pj(πj ∈ {0, 1}m)

hki = (ηi,t,1, ηi,t,2, αi,t, βi,t, µi,t)t
$← Z5m

p hkj = (ηj,t,1, ηj,t,2, αj,t, βj,t, µj,t)t
$← Z5m

p

hpi = (g
ηi,t,1
1 h

αi,t
1 f

βi,t
1 cµi,t , g

ηi,t,2
1 dµi,t)t ∈ G2m

1 hpj = (g
ηj,t,1
1 h

αj,t
1 f

βj,t
1 cµj,t , g

ηj,t,2
1 dµj,t)t ∈ G2m

1

πi = (πi,t)t ∈ {0, 1}m; `′i = (`i, hpi) πj = (πj,t)t ∈ {0, 1}m; `′j = (`j , hpj)

(ri,t,πi,t)t
$← Zmp ; (ri,t,1−πi,t)t = (0)t; si

$← Z2m
p (rj,t,πj,t)t

$← Zmp ; (rj,t,1−πj,t)t = (0)t; sj
$← Z2m

p

ai = (g
ri,t,πi,t
2 Tπi,t)t,di = (g

ri,t,u
1)t,u aj = (g

rj,t,πj,t
2 Tπj,t)t,dj = (g

rj,t,u
1)t,u

bi = 2m-MCS
`′i
pk(di; si) bj = 2m-MCS

`′j
pk(dj ; sj)

Ci = (ai, bi), δi = (si,t,πi,t)t Cj = (aj , bj), δj = (sj,t,πj,t)t
Erase everything, except δi Erase everything, except δj

Ci, hpi←−−−−−−−−−−→
Cj , hpj

H ′i ← ProjHash(hpi, Lπi , (`
′
i, Ci), δi) H ′j ← ProjHash(hpi, Lπj , (`

′
j , Cj), δj)

Hj ← Hash(hki, Lπi , (`
′
j , Cj)) Hi ← Hash(hkj , Lπj , (`

′
i, Ci))

ski ← H ′i ·Hj skj ← H ′j ·Hi
Erase everything, except πi, ski Erase everything, except πj , skj

t ranges in {1, . . . ,m}, while u ranges in {0, 1}.

Fig. 11. UC-Secure PAKE

UC-Secure Oblivious Transfert Protocol. A concrete instantiation of our generic OT con-
structions from Figure 8 is presented in Figure 12. No PRG is actually required here, and we can
choose S $← G1 and R = e(S, g2). The first flow and the ciphertext c needs not to be sent if only
static security is required (in this case R = 1).

APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13] 205

CRS : (p,G1, g1,G2, g2,GT , e, h1, c, d, T)

Pi(m ∈ GkT) ` = (sid, ssid, Pi, Pj) Pj

(
s ∈ {1, . . . , k}
s = (st)t ∈ {0, 1}m

)

sk = s′ $← Zp; pk = h′ = gs
′

1

pk−−−−−−−−→ (rt,st)t
$← Zmp ; (rt,1−st)t = (0)t

a = (g
rt,st
2 T st)t,d = (g

rt,u
1)t,u;z

$← Z2m
p

b = 2m-MCS`pk(d;z);C = (a, b), δ = (zt,st)t

S
$← G1;R = e(S, g2); r

′ $← Zp
c = (c1 = gr

′
, c2 = h′r

′ · S)
ε

$← Zp
C, c←−−−−−−−− Erase everything, except δ,R

S = c2/c
s′
1 ;R = e(S, g2)

for v = 1 to k :

hkv = (ηv, αv, βv, µv)
$← Z4

p

hpv = (ε, gηv1 hαv1 fβv1 (cdθ)µv) ∈ Zp ×G1

Mv ← R ·mv · Hash((ε, hkv), v, (`, C))

Erase everything, except M , hp
M , hp−−−−−−−−→ ms ←Ms/(R · ProjHash(hps, s, (`, C), δ))

Erase everything, except s,ms

v ranges in {1, . . . , k}, while t ranges in {1, . . . ,m}, for m = dlog ke, and u ranges in {0, 1}.

Fig. 12. UC-Secure 1-out-of-k OT Protocol

206 APPENDIX C. SPHF-FRIENDLY NON-INTERACTIVE COMMITMENTS [ABB+13]

Appendix D

Adaptive Oblivious Transfer and
Generalization [BCG16]

This is the Full Version of the Extended Abstract that appears in Advances in Cryptology — Proceedings
of ASIACRYPT’2016 (4 – 8 December 2016, Hanoi, Vietnam), Jung Hee Cheon and Tsuyoshi Takagi,
Springer-Verlag, Part II, LNCS 10032, pages 217–247.

Authors

Olivier Blazy, Céline Chevalier, Paul Germouty

Abstract

Oblivious Transfer (OT) protocols were introduced in the seminal paper of Rabin, and allow a user to
retrieve a given number of lines (usually one) in a database, without revealing which ones to the server.
The server is ensured that only this given number of lines can be accessed per interaction, and so the
others are protected; while the user is ensured that the server does not learn the numbers of the lines
required. This primitive has a huge interest in practice, for example in secure multi-party computation,
and directly echoes to Symmetrically Private Information Retrieval (SPIR).

Recent Oblivious Transfer instantiations secure in the UC framework suffer from a drastic fallback.
After the first query, there is no improvement on the global scheme complexity and so subsequent queries
each have a global complexity of O(|DB|) meaning that there is no gain compared to running completely
independent queries. In this paper, we propose a new protocol solving this issue, and allowing to have
subsequent queries with a complexity of O(log(|DB|)) while keeping round optimality, and prove the
protocol security in the UC framework with adaptive corruptions and reliable erasures.

As a second contribution, we show that the techniques we use for Oblivious Transfer can be generalized
to a new framework we call Oblivious Language-Based Envelope (OLBE). It is of practical interest since
it seems more and more unrealistic to consider a database with uncontrolled access in access control
scenarios. Our approach generalizes Oblivious Signature-Based Envelope, to handle more expressive
credentials and requests from the user. Naturally, OLBE encompasses both OT and OSBE, but it also
allows to achieve Oblivious Transfer with fine grain access over each line. For example, a user can access
a line if and only if he possesses a certificate granting him access to such line.

We show how to generically and efficiently instantiate such primitive, and prove them secure in the
Universal Composability framework, with adaptive corruptions assuming reliable erasures. We provide
the new UC ideal functionalities when needed, or we show that the existing ones fit in our new framework.

The security of such designs allows to preserve both the secrecy of the database values and the
user credentials. This symmetry allows to view our new approach as a generalization of the notion of
Symmetric PIR.

1 Introduction

Oblivious Transfer (OT) is a notion introduced by Rabin in [Rab81]. In its classical 1-out-of-n
version, it allows a user U to access a single line of a database while interacting with the server
S owning the database. The user should be oblivious to the other line values, while the server
should be oblivious to which line was indeed received. Oblivious transfer has a fundamental role
for achieving secure multi-party computation: It is for example needed for every bit of input in
Yao’s protocol [Yao86] as well as for Oblivious RAM ([WHC+14] for instance), for every AND
gate in the Boolean circuit computing the function in [GMW87] or for almost all known garbled
circuits [BHR12].

Private Information Retrieval (PIR) schemes [CGKS95] allow a user to retrieve information
from a database, while ensuring that the database does not learn which data were retrieved. With
the increasing need for user privacy, these schemes are quite useful in practice, be they used for
accessing records for email repositories, collection of webpages, music... But while protecting
the privacy of the user, it is equally important that the user should not learn more information
than he is allowed to. This is called database privacy and the corresponding protocol is called a
Symmetrically Private Information Retrieval (SPIR), which could be employed in practice, for
medical data or biometric information. This notion is closely related to Oblivious Transfer.

Due to their huge interest in practice, it is important to achieve low communication on these
Oblivious Transfer protocols. A usual drawback is that the server usually has to send a message
equivalent to the whole database each time the user requests a line. If it is logical, in the UC
framework, that an OT protocol requires a cost linear in the size of the database for the first
line queried. One may then hope to amortize the cost for further queries between the same
server and the same user (or even another user, if possible), reducing the efficiency gap between
Private Information Retrieval schemes and their stronger equivalent Oblivious Transfer schemes.
We thus deal in this paper with a more efficient way, which is to achieve Adaptive Oblivious
Transfer, in which the user can adaptively ask several lines of the database. In such schemes,
the server only sends his database once at the beginning of the protocol, and all the subsequent
communication is in o(n), more precisely logarithmic. The linear cost is batched once and for
all in this preprocessing phase, achieving then a logarithmic complexity similar to the best PIR
schemes.

Smooth Projective Hash Functions (SPHF), used in conjunction with Commitments have
become the standard way to deal with such secret message transfers. In a commitment scheme,
the sender is going to commit to the line required (i.e. to give the receiver an analogue of a
sealed envelope containing his value i) in such a way that he should not be able to open to a
value different from the one he committed to (binding property), and that the receiver cannot
learn anything about i (hiding property) before a potential opening phase. During the opening
phase, however, the committer would be asked to reveal i in such a way that the receiver can
verify it was indeed i that was contained in the envelope.

But, in our applications, there cannot be an opening phase, due to the oblivious requirements
on the protocols and the secrecy of the database line i sent. The decommitment (opening phase)
will thus be implicit, which means that the committer does not really open its commitment, but
rather convinces the receiver that it actually committed to the value it pretended to. We achieve
this property thanks to Smooth Projective Hash Functions [CS02,GL03], which have been widely
used in such circumstances (see [ACP09,KV11,BBC+13b,ABB+13,BC15] for instance). These
hash functions are defined in such a way that their value can be computed in two different ways
if the input belongs to a particular subset (the language), either using a private hashing key
or a public projection key along with a private witness ensuring that the input belongs to the
language. The hash value obtained is indistinguishable from random in case the input does not

208 APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16]

belong to the language (smoothness) and in case the input does belong to the language but no
witness is known (pseudo-randomness).

In a nutshell, to ensure implicit decommitment, the sender will thus simply mask the database
line with this hash value computed using the private hashing key. He will then send it along with
the public projection key to the user, who will be able to compute the same hash value thanks
to the randomness of the commitment of this line he sent in the first place (the randomness
is the witness of the membership of the commitment to the language of commitments of this
specific line). In order to ensure adaptive security in the universal composability framework,
the commitments used are usually required to be both extractable (meaning that a simulator
can recover the value i committed to thanks to a trapdoor) and equivocable (meaning that a
simulator can open a commitment to a value i′ different from the value i it committed to thanks
to a trapdoor).

In order to simplify these commitments, which can be quite technical, we choose here to rely
on words in more complex languages rather than on simple line numbers. More precisely, the
user will first compute an equivocable commitment on the line number required, which will be
his word w in the language. This word will then be encrypted under a CCA encryption scheme,
and the SPHF will be constructed for this word (rather than for the line number), which will
be simpler. Furthermore, this abstraction consisting in encoding line numbers as words in more
complex languages will reveal useful in more general contexts, not only Oblivious Transfer, the
simplest of which being Oblivious Signature Based Envelope.

Oblivious Signature-Based Envelope (OSBE) was introduced by Li, Du and Boneh in [LDB03].
OSBE schemes consider the case where Alice (the receiver) is a member of an organization and
possesses a certificate produced by an authority attesting she actually belongs to this organi-
zation. Bob (the sender) wants to send a private message P to members of this organization.
However due to the sensitive nature of the organization, Alice does not want to give Bob neither
her certificate nor a proof she belongs to the organization. OSBE lets Bob send an obfuscated
version of this message P to Alice, in such a way that she will be able to find P if and only if
she is in the required organization. In the process, Bob cannot decide whether Alice does really
belong to the organization. We even manage to construct a more general framework to capture
many protocols around trust negotiation, where the user receives a message if and only if he pos-
sesses some credentials or specific accreditations. As a reference to OSBE, we call this framework
Oblivious Language-Based Envelope (OLBE).

1.1 Related Work

Since the original paper [Rab81], several instantiations and optimizations of OT protocols have
appeared in the literature [NP01, CLOS02], including proposals in the UC framework. More
recently, new instantiations have been proposed, trying to reach round-optimality [HK07], and/or
low communication costs [PVW08]. Recent schemes like [ABB+13, BC15] manage to achieve
round-optimality while maintaining a small communication cost. Choi et al. [CKWZ13] also
propose a generic method and an efficient instantiation secure against adaptive corruptions in
the CRS model with erasures, but it is only 1-out-of-2 and it does not scale to 1-out-of-n OT,
for n > 2. As far as adaptive versions of those protocols are concerned, this problem was first
studied by [NP97, GH07, KNP11], and more recently UC secure instantiations were proposed,
but unfortunately either under the Random Oracle, or under not so standard assumptions such
as q-Hidden LRSW or later on q-SDH [CNs07,JL09,RKP09,CDH12,GD14], but without allowing
adaptive corruptions.

Concerning automated trust negotiation, two frameworks have been proposed to encompass
the symmetric protocols (Password-based Authenticated Key-Exchange, Secret Handshakes and
Verfier-Based PAKE): The Credential Authenticated Key Exchange [CCGS10], and Language-
based Authenticated Key Exchange (LAKE) [BBC+13a], in which two parties establish a com-

APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16] 209

mon session key if and only if they hold credentials that belong to specific (and possibly in-
dependent) languages chosen by the other party. As for OSBE, the authors in [BPV12] im-
proved the security model initially proposed in [LDB03], showing how to use Smooth Projec-
tive Hash Functions to do implicit proof of knowledge, and proposed the first efficient instan-
tiation of OSBE, under a standard hypothesis. It fits, as well as Access Controlled Oblivious
Transfer [CDN09,CDNZ11], Priced Oblivious Transfer [AIR01,RKP09]) and Conditional Obliv-
ious Transfer [DOR99], into the generic notion of Conditional Disclosure of Secrets (see for
instance [AIR01,GIKM98,BGN05,LL07,Wee14, IW14,Att14,GKW15]).

1.2 Contributions

Our first contribution is to give the first round-optimal adaptive Oblivious Transfer protocol
secure in the UC framework with adaptive corruptions under standard assumptions (MDDH)
and assuming reliable erasures. We show how to instantiate the needed building blocks using
standard assumptions, using or extending various basic primitives in order to fit the MDDH
framework introduced in [EHK+13]. In our scheme, the server first preprocesses its database
in a time linear in the length of the database and transfers it to the receiver. After that, the
receiver and the sender can run many instances of the protocol on the same database as input
and adaptively chosen inputs from the receiver, with a cost sublinear in the database.

It is interesting to note that our resulting adaptive Oblivious Transfer scheme has an amor-
tized complexity in O(log |DB|), which is similar to current Private Information Retrieval in-
stantiations [KLL+15], that have weaker security prerequisites, and much better than current
UC secure Oblivious Transfer under standard assumptions (as they are in O(|DB|). For a fair
comparison it should be stated that the PIR schemes allow this complexity directly from the first
query while in our case due to the preprocessing, this amortized cost is only reached after a high
number of queries. However, it is interesting to see this convergence in spite of hugely different
security models and expectation. Compared to existing versions cited above (either proven in
classical security models, or in the UC framework but only with static corruptions and under
non-standard assumptions), we manage to prove its security under standard assumptions, like
SXDH, and allow UC security with adaptive user corruptions.

As a side result, it is worth noting that we follow some ideas developed in the construction
explained in [GH07] around Blind Identity-Based Encryption and provide techniques in order to
transform IBE schemes into blind ones, applying them to revisit the one given in [BKP14], in
order to show how we can answer blind user secret key-retrieval, which can be of independent
interest.

As a second contribution, we propose our new notion, that we call Oblivious Language-Based
Envelope. We provide a security model by giving a UC ideal functionality, and show that this
notion supersedes the classical asymmetric automated trust negotiation schemes recalled above
such as Oblivious Transfer and Oblivious Signature-Based Envelope. We show how to choose
the languages in order to obtain from our framework all the corresponding ideal functionalities,
recovering the known ones (such as OT) and providing the new ones (such as OSBE, to the best
of our knowledge). We then give a generic construction scheme fulfilling our ideal functionality,
which directly gives generic constructions for the specific cases (OT, OSBE). Finally, we show
how to instantiate the different simple building blocks in order to recover the standard efficient in-
stantiations of these schemes from our framework. In addition to the two cases most studied (OT,
OSBE), we also propose what we call Conditioned Oblivious Transfer, which encompasses Access
Controlled Oblivious Transfer, Priced Oblivious Transfer and Conditional Oblivious Transfer,
and in which the access to each line of the database is hidden behind some possibly secret re-
striction, be it a credential, a price, or an access policy. The advantage of the OLBE framework
on the notion of Conditional Disclosure of Secrets is to allow generic constructions of a large
subclass of schemes, as long as two participants are involved. It can be easily applied to any

210 APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16]

language expressing some new access control policy. Furthermore, those instantiations fit into a
global security model, allowing to uniformize (for the better) the security expectations for such
schemes. In particular, we allow security in the UC framework with adaptive corruptions for
all our constructions (which was already known for some primitives cited above, but not all),
and manage to achieve this level of security while staying in the standard model with standard
hypothesis.

2 Definitions and Building Blocks

2.1 Notations for Classical Primitives

Throughout this paper, we use the notation K for the security parameter.

Digital Signature. A digital signature scheme S [DH76,GMR88] allows a signer to produce
a verifiable proof that he indeed produced a message. It is described through four algorithms
(Setup,KeyGen, Sign,Verify). The formal definitions are given in Appendix A.

Encryption. An encryption scheme C is described by four algorithms (Setup,KeyGen,Encrypt,
Decrypt). The formal definitions are given in Appendix A.

Commitment and Chameleon Hash. Commitments allow a user to commit to a value without
revealing it, but without the possibility to later change his mind. It is composed of four algorithms
(Setup,KeyGen,Commit,Decommit). Informally, it is extractable if a simulator knowing a certain
trapdoor can recover the value committed to, and it is equivocable if a simulator, knowing
another trapdoor, can open the commitment to another value than the one it actually committed
to. This directly echoes to Chameleon Hashes, traditionally defined by three algorithms CH =
(KeyGen,CH,Coll). The formal definitions are given in Appendix A.

2.2 Identity-Based Encryption, Identity-based Key Encapsulation

Identity Based encryption was first introduced by Shamir in [Sha84] who was expecting an
encryption scheme where no public key will be needed for sending a message to a precise user,
defined by his identity. Thus any user wanting to send a private message to a user only need this
user’s identity and a master public key. It took 17 years for the cryptographic community to find a
way to realize this idea. The first instantiation was proposed in [BF01] by Boneh and Franklin. It
can be described as an identity-based key encapsulation (IBKEM) scheme IBKEM which consists
of four algorithms IBKEM = (Gen,USKGen,Enc,Dec). Every IBKEM can be transformed into an
ID-based encryption scheme IBE using a (one-time secure) symmetric cipher.

Definition 1 (Identity-based Key Encapsulation Scheme).
An identity-based key encapsulation scheme IBKEM consists of four PPT algorithms IBKEM =
(Gen,USKGen,Enc,Dec) with the following properties.
– Gen(K): returns the (master) public/secret key (mpk,msk). We assume that mpk implicitly

defines an identity space ID, a key space KS, and ciphertext space CS.
– USKGen(msk, id): returns the user secret-key usk[id] for identity id ∈ ID.
– Enc(mpk, id): returns the symmetric key K ∈ KS together with a ciphertext C ∈ CS with

respect to identity id.
– Dec(usk[id], id,C): returns the decapsulated key K ∈ KS or the reject symbol ⊥.
For perfect correctness we require that for all K ∈ N, all pairs (mpk,msk) generated by Gen(K), all
identities id ∈ ID, all usk[id] generated by USKGen(msk, id) and all (K,C) output by Enc(mpk, id):
Pr[Dec(usk[id], id,C) = K] = 1.

APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16] 211

The security requirements for an IBKEMwe consider here are indistinguishability and anonymity
against chosen plaintext and identity attacks (IND-ID-CPA and ANON-ID-CPA). Instead of defin-
ing both security notions separately, we define pseudorandom ciphertexts against chosen plaintext
and identity attacks (PR-ID-CPA) which means that challenge key and ciphertext are both pseu-
dorandom. Note that PR-ID-CPA trivially implies IND-ID-CPA and ANON-ID-CPA. We define
PR-ID-CPA-security of IBKEM formally via the games given in Figure 1.

Procedure Initialize:
(mpk,msk)

$← Gen(K)
Return mpk

Procedure USKGen(id):
QID ← QID ∪ {id}
Return usk[id]

$← USKGen(msk, id)

Procedure Enc(id∗):
// one query
(K∗,C∗) $← Enc(mpk, id∗)

K∗ $← KS;C∗ $← CS

Return (K∗,C∗)

Procedure Finalize(β):
Return (id∗ 6∈ QID) ∧ β

Fig. 1. PR-ID-CPA-security: Security Games PR-ID-CPAreal and PR-ID-CPArand (boxed).

Definition 2 (PR-ID-CPA Security). An ID-based key encapsulation scheme IBKEM is said
PR-ID-CPA-secure if for all PPT A , the following advantage is negligible: Advpr-id-cpaIBKEM (A) :=
|Pr[PR-ID-CPAA

real ⇒ 1]− Pr[PR-ID-CPArand
A ⇒ 1]|.

2.3 Smooth Projective Hashing and Languages

Smooth projective hash functions (SPHF) were introduced by Cramer and Shoup in [CS02]
for constructing encryption schemes. A projective hashing family is a family of hash functions
that can be evaluated in two ways: using the (secret) hashing key, one can compute the function
on every point in its domain, whereas using the (public) projected key one can only compute
the function on a special subset of its domain. Such a family is deemed smooth if the value
of the hash function on any point outside the special subset is independent of the projected
key. The notion of SPHF has already found applications in various contexts in cryptography
(e.g. [GL03,Kal05,ACP09]). A Smooth Projective Hash Function over a language L ⊂ X, onto
a set G, is defined by five algorithms (Setup,HashKG,ProjKG,Hash,ProjHash):
– Setup(1K) where K is the security parameter, generates the global parameters param of the

scheme, and the description of an NP language L;
– HashKG(L, param), outputs a hashing key hk for the language L;
– ProjKG(hk, (L, param),W), derives the projection key hp from the hashing key hk and the

word W .
– Hash(hk, (L, param),W), outputs a hash value v ∈ G, using the hashing key hk and the word
W .

– ProjHash(hp, (L, param),W,w), outputs the hash value v′ ∈ G, using the projection key hp
and the witness w that the word W ∈ L.
In the following, we assume L is a hard-partitioned subset of X, i.e. it is computationally

hard to distinguish a random element in L from a random element in X \ L. An SPHF should
satisfy the following properties:
– Correctness: Let W ∈ L and w a witness of this membership. Then, for all hashing keys hk

and associated projection keys hp we have
Hash(hk, (L, param),W) = ProjHash(hp, (L, param),W,w).

– Smoothness: For all W ∈ X \L the following distributions are statistically indistinguishable:

212 APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16]

∆0 =



(L, param,W, hp, v)

param = Setup(1K), hk = HashKG(L, param),
hp = ProjKG(hk, (L, param),W),
v = Hash(hk, (L, param),W)





∆1 =

{
(L, param,W, hp, v)

param = Setup(1K), hk = HashKG(L, param),

hp = ProjKG(hk, (L, param),W), v
$← G

}
.

This is formalized by: Advsmooth
SPHF (K) =

∑
V ∈G |Pr∆1 [v = V]− Pr∆0 [v = V]| is

negligible.
– Pseudo-Randomness: If W ∈ L, then without a witness of membership the two previous

distributions should remain computationally indistinguishable. For any adversary A within
reasonable time, this advantage is negligible:

AdvprSPHF,A(K) = |Pr
∆1

[A(L, param,W, hp, v) = 1]− Pr
∆0

[A(L, param,W, hp, v) = 1]|

Languages. The language L ⊂ X used in the definition of an SPHF should be a hard-partitioned
subset of X, i.e. it is computationally hard to distinguish a random element in L from a random
element not in L (see formal definition in [GL03, AP06]). The languages used here are more
complex and should fulfill the following properties1:
– Publicly Verifiable: Given a word x in X, anyone should be able to decide in polynomial time

whether x ∈ L or not.
– Self-Randomizable: Given a word in the language, anyone should be able to sample a new word

in the language2, and the distribution of this resampling should be indistinguishable from an
honest distribution. This will be used in order to prevent an adversary, or the authority in
charge of distributing the words, to learn which specific form of the word was used by the
user.
In case we consider several languages (L1, . . . ,Ln), we also assume it is a Trapdoor Collection

of Languages: It is computationally hard to sample an element in L1 ∩ · · · ∩ Ln, except if one
possesses a trapdoor tk (without the knowledge of the potential secret keys)3. For instance, if for
all i, Li is the language of the equivocable commitments on words in an inner language L̃i = {i}
(as we will consider for OT), the common trapdoor key can be the equivocation trapdoor.

Depending on the applications, we can assume a Keyed Language, which means that it is set
by a trusted authority, and that it is hard to sample fresh elements from scratch in the language
without the knowledge of a secret language key skL. In this case, the authority is also in charge
of giving a word in the language to the receiver.

In case the language is keyed, we assume it is also a Trapdoor Language: We assume the
existence of a trapdoor tkL allowing a simulator to sample an element in L (without the knowledge
of the potential secret key skL). For instance, for a language of valid Waters signatures of a
message M (as we will consider for OSBE), one can think of skL as being the signing key,
whereas the trapdoor tkL can be the discrete logarithm of h in basis g.4

1 We here mainly consider languages which are hard-partitioned subsets, for instance, encryptions of publicly
verifiable languages.

2 It should be noted that this property is not incompatible with the potential secret key of the language in case
it is keyed (see below).

3 This implicitly means that the languages are compatible, in the sense that one can indeed find a word belonging
to all of them.

4 As another example, one may think of more expressive languages which may not rely directly on generators
fixed by the CRS. In this case, one can assume that the CRS contains parameters for an encryption and an
associated NIZK proof system. The description of such a language is thus supplemented with an encryption
of the language trapdoor, and a non-interactive zero-knowledge proof that the encrypted value is indeed a
trapdoor for the said language. Using the knowledge of the decryption key, the simulator is able to recover the
trapdoor.

APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16] 213

2.4 Security Assumptions

Due to lack of space, instantiations of the primitives recalled above are given in Appendix B and
we only give here the security assumptions.

Security Assumption: Pairing groups and Matrix Diffie-Hellman Assumption. Let
GGen be a probabilistic polynomial time (PPT) algorithm that on input 1K returns a description
G = (p,G1,G2,GT , e, g1, g2) of asymmetric pairing groups where G1, G2, GT are cyclic groups of
order p for a K-bit prime p, g1 and g2 are generators of G1 and G2, respectively, and e : G1×G2

is an efficiently computable (non-degenerated) bilinear map. Define gT := e(g1, g2), which is a
generator in GT .

We use implicit representation of group elements as introduced in [EHK+13]. For s ∈ {1, 2, T}
and a ∈ Zp define [a]s = gas ∈ Gs as the implicit representation of a in Gs. More generally, for a
matrix A = (aij) ∈ Zn×mp we define [A]s as the implicit representation of A in Gs:

[A]s :=



ga11s ... ga1ms

gan1s ... ganms


 ∈ Gn×m

s

We will always use this implicit notation of elements in Gs, i.e., we let [a]s ∈ Gs be an
element in Gs. Note that from [a]s ∈ Gs it is generally hard to compute the value a (discrete
logarithm problem in Gs). Further, from [b]T ∈ GT it is hard to compute the value [b]1 ∈ G1 and
[b]2 ∈ G2 (pairing inversion problem). Obviously, given [a]s ∈ Gs and a scalar x ∈ Zp, one can
efficiently compute [ax]s ∈ Gs. Further, given [a]1, [b]2 one can efficiently compute [ab]T using
the pairing e. For a, b ∈ Zkp define e([a]1, [b]2) := [a>b]T ∈ GT . We recall the definition of the
matrix Diffie-Hellman (MDDH) assumption [EHK+13].

Definition 3 (Matrix Distribution). Let k ∈ N. We call Dk a matrix distribution if it outputs
matrices in Z(k+1)×k

p of full rank k in polynomial time.

Without loss of generality, we assume the first k rows of A $← Dk form an invertible matrix, we
denote this matrix A, while the last line is denoted A. The Dk-Matrix Diffie-Hellman problem
is to distinguish the two distributions ([A], [Aw]) and ([A], [u]) where A $← Dk, w $← Zkp and
u

$← Zk+1
p .

Definition 4 (Dk-Matrix Diffie-Hellman Assumption Dk-MDDH). Let Dk be a matrix dis-
tribution and s ∈ {1, 2, T}. We say that the Dk-Matrix Diffie-Hellman (Dk-MDDH) Assumption
holds relative to GGen in group Gs if for all PPT adversaries D,

AdvDk,GGen(D) := |Pr[D(G, [A]s, [Aw]s) = 1]− Pr[D(G, [A]s, [u]s) = 1]| = negl(λ),

where the probability is taken over G $← GGen(1λ), A $← Dk,w $← Zkp,u
$← Zk+1

p .

For each k ≥ 1, [EHK+13] specifies distributions Lk, Uk, . . . such that the corresponding
Dk-MDDH assumption is the k-Linear assumption, the k-uniform and others. All assumptions
are generically secure in bilinear groups and form a hierarchy of increasingly weaker assumptions.
The distributions are exemplified for k = 2, where a1, . . . , a6

$← Zp.

L2 : A =



a1 0
0 a2

1 1


 U2 : A =



a1 a2

a3 a4

a5 a6


 .

It was also shown in [EHK+13] that Uk-MDDH is implied by all other Dk-MDDH assumptions.

214 APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16]

Lemma 5 (Random self reducibility [EHK+13]). For any matrix distribution Dk, Dk-
MDDH is random self-reducible. In particular, for any m ≥ 1 and for all PPT adversaries D
and D′,

AdvDk,GGen(D) + 1
q−1 ≥ AdvmDk,GGen(D′)

where AdvmDk,GGen(D′) := Pr[D′(G, [A], [AW]) ⇒ 1] − Pr[D′(G, [A], [U]) ⇒ 1], with G ←
GGen(1λ), A $← Dk,W $← Zk×mp ,U

$← Z(k+1)×m
p .

Remark: It should be noted that L1,L2 are respectively the SXDH and DLin assumptions.

2.5 Security Models

UC Framework. The goal of the UC framework [Can01] is to ensure that UC-secure protocols
will continue to behave in the ideal way even if executed in a concurrent way in arbitrary en-
vironments. It is a simulation-based model, relying on the indistinguishability between the real
world and the ideal world. In the ideal world, the security is provided by an ideal functionality F ,
capturing all the properties required for the protocol and all the means of the adversary. In order
to prove that a protocol Π emulates F , one has to construct, for any polynomial adversary A
(which controls the communication between the players), a simulator S such that no polyno-
mial environment Z can distinguish between the real world (with the real players interacting
with themselves and A and executing the protocol π) and the ideal world (with dummy players
interacting with S and F) with a significant advantage. The adversary can be either adaptive,
i.e. allowed to corrupt users whenever it likes to, or static, i.e. required to choose which users to
corrupt prior to the execution of the session sid of the protocol. After corrupting a player, A has
complete access to the internal state and private values of the player, takes its entire control,
and plays on its behalf.

Simple UC Framework. Canetti, Cohen and Lindell formalized a simpler variant in [CCL15],
that we use here. This simplifies the description of the functionalities for the following reasons
(in a nutshell): All channels are automatically assumed to be authenticated (as if we worked in
the FAuth-hybrid model); There is no need for public delayed outputs (waiting for the adversary
before delivering a message to a party), neither for an explicit description of the corruptions. We
refer the interested reader to [CCL15] for details.

3 UC-secure Adaptive Oblivious Transfer

As explained in the introduction, the classical OT constructions based on the commitment/SPHF
paradigm (with so-called implicit decommitment), among the latest schemes in the UC framework
[CKWZ13,ABB+13,BC15], require the server to send an encryption of the complete database for
each line required by the user (thus O(n) each time). We here give a protocol requiring O(log(n))
for each line (except the first one, still in O(n)), in the UC framework with adaptive corruptions
under classical assumptions (MDDH). This protocol builds upon the more efficient known scheme
secure in the UC framework [BC15] and we use ideas from [GH07] to make it adaptive.

Using implicit decommitment in the UC framework implies a very strong commitment prim-
itive (formalized as SPHF-friendly commitments in [ABB+13]), which is both extractable and
equivocable. Our idea is here to split these two properties by using on the one hand an equivoca-
ble commitment and on the other hand an (extractable) CCA encryption scheme by generalizing
the way to access a line in the database. But this is infeasible with simple line numbers. Indeed,
we suggest here not to consider anymore the line numbers as numbers in {1, . . . , n} but rather
to “encode” them (the exact encoding will depend on the protocol): For every line i, a word
Wi in the language Li will correspond to a representation of line i. This representation must

APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16] 215

be publicly verifiable, in the sense that anyone can associate i to a word Wi. We formalize this
in the following definition of oblivious transfer5, given without loss of generality6 (the classical
notion of OT being easily captured using Li = {i}).

3.1 Definition and Security Model for Oblivious Transfer

In such a protocol, a server S possesses a database of n lines (m1, . . . ,mn) ∈ ({0, 1}K)n. A
user U will be able to recover mk (in an oblivious way) as soon as he owns a word Wk ∈ Lk.
The languages (L1, . . . ,Ln) will be assumed to be a trapdoor collection of languages, publicly
verifiable and self-randomizable. As we consider simulation-based security (in the UC framework),
we allow a simulated setup SetupT to be run instead of the classical setup Setup in order to allow
the simulator to possess some trapdoors. Those two setup algorithms should be indistinguishable.

Definition 6 (Oblivious Transfer). An OT scheme is defined through five algorithms (Setup,
KeyGen,DBGen, Samp,Verify), along with an interactive protocol Protocol〈S,U〉:
– Setup(1K), where K is the security parameter, generates the global parameters param, among

which the number n;
or SetupT(1K), where K is the security parameter, additionally allows the existence7 of a trap-

door tk for the collection of languages (L1, . . . ,Ln).
– KeyGen(param,K) generates, for all i ∈ {1, . . . , n}, the description of the language Li (as well

as the language key skLi if need be). If the parameters param were defined by SetupT, this
implicitly also defines the common trapdoor tk for the collection of languages (L1, . . . ,Ln).

– Samp(param) or Samp(param, (skLi)i∈{1,...,n}) generates a word Wi ∈ Li;
– Verifyi(Wi,Li) checks whether Wi is a valid word in the language Li. It outputs 1 if the word

is valid, 0 otherwise;
– Protocol〈S((L1, . . . ,Ln), (m1, . . . ,mn)),U((L1, . . . ,Ln),Wi)〉, which is executed between the

server S with the private database (m1, . . . ,mn) and corresponding languages (L1, . . . ,Ln),
and the user U with the same languages and the word Wi, proceeds as follows. If the algorithm
Verifyi(Wi,Li) returns 1, then U receives mk, otherwise it does not. In any case, S does not
learn anything.

The ideal functionality of an Oblivious Transfer (OT) protocol was given in [Can01,CKWZ13,
ABB+13], and an adaptive version in [GH08]. We here combine them and rewrite it in simple UC
and using our language formalism (instead of directly giving a number line s to the functionality,
the user will give it a wordWs ∈ Ls). The resulting functionality FL

OT is given in Figure 2. Recall
that there is no need to give an explicit description of the corruptions in the simple version of
UC [CCL15].

3.2 High Level Idea of the Construction of the Adaptive Oblivious Transfer
Scheme

Our construction builds upon the UC-secure OT scheme from [BC15], with ideas inspired from
[GH07], who propose a neat framework allowing to achieve adaptive Oblivious Transfer (but
not in the UC framework). Their construction is quite simple: It requires a blind Identity-Based
Encryption, in other words, an IBE scheme in which there is a way to query for a user key
generation without the authority (here the server) learning the targeted identity (here the line in
the database). Once such a Blind IBE is defined, one can conveniently obtain an oblivious transfer
5 The adaptive version only implies that the database (m1, . . . ,mn) is sent only once in the interaction, while
the user can query several lines (i.e. several words), in an adaptive way.

6 This formalization furthermore encompasses the variants of OT, such as conditioned OT, where a user accesses
a line only if he knows a credential for this line.

7 The specific trapdoor will depend on the languages and be computed in the KeyGen algorithm.

216 APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16]

The functionality FL
OT is parametrized by a security parameter K and a set of languages (L1, . . . ,Ln) along with

the corresponding public verification algorithms (Verify1, . . . ,Verifyn). It interacts with an adversary S and a
set of parties P1,. . . ,PN via the following queries:
– Upon receiving from party Pi an input (NewDataBase, sid, ssid,Pi,Pj, (m1, . . . ,mn)) , with mk ∈
{0, 1}K for all k: record the tuple (sid, ssid,Pi,Pj , (m1, . . . ,mn)) and reveal (Send, sid, ssid,Pi,Pj) to the
adversary S . Ignore further NewDataBase-message with the same ssid from Pi.

– Upon receiving an input (Receive, sid, ssid,Pi,Pj,Wk) from party Pj : ignore the message if
(sid, ssid,Pi,Pj , (m1, . . . ,mn)) is not recorded. Otherwise, reveal (Receive, sid, ssid,Pi,Pj) to the adver-
sary S and send the message (Received, sid, ssid,Pi,Pj ,m

′
k) to Pj where m′k = mk if Verifyk(Wk,Lk)

returns 1, and m′k = ⊥ otherwise.
(Non-Adaptive case: Ignore further Receive-message with the same ssid from Pj.)

Fig. 2. Ideal Functionality for (Adaptive) Oblivious Transfer FL
OT

protocol by asking the database to encrypt (once and for all) each line for an identity (the j-th
line being encrypted for the identity j), and having the user do a blind user key generation query
for identity i in order to recover the key corresponding to the line i he expects to learn.

This approach is round-optimal: After the database preparation, the first flow is sent by the
user as a commitment to the identity i, and the second one is sent by the server with the blinded
expected information. But several technicalities arise because of the UC framework we consider
here. For instance, the blinded expected information has to be masked, we do this here thanks
to an SPHF. Furthermore, instead of using simple line numbers as identities, we have to commit
to words in specific languages (so as to ensure extractability and equivocability) as well as to
fragment the IBE keys into bits in order to achieve O(log n) in both flows. This allows us to
achieve the first UC-secure adaptive OT protocol allowing adaptive corruptions. More details
follow in the next sessions.

3.3 Main Building Block: Constructing a Blind Fragmented IBKEM from an
IBKEM

Definition and Security Properties of a Blind IBKEM Scheme. Following [BKP14],
we recalled in Section 2.2 page 4 the definitions, notations and security properties for an IBE
scheme, seen as an Identity-Based Key Encapsulation (IBKEM) scheme. We continue to follow
the KEM formalism by adapting the definition of a Blind IBE scheme given in [GH07] to this
setting.

Definition 7 (Blind Identity-Based Key Encapsulation Scheme).
A Blind Identity-Based Key Encapsulation scheme BlindIBKEM consists of four PPT algorithms
(Gen,BlindUSKGen,Enc,Dec) with the following properties:
– Gen, Enc and Dec are defined as for a traditional IBKEM scheme.
– BlindUSKGen(〈(S,msk)(U , id, `;ρ)〉) is an interactive protocol, in which an honest user U with

identity id ∈ ID obtains the corresponding user secret key usk[id] from the master authority
S or outputs an error message, while S’s output is nothing or an error message (` is a label
and ρ the randomness).

Defining the security of a BlindIBKEM requires two additional properties, stated as follows
(see [GH07, pages 6 and 7] for the formal security games):
1. Leak-free Secret Key Generation (called Leak-free Extract for Blind IBE security in

the original paper): A potentially malicious user cannot learn anything by executing the
BlindUSKGen protocol with an honest authority which he could not have learned by executing
the USKGen protocol with an honest authority; Moreover, as in USKGen, the user must know
the identity for which he is extracting a key.

APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16] 217

2. Selective-failure Blindness: A potentially malicious authority cannot learn anything about
the user’s choice of identity during the BlindUSKGen protocol; Moreover, the authority cannot
cause the BlindUSKGen protocol to fail in a manner dependent on the user’s choice.
For our applications, we only need a weakened property for blindness:8

3. Weak Blindness: A potentially malicious authority cannot learn anything about the user’s
choice of identity during the BlindUSKGen protocol.

High-Level Idea of the Transformation. We now show how to obtain a BlindIBKEM scheme
from any IBKEM scheme. From a high-level point of view, this transformation mixes two pre-
existing approaches.

First, we are going to consider a reverse Naor transform [BF01,CFH+07]: He drew a parallel
between Identity-Based Encryption schemes and signature schemes, by showing that a user secret
key on an identity can be viewed as the signature on this identity, the verification process therefore
being a test that any chosen valid ciphertext for the said identity can indeed be decrypted using
the signature scheme.

Then, we are going to use Fischlin [Fis06] round-optimal approach to blind signatures, where
the whole interaction is done in one pass: First, the user commits to the message, then he recovers
a signature linked to his commitment. For sake of simplicity, instead of using a Non-Interactive
Zero-Knowledge Proof of Knowledge of a signature, we are going to follow the [BFPV10,BPV12]
approach, where thanks to an additional term, the user can extract a signature on the identity
from a signature on the committed identity.

Omitting technical details described more precisely in the following sections, the main idea
of the transformation of the IBKEM scheme in order to blind a user key request is described in
Figure 3.

������ Authority

busk[id]usk[id]

id

B
lin
dU

S
K
G
en
(m

sk
,C

;t
)

C
Commit(id; ρ)

Recover(busk[id], ρ)

User

1. A user commits to the targeted identity id using
some randomness ρ.

2. The authority possesses an algorithm allowing it
to generate keys for committed identities using
its master secret key msk, and some randomness
t, in order to obtain a blinded user secret key
busk[id].

3. The user using solely the randomness used in
the initial commitment is able to recover the re-
quested secret key from the authority’s generated
value.

Fig. 3. Generic Transformation of an IBKEM into a Blind IBKEM (naive approach)

Generic Transformation of an IBKEM into a Blind IBKEM. It now remains to explain
how one can fulfill the idea highlighted in Figure 3. The technique to blind a user key request uses
a smooth projective hash function (see Section 2.3), and is often called implicit decommitment in
recent works: the IBKEM secret key is sent hidden in such a way that it can only be recovered if the

8 Two things to note: First, Selective Failure would be considered as a Denial of Service in the Oblivious Transfer
setting. Then, we do not restrict ourselves to schemes where the blindness adversary has access to the generated
user keys, as reliable erasures in the OT protocol provide us a way to forget them before being corrupted
(otherwise we would need to use a randomizable base IBE).

218 APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16]

user knows how to open the initial commitment on the correct identity. We assume the existence
of a labeled CCA-encryption scheme E = (Setupcca,KeyGencca,Encrypt

`
cca,Decrypt

`
cca) compatible

with an SPHF defined by (Setup,HashKG,ProjKG,Hash,ProjHash) onto a set G (where ` is a
label defined by the global protocol). By “compatible”, we mean that the SPHF can be defined
over a language Lcid ⊂ X, where Lcid = {C | ∃ρ such that C = Encrypt`cca(id;ρ)}. In the KeyGen
algorithm, the description of the language Lid = {id} thus implicitly defines the language Lcid of
CCA-encryptions of elements of Lid. We additionally use a key derivation function KDF to derive
a pseudo-random bit-string K ∈ {0, 1}K from a pseudo-random element v ∈ G. One can use the
Leftover-Hash Lemma [HILL99], with a random seed defined in param during the global setup,
to extract the entropy from v, then followed by a pseudo-random generator to get a long enough
bit-string. Many uses of the same seed in the Leftover-Hash Lemma just lead to a security loss
linear in the number of extractions. This gives the following protocol for BlindUSKGen, described
in Figure 4.

– The user computes an encryption of the expected identity id and keeps the randomness ρ: C =
Encrypt`cca(id;ρ)}.

– For every identity id′, the server computes the key usk[id′] along with a pair of (secret, public) hash keys
(hkid′ , hpid′) for a smooth projective hash function on the language Lcid′ :

hkid′ = HashKG(`,Lcid′ , param) and hpid′ = ProjKG(hkid′ , `, (L
c
id′ , param), id′).

He also compute the corresponding hash value
Hid′ = Hash(hkid′ , (L

c
id′ , param), (`, C)).

Finally, he sends (hpid′ , usk[id
′]⊕ KDF(Hid′)) for every id′, where ⊕ is a compatible operation.

– Thanks to hpid, the user is able to compute the corresponding projected hash value H ′id =
ProjHash(hpid, (L

c
id, param), (`, C),ρ). He then recovers usk[id] for the initially committed identity id since

Hid = H ′id.

Fig. 4. Summary of the Generic Construction of BlindUSKGen(〈(S,msk)(U , id, `;ρ)〉) for a blind IBE

Theorem 8. If IBKEM is a PR-ID-CPA-secure identity-based key encapsulation scheme and E a
labeled CCA-encryption scheme compatible with an SPHF, then BlindIBKEM is leak free and weak
blind.

Proof. First, BlindIBKEM satisfies leak-free secret key generation since it relies on the CCA se-
curity on the encryption scheme, forbidding a user to open it to another identity than the one
initially encrypted. Furthermore, the pseudo-randomness of the SPHF ensures that the blinded
user key received for id is indistinguishable from random if he encrypted id′ 6= id. Finally, the
weak blindness also relies on the CCA security on the encryption scheme, since an encryption of
id is indistinguishable from a encryption of id′ 6= id. ut

Using a Blind IBKEM in our Application to Adaptive Oblivious Transfer. The previous
approach allows to transform an IBKEM into a Blind IBKEM, but it has a huge drawback in
our context: Since we assume an exponential identity space, it requires an exponential number
of answers from the authority, which cannot help us to fulfill logarithmic complexity in our
application. However, if we focus on the special case of affine IBE with bitwise function9, a user
key can be described as the list (usk[0], usk[0, id0], . . . , usk[m − 1, idm−1]) if idi is the i-th bit of
the identity id. One can thus manage to be much more efficient by sending each “bit” evaluation
on the user secret key, hidden with a smooth projective hash value on the language “the i-th bit
of the identity is a 0 (or 1)”, which is common to all identities. We can thus reduce the number
of languages from the number of identities (which is exponential) to the length of an identity
(which is polynomial). For security reasons, one cannot give directly the evaluation value, but as
9 They were defined in [BKP14]. Affine IBE derive their name from the fact that only affine operations are done
on the identity bits (no hashing, square rooting, inverting... are allowed).

APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16] 219

we are considering the sum of the evaluations for each bit, we simply add a Shamir-like secret
sharing, by adding randomness that is going to cancel out at the end.

– The user computes a bit-per-bit encryption of the expected identity id and keeps the randomness ρ: C =
Encrypt`cca(id;ρ)}.

– The server computes a fragmented version of all the keys usk[id′], i.e. all the values usk[i, b] for i from 0 up to
the length m of the keys and b ∈ {0, 1}. He also computes a pair of (secret, public) hash keys (hki,b, hpi,b) for
a smooth projective hash function on the language Lci,b: “The i-th bit of the value encrypted into C is b”, i.e.
hki,b = HashKG(`,Lci,b, param) and hpi,b = ProjKG(hki,b, `, (L

c
i,b, param)). He also computes the corresponding

hash value Hi,b = Hash(hki,b, (L
c
i,b, param), (`, C)) and chooses random values zi. Finally, he sends, for each

(i, b), (hpi,b, busk[i, b]), where busk[i, b] = usk[i, b]⊕ KDF(Hi,b)⊕ zi, together with Z = usk0 	
(⊕

i zi
)
, where

⊕ is a compatible operation and 	 its inverse.
– Thanks to the hpi,idi for the initially committed identity id, the user is able to compute the corresponding

projected hash value
H ′i,idi = ProjHash(hpi,idi , (L

c
i,idi

, param), (`, C),ρ),
that should be equal to Hi,idi for all i. From the values busk[i, idi], he then recovers usk[i, idi] ⊕ zi. Finally,
with the operation

(⊕
i(usk[i, idi]⊕ zi)

)
⊕ Z, he recovers the expected usk[id].

Fig. 5. Summary of the Generic Construction of BlindUSKGen(〈(S,msk)(U , id, `;ρ)〉) for a Blind affine IBE

As a last step, we finally need to make our construction compatible with the UC framework
with adaptive corruptions. In this context, interactions should make sense for any possible input
chosen by the environment and learnt a posteriori in the simulation during the corruption of an
honest party. From the user side, this implies that the last flow should contain enough recoverable
information so that a simulator, having sent a commitment to an incorrect identity, can extract
the proper user secret key corresponding to the correct identity recovered after the corruption.
From the server side, this implies that the IBKEM scheme is defined such as one is able to adapt
the user secret keys in order to correspond to the new database learnt a posteriori. Of course,
not all schemes allow this property, but this will be the case in the pairing scenario considered
in our concrete instantiation.

To deal with corruptions of the user, recall that a simulated server (knowing the secret
key of the encryption scheme) is already able to extract the identity committed to. But we now
consider that, for all id, Lid is the language of the equivocable commitments on words in the inner
language L̃id = {id}. We assume them to be a Trapdoor Collection of Languages, which means
that it is computationally hard to sample an element in L1 ∩ · · · ∩ Ln, except for the simulator,
who possesses a trapdoor tk (the equivocation trapdoor) allowing it to sample an element in the
intersection of languages. This allows a simulated user (knowing this trapdoor) not to really bind
to any identity during the commitment phase. The only difference with the algorithm described
in Figure 5 is that the user now encrypts this word W (which is an equivocable commitment
on his identity id) rather than directly encrypting his identity id: C = Encrypt`cca(W ;ρ). This
technique is also explained as an application of our OLBE framework, in Appendix F.2. We will
directly prove this protocol during the proof of the oblivious transfer scheme.

3.4 Generic Construction of Adaptive OT

We derive from here our generic construction of OT (depicted in Figure 6). We additionally
assume the existence of a Pseudo-Random Generator (PRG) F with input size equal to the
plaintext size, and output size equal to the size of the messages in the database and an IND-CPA
encryption scheme E = (Setupcpa,KeyGencpa,Encryptcpa,Decryptcpa) with plaintext size at least
equal to the security parameter. First, the owner of the database generates the keys for such an
IBE scheme, and encrypts each line i of the database for the identity i. Then when a user wants
to request a given line, he runs the blind user key generation algorithm and recovers the key for
the expected given line. This leads to the following security result, proven in Appendix D.

220 APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16]

Theorem 9. Assuming that BlindUSKGen is constructed as described above, the adaptive Obliv-
ious Transfer protocol described in Figure 6 UC-realizes the functionality FL

OT presented in Fig-
ure 2 with adaptive corruptions assuming reliable erasures.

CRS generation:
crs

$← SetupCom(1K), paramcpa
$← Setupcpa(1

K).
Database Preparation:

1. Server runs Gen(K), to obtain mpk,msk.
2. For each line t, he computes (Dt,Kt) = Enc(mpk, t), and Lt = Kt ⊕DB(t).
3. He also computes usk[i, b] for all i = 1 . . . ,m and b = 0, 1 and erases msk.
4. Server generates a key pair (pk, sk)

$← KeyGencpa(paramcpa) for E , stores sk and completely erases the
random coins used by KeyGen.

5. He then publishes mpk, {(Dt, Lt)}t, pk.
Index query on s:

1. User chooses a random value S, computes R← F (S) and encrypts S under pk:
c

$← Encryptcpa(pk, S)
2. User computes C with the first flow of BlindUSKGen(〈(S,msk)(U , s, `;ρ)〉) with ` = (sid, ssid,U ,S) (see

Figure 5).
3. User stores the random ρs = {ρ∗} needed to open C to s, and completely erases the rest, including the

random coins used by Encryptcpa and sends (c, C) to the Server

IBE input msk:

1. Server decrypts S ← Decryptcpa(sk, c) and computes R← F (S)
2. Server runs the second flow of BlindUSKGen(〈(S,msk)(U , s, `;ρ)〉) on C (see Figure 5).
3. Server erases every new value except (hpi,b)i,b, (busk[i, b])i,b, Z ⊕R and sends them over a secure channel.

Data recovery:

1. User then using, ρs recovers usk[s] from the values received from the server.
2. He can then recover the expected information with Dec(usk[s], s,Ds)⊕ Ls and erases everything else.

Fig. 6. Adaptive UC-Secure 1-out-of-n OT from a Fragmented Blind IBE

3.5 Pairing-Based Instantiation of Adaptive OT

Affine Bit-Wise Blind IBE. In [BKP14], the authors propose a generic framework to move
from affine Message Authentication Code to IBE, and they propose a tight instantiation of such
a MAC, giving an affine bit-wise IBE, which seems like a good candidate for our setting (making
it blind and fragmented).

We are thus going to use the family of IBE described in the following picture (Figure 7), which
is their instantiation derived from a Naor-Reingold MAC10. In the following, hi() are injective
deterministic public functions mapping a bit to a scalar in Zp.

A property that was not studied in this paper was the blind user key generation: How to
generate and answer blind user secret key queries? We answer to this question by proposing the
k −MDDH-based variation presented in Figure 8. To fit the global framework we are going to
consider the equivocable language of each chameleon hash of the identity bits (ai, bi,mi), and
then a Cramer-Shoup like encryption of b into d (more details in Section B.2). We denote this
process as Har in the following protocol, and by LHar,i,idi the language on identity bits. We thus
obtain the following security results.

Theorem 10. This construction achieves both the weak Blindness, and the leak-free secret key
generation requirements under the k −MDDH assumption.
10 For the reader familiar with the original result, we combine x,y into a bigger y to lighten the notations, and

compact the (x′i, y
′
i) values into a single y′ as this has no impact on their construction.

APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16] 221

Gen(K):

A
$← Dk,B = A

For i ∈ J0, `K : Y i
$← Zk+1

p ;Zi = Y
>
i ·A ∈ Zkp

y′ $← Zk+1
p ;z′ = y′> ·A ∈ Zkq

mpk := (G, [A]1, ([Zi]1)i∈J0,`K, [z′]1)
msk := (Y i)i∈J0,`K,y′

Return (mpk,msk)

USKGen(msk, id):

s
$← Zkp, t = Bs

w = (Y 0 +
∑`
i=1 hi(idi)Y i)t+ y

′ ∈ Zk+1
p

Return usk[id] := ([t]2, [w]2) ∈ Gk+k+1
2

Enc(mpk, id):

r
$← Zkp

c0 = Ar ∈ Zk+1
p

c1 = (Z0 +
∑`
i=1 hi(idi)Zi) · r ∈ Zp

K = z′ · r ∈ Zp.
Return [K]T
and C = ([c0]1, [c1]1) ∈ Gk+1+1

1

Dec(usk[id], id,C):
Parse usk[id] = ([t]2, [w]2)
Parse C = ([c0]1, [c1]1)
K = e([c0]1, [w]2) · e([c1]1, [t]2)−1

Return K ∈ GT

Fig. 7. A fragmentable affine IBKEM.

– First flow: U starts by computing
ρ

$← Z1+4×`
p ,

a,d = Har(id, `; ρ) ∈ Z`p × Z2×(k+3)`
p ,

Sends C = ([a]1, [d]2) to S
– Second Flow: S then proceeds
s

$← Zkp, t = Bs, f
$← Z`×k+1

p ,
For each i ∈ J1, dlogneK, b ∈ J0, 1K:

hki,b = HashKG(LHar,i,b,C)
hpi,b = ProjKG(hki,b,LHar,i,b,C)
Hi,b = Hash(hki,b,LHar,i,b,C)
ωi,b = (bY i)t+ f i +Hi,b

Then sets w0 = Y 0t+ y
′ −∑`

i=1 f i ∈ Zk+1
p

Returns busk :=
([t]2, [w0]2, {[ωi,b]2}, {[hpi,b]2})
– BlindUSKGen3: U then recovers his key

For each i ∈ J1, `K:
H ′i =

ProjHash(hpi,idi ,LHar,i,idi ,C, ρi)
wi = ωi,idi −H ′i

w = w0 +
∑`
i=1wi

And then recovers usk[id] :=
[t]2, [w]2

Fig. 8. BlindUSKGen(〈(S,msk)(U , id, `;ρ)〉).

222 APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16]

The first one is true under the indistinguishability of the generalized Cramer-Shoup encryp-
tion recalled in Section B.2, as the server learns nothing about the line requested during the first
flow. It should even be noted that because of the inner chameleon hash, a simulator is able to
use the trapdoor to do a commitment to every possible words of the set of languages at once,
and so can adaptively decide which id he requested. The proof of the second result is delayed to
Appendix C.

For sake of generality, any bit-wise affine IBE could work (like for example Waters IBE
[Wat05]), the additional price paid for tightness here is very small and allows to have a better
reduction in the proof, but it it not required by the framework itself.

Adaptive UC-Secure Oblivious Transfer. We finally get our instantiation by combining this
k−MDDH-based blind IBE with a k−MDDH variant of El Gamal for the CPA encryption needed.
(see Appendix B.2 for details). The requirement on the IBE blind user secret key generation (being
able to adapt the key if the line changes) is achieved assuming that the server knows the discrete
logarithms of the database lines. This is quite easy to achieve by assuming that for all line s,
DB(s) = [db(s)]1 where db(s) is the real line (thus known). It implies a few more computation
on the user’s side in order to recover db(s) from DB(s), but this remains completely feasible if
the lines belong to a small space. For practical applications, one could imagine to split all 256-bit
lines into 8 pieces for a decent/constant trade-off in favor of computational efficiency.

For k = 1, so under the classical SXDH assumption, the first flow requires 8 log |DB| elements
in G1 for the CCA encryption part and log(|DB| + 1) in G2 for the chameleon one, while the
second flow would now require 1 + 4 log |DB| elements in G1, 1 + 2 log |DB| for the fragmented
masked key, and 2 log |DB| for the projection keys.

4 Oblivious Language-Based Envelope

The previous construction opens new efficient applications to the already known Oblivious-
Transfer protocols. But what happens when someone wants some additional access control by
requesting extra properties, like if the user is only allowed to ask two lines with the same parity
bits, the user can only request lines for whose number has been signed by an authority, or even
finer control provided through credentials?

In this section we propose to develop a new primitive, that we call Oblivious Language-
Based Envelope (OLBE). The idea generalizes that of Oblivious Transfer and OSBE, recalled
right afterwards, for n messages (with n polynomial in the security parameter K) to provide the
best of both worlds.

4.1 Oblivious Signature-Based Envelope

We recall the definition and security requirements of an OSBE protocol given in [LDB03,BPV12],
in which a sender S wants to send a private message m ∈ {0, 1}K to a recipient R in possession
of a valid certificate/signature on a public message M (given by a certification authority).

Definition 11 (Oblivious Signature-Based Envelope). An OSBE scheme is defined by four
algorithms (Setup,KeyGen, Sign,Verify), and one interactive protocol Protocol〈S,R〉:
– Setup(1K), where K is the security parameter, generates the global parameters param;
– KeyGen(K) generates the keys (vk, sk) of the certification authority;
– Sign(sk,M) produces a signature σ on the input message M , under the signing key sk;
– Verify(vk,M, σ) checks whether σ is a valid signature onM , w.r.t. the public key vk; it outputs

1 if the signature is valid, and 0 otherwise.
– Protocol〈S(vk,M, P),R(vk,M, σ)〉 between the sender S with the private message P , and the

recipient R with a certificate σ. If σ is a valid signature under vk on the common message
M , then R receives m, otherwise it receives nothing. In any case, S does not learn anything.

APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16] 223

The authors of [BPV12] proposed some variations to the original definitions from [LDB03],
in order to prevent some interference by the authority. Following them, an OSBE scheme should
fulfill the following security properties. The formal security games are given in [BPV12]. No UC
functionality has already been given, to the best of our knowledge.
– correct : the protocol actually allows R to learn P , whenever σ is a valid signature on M

under vk;
– semantically secure: the recipient learns nothing about S’s input m if it does not use a valid

signature σ onM under vk as input. More precisely, if S0 owns P0 and S1 owns P1, the recipi-
ent that does not use a valid signature cannot distinguish an interaction with S0 from an inter-
action with S1 even if he has eavesdropped on several interactions 〈S(vk,M, P),R(vk,M, σ)〉
with valid signatures, and the same sender’s input P ;

– escrow-free (oblivious with respect to the authority): the authority (owner of the signing key
sk), playing as the sender or just eavesdropping, is unable to distinguish whether R used a
valid signature σ on M under vk as input.

– semantically secure w.r.t. the authority : after the interaction, the authority (owner of the
signing key sk) learns nothing about m from a passive access to a challenge transcript.

4.2 Definition of an Oblivious Language-Based Envelope

In such a protocol, a sender S wants to send one or several private messages (up to nmax ≤
n) among (m1, . . . ,mn) ∈ ({0, 1}`)n to a recipient R in possession of a tuple of words W =
(Wi1 , . . . ,Winmax

) such that some of the wordsWij may belong to the corresponding language Lij .
More precisely, the receiver gets each mij as soon as Wij ∈ Lij with the requirement that he
gets at most nmax messages. In such a scheme, the languages (L1, . . . ,Ln) are assumed to be
a trapdoor collection of languages, publicly verifiable and self-randomizable (see Section 2.3 for
the definitions of the properties of the languages).

The collections of words can be a single certificate/signature on a message M (encompassing
OSBE, with n = nmax = 1), a password, a credential, a line number (encompassing 1-out-of-n
oblivious transfer11, with nmax = 1), k line numbers (encompassing k-out-of-n oblivious transfer,
with nmax = k), etc. (see Section F for detailed examples). Following the definitions for OSBE
recalled above and given in [LDB03,BPV12], we give the following definition for OLBE. As we
consider simulation-based security (in the UC framework), we allow a simulated setup SetupT
to be run instead of the classical setup Setup in order to allow the simulator to possess some
trapdoors. Those two setup algorithms should be indistinguishable.

Definition 12 (Oblivious Language-Based Envelope). An OLBE scheme is defined by four
algorithms (Setup,KeyGen, Samp,Verify), and one interactive protocol Protocol〈S,R〉:
– Setup(1K), where K is the security parameter, generates the global parameters param, among

which the numbers n and nmax;
or SetupT(1K), where K is the security parameter, additionally allows the existence12 of a trap-

door tk for the collection of languages (L1, . . . ,Ln).
– KeyGen(param,K) generates, for all i ∈ {1, . . . , n}, the description of the language Li (as well

as the language key skLi if need be). If the parameters param were defined by SetupT, this
implicitly also defines the common trapdoor tk for the collection of languages (L1, . . . ,Ln).

– Samp(param, I) or Samp(param, I, (skLi)i∈I) such that I ⊂ {1, . . . , n} and |I| = nmax, gener-
ates a list of words (Wi)i∈I such that Wi ∈ Li for all i ∈ I;

– Verifyi(Wi,Li) checks whether Wi is a valid word in the language Li. It outputs 1 if the word
is valid, 0 otherwise;

11 Even if, as explained in the former section, we would rather consider equivocable commitments of line numbers
than directly line numbers, in order to get adaptive UC security.

12 The specific trapdoor will depend on the languages and be computed in the KeyGen algorithm.

224 APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16]

– Protocol〈S((L1, . . . ,Ln), (m1, . . . ,mn)),R((L1, . . . ,Ln), (Wi)i∈I)〉, which is executed between
the sender S with the private messages (m1, . . . , Pn) and corresponding languages (L1, . . . ,Ln),
and the recipient R with the same languages and the words (Wi)i∈I with I ⊂ {1, . . . , n} and
|I| = nmax, proceeds as follows. For all i ∈ I, if the algorithm Verifyi(Wi,Li) returns 1, then
R receives mi, otherwise it does not. In any case, S does not learn anything.

4.3 Security Properties and Ideal Functionality of OLBE

Since we aim at proving the security in the universal composability framework, we now describe
the corresponding ideal functionality (depicted in Figure 9). However, in order to ease the com-
parison with an OSBE scheme, we first list the security properties required, following [LDB03]
and [BPV12]:
– correct : the protocol actually allows R to learn (mi)i∈I , whenever (Wi)i∈I are valid words of

the languages (Li)i∈I , where I ⊂ {1, . . . , n} and |I| = nmax;
– semantically secure (sem): the recipient learns nothing about the input mi of S if it does not

use a word in Li. More precisely, if S0 owns mi,0 and S1 owns mi,1, the recipient that does
not use a word in Li cannot distinguish between an interaction with S0 and an interaction
with S1 even if the receiver has seen several interactions

〈S((L1, . . . ,Ln), (m1, . . . ,mn)),R((L1, . . . ,Ln), (W ′j)j∈I)〉
with valid words W ′i ∈ Li, and the same sender’s input mi;

– escrow free (oblivious with respect to the authority): the authority corresponding to the lan-
guage Li (owner of the language secret key skLi – if it exists), playing as the sender or just
eavesdropping, is unable to distinguish whether R used a word Wi in the language Li or not.
This requirement also holds for anyone holding the trapdoor key tk.

– semantically secure w.r.t. the authority (sem∗): after the interaction, the trusted authority
(owner of the language secret keys if they exist) learns nothing about the values (mi)i∈I from
the transcript of the execution. This requirement also holds for anyone holding the trapdoor
key tk.
Moreover, the Setups should be indistinguishable and it should be infeasible to find a word

belonging to two or more languages without the knowledge of tk.

The functionality FOLBE is parametrized by a security parameter K and a set of languages (L1, . . . ,Ln) along
with the corresponding public verification algorithms (Verify1, . . . ,Verifyn). It interacts with an adversary S
and a set of parties P1,. . . ,PN via the following queries:
– Upon receiving from party Pi an input of the form (Send, sid, ssid,Pi,Pj, (m1, . . . ,mn)) , with
mk ∈ {0, 1}K for all k: record the tuple (sid, ssid,Pi,Pj , (m1, . . . ,mn)) and reveal (Send, sid, ssid,Pi,Pj) to
the adversary S . Ignore further Send-message with the same ssid from Pi.

– Upon receiving an input of the form (Receive, sid, ssid,Pi,Pj, (Wi)i∈I) where I ⊂
{1, . . . , n} and |I| = nmax from party Pj : ignore the message if (sid, ssid,Pi,Pj , (m1, . . . ,mn))
is not recorded. Otherwise, reveal (Receive, sid, ssid,Pi,Pj) to the adversary S and send the message
(Received, sid, ssid,Pi,Pj , (m

′
k)k∈I) to Pj where m′k = mk if Verifyk(Wk,Lk) returns 1, and m′k = ⊥

otherwise. Ignore further Received-message with the same ssid from Pj .

Fig. 9. Ideal Functionality for Oblivious Language-Based Envelope FOLBE

The ideal functionality is parametrized by a set of languages (L1, . . . ,Ln). Since we show in
the following sections that one can see OSBE and OT as special cases of OLBE, it is inspired
from the oblivious transfer functionality given in [Can01,CKWZ13,ABB+13] in order to provide a
framework consistent with works well-known in the literature. As for oblivious transfer (Figure 2),
we adapt them to the simple UC framework for simplicity (this enables us to get rid of Sent
and Received queries from the adversary since the delayed outputs are automatically considered
in this simpler framework: We implicitly let the adversary determine if it wants to acknowledge

APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16] 225

the fact that a message was indeed sent). The first step for the sender (Send query) consists in
telling the functionality he is willing to take part in the protocol, giving as input his intended
receiver and the messages he is willing to send (up to nmax messages). For the receiver, the first
step (Receive query) consists in giving the functionality the name of the player he intends to
receive the messages from, as well as his words. If the word does belong to the language, the
receiver recovers the sent message, otherwise, he only gets a special symbol ⊥.

4.4 Generic UC-Secure Instantiation of OLBE with Adaptive Security

For the sake of clarity, we now concentrate on the specific case where nmax = 1. This is the most
classical case in practice, and suffices for both OSBE and 1-out-of-n OT. In order to get a generic
protocol in which nmax > 1, one simply has to run nmax protocols in parallel. This modifies the
algorithms Samp and Verify as follows: Samp(param, {i}) or Samp(param, {i}, {skLi}) generates
a word W = Wi ∈ Li and Verifyj(W,Lj) checks whether W is a valid word in Lj .

Let us introduce our protocol OLBE: we will call R the receiver and S the sender. If R is
an honest receiver, then he knows a word W = Wi in one of the languages Li. If S is an honest
sender, then he wants to send up a message among (m1, . . . ,mn) ∈ ({0, 1}K)n to R. We assume
the languages Li to be self-randomizable and publicly verifiable. We also assume the collection
of languages (L1, . . . ,Ln) possess a trapdoor, that the simulator is able to find by programming
the common reference string. As recalled in the previous section, this trapdoor enables him to
find a word lying in the intersection of the n languages. This should be infeasible without the
knowledge of the trapdoor. Intuitively, this allows the simulator to commit to all languages at
once, postponing the time when it needs to choose the exact language he wants to bind to. On
the opposite, if a user was granted the same possibilities, this would prevent the simulator to
extract the chosen language.

We assume the existence of a labeled CCA-encryption scheme E = (Setupcca,KeyGencca,
Encrypt`cca,Decrypt

`
cca) compatible with an SPHF onto a set G. In the KeyGen algorithm, the

description of the languages (L1, . . . ,Ln) thus implicitly defines the languages (Lc1, . . . ,L
c
n) of

CCA-encryptions of elements of the languages (L1, . . . ,Ln). We additionally use a key derivation
function KDF to derive a pseudo-random bit-stringK ∈ {0, 1}K from a pseudo-random element v ∈
G. One can use the Leftover-Hash Lemma [HILL99], with a random seed defined in param during
the global setup, to extract the entropy from v, then followed by a pseudo-random generator to
get a long enough bit-string. Many uses of the same seed in the Leftover-Hash Lemma just lead
to a security loss linear in the number of extractions. We also assume the existence of a Pseudo-
Random Generator (PRG) F with input size equal to the plaintext size, and output size equal
to the size of the messages in the database and an IND-CPA encryption scheme E = (Setupcpa,
KeyGencpa,Encryptcpa,Decryptcpa) with plaintext size at least equal to the security parameter.

We follow the ideas of the oblivious transfer constructions given in [ABB+13,BC15], giving
the protocol presented on Figure 10. For the sake of simplicity, we only give the version for
adaptive security, in which the sender generates a public key pk and ciphertext c to create a
somewhat secure channel (they would not be used in the static version).

Theorem 13. The oblivious language-based envelope scheme described in Figure 10 is UC-secure
in the presence of adaptive adversaries, assuming reliable erasures, an IND-CPA encryption
scheme, and an IND-CCA encryption scheme admitting an SPHF on the language of valid cipher-
texts of elements of Li for all i, as soon as the languages are self-randomizable, publicly-verifiable
and admit a common trapdoor. The proof is given in Appendix E.

4.5 Oblivious Primitives Obtained by the Framework

Classical oblivious primitives such as Oblivious Transfer (both 1-out-of-n and k-out-of-n) or
Oblivious Signature-Based Envelope directly lie in this framework and can be seen as examples

226 APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16]

CRS: param $← Setup(1K), paramcca
$← Setupcca(1

K), paramcpa
$← Setupcpa(1

K).
Pre-flow:

1. Sender generates a key pair (pk, sk)
$← KeyGencpa(paramcpa) for E , stores sk and completely erases the

random coins used by KeyGen.
2. Sender sends pk to User.

Flow From the Receiver R:

1. User chooses a random value J , computes R← F (J) and encrypts J under pk: c $← Encryptcpa(pk, J).
2. User computes C $← Encrypt`cca(W ; r) with ` = (sid, ssid,R,S).
3. User completely erases J and the random coins used by Encryptcpa and sends C and c to Sender. He also

checks the validity of his words: the receiver only keeps the random coins used by Encryptcca for the j such
that Verifyj(W,Lj) = 1 (since he knows they will be useless otherwise).

Flow From the Sender S:

1. Sender decrypts J ← Decryptcpa(sk, c) and then R← F (J).
2. For all j ∈ {1, . . . , n}, sender computes hkj = HashKG(`,Lcj , param), hpj = ProjKG(hkj , `, (L

c
j , param)),

vj = Hash(hkj , (L
c
j , param), (`, C)), Qj = mj ⊕ KDF(vj)⊕R.

3. Sender erases everything except (Qj , hpj)j∈{1,...,n} and sends them over a secure channel.

Message recovery:
Upon receiving (Qj , hpj)j∈{1,...,n}, R can recover mi by computing mi = Qi ⊕
ProjHash(hpi, (L

c
i , param), (`, C), r)⊕R.

Fig. 10. UC-Secure OLBE for One Message (Secure Against Adaptive Corruptions)

of Oblivious Language-Based Envelope. We provide in Appendix F details about how to describe
the languages and choose appropriate smooth projective hash functions to readily achieve current
instantiations of Oblivious Signature-Based Envelope or Oblivious Transfer from our generic pro-
tocol. The framework also enables us to give a new instantiation of Access Controlled Oblivious
Transfer under classical assumptions. In such a primitive, the user does not automatically gets
the line he asks for, but has to prove that he possesses one of the credential needed to access this
particular line.

For the sake of simplicity, all the instantiations given are pairing-based but techniques ex-
plained in [BC15] could be used to rely on other families of assumptions, like decisional quadratic
residue or even LWE.

Acknowledgments

This work was supported in part by the French ANR EnBid Project (ANR-14-CE28-0003).

References

[ABB+13] Michel Abdalla, Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, and David Pointcheval. SPHF-
friendly non-interactive commitments. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013,
Part I, volume 8269 of LNCS, pages 214–234. Springer, December 2013.

[ACP09] Michel Abdalla, Céline Chevalier, and David Pointcheval. Smooth projective hashing for conditionally
extractable commitments. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 671–
689. Springer, August 2009.

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell digital goods.
In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 119–135. Springer,
May 2001.

[AP06] Michel Abdalla and David Pointcheval. A scalable password-based group key exchange protocol in the
standard model. In Xuejia Lai and Kefei Chen, editors, ASIACRYPT 2006, volume 4284 of LNCS,
pages 332–347. Springer, December 2006.

APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16] 227

[Att14] Nuttapong Attrapadung. Dual system encryption via doubly selective security: Framework, fully
secure functional encryption for regular languages, and more. In Phong Q. Nguyen and Elisabeth
Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 557–577. Springer, May 2014.

[BBC+13a] Fabrice Ben Hamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud.
Efficient UC-secure authenticated key-exchange for algebraic languages. In Kaoru Kurosawa and
Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 272–291. Springer, Febru-
ary / March 2013.

[BBC+13b] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud.
New techniques for SPHFs and efficient one-round PAKE protocols. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 449–475. Springer, August 2013.

[BC15] Olivier Blazy and Céline Chevalier. Generic construction of uc-secure oblivious transfer. In Tal
Malkin, Vladimir Kolesnikov, Allison Bishop Lewko, and Michalis Polychronakis, editors, Applied
Cryptography and Network Security - 13th International Conference, ACNS 2015, New York, NY,
USA, June 2-5, 2015, Revised Selected Papers, volume 9092 of Lecture Notes in Computer Science,
pages 65–86. Springer, 2015.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer, August 2001.

[BFPV10] Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Signatures on random-
izable ciphertexts. In Rosario Gennaro, editor, Proceedings of PKC 2011, Lecture Notes in Computer
Science. Springer, 2010. Full version available from the web page of the authors.

[BG13] Stephanie Bayer and Jens Groth. Zero-knowledge argument for polynomial evaluation with application
to blacklists. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881
of LNCS, pages 646–663. Springer, May 2013.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In Joe Kilian,
editor, TCC 2005, volume 3378 of LNCS, pages 325–341. Springer, February 2005.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Ting Yu,
George Danezis, and Virgil D. Gligor, editors, ACM CCS 12, pages 784–796. ACM Press, October
2012.

[BKP14] Olivier Blazy, Eike Kiltz, and Jiaxin Pan. (hierarchical) identity-based encryption from affine message
authentication. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616
of LNCS, pages 408–425. Springer, August 2014.

[Bon98] Dan Boneh. The decision Diffie-Hellman problem. In Third Algorithmic Number Theory Symposium
(ANTS), volume 1423 of LNCS. Springer, 1998. Invited paper.

[BPV12] Olivier Blazy, David Pointcheval, and Damien Vergnaud. Round-optimal privacy-preserving protocols
with smooth projective hash functions. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS,
pages 94–111. Springer, March 2012.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[CCGS10] Jan Camenisch, Nathalie Casati, Thomas Groß, and Victor Shoup. Credential authenticated identifi-
cation and key exchange. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 255–276.
Springer, August 2010.

[CCL15] Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of universally composable security
for standard multiparty computation. In CRYPTO 2015, Part II, LNCS, pages 3–22. Springer, August
2015.

[CDH12] Jan Camenisch, Maria Dubovitskaya, and Kristiyan Haralambiev. Efficient structure-preserving sig-
nature scheme from standard assumptions. In Ivan Visconti and Roberto De Prisco, editors, SCN 12,
volume 7485 of LNCS, pages 76–94. Springer, September 2012.

[CDN09] Jan Camenisch, Maria Dubovitskaya, and Gregory Neven. Oblivious transfer with access control. In
Ehab Al-Shaer, Somesh Jha, and Angelos D. Keromytis, editors, ACM CCS 09, pages 131–140. ACM
Press, November 2009.

[CDNZ11] Jan Camenisch, Maria Dubovitskaya, Gregory Neven, and Gregory M. Zaverucha. Oblivious transfer
with hidden access control policies. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio
Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages 192–209. Springer, March 2011.

[CFH+07] Yang Cui, Eiichiro Fujisaki, Goichiro Hanaoka, Hideki Imai, and Rui Zhang. Formal security treat-
ments for signatures from identity-based encryption. In Willy Susilo, Joseph K. Liu, and Yi Mu,
editors, ProvSec 2007, volume 4784 of LNCS, pages 218–227. Springer, November 2007.

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information retrieval. In
36th FOCS, pages 41–50. IEEE Computer Society Press, October 1995.

[CKP07] Ronald Cramer, Eike Kiltz, and Carles Padró. A note on secure computation of the Moore-Penrose
pseudoinverse and its application to secure linear algebra. In Alfred Menezes, editor, CRYPTO 2007,
volume 4622 of LNCS, pages 613–630. Springer, August 2007.

[CKWZ13] Seung Geol Choi, Jonathan Katz, Hoeteck Wee, and Hong-Sheng Zhou. Efficient, adaptively secure,
and composable oblivious transfer with a single, global CRS. In Kaoru Kurosawa and Goichiro
Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 73–88. Springer, February / March 2013.

228 APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16]

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party
and multi-party secure computation. In 34th ACM STOC, pages 494–503. ACM Press, May 2002.

[CNs07] Jan Camenisch, Gregory Neven, and abhi shelat. Simulatable adaptive oblivious transfer. In Moni
Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS, pages 573–590. Springer, May 2007.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS,
pages 13–25. Springer, August 1998.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen cipher-
text secure public-key encryption. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of
LNCS, pages 45–64. Springer, April / May 2002.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, 22(6):644–654, 1976.

[DOR99] Giovanni Di Crescenzo, Rafail Ostrovsky, and Sivaramakrishnan Rajagopalan. Conditional oblivious
transfer and timed-release encryption. In Jacques Stern, editor, EUROCRYPT’99, volume 1592 of
LNCS, pages 74–89. Springer, May 1999.

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic framework
for Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II,
volume 8043 of LNCS, pages 129–147. Springer, August 2013.

[ElG84] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In
G. R. Blakley and David Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages 10–18. Springer,
August 1984.

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in the common reference string model. In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 60–77. Springer, August 2006.

[GD14] Vandana Guleria and Ratna Dutta. Lightweight universally composable adaptive oblivious transfer.
In ManHo Au, Barbara Carminati, and C.-C.Jay Kuo, editors, Network and System Security, volume
8792 of Lecture Notes in Computer Science, pages 285–298. Springer International Publishing, 2014.

[GH07] Matthew Green and Susan Hohenberger. Blind identity-based encryption and simulatable oblivious
transfer. In Kaoru Kurosawa, editor, ASIACRYPT 2007, volume 4833 of LNCS, pages 265–282.
Springer, December 2007.

[GH08] Matthew Green and Susan Hohenberger. Universally composable adaptive oblivious transfer. In Josef
Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS, pages 179–197. Springer, December 2008.

[GIKM98] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data privacy in private
information retrieval schemes. In 30th ACM STOC, pages 151–160. ACM Press, May 1998.

[GKW15] Romain Gay, Iordanis Kerenidis, and Hoeteck Wee. Communication complexity of conditional dis-
closure of secrets and attribute-based encryption. In CRYPTO 2015, Part II, LNCS, pages 485–502.
Springer, August 2015.

[GL03] Rosario Gennaro and Yehuda Lindell. A framework for password-based authenticated key exchange.
In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 524–543. Springer, May 2003.
http://eprint.iacr.org/2003/032.ps.gz.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, April 1988.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229.
ACM Press, May 1987.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel P.
Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer, April 2008.

[Har11] Kristiyan Haralambiev. Efficient Cryptographic Primitives for Non-Interactive Zero-Knowledge Proofs
and Applications. PhD thesis, New York University, 2011.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[HK07] Omer Horvitz and Jonathan Katz. Universally-composable two-party computation in two rounds. In
Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 111–129. Springer, August 2007.

[IW14] Yuval Ishai and Hoeteck Wee. Partial garbling schemes and their applications. In Javier Esparza,
Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, ICALP 2014, Part I, volume 8572
of LNCS, pages 650–662. Springer, July 2014.

[JL09] Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function with applications to
adaptive OT and secure computation of set intersection. In Omer Reingold, editor, TCC 2009, volume
5444 of LNCS, pages 577–594. Springer, March 2009.

[Kal05] Yael Tauman Kalai. Smooth projective hashing and two-message oblivious transfer. In Ronald Cramer,
editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 78–95. Springer, May 2005.

[KLL+15] Aggelos Kiayias, Nikos Leonardos, Helger Lipmaa, Kateryna Pavlyk, and Qiang Tang. Optimal rate
private information retrieval from homomorphic encryption. PoPETs, 2015(2):222–243, 2015.

APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16] 229

[KNP11] Kaoru Kurosawa, Ryo Nojima, and Le Trieu Phong. Generic fully simulatable adaptive oblivious
transfer. In Javier Lopez and Gene Tsudik, editors, ACNS 11, volume 6715 of LNCS, pages 274–291.
Springer, June 2011.

[KV11] Jonathan Katz and Vinod Vaikuntanathan. Round-optimal password-based authenticated key ex-
change. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 293–310. Springer, March
2011.

[LDB03] Ninghui Li, Wenliang Du, and Dan Boneh. Oblivious signature-based envelope. In Elizabeth Borowsky
and Sergio Rajsbaum, editors, 22nd ACM PODC, pages 182–189. ACM, July 2003.

[LL07] Sven Laur and Helger Lipmaa. A new protocol for conditional disclosure of secrets and its applications.
In Jonathan Katz and Moti Yung, editors, ACNS 07, volume 4521 of LNCS, pages 207–225. Springer,
June 2007.

[NP97] Moni Naor and Benny Pinkas. Visual authentication and identification. In Burton S. Kaliski Jr.,
editor, CRYPTO’97, volume 1294 of LNCS, pages 322–336. Springer, August 1997.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In S. Rao Kosaraju, editor, 12th
SODA, pages 448–457. ACM-SIAM, January 2001.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In 22nd ACM STOC, pages 427–437. ACM Press, May 1990.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer, August 1992.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable
oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 554–571.
Springer, August 2008.

[Rab81] Michael O. Rabin. How to exchange secrets with oblivious transfer. Technical Report TR81, Harvard
University, 1981.

[RKP09] Alfredo Rial, Markulf Kohlweiss, and Bart Preneel. Universally composable adaptive priced oblivious
transfer. In Hovav Shacham and Brent Waters, editors, PAIRING 2009, volume 5671 of LNCS, pages
231–247. Springer, August 2009.

[RS92] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen
ciphertext attack. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 433–444.
Springer, August 1992.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and David Chaum,
editors, CRYPTO’84, volume 196 of LNCS, pages 47–53. Springer, August 1984.

[Sha07] Hovav Shacham. A cramer-shoup encryption scheme from the linear assumption and from pro-
gressively weaker linear variants. Cryptology ePrint Archive, Report 2007/074, 2007. http:
//eprint.iacr.org/2007/074.pdf.

[Wat05] Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer,
editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 114–127. Springer, May 2005.

[Wee14] Hoeteck Wee. Dual system encryption via predicate encodings. In Yehuda Lindell, editor, TCC 2014,
volume 8349 of LNCS, pages 616–637. Springer, February 2014.

[WHC+14] Xiao Shaun Wang, Yan Huang, T.-H. Hubert Chan, Abhi Shelat, and Elaine Shi. SCORAM: Oblivious
RAM for secure computation. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 14,
pages 191–202. ACM Press, November 2014.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS,
pages 162–167. IEEE Computer Society Press, October 1986.

A Classical Primitives

Digital Signature.
A digital signature scheme S [DH76,GMR88] allows a signer to produce a verifiable proof

that he indeed produced a message. It is de scribed through four algorithms:

Definition 14 (Digital Signature Scheme). σ = (Setup,KeyGen, Sign,Verify):
– Setup(1K) where K is the security parameter, generates the global parameters param of the

scheme, for example the message space;
– KeyGen(param), outputs a pair of (sk, vk), where sk is the (secret) signing key, and vk is the

(public) verification key;
– Sign(sk,M ;µ), outputs a signature σ(M), on a message M , under the signing key sk, and

some randomness µ;

230 APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16]

– Verify(vk,M, σ) checks the validity of the signature σ with respect to the message M and the
verification key vk. And so outputs a bit.

In the following we will expect at least two properties for signatures:
– Correctness: For every pair (vk, sk) generated by KeyGen, for every message M , and for all

randomness µ, we have Verify(vk,M, Sign(sk,M ;µ)) = 1.
– Existential Unforgeability under Chosen Message At-

tacks [GMR88] (EUF− CMA). Even after querying n
valid signatures on chosen messages (Mi), an adver-
sary should not be able to output a valid signature
on a fresh message M . To formalize this notion, we
define a signing oracle OSign:
• OSign(vk,m): This oracle outputs a signature on
m valid under the verification key vk. The re-
quested message is added to the signed messages
set SM.

ExpeufS,A(K)

1. param← Setup(1K)
2. (vk, sk)← KeyGen(param)
3. (m∗, σ∗)← A(vk,OSign(vk, ·))
4. b← Verify(vk,m∗, σ∗)
5. IF m∗ ∈ SM RETURN 0
6. ELSE RETURN b

The probability of success against this game is denoted by SucceufS,A(K) = Pr[ExpeufS,A(K) =

1], SucceufS (K, t) = maxA≤t SucceufS,A(K).

Encryption. An encryption scheme C is described by four algorithms (Setup,KeyGen,Encrypt,
Decrypt):
– Setup(1K), where K is the security parameter, generates the global parameters param of the

scheme;
– KeyGen(param) outputs a pair of keys, a (public) encryption key pk and a (private) decryption

key dk;
– Encrypt(ek,M ; ρ) outputs a ciphertext C, on M , under the encryption key pk, with the ran-

domness ρ;
– Decrypt(dk, C) outputs the plaintext M , encrypted in the ciphertext C or ⊥.

Such encryption scheme is required to have the following security properties:
– Correctness: For every pair of keys (ek, dk) generated by KeyGen, every messages M , and

every random ρ, we should have Decrypt(dk,Encrypt(ek,M ; ρ)) = M .
– Indistinguishability under Adaptive Chosen Ciphertext Attack IND-CCA ([NY90,RS92]):
• IND-CCA: An adversary should not be

able to efficiently guess which message
has been encrypted even if he chooses the
two original plaintexts, and ask several
decryption of ciphertexts different from
challenge one.
The ODecrypt oracle outputs the decryp-
tion of c under the challenge decryption
key dk. The input queries (c) are added
to the list CT of decrypted ciphertexts.

Expind-cca−bE,A (K)

1. param← Setup(1K)
2. (pk, dk)← KeyGen(param)
3. (M0,M1)← A(FIND : pk,ODecrypt(·))
4. c∗ ← Encrypt(ek,Mb)
5. b′ ← A(GUESS : c∗,ODecrypt(·))
6. IF (c∗) ∈ CT RETURN 0
7. ELSE RETURN b′

Commitment. Commitments allow a user to commit to a value without revealing it, but without
the possibility to later change his mind. It is composed of these algorithms:
– SetupCom(1K) generates the system parameters, according to the security parameter K.
– KeyGen(param) generates a commitment key ck, and possibly some verification key vk.
– Commit(ck, vk,m; r) produces a commitment c on the input message m ∈ M using the

random coins r $← R.
– Decommit(ck, c,m; r) opens the commitment c and reveals the message m.

APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16] 231

Such a commitment scheme should be both hiding, which says that the commit phase does
not leak any information about m, and binding, which says that the decommit phase should not
be able to open to two different messages. Additional features are also sometimes required, such
as non-malleability, extractability, and/or equivocability. We may also include a label `, which is
an additional public information that has to be the same in both the commit and the decommit
phases.

A commitment scheme is said equivocable if it has a second setup SetupComT(1K) that addi-
tionally outputs a trapdoor τ , and two algorithms

– SimCom`(τ) that takes as input the trapdoor τ and a label ` and outputs a pair (C, eqk),
where C is a commitment and eqk an equivocation key;

– OpenCom`(eqk, C, x) that takes as input a commitment C, a label `, a message x, an equiv-
ocation key eqk, and outputs an opening data δ for C and ` on x.

such as the following properties are satisfied: trapdoor correctness (all simulated commitments
can be opened on any message), setup indistinguishability (one cannot distinguish the CRS ρ
generated by SetupCom from the one generated by SetupComT) and simulation indistinguisha-
bility (one cannot distinguish a real commitment (generated by Com) from a fake commitment
(generated by SCom), even with oracle access to fake commitments), denoting by SCom the
algorithm that takes as input the trapdoor τ , a label ` and a message x and which outputs
(C, δ)

$← SCom`(τ, x), computed as (C, eqk)
$← SimCom`(τ) and δ ← OpenCom`(eqk, C, x).

A commitment scheme C is said extractable if it has a second setup SetupComT(1K) that
additionally outputs a trapdoor τ , and a new algorithm

– ExtCom`(τ, C) which takes as input the trapdoor τ , a commitment C, and a label `, and
outputs the committed message x, or ⊥ if the commitment is invalid.

such as the following properties are satisfied: trapdoor correctness (all commitments honestly
generated can be correctly extracted: for all `, x, if (C, δ)

$← Com`(x) then ExtCom`(C, τ) = x),
setup indistinguishability (as above) and binding extractability (one cannot fool the extractor,
i.e., produce a commitment and a valid opening data to an input x while the commitment does
not extract to x).

Chameleon Hash. This directly echoes to Chameleon Hashes, traditionally defined by three
algorithms CH = (KeyGen,CH,Coll):
– KeyGen(K): Outputs the chameleon hash key ck and the trapdoor tk;
– CH(ck,m; r): Picks a random r, and outputs the chameleon hash a.
– Coll(ck,m, r,m′, tk): Takes as input the trapdoor tk, a start message and randomness pair

(m, r) and a target message m′ and outputs a target randomness r′ such that CH(ck,m; r) =
CH(ck,m′; r′).
The standard security notion for CH is collision resistance. Formally, CH is (t, ε)− coll if for

the adversary A running in time at most t we have:

Pr

[
(ck, tk)

$← KeyGen(K); ((m1, r1), (m2, r2))
$← A(ck)

∧ CH(ck,m1; r1) = CH(ck,m2; r2) ∧m1 6= m2

]
≤ ε.

However, any user in possession of the trapdoor tk is able to find a collision using Coll. Addition-
ally, Chameleon Hash functions have the uniformity property, which means the hash value leaks
nothing about the message input. Formally, for all pair of messages m1 and m2 and the randomly
chosen r, the probability distributions of the random variables CH(ck,m1, r) and CH(ck,m2, r)
are computationally indistinguishable.

We need here the hash value to be verifiable, so that we add two VKeyGen and Valid algorithms
(executed by the receiver).

232 APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16]

– VKeyGen(ck): Outputs the chameleon designated verification key vk by appending it to ck
and the trapdoor vtk. This trapdoor can be empty or public if the chameleon hash is publicly
verifiable.

– Valid(ck,m, a, d, vtk): Allows to check that the sender knows how to open a Chameleon Hash a
to a specific value m for the witness d. The verification can be public if vtk is empty or public,
or specific to the receiver otherwise.

B Building Blocks

B.1 Classical Building Blocks

Waters Signature To sign scalar message in the standard model, one can use Waters Signa-
tures [Wat05]. This signature scheme is defined by four algorithms:

Definition 15 (Waters Signature Scheme). S = (Setup,KeyGen,Sign,Verify):

– Setup(1K), where K is the security parameter, generates the global parameters param of the
scheme, and more specifically the bilinear group (p,G,GT , e, g), an extra generator h, and gen-
erators (ui)J0,kK for the Waters function, where k is a polynomial in K, F(m) = u0

∏
i∈J1,kK u

mi
i ,

where m = (m1, . . . ,mk) ∈ {0, 1}k.
– KeyGen(param) picks a random x

$← Zp and outputs the secret key sk = Y = hx, and the
verification key vk = X = gx;

– Sign(sk,m;µ) outputs a signature σ(m) = (Y F(m)µ, g−µ);
– Verify(vk,m, σ) checks the validity of σ, by checking if the following pairing equation holds:
e(g, σ1) · e(F(m), σ2) ?= e(X,h)

Theorem 16. This scheme is EUF− CMA under the CDH assumption.

Theorem 17. Waters Signature is randomizable if we define:

– Random(vk,F(m), σ = (σ1, σ2);µ′) outputs σ′ = (σ1 · F(m)µ
′
, σ2 · g−µ′).

Proof. We simply have:

σ = Sign(sk,F(m);µ) ⇒ Random(vk,F(m), σ;µ′) = Sign(sk,F(m);µ+ µ′ mod p).

Due to the additive law in Zp, fresh signature distribution is indistinguishable from randomized
one. ut

CDH-based Chameleon Hash [BC15]

– KeyGen(K): Outputs the chameleon hash key ck = (g, h) and the trapdoor tk = α, where
gα = h;

– VKeyGen(ck): Appends f to ck and vtk = logg(f)

– CH(ck,m; r): Picks a random r ∈ Zp, and outputs the chameleon hash a = hrgm. Sets d = f r.
– Coll(m, r,m′, tk): outputs r′ = r + (m−m′)/α.
– Valid(ck,m, a, d, vtk): One can check if a = hm · d1/vtk.

In a pairing environment, there is a trivial way to check this CH using a pairing instead of
knowing vtk.

This is a CDH variant of the Pedersen chameleon hash [Ped92].

ElGamal Encryption ElGamal encryption [ElG84] is defined by the following four algorithms:

APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16] 233

– Setup(1K): The scheme needs a multiplicative group (p,G, g),. The global parameters param
consist of these elements (p,G, g).

– KeyGen(param): Chooses one random scalar µ $← Zp, which define the secret key dk = µ, and
the public key ek = X = gµ.

– Encrypt(ek = X,M ;α): For a message M ∈ G and a random scalar α $← Zp, computes the
ciphertext as c =

(
c1 = XαM, c2 = gα

)
.

– Decrypt(dk = µ, c = (c1, c2)): One computes M = c1/(c
µ
2).

As shown by Boneh [Bon98], this scheme is IND-CPA under the hardness of DDH.

Cramer-Shoup Encryption The Cramer-Shoup encryption scheme [CS98] is an IND-CCA
version of the ElGamal Encryption. We present it here as a labeled public-key encryption scheme,
the classical version is done with ` = ∅.

– Setup(1K) generates a group G of order p, with a generator g
– KeyGen(param) generates (g1, g2)

$← G2, dk = (x1, x2, y1, y2, z)
$← Z5

p, and sets, c = gx11 gx22 ,
d = gy11 g

y2
2 , and h = gz1 . It also chooses a Collision-Resistant hash function HK in a hash

family H (or simply a Universal One-Way Hash Function). The encryption key is ek =
(g1, g2, c, d, h,HK).

– Encrypt(`, ek,M ; r), for a message M ∈ G and a random scalar r ∈ Zp, the ciphertext
is C = (`,u = (gr1, g

r
2), e = M · hr, v = (cdξ)r), where v is computed afterwards with

ξ = HK(`,u, e).
– Decrypt(`, dk, C): one first computes ξ = HK(`,u, e) and checks whether ux1+ξy1

1 ·ux2+ξy2
2

?= v.
If the equality holds, one computes M = e/(uz1) and outputs M . Otherwise, one outputs ⊥.

The security of the scheme is proven under the DDH assumption and the fact the hash
function used is a Universal One-Way Hash Function. A generalization of this encryption to the
k −MDDH assumption can be found further below.

Smooth Projective Hash Functions on Cramer Shoup Encryption
One can now build a Hash Proof system on this CCA-2 scheme:

– HashKG(LM) : hk
$← Z4

p,
– ProjKG(hk, (LM , `, [C]2)) : Setting ht = (h, g1, g2, cd

θ), we have hp = hhk1ghk21 ghk32

(
cdθ
)hk4 ,

where θ = H(`, e)
– Hash(hk, (LM , `, [C]2)) : H ← (C1/M)hk1Chk22 Chk33 Chk44 ,
– ProjHash(hp, (LM , `, [C]2), r)H ′ ← hpr

B.2 k-MDDH Building Blocks

In this section we extend classical building blocks to the MDDH assumptions. While most of
them were at least implicitly defined before in [EHK+13], we feel it may be useful to group them
together for ease of reading.

Chameleon Hash We first extend the Pedersen commitment, to obtain a compatible verifiable
Chameleon Hash functions:

– KeyGen(K): Outputs the chameleon hash key ck1 = F
$← Dk and the trapdoor tk = F ·F−1,

it also generates G $← GLk and adds ck2 = [EG]2 to the key ck and keeps the verification
trap vtk = G−1

– CH(ck,m;ρ): Picks a random ρ ∈ Zk+1
p , and outputs the chameleon hash [a]2 = [(ρ> |

m)ck1]2. Sets d = ρ>ck2.
– Coll(m,ρ,m′, tk): outputs ρ′ = ρ+ (m−m′)tk.

234 APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16]

– Valid(ck,m, [a]2, [d]2, vtk): The user outputs [d]2, so that one can check if a = d>vtk +mF .

Correctness follows easily, finding a collision leads to directly to computing tk, and so G from
[E]2 and vtk. Such Pedersen Commitment was already used in the master public key generation
in [BKP14]. It also corresponds to the k−MDDH version of the Haralambiev [Har11, Section 4.1.4]
TC4 commitment scheme, called TC4 which was revisited in recent works [ABB+13,BC15] as
the basis for a UC secure commitment.

k-MDDH Linear Encryption [EHK+13] provides a CPA encryption scheme:

– KeyGen(K): Picks E $← Dk, sets pk = [E]2, sk = (E ·E−1) to be the public encryption key.

– Encrypt(ek,M, `;µ) If M ∈ G2, e = pkµ+

[
0
M

]

2

.

– Decrypt(dk, e, `) Outputs M = ske+ e.

2m labelled k-MDDH Multi Cramer Shoup Encryption We are going to need a CCA-2
encryption, SPHF friendly, and proven under MDDH. Fortunately for us, [EHK+13] also provides
a compatible Universal2 Hash Proof system, which thanks to [CS02] leads to the required scheme:

– KeyGen(K): Picks E $← Dk,u,v $← Zk+1
p , sets pk = ([E]2, [u

>E]2, [v
>E]2), sk = (E ·

E−1,u,v) to be the public encryption key, where H is a random collision-resistant hash
function from H 13.

– Encrypt(ek,M, `;µ) If M ∈ G2, C = (e = pk1µ +

[
0
M

]

2

, w = [(pk2 + θpk3)µ]2. where

θ = H(`, e).
– Decrypt(dk, C, `) If [w]2

?= [(u> + θv>)e]2, then outputs M = ske+ e.

The above scheme can be extended naturally to encrypt matrices of group elements D =
(D1, . . . ,D2m) ∈ G2m

2 , by having 2m tuples of random scalars in the secret key, and a global value
θ for the encryption. Following the techniques from [ABB+13], and the work from [EHK+13] this
scheme is VIND-PO-CCA under the MDDH assumption.

k-linear Smooth Projective Hash Function
One can now build a Hash Proof system on this CCA-2 scheme, by following [EHK+13,

BBC+13b]

– HashKG(LM) : hk
$← Zk+2

p ,

– ProjKG(hk, (LM , `, [C]2)) : Setting ht =
pk1

pk2 + θpk3
, we have [hp]2 =

[
hk>ht

]
2
, where θ =

H(`, e),
– Hash(hk, (LM , `, [C]2)) : [H]2 ←

[
hk>

(
C − (0 |M)>

)]
2
,

– ProjHash(hp, (LM , `, [C]2),µ)[H ′]2 ← [hpµ]2

The smoothness of such system is show by considering the determinant of the matrix D =[
ht>

C − (0 |M)>

]

As soon as C is not a valid encryption of M , this matrix has non zero determinant. As the
first lines leads to hk>ht the public projection key hp, and the last to hk>(C − (0 | M)) the
computed Hash value, we can deduce that form the public views, the computed hash value is
information theoretically independent from the projection keys for words outside the language.
13 Like Cramer-Shoup one could rely on an universal one-way hash function family instead

APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16] 235

C Proof of the Security of Fragmented IBE

In this section, we briefly prove that the variation over the [BKP14] IBE, does not weaken it’s
security.

Theorem 18. The Blinded IBE achieves the leak-free secret key generation requirements under
the security of the initial IBE, the extractability of the MDDH Cramer Shoup Encryption and the
Smoothness of the SPHF on the bit commitment.

Proof. Given an adversary A against the security of the blinded scheme, we are going to build
an adversary B against the security of the initial IBE.

From the challenge, B receives the parameter from an IBE scheme mpk, has access to a user
key generation oracle USKGenO, and for a given fresh id∗, a tuple (K∗,C∗) whose consistency he
need to decide.

In the initial game G0, B behaves normally, generating mpk,msk, and answering A blinded
request honestly.

G1 In this game, B starts altering his answer. Using the extraction procedure on the CCA
commitment, B is able to recover the identity id queried by A. If for a bit i, there is two valid
openings, then A broke the collision resistance property of the underlying chameleon hash
(and so MDDH) and B aborts. The Chameleon hash being Collision Resistant, this game is
equivalent to the previous one under k −MDDH.

G2 In this game, B starts altering his answer. Using the extraction procedure on the CCA
commitment, B is able to recover the identity id queried by A. Now, for each bit, there is
at least one dummy value ¯idi, and so B computes random values ωi, ¯idi

$← Zk+1
p . Under the

smoothness of the underlying smooth projective hash function, this game is indistinguishable
from the previous one.

G3 Now B continues to extract the requested id, picks random f
$← Z`×k+1

p , and sets w0 =

usk[id]−∑`
i=1 f i, then for i ∈ J1, nK, ωi,idi = f i +Hi,idi while ωi, idi

$← Zk+1
p as before. If B,

does not recover a valid identity, he simply only sends dummy values.
This game is indistinguishable from the previous one, as this is just a rewriting of the vector
f i. (Noting f̂ i the old one, we have f i = f̂ i − (idiY i)t which follows the same distribution).

G4 B can now forget about msk, when receiving a BlindUSKGen request, B extracts the request
identity, and if it is not ⊥ he forwards it to the USKGenO oracle, and plugs the received
usk[id] as before.

Now A can request a challenge from B, B forwards this request to the initial non-blinded IBE
challenge for a fresh id∗, and returns the challenge (K∗,C∗) to A which leads to the conclusion.

ut

D Proof of the Generic Construction of Adaptive Oblivious Transfer

We prove the security of this protocol via a sequence of games, starting from the real game,
where the adversary A interacts with the real players, and ending with the ideal game, where
we have built a simulator S that makes the interface between the ideal functionality F and the
adversary A . The simulator is explicitely given in Game 11. Recall that we consider adaptive
corruptions.

We denote as S the server and U the user. The main idea is that, by assumption, the simulator
can always obtain the common trapdoor tk of the collection of languages (L1, . . . ,Ln) and use it
to commit to a word simultaneously belonging to all the languages. In case of adaptive corruption,
we face two cases: either the word was not correct, in which case, following the real protocol, the

236 APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16]

user should have erased his randomness, so that the simulator does not have anything to reveal.
Or the word was correct and should belong to a certain language Ls, and the simulator can then
adapt the word and randomness so that it seems to belong to Ls (only). This enables us to avoid
the use of commitments both extractable and equivocable (which is the usual tool for adaptive
corruptions).

Due to the construction of the protocol, we have to prove that the user recovers the secret
key usk[s] corresponding to the s-th line of the database in an oblivious way, which means on
the one hand that the user gains no information on the other keys, and on the other hand that
the server gains no information on the key required by the user. Assuming this is the case (the
proof follows), the adaptive security of the global oblivious transfer relies on the security of the
underlying IBE scheme: The indistinguishability of the ciphertexts ensure that the user only
recovers the s-th line for which he knows the secret key usk[s].

Since the channels are authenticated, we know whether a flow was sent by an honest player
(and received without any alteration) or not.

Game G0: This is the real game.

Game G1: In this game, the simulator generates correctly every flow on behalf of the honest
players, as they would do themselves, knowing the database (DB(1), . . . , DB(n)) and the word
W sent by the environment to the server and the user. In all the subsequent games, the players
use the label ` = (sid, ssid,S,U). In case of corruption of an honest player (either server or user),
the simulator can give the internal data generated on behalf of the honest users.

Game G2: In this game, we replace the setup algorithm Setup by SetupT, allowing the existence
of a trapdoor to find words in the intersection of the collection of languages. We also allow the
simulator to program SetupCCA in the CRS, enabling it to learn the extraction trapdoor of the
CCA encryption scheme. The indistinguishability of the setups makes this game indistinguishable
from the former one for the environment. Corruptions are handled the same way.

Game G3: We first deal with honest servers S: he computes everything honestly during the
database preparation. When receiving a commitment C, the simulator extracts the committed
value W . By testing with the help of the algorithm Verify, it recovers s such that W ∈ Ls. If
it recovers s 6= t such that W ∈ Ls ∩ Lt, then the adversary has broken the infeasibility of
finding a word in an intersection of languages without knowing the trapdoor and we abort the
game. Otherwise, instead of computing the keys Hi,b, for i = 1, . . . , ` and b = 0, 1 with the hash
function, the simulator then chooses Hi,b

$← G when b is not equal to the i-th bit of W .
With an hybrid proof, applying the smoothness for every honest sender, on every index (i, b)

such that b 6= Wi, since C is extracted to W ∈ Li, for any (i, b) such that b 6= Wi, the hash value
is indistinguishable from a random value.

In case of corruption, everything has been erased (except after the pre-flow, where the simu-
lator can reveal the keys (pk, sk) generated honestly). This game is thus indistinguishable from
the previous one under the smoothness.

Game G4: Still in this case, when receiving a commitment C, the simulator extracts the
committed value W . By testing with the help of the algorithm Verify, it recovers s such that
W ∈ Ls. Instead of proceeding as the server would do with (usk[i, b]), the simulator proceeds on
(usk′[i, b]), with usk′[i, b] = 0 except if b = Wi. Since the masks Hi,b, for b 6= Wi, are random,
this game is perfectly indistinguishable from the previous one.

Game G5: We now deal with honest users U : the simulator now uses the trapdoor tk to find
a word W ′ in the intersection of all languages.

With an hybrid proof, applying a security game in each session in which the simulator does
not know the trapdoor tk, one can show the indistinguishability of the two games. In case of
corruption of the receiver, one learns the already known value W , thus s.

APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16] 237

Game G6: We deal with the generation of R for honest servers S where the users U
are honests: if S and U are honest at least until S received the second flow, the simulator sets
R = F (S′) for both S and U , with S′ a random value, instead of R = F (S).

With an hybrid proof, applying the IND-CPA property for each session, one can show the
indistinguishability of this game with the previous one.

Game G7: Still in the same case, the simulator sets R as a random value, instead of R = F (S′).
With an hybrid proof, applying the PRF property for each session, one can show the indis-

tinguishability of this game with the previous one.

Game G8: We now deal with the generation of Hi,Wi for honest servers S with honest
users U . Thanks to the additional random mask R, one can send random (usk[i,Wi])i, and Hi,Wi

can be computed later (when U actually receives its flow).
As above, but only if U has not been corrupted before receiving its flow, the simulator chooses

Hi,Wi

$← G. With an hybrid proof, applying the pseudo-randomness, for every honest sender, the
hash value is indistinguishable from a random value, because the adversary does not know any
decommitment information for C. If the player U involved in the pseudo-randomness game gets
corrupted (but the decommitment information is unknown) we are not in this case, and we can
thus abort it.

In case of corruption of S, everything has been erased (except after the pre-flow, where the
simulator can reveal the keys (pk, sk) generated honestly).

In case of corruption of the receiver U , and thus receiving the value D̃B(s), the simulator
computes K̃s such that K̃s⊕ D̃B(s) = Ks⊕DB(s) and the corresponding ũsk[W]. It chooses R
(because it was a random value unknown to the adversary and all the other Hi,b are independent

random values too) such that
(⊕

i busk[i,Wi]⊕H ′i,Wi

)
⊕ Z ⊕R = ũsk[W].

This game is thus indistinguishable from the previous one under the pseudo-randomness.
Remark.We now explain how, in the pairing instantiation of our protocol, given already sent val-
uesDs,Ks⊕DB(s), a simulator recovering from the environment the value D̃B(s), can adaptively
be able to change his memory so as to compute a user key ũsk[W] such that Dec(ũsk[W],W,Ds) =

DB(s) ⊕Ks ⊕ D̃B(s). This is exactly where we use the restriction on the size of DB elements
so that we can manage to find a vector δs ∈ G2k+1

2 such that DB(s)⊕ D̃B(s) = e(Ds, δs). Thus,
this allows the server to update his memory into ũsk[W] = usk[W] · δs.
Game G9: Still in this case, the simulator proceeds on (usk[i, b]), with usk[i, b] = 0 for all
i, b. Since the masks Hi,b, Z ⊕R, for any i, b, are independent random values (the busk[i, b], for
b 6= Wi are independent random values, and R is independently random), this game is perfectly
indistinguishable from the previous one.

We remark that it is therefore no more necessary to know the index s given by the ideal
functionality to the honest receiver U , to simulate S (but it is still necessary to simulate U).
Game G10: We do not use anymore the knowledge of s when simulating an honest user U : the
simulator generates a word W ′ in the intersection of the languages and C $← Encrypt`cca(W ′;ρ),
with ` = (sid, ssid,S,R), to send C during the first phase of honest users. This does not change
anything from the previous game since the randomness needed to open to a word in another
language is never revealed.

When it thereafter receives (Send, sid, ssid,S,R, (hpi,b, busk[i, b])) from the adversary, the sim-
ulator computes, for all lines t, usk[Wt] and recovers Kt and finally DB(t), which provides the
database (DB(1), . . . , DB(n)) submitted by the sender. It uses them to send a Send-message to
the ideal functionality.

Game G11: We can now make use of the functionality, which leads to the following simulator:

238 APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16]

– when receiving a Send-message from the ideal functionality, which means that an honest server
has sent a pre-flow and a database, the simulator generates a key pair (pk, sk)

$← KeyGen(1K)
and sends pk as pre-flow;

– after receiving a pre-flow pk (from an honest or a corrupted sender) and a Receive-message
from the ideal functionality, which means that an honest receiver has sent a first flow, the
simulator generates a word W ′ in the intersection of languages, C $← Encrypt`cca(W ;ρ) with
` = (sid, ssid,R,S) and c $← Encrypt(pk, S) where S is a random value;

– when receiving a commitment C and a ciphertext c, generated by the adversary (from a
corrupted receiver), the simulator extracts the committed value W and recovers s (aborting
in case of multiple values), and uses it to send a Receive-message to the ideal functionality
(and also decrypts the ciphertext c as S, and computes R = F (S));

– when receiving (hpi,b, busk[i, b]) from the adversary, the simulator computes, for all lines t,
usk[Wt] and recovers Kt and finally DB(t), which provides the database (DB(1), . . . , DB(n))
submitted by the sender. It uses them to send a Send-message to the ideal functionality.

– when receiving a Received-message from the ideal functionality, together with D̃B(s), on
behalf of a corrupted receiver, from the extracted W leading to s, instead of proceeding as
the sender would do on (usk[i, b]), the simulator proceeds on (usk′[i, b]), with usk′[i, b] = 0
except if b = Wi.

– when receiving a commitment C and a ciphertext c, generated by an honest sender (i.e., by
the simulator itself), the simulator proceeds as above on (usk′[i, b]), with usk′[i, b] = 0 except if
b = Wi, but it chooses R uniformly at random instead of choosing it as R = F (S); in case of
corruption afterward, the simulator will adapt R such that

(⊕
i busk[i,Wi]⊕H ′i,Wi

)
⊕Z⊕R =

ũsk[W], where ũsk[W] leads to K̃s such that K̃s⊕ D̃B(s) = Ks⊕DB(s), where D̃B(s) is the
message actually received by the receiver.

Any corruption either reveals s earlier, which allows a correct simulation of the receiver, or
reveals (DB(1), . . . , DB(n)) earlier, which allows a correct simulation of the server. When the
server has sent his flow, he has already erased all his random coins.

However, there would have been an issue when the user is corrupted after the server has
sent is flow, but before the user receives it, since he has kept ρ: this would enable the adversary
to recover usk[W] from busk[i,Wi] and hpi,Wi

. This is the goal of the ephemeral mask R that
provides a secure channel.

E Proof of the Generic Construction of Oblivious Language-Based Envelope

We prove the adaptive14 security of this protocol via a sequence of games, starting from the real
game, where the adversary A interacts with the real players, and ending with the ideal game,
where we have built a simulator S that makes the interface between the ideal functionality F
and the adversary A .

We denote as S the sender (i.e. the server) and R the receiver (i.e. the user). The main idea
is that, by assumption, the simulator can always obtain the common trapdoor tk of the collection
of languages (L1, . . . ,Ln) and use it to commit to a word simultaneously belonging to all the
languages. In case of adaptive corruption, we face two cases: either the word was not correct,
in which case, following the real protocol, the user should have erased his randomness, so that
the simulator does not have anything to reveal. Or the word was correct and should belong to
a certain language Li, and the simulator can then adapt the word and randomness so that it
seems to belong to Li (only). This enables us to avoid the use of commitments both extractable
and equivocable (which is the usual tool for adaptive corruptions).
14 One can obtain the proof of the static version by removing the parts related to the pre-flow and to the adaptive

corruptions in the proof below.

APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16] 239

We say that a flow is oracle-generated if it was sent by an honest player (or the simulator)
and received without any alteration by the adversary. It is said non-oracle-generated otherwise.

Game G1: This is the real game.

Game G2: In this game, the simulator generates correctly every flow on behalf of the honest
players, as they would do themselves, knowing the inputs (m1, . . . ,mn) and W sent by the
environment to the sender and the receiver. In all the subsequent games, the players use the label
` = (sid, ssid,S,R). In case of corruption, the simulator can give the internal data generated on
behalf of the honest players.

Game G3: In this game, we replace the setup algorithm Setup by SetupT, allowing the existence
of a trapdoor to find words in the intersection of the collection of languages. We also allow the
simulator to program SetupCCA in the CRS, enabling it to learn the extraction trapdoor of the
CCA encryption scheme. The indistinguishability of the setup makes this game indistinguishable
from the former one for the environment. Corruptions are handled the same way.

Game G4: We first deal with oracle-generated flows from the senders S: when receiving a
commitment C, the simulator extracts the committed value W . By testing with the help of the
algorithm Verify, it recovers i such that W ∈ Li. If it recovers i 6= j such that W ∈ Li ∩ Lj ,
then the adversary has broken the infeasibility of finding a word in an intersection of languages
without knowing the trapdoor and we abort the game. Otherwise, instead of computing the key
vt, for t = 1, . . . , n with the hash function, the simulator then chooses vt

$← G for t 6= i.
With an hybrid proof, applying the smoothness for every honest sender, on every index t 6= i,

since C is extracted to W ∈ Li, for any t 6= i, the hash value is indistinguishable from a random
value.

In case of corruption, everything has been erased (except after the pre-flow, where the simu-
lator can reveal the keys (pk, sk) generated honestly). This game is thus indistinguishable from
the previous one under the smoothness.

Game G5: Still in this case, when receiving a commitment C, the simulator extracts the
committed value W , giving it the number i. Instead of proceeding as the sender would do on
(m1, . . . ,mn), the simulator proceeds on (m′1, . . . ,m

′
n), with m′i = mi, but m′t = 0 for all t 6= i.

Since the masks vt, for t 6= i, are random, this game is perfectly indistinguishable from the
previous one.

Game G6: We now deal with oracle-generated flows from the receivers R: the simulator now
uses the trapdoor tk to find a word W in the intersection of all languages.

With an hybrid proof, applying a security game in each session in which the simulator does
not know the trapdoor tk, one can show the indistinguishability of the two games. In case of
corruption of the receiver, one learns the already known value i.

Game G7: We deal with the generation of R for honest senders S on oracle-generated
queries (adaptive case only): if S and R are honest at least until S received the second flow,
the simulator sets R = F (J ′) for both S and R, with J ′ a random value, instead of R = F (J).

With an hybrid proof, applying the IND-CPA property for each session, one can show the
indistinguishability of this game with the previous one.

Game G8: Still in the same case, the simulator sets R as a random value, instead of R = F (J ′).
With an hybrid proof, applying the PRF property for each session, one can show the indis-

tinguishability of this game with the previous one.

Game G9: We now deal with the generation of vi for honest senders S on oracle-
generated queries:

240 APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16]

– in the static case (the pre-flow is only needed to compute (vk, vtk), and thus we assume R = 0)
the simulator chooses vi

$← G (for t 6= i, the simulator already chooses vt
$← G), where i is

the index given by the ideal functionality to the honest receiver R.
With an hybrid proof, applying the pseudo-randomness for every honest sender, the hash
value is indistinguishable from a random value, because the adversary does not know any
decommitment information for C;

– in the adaptive case, and thus with the additional random mask R, one can send a random
mi, and vi can be computed later (when R actually receives its flow).
As above, but only ifR has not been corrupted before receiving its flow, the simulator chooses
vs

$← G. With an hybrid proof, applying the pseudo-randomness, for every honest sender, the
hash value is indistinguishable from a random value, because the adversary does not know
any decommitment information for C. If the player R involved in the pseudo-randomness
game gets corrupted (but the decommitment information is unknown) we are not in this
case, and we can thus abort it.
In case of corruption of S, everything has been erased (except after the pre-flow, where the
simulator can reveal the keys (pk, sk) generated honestly).
In case of corruption of the receiver R, and thus receiving the value mi, the simulator chooses
R (because it was a random value unknown to the adversary and all the other vt are inde-
pendent random values too) such that

R⊕ ProjHash(hpi, (Li, param), (`, C), ri)⊕mi = Qi.

This game is thus indistinguishable from the previous one under the pseudo-randomness.

Game G10: Still in this case, the simulator proceeds on (m′1, . . . ,m
′
n), with m′t = 0 for all i.

Since the masks vt ⊕ R, for any t = 1, . . . , n, are independent random values (the vt, for t 6= i
are independent random values, and vi is also independently random in the static case, while R
is independently random in the adaptive case), this game is perfectly indistinguishable from the
previous one.

We remark that it is therefore no more necessary to know the index i given by the ideal
functionality to the honest receiver R, to simulate S (but it is still necessary to simulate R).
Game G11: We do not use anymore the knowledge of i when simulating an honest receiver R:
the simulator generates a wordW in the intersection of the languages and C $← Encrypt`cca(W ; r),
with ` = (sid, ssid,S,R), to send C during the first phase of honest receivers. This does not
change anything from the previous game since the randomness needed to open to a word in
another language is never revealed.

When it thereafter receives (Send, sid, ssid,S,R, (Q1, hp1, . . . , Qn, hpn)) from the adversary,
the simulator computes, for i = 1, . . . , k, ri,

vi ← ProjHash(hpi, (Li, param), (`, C), ri)

and mi = vi ⊕R⊕Qi. This provides the database submitted by the sender.

Game G12: We can now make use of the functionality, which leads to the following simulator:

– when receiving a Send-message from the ideal functionality, which means that an honest
sender has sent a pre-flow, the simulator generates a key pair (pk, sk)

$← KeyGen(1K) and
sends pk as pre-flow;

– after receiving a pre-flow pk (from an honest or a corrupted sender) and a Receive-message
from the ideal functionality, which means that an honest receiver has sent a first flow, the
simulator generates a word W in the intersection of languages, C $← Encrypt`cca(W ; r) with
` = (sid, ssid,R,S) and c $← Encrypt(pk, J) where R is a random value;

APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16] 241

– when receiving a commitment C and a ciphertext c, generated by the adversary (from a
corrupted receiver), the simulator extracts the committed value W and recovers i (aborting
in case of multiple values), and uses it to send a Receive-message to the ideal functionality
(and also decrypts the ciphertext c as J , and computes R = F (J));

– when receiving (Q1, hp1, . . . , Qn, hpn) from the adversary (a corrupted sender), the simulator
computes, for i = 1, . . . , n, ri,

vi ← ProjHash(hpi, (Li, param), (`, C), ri)

and mi = vi ⊕R⊕Qi. It uses them to send a Send-message to the ideal functionality.
– when receiving a Received-message from the ideal functionality, together with mi, on behalf

of a corrupted receiver, from the extracted W leading to i, instead of proceeding as the
sender would do on (m1, . . . ,mn), the simulator proceeds on (m′1, . . . ,m

′
n), with m′i = mi,

but m′j = 0 for all j 6= i;
– when receiving a commitment C and a ciphertext c, generated by an honest sender (i.e., by

the simulator itself), the simulator proceeds as above on (m′1, . . . ,m
′
n), with m′j = 0 for all j,

but it chooses R uniformly at random instead of choosing it as R = F (J); in case of corruption
afterward, the simulator will adapt R such that R⊕ProjHash(hpi, (Li, param), (`, C), ri)⊕Qi =
mi, where mi is the message actually received by the receiver.

Any corruption either reveals i earlier, which allows a correct simulation of the receiver, or
reveals (m1, . . . ,mn) earlier, which allows a correct simulation of the sender. When the sender
has sent his flow, he has already erased all his random coins.

However, there would have been an issue when the receiver is corrupted after the sender
has sent is flow, but before the receiver receives it, since he has kept ri: this would enable the
adversary to recover mi from Qi and hpi. This is the goal of the ephemeral mask R that provides
a secure channel.

F Oblivious Primitives Obtained by the Framework

The framework presented in Section 4 page 16 provides a generic way to achieve asymmetric
protocols around automated trust negotiation. In this section, we show that the classical oblivious
primitives directly lie in this framework and can be seen as examples of Oblivious Language-
Based Envelope. We in particular show how by tweaking the languages (and choosing appropriate
smooth projective hash functions), one can achieve current instantiations of Oblivious Signature-
Based Envelope or Oblivious Transfer. We also show how to give a new instantiation of Access
Controlled Oblivious Transfer under classical assumptions.

For the specific instantiations, without loss of generality, we are going to focus on elliptic cryp-
tography, but as shown in the case of Oblivious Transfer in [BC15], most building blocks behave
the same way under other families of assumptions. As we focus on elliptic curve instantiations,
we are going to use ElGamal encryption as the CPA encryption used for the pre-flow.

F.1 Oblivious Signature-Based Envelope

Ideal Functionality for Oblivious Signature-Based Envelope. In order to obtain OSBE as
a special case of OLBE, we assume n = nmax = 1 and we consider the inner language L of valid
signatures of a public message M under a given public verification key vk. The corresponding
private signing key sk is the language secret key skL, and we assume the existence of a trapdoor
key tkL which allows to sample new signatures without the knowledge of skL15. Plugging these
values in the previous framework directly gives the ideal functionality FOSBE in the Simple UC
framework, presented in Figure 11, which has never been explicitly given before, to the best of
our knowledge.

242 APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16]

The functionality FOSBE is parametrized by a security parameter K and a signature
scheme (Setup,KeyGen, Sign,Verify). It interacts with an adversary S and a set of parties P1,. . . ,PN via
the following queries:

– Upon receiving an input (Send, sid, ssid,Pi,Pj,m) from party Pi, with m ∈ {0, 1}K: record the
tuple (sid, ssid,Pi,Pj ,m) and reveal (Send, sid, ssid,Pi,Pj) to the adversary S . Ignore further Send-
message with the same ssid from Pi.

– Upon receiving an input (Receive, sid, ssid,Pi,Pj, σ) from party Pj : ignore the message if
(sid, ssid,Pi,Pj ,m) is not recorded. Otherwise, reveal (Receive, sid, ssid,Pi,Pj) to the adversary S
and send (Received, sid, ssid,Pi,Pj ,m

′) to Pj where m′ = m if Verify(vk, σ,M) returns 1, and m′ = ⊥
otherwise. Ignore further Receive-message with the same ssid from Pj .

Fig. 11. Ideal Functionality for Oblivious Signature-Based Envelope FOSBE

Generic OSBE Instantiation Proposal
Signature and inner language Waters Signature
sk, vk hx, gx

σ(m) = Sign(sk,m) hx(u0

∏
umii)s, gs

Lm = {σ | Verify(vk, σ,m) = 1} {σ | e(σ1, g
x) · e(σ2, F (m)) = e(h, gx)}

skL = sk hx

tkL = allows to compute a new signature logg h

Compatible CCA Encryption Linear Cramer Shoup Encryption
ek = ek (h, u, v, w, c1, d1, c2, d2)
C = Encrypt(ek, σ; ρ) hr+t · hxF (m)s, ur, vt, wr+t,

(c1d
θ
1)
r(c2d

θ
2)
t, gs

where θ = H(C1, C2, C3, C4)
SPHF SPHF

hk = HashKG(ek,Lm) α, β, λ, µ, ν
$← Zp

hp = ProjKG(hk, ek,Lm, C) hαuβwµ(c1d
θ
1)
ν , hαvλwµ(c2d

θ
2)
ν

H = Hash(hk, ek,Lm, C) e(C2, g)βe(C3, g)λe(C4, g)µe(C5, g)ν
(e(C1, g)/(e(h, gx)e(F (M), C6)))α

H ′ = ProjHash(hp, ek,Lm, ρ) e(hpr1 · hpt2, g)

Fig. 12. Setting the Language to instantiate an OSBE, SPHF is based on [BPV12]

Generic Construction and Pairing-Based Instantiation. We give in the left part of Fig-
ure 12 the building blocks for OSBE, which directly give a generic construction for OSBE by
plugging them into our generic construction for OLBE in Section 4.4.

Instantiating them with Waters’ signature scheme [Wat05] and Linear Cramer Shoup encryp-
tion [CKP07,Sha07], it gives us a first pairing-based instantiation for OSBE, depicted in the right
part of Figure 12, secure in the UC framework against adaptive corruptions (assuming reliable
erasures).

Interestingly, this scheme ends up being very similar to the one presented in [BPV12] and
proven secure in the standard (not UC) security model, which shows that their scheme remains
indeed secure in the UC framework. What was lacking in their paper was the existence (and
knowledge) of the trapdoor tkL which, as we can see in the generic proof for OLBE (Appendix E),
allows the simulator to be able to always send a valid signature in the first flow on behalf of
the receiver. This enables it to be prepared to face adaptive corruptions, whatever input the
environment gives it later on.

F.2 1-out-of-n Oblivious Transfer

Ideal Functionality for 1-out-of-n Oblivious Transfer. The ideal functionality of a 1-out-
of-n Oblivious Transfer (OT) protocol, from [Can01,CKWZ13,ABB+13], is depicted in Figure 13

15 Note that tkL may not directly lead to sk but possibly to an alternative signing algorithm.

APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16] 243

(adapted to the Simple UC framework). As explained in Section 3.1 page 9, one can easily see it
as a special application of our generic OLBE ideal functionality, considering n ≥ 2 and nmax = 1.
Indeed, the only change we have to make is not to consider anymore the line numbers as simple
numbers, but to “encode” them (the exact encoding will depend on the protocol). For every line i,
the language Li will correspond to a representation of line i. Instead of directly giving s to the
functionality, the receiver will give it a word Ws ∈ Ls. This leads to the functionality given in
Figure 2 page 10.

The functionality F(1,n)-OT is parametrized by a security parameter K. It interacts with an adversary S
and a set of parties P1,. . . ,PN via the following queries:
– Upon receiving an input (Send, sid, ssid,Pi,Pj, (m1, . . . ,mn)) from Pi, with mk ∈ {0, 1}K:

record the tuple (sid, ssid,Pi,Pj , (m1, . . . ,mn)) and reveal (Send, sid, ssid,Pi,Pj) to S . Ignore further
Send-message with the same ssid from Pi.

– Upon receiving an input (Receive, sid, ssid,Pi,Pj, s) from Pj, with s ∈ {1, . . . , n}: ignore the
message if (sid, ssid,Pi,Pj , (m1, . . . ,mn)) is not recorded; otherwise reveal (Receive, sid, ssid,Pi,Pj)
to S , send (Received, sid, ssid,Pi,Pj ,ms) to Pj and ignore further Receive-message with the same
ssid from Pj .

Fig. 13. Ideal Functionality for 1-out-of-n Oblivious Transfer F(1,n)-OT

Generic 1-out-of-n Oblivious Transfer Possible Instantiation [ABB+13]
Inner language Chameleon Hashed Numbers
Verifiable Chameleon Hash Keys (ck, tk, vtk) (g1, g

$← G2), α = logg g1,

c = Commitck,V(s) ∀i such that s =||logni=1 si:
ai = g

ri,si
1 gsi , ri = (ri,0, ri,1)

Ls = {c|Verify(vtk, c, s) = 1} {(a, r)|∀i, ai = g
ri,si
1 gsi}

skL = ⊥ ⊥
tkL = tk logg h

Compatible CCA Encryption Cramer Shoup Encryption
ek = ek h, u, v, c, d, f

$← G1

C = Encrypt(ek, c; ρ) ∀i, b, (hρi,b · hxfri,b , uρi,b , vsρ,b ,
(cdθ)sρ,b , ai)

where θ = H(C1, C2, C3)
SPHF SPHF

hks = HashKG(ek,Ls) αs, βs, µs, νs
$← Zp

hps = ProjKG(hks, ek,Ls, C) hαsuβsvµs(cdθ)νs , εs
$← Zp

H = Hash(hks, vtk, ek,Ls, C)
∏
i ((e(Ci,si,1/gsi , g1)/e(f, ai))αs

Cβsi,si,2C
µs
i,si,3
Cνsi,si,4

)εis

H ′ = ProjHash(hps, ek,Ls, ρ) e(
∏
i hp

ρi,si ε
i
s , g1)

Fig. 14. Instantiating a 1-out-n Oblivious Transfer, SPHF is derived using the framework from [BBC+13a]

Generic Construction and Pairing-Based Instantiation. From this small change, we can
give a generic construction which directly falls from our generic construction for OLBE. We
consider, for every line i, the inner language Li of valid chameleon hashes of the line i ∈ {1, . . . , k}
under the corresponding chameleon hash key ck and the verification key vk, given by the authority
(see Section A page 25 for the definitions for chameleon hash). In this case, the language is not
keyed (anyone can sample a word in it), but it possesses a trapdoor tkL = tk which is the trapdoor
of the chameleon hash. This trapdoor enables the simulator to send a chameleon hash which can
correspond to any line s which is exactly what is required in our proof of generic OLBE (see
Appendix E).

244 APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16]

Indeed, as explained in Section 3, when dealing with 1-out-of-nOblivious Transfer, one usually
considers a database with various lines, so the naive approach to fit in our framework would have
been to consider a set of languages being the set of numerals {{1}, . . . , {n}}, expecting the
receiver to commit to a word in one of these languages Li, so that he recovers the corresponding
line number i of the database. But a drawback with this approach is that in case of an adaptive
corruption of the receiver, one would need to be able to equivocate the commitment to the
word, which would require for instance a commitment at least extractable and equivocable (and
even SPHF-friendly, see [ABB+13]), and not a simple CCA− 2 encryption as we propose in our
generic construction of OLBE. This is the reason why we propose to consider the set of languages
composed of valid representations of the corresponding integer, which allows more freedom in
the constructions. Each line is now indexed by a whole language instead of a single number.

F.3 k-out-of-n Oblivious Transfer

Ideal Functionality for k-out-of-n Oblivious Transfer. From the generic framework of
OLBE and its adaptation to 1-out-of-n Oblivious Transfer described right above in the previous
section, one easily gets the ideal functionality of a k-out-of-n Oblivious Transfer (OT) protocol,
by simply letting nmax = k ∈ J1;nK. This leads to the ideal functionality depicted in Figure 15
(rewritten in Simple UC).

The functionality F(k,n)-OT is parametrized by a security parameter K and a set of languages (L1, . . . ,Ln)
along with the corresponding public verification algorithms (Verify1, . . . ,Verifyn). It interacts with an
adversary S and a set of parties P1,. . . ,PN via the following queries:

– Upon receiving an input (Send, sid, ssid,Pi,Pj, (m1, . . . ,mn)) from party Pi, with mi ∈
{0, 1}K: record the tuple (sid, ssid,Pi,Pj , (m1, . . . ,mn)) and reveal (Send, sid, ssid,Pi,Pj) to the adver-
sary S . Ignore further Send-message with the same ssid from Pi.

– Upon receiving an input (Receive, sid, ssid,Pi,Pj, (Wi)i∈I) where I ⊂ {1, . . . , n} and |I| =
k from party Pj: ignore the message if (sid, ssid,Pi,Pj , (m1, . . . ,mn)) is not recorded. Otherwise,
reveal (Receive, sid, ssid,Pi,Pj) to the adversary S , send (Received, sid, ssid,Pi,Pj , (m

′
i)i∈I) to Pj

where m′i = mi if Verifyi(Wi,Li) returns 1, and m′i = ⊥ otherwise. Ignore further Receive-message
with the same ssid from Pj .

Fig. 15. Ideal Functionality for k-out-of-n Oblivious Transfer F(k,n)-OT

Generic Construction and Pairing-Based Instantiation. One can obtain a generic con-
struction by simply applying the 1-out-of-n OT generic construction described above in parallel
k times together with a NIZK made by the sender proving that all sets of messages are the
same. This also leads to a pairing-based instantiation (while using Groth Sahai proof as NIZK
for example [GS08]).

F.4 Conditioned Oblivious Transfer

Ideal Functionality for Conditioned Oblivious Transfer. Oblivious Transfer protocols
allow the user to query a line in a database without restriction: The user automatically gets the
line he asks for. While this has already found many applications, one may consider a slightly more
complicated problem in which each line of the database has some additional access restriction
(such as credentials, accreditation level, . . .). For instance, lines numbers 2 to 10 of a database
may be only accessible to the members of an organisation, while line number 1 may be only
accessible to the presidents of several associations.

This problem has already been studied in various forms: Priced Oblivious Transfer (intro-
duced in [AIR01]), which allows the user to access a given line if he has enough cash to pay

APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16] 245

(so if his balance is greater than the line price); Conditional Oblivious Transfer (formally in-
troduced in [DOR99] but with few conditions about user privacy); Access Control Oblivious
Transfer [CDN09], which aims at solving this issue for users with credentials.

Our framework allows to supersede all these primitives16: Thanks to our generalization of the
Oblivious Transfer ideal functionality (using languages instead of simple numbers for the lines
requested), the ideal functionality remains the same, since the languages already allow to add
the credentials, signatures, prices, etc., required by those specific forms of OT.

Generic Constructions and Pairing-Based Instantiations. Our framework also provides
a means to obtain tightly secure instantiations under classical (non-interactive, non q-type)
assumptions. The required line restrictions need to be compatible with each other (if the word
required for a line needs 2 elements to be committed, while another line requires words that can
only be committed with 20 elements, there is no way to equivocate the first one to the second
one, except if we adapt the language for the first line to have dead commitment terms so that
all the lines require the same commitment size).

Generic 1-out-of-n Conditioned Oblivious Transfer
Inner language
Trapped Verifiable Commitment Keys (ck, tk)

c = CommitV(s)
Ls = {c|Verify(c, s) = 1 ∧ c ∈ {Access Requirement s}}
skL = {sks}
tkL = tkL

Compatible CCA Encryption
ek = ek
C = Encrypt(ek, c; ρ)

SPHF
hks = HashKG(ek,Ls)
hps = ProjKG(hks, ek,Ls, C)
H = Hash(hks, ek,Ls, C)
H ′ = ProjHash(hps, ek,Ls, ρ)

Fig. 16. Instantiating a 1-out-n Conditioned Oblivious Transfer

This could encompass a lot of different controls: For example, each line can be protected by
a different password; a line can require a signature (credential) from a given authority on the
line number, on the user identity, on a pseudonym; one can imagine more complicated policies
like a required hamming weight, a scalar product, range, . . . or any combination of those.

Giving a specific instantiation for all those cases is out of the scope of this article but for
example, priced Oblivious Transfer requires to prove that the balance is greater than the line
price17. The easiest way to do so would require to use an SPHF proving that the balance does
not belong to the range J0,priceK. Both range proofs (adapting [BG13] with SPHF polynomial
evaluations) and proof of negativity of a statement are already part of the SPHF toolbox.

16 Although some of them (like Priced Oblivious Transfer) may require additional machinery to (privately) keep
track of each user’s balance over the course of many transactions.

17 As already stated in Note 16, it also requires some additional machinery to (privately) keep track of each user’s
balance over the course of many transactions.

246 APPENDIX D. ADAPTIVE OT AND GENERALIZATION [BCG16]

Appendix E

Structure-Preserving Smooth
Projective Hashing [BC16]

This is the Full Version of the Extended Abstract that appears in Advances in Cryptology — Proceedings
of ASIACRYPT’2016 (4 – 8 December 2016, Hanoi, Vietnam), Jung Hee Cheon and Tsuyoshi Takagi,
Springer-Verlag, Part II, LNCS 10032, pages 339–369.

Authors

Olivier Blazy, Céline Chevalier

Abstract

Smooth projective hashing has proven to be an extremely useful primitive, in particular when used in
conjunction with commitments to provide implicit decommitment. This has lead to applications proven
secure in the UC framework, even in presence of an adversary which can do adaptive corruptions, like
for example Password Authenticated Key Exchange (PAKE), and 1-out-of-m Oblivious Transfer (OT).
However such solutions still lack in efficiency, since they heavily scale on the underlying message length.

Structure-preserving cryptography aims at providing elegant and efficient schemes based on classical
assumptions and standard group operations on group elements. Recent trend focuses on constructions of
structure-preserving signatures, which require message, signature and verification keys to lie in the base
group, while the verification equations only consist of pairing-product equations. Classical constructions
of Smooth Projective Hash Function suffer from the same limitation as classical signatures: at least one
part of the computation (messages for signature, witnesses for SPHF) is a scalar.

In this work, we introduce and instantiate the concept of Structure-Preserving Smooth Projective
Hash Function, and give as applications more efficient instantiations for one-round PAKE and three-
round OT, and information retrieval thanks to Anonymous Credentials, all UC-secure against adaptive
adversaries.

1 Introduction

Smooth Projective Hash Functions (SPHF) were introduced by Cramer and Shoup [CS02] as a
means to design chosen-ciphertext-secure public-key encryption schemes. These hash functions
are defined such as their value can be computed in two different ways if the input belongs to a
particular subset (the language), either using a private hashing key or a public projection key
along with a private witness ensuring that the input belongs to the language.

In addition to providing a more intuitive abstraction for their original public-key encryption
scheme in [CS98], the notion of SPHF also enables new efficient instantiations of their scheme
under different complexity assumptions such as DLin, or more generally k −MDDH. Due to its
usefulness, the notion of SPHF was later extended to several interactive contexts. One of the
most classical applications is to combine them with commitments in order to provide implicit
decommitments.

Commitment schemes have become a central tool used in cryptographic protocols. These
two-party primitives (between a committer and a receiver) are divided into two phases. First, in
the commit phase, the committer gives the receiver an analogue of a sealed envelope containing a
valuem, while later in the opening phase, the committer revealsm in such a way that the receiver
can verify whether it was indeed m that was contained in the envelope. In many applications,
for example password-based authenticated key-exchange, in which the committed value is a
password, one wants the opening to be implicit, which means that the committer does not really
open its commitment, but rather convinces the receiver that it actually committed to the value
it pretended to.

An additional difficulty arises when one wants to prove the protocols in the universal com-
posability framework proposed in [Can01]. Skipping the details, when the protocol uses commit-
ments, this usually forces those commitments to be simultaneously extractable (meaning that a
simulator can recover the committed value m thanks to a trapdoor) and equivocable (meaning
that a simulator can open a commitment to a value m′ different from the committed value m
thanks to a trapdoor), which is quite a difficult goal to achieve.

Using SPHF with commitments to achieve an implicit decommitment, the language is usually
defined on group elements, with projection keys being group elements, and witnesses being
scalars. While in several applications, this has already lead to efficient constructions, the fact
that witnesses have to be scalars (and in particular in case of commitments, the randomness used
to commit) leads to drastic restrictions when trying to build protocols secure against adaptive
corruptions in the UC framework.

This is the classical paradigm of protocol design, where generic primitives used in a modular
approach lead to a simple design but quite inefficient constructions, while when trying to move to
ad-hoc constructions, the conceptual simplicity is lost and even though efficiency might be gained,
a proper security proof gets trickier. Following the same kind of reasoning, [AFG+10] introduced
the concept of structure-preserving signatures in order to take the best of both worlds. There
has been an ongoing series of work surrounding this notion, for instance [AGHO11, ACD+12,
ADK+13,AGOT14a,AGOT14b]. This has shown that structure-preserving cryptography indeed
provides the tools needed to have simultaneously simple and efficient protocols.

1.1 Related Work

Smooth Projective Hash Functions (SPHF) were introduced by Cramer and Shoup [CS02]
and have been widely used since then, for instance for password-authenticated key exchange
(PAKE) [GL03, ACP09, KV09, KV11, BBC+13b], or oblivious transfer (OT) [Kal05, CKWZ13,
ABB+13], and a classification was introduced separating SPHF into three main kinds, KV-SPHF,
CS-SPHF, GL-SPHF depending on how the projection keys are generated and when, the former
allowing one-round protocols, while the latter have more efficient communication costs (see Sec-
tion 2.2).

248 APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16]

Password-Authenticated Key Exchange (PAKE) protocols were proposed in 1992 by Bellovin
and Merritt [BM92] where authentication is done using a simple password, possibly drawn from
a small entropy space subject to exhaustive search. Since then, many schemes have been pro-
posed and studied. SPHF have been extensively used, starting with the work of Gennaro and
Lindell [GL03] which generalized an earlier construction by Katz, Ostrovsky, and Yung [KOY01],
and followed by several other works [CHK+05,ACP09]. More recently, a variant of SPHF pro-
posed by Katz and Vaikuntanathan even allowed the construction of one-round PAKE schemes
[KV11,BBC+13b]. The most efficient PAKE scheme so far (using completely different techniques)
is the recent Asiacrypt paper [JR14].

The first ideal functionality for PAKE protocols in the UC framework [Can01, CK02] was
proposed by Canetti et al. [CHK+05], who showed how a simple variant of the Gennaro-Lindell
methodology [GL03] could lead to a secure protocol. Though quite efficient, their protocol was
not known to be secure against adaptive adversaries, that are capable of corrupting players at
any time, and learn their internal states. The first ones to propose an adaptively secure PAKE
in the UC framework were Barak et al. [BCL+05] using general techniques from multi-party
computation. Though conceptually simple, their solution results in quite inefficient schemes.

Recent adaptively secure PAKE were proposed by Abdalla et al. [ACP09,ABB+13], following
the Gennaro-Lindell methodology with variation of the Canetti-Fischlin commitment [CF01].
However their communication size is growing in the size of the passwords, which is leaking
information about an upper-bound on the password used in each exchange.

Oblivious Transfer (OT) was introduced in 1981 by Rabin [Rab81] as a way to allow a receiver
to get exactly one out of k messages sent by another party, the sender. In these schemes, the
receiver should be oblivious to the other values, and the sender should be oblivious to which
value was received. Since then, several instantiations and optimizations of such protocols have
appeared in the literature, including proposals in the UC framework [NP01,CLOS02].

More recently, new instantiations have been proposed, trying to reach round-optimality [HK07],
or low communication costs [PVW08]. The 1-out-of-2 OT scheme by Choi et al. [CKWZ13] based
on the DDH assumption seems to be the most efficient one among those that are secure against
adaptive corruptions in the CRS model with erasures. But it does not scale to 1-out-of-m OT,
for m > 2. [ABB+13, BC15] proposed a generic construction of 1-out-of-m OT secure against
adaptive corruptions in the CRS model, however the commitment was still growing in the loga-
rithm of the database length. While this is not so much a security issue for OT as this length is
supposed to be fixed at the start of the protocol, this is however a weak spot for the efficiency
of the final construction.

1.2 Our contributions

Similarly to structure-preserving signatures requiring the message, the signature, and the public
keys to be group elements, we propose in this paper the notion of structure-preserving Smooth
Projective Hash Functions (SP-SPHF), where both words, witnesses and projection keys are
group elements, and hash and projective hash computations are doable with simple pairing-
product equations in the context of bilinear groups.

This allows, for example, to build Smooth Projective Hash Functions that implicitly demon-
strate the knowledge of a Groth Sahai Proof (serving as a witness).

We show how to transform every previously known pairing-less construction of SPHF to
fit this methodology, and then propose several applications in which storing a group element
as a witness allows to avoid the drastic restrictions that arise when building protocols secure
against adaptive corruptions in the UC framework with a scalar as witness. Asking the witness
to be a group element enables us to gain more freedom in the simulation (the discrete logarithm
of this element and / or real extraction from a commitment). For instance, the simulator can
always commit honestly to a random message, since it only needs to modify its witness in the

APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16] 249

equivocation phase. Furthermore, it allows to avoid bit-per-bit construction. Such design carries
similarity with the publicly verifiable MACs from [KPW15], where the pairing operation allows
to relax the verification procedure.

A work from Jutla and Roy has appeared on eprint [JR16] considering a parallel between QA-
NIZK and SPHF: Independently from ours, they define a transformation from one to another.
Their transformation can then be extended to view QA-NIZK as a special case of SP-SPHF, and
so be encompassed by our framework.

As an example, we show that the UC-commitment from [FLM11] (while not fitting with the
methodology of traditional SPHF from [ABB+13]), is compatible with SP-SPHF and can be used
to build UC protocols. As a side contribution, we first generalize this commitment from DLin
to the k − MDDH assumption from [EHK+13]. The combination of this commitment and the
associated SP-SPHF then enables us to give three interesting applications.

Adaptively secure 1-out-of-m Oblivious Transfer. First, we provide a construction of a
three-round UC-secure 1-out-of-m OT. Assuming reliable erasures and a single global CRS, we
show in Section 5 that our instantiation is UC-secure against adaptive adversaries. Besides having
a lesser number of rounds than most recent existing OT schemes with similar security levels, our
resulting protocol also has a better communication complexity than the best known solutions so
far [CKWZ13,ABB+13] (see Table 1 for a comparison). For ease of readability, we emphasize in
this table the SXDH communication cost1, which is simply k-MDDH for k = 1. Our protocol is
“nearly optimal” in the sense that it is still linear in the number of lines m, but the constant in
front of m is 1.

Table 1. Comparison with existing UC-secure OT schemes

Flow Communication Complexity Assumption 1-out-of

[CKWZ13] 4 26 G + 7 Zp DDH 2
[ABB+13] 3 (m+ 8 logm)×G1 + logm×G2 + 1× Zp SXDH m
This paper 3 (k + 3)×G1 + (2 + (3 + k)m+ k(k + 1))×G2 +m× Zp k −MDDH m
This paper 3 4×G1 + 12×G2 + 2× Zp SXDH 2

One-round adaptively secure PAKE. Then, we provide an instantiation of a one-round UC-
secure PAKE under any k −MDDH assumption. Once again, we show in Section 6 that the UC-
security holds against adaptive adversaries, assuming reliable erasures and a single global CRS.
Contrarily to most existing one-round adaptively secure PAKE, we show that our scheme enjoys
a much better communication complexity while not leaking information about the length of the
password used (see Table 2 for a comparison, in particular for the SXDH version). Only [JR14]
achieves a slightly better complexity as ours, but only for SXDH, while ours easily extends to
k −MDDH. Furthermore, our construction is an extension to SP-SPHF of well-known classical
constructions based on SPHF, which makes it simpler to understand. We omit [BC15] from the
following table, as its contribution is to widen the construction to non-pairing based hypotheses.

Anonymous Credential-Based Message Transmission. Typical credential use involves
three main parties. Users need to interact with some authorities to obtain their credentials
(assumed to be a set of attributes validated / signed), and then prove to a server that a subpart
of their attributes verifies an expect policy. We present a constant-size, round-optimal protocol
that allow to use a Credential to retrieve a message without revealing the Anonymous Credentials
in a UC secure way, by simply building on the technique proposed earlier in the paper.

1 Our OT and PAKE protocols are described in k-MDDH but one directly obtains the SXDH versions by simply
letting k = 1 in the commitment presented in Section 4.2 (see Appendix ?? for details).

250 APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16]

Table 2. Comparison with existing UC-secure PAKE schemes where |password| = m

Adaptive One-round Communication complexity Assumption

[ACP09] yes no 2× (2m+ 22mK)×G + OTS DDH
[KV11] no yes ≈ 2× 70×G DLIN
[BBC+13b] no yes 2× 6×G1 + 2× 5×G2 SXDH
[ABB+13] yes yes 2× 10m×G1 + 2×m×G2 SXDH
[JR14] yes yes 4×G1 + 4×G2 SXDH
this paper yes yes 2× (k + 3)×G1 k-MDDH

+2× (k + 3 + k(k + 1))×G2

this paper yes yes 2× 4×G1 + 2× 5×G2 SXDH

2 Definitions

2.1 Notations

If x ∈ Sn, then |x| denotes the length n of the vector, and by default vectors are assumed to be
column vectors. Further, x $← S denotes the process of sampling an element x from the set S
uniformly at random.

2.2 Primitives

Encryption. An encryption scheme C is described by four algorithms (Setup,KeyGen,Encrypt,
Decrypt), defined formally in Appendix A.1.

Commitments. We refer the reader to [ABB+13] for formal definitions and results but we give
here an informal overview to help the unfamiliar reader with the following. A non-interactive
labelled commitment scheme C is defined by three algorithms:
– SetupCom(1K) takes as input the security parameter K and outputs the global parameters,

passed through the CRS ρ to all other algorithms;
– Com`(x) takes as input a label ` and a message x, and outputs a pair (C, δ), where C

is the commitment of x for the label `, and δ is the corresponding opening data (a.k.a.
decommitment information). This is a probabilistic algorithm.

– VerCom`(C, x, δ) takes as input a commitment C, a label `, a message x, and the opening
data δ and outputs 1 (true) if δ is a valid opening data for C, x and `. It always outputs 0
(false) on x = ⊥.
The basic properties required for commitments are correctness (for all correctly generated

CRS ρ, all commitments and opening data honestly generated pass the verification VerCom test),
the hiding property (the commitment does not leak any information about the committed value)
and the binding property (no adversary can open a commitment in two different ways). More
complex properties (equivocability and extractability) are required by the UC framework and
described in Appendix A.2 for lack of space.

Smooth Projective Hash Functions. SPHF were introduced by Cramer and Shoup [CS02]
for constructing encryption schemes. A projective hashing family is a family of hash functions
that can be evaluated in two ways: using the (secret) hashing key, one can compute the function
on every point in its domain, whereas using the (public) projected key one can only compute the
function on a special subset of its domain. Such a family is deemed smooth if the value of the
hash function on any point outside the special subset is independent of the projected key. The
notion of SPHF has already found numerous applications in various contexts in cryptography
(e.g. [GL03,Kal05,ACP09,BPV12]).

APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16] 251

Definition 1 (Smooth Projective Hashing System). A Smooth Projective Hash Function
over a language L ⊂ X, is defined by five algorithms (Setup,HashKG,ProjKG,Hash,ProjHash):

– Setup(1K) generates the global parameters param of the scheme, and the description of an NP
language L

– HashKG(L, param), outputs a hashing key hk for the language L;
– ProjKG(hk, (L, param),W), derives the projection key hp, using the hashing key hk,
– Hash(hk, (L, param),W), outputs a hash value v, thanks to the hashing key hk, and W ,
– ProjHash(hp, (L, param),W,w), outputs the hash value v′, thanks to hp and the witness w that
W ∈ L.

In the following, we consider L as a hard-partitioned subset of X, i.e. it is computationally
hard to distinguish a random element in L from a random element in X \ L.

A Smooth Projective Hash Function SPHF should satisfy the following properties:

– Correctness: Let W ∈ L and w a witness of this membership. Then, for all hashing keys hk
and associated projection keys hp we have

Hash(hk, (L, param),W) = ProjHash(hp, (L, param),W,w).

– Smoothness: For all W ∈ X \L the following distributions are statistically indistinguishable:

∆0 =



(L, param,W, hp, v)

param = Setup(1K), hk = HashKG(L, param),
hp = ProjKG(hk, (L, param),W),
v = Hash(hk, (L, param),W) ∈ G





∆1 =

{
(L, param,W, hp, v)

param = Setup(1K), hk = HashKG(L, param),

hp = ProjKG(hk, (L, param),W), v
$← G

}
.

A third property called Pseudo-Randomness, is implied by the Smoothness on Hard Subset
membership languages. If W ∈ L, then without a witness of membership the two previous distri-
butions should remain computationally indistinguishable: for any adversary A within reasonable
time the following advantage is negligible

AdvprSPHF,A(K) = |Pr∆1 [A(L, param,W, hp, v) = 1]− Pr∆0 [A(L, param,W, hp, v) = 1]|

In [BBC+13b], the authors introduced a new notation for SPHF: for a language L, there
exist a function Γ and a family of functions Θ, such that u ∈ L, if and only if, Θ(u) is a linear
combination λ of the rows of Γ (u). We furthermore require that a user, who knows a witness
of the membership u ∈ L, can efficiently compute the linear combination λ. The SPHF can now
then be described as:

– HashKG(L, param), outputs a hashing key hk = α for the language L,
– ProjKG(hk, (L, param),u), derives the projection key hp = γ(u),
– Hash(hk, (L, param),u), outputs a hash value H = Θ(u)�α,
– ProjHash(hp, (L, param),u,λ), outputs the hash value H ′ = λ� γ(u).

252 APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16]

In the special case where hp = γ(u) = γ, we speak about KV-SPHF when the projection
key can be given before seeing the word u, and of CS-SPHF, when the projection key while
independent of the word is given after seeing it. (In reference to [KV11,CS02] where those kinds
of SPHF were first use). We give in Section 3.3 an example of KV-SPHF for Cramer-Shoup
encryption, both in classical and new notations.

We will need a third property for our one-round PAKE protocol. This property, called strong
pseudo-randomness in [BBC+13b], is recalled in Appendix A.3 for lack of space.

2.3 Building Blocks

Decisional Diffie-Hellman (DDH) The Decisional Diffie-Hellman hypothesis says that in a
multiplicative group (p,G, g) when we are given (gλ, gµ, gψ) for unknown random λ, µ, ψ

$← Zp,
it is hard to decide whether ψ = λ× µ.
Pairing groups. Let GGen be a probabilistic polynomial time (PPT) algorithm that on input
1K returns a description G = (p,G1,G2,GT , e, g1, g2) of asymmetric pairing groups where G1,
G2, GT are cyclic groups of order p for a K-bit prime p, g1 and g2 are generators of G1 and G2,
respectively, and e : G1×G2 is an efficiently computable (non-degenerated) bilinear map. Define
gT := e(g1, g2), which is a generator in GT .

Matricial Notations. If A ∈ Z(k+1)×n
p is a matrix, then A ∈ Zk×np denotes the upper matrix of

A and A ∈ Z1×n
p denotes the last row of A. We use classical notations from [GS08] for operations

on vectors (. for the dot product and � for the product component-wise). Concatenation of
matrices having the same number of lines will be denoted by A||B (where a||b + c should be
implicitly parsed as a||(b+ c)).

We use implicit representation of group elements as introduced in [EHK+13]. For s ∈ {1, 2, T}
and a ∈ Zp define [a]s = gas ∈ Gs as the implicit representation of a in Gs (we use [a] = ga ∈ G
if we consider a unique group). More generally, for a matrix A = (aij) ∈ Zn×mp we define [A]s as
the implicit representation of A in Gs:

[A]s :=



ga11s ... ga1ms

gan1s ... ganms


 ∈ Gn×m

s

We will always use this implicit notation of elements in Gs, i.e., we let [a]s ∈ Gs be an element
in Gs. Note that from [a]s ∈ Gs it is generally hard to compute the value a (discrete logarithm
problem in Gs). Further, from [b]T ∈ GT it is hard to compute the value [b]1 ∈ G1 and [b]2 ∈ G2

(pairing inversion problem). Obviously, given [a]s ∈ Gs and a scalar x ∈ Zp, one can efficiently
compute [ax]s ∈ Gs. Further, given [a]1, [b]2 one can efficiently compute [ab]T using the pairing
e. For a, b ∈ Zkp define e([a]1, [b]2) := [a>b]T ∈ GT .

If a ∈ Zp, we define the (k+1)-vector: ιs(a) := (1s, . . . , 1s, [a]s) (this notion can be implicitly

extended to vectors a ∈ Znp), and the k + 1 by k + 1 matrix ιT (a) :=



1 . . . 1
...
. . . 1

1 1 a


.

Assumptions. We recall the definition of the matrix Diffie-Hellman (MDDH) assumption given
in [EHK+13].

Definition 2 (Matrix Distribution). Let k ∈ N. We call Dk a matrix distribution if it outputs
matrices in Z(k+1)×k

p of full rank k in polynomial time.

Without loss of generality, we assume the first k rows of A $← Dk form an invertible matrix.
The Dk-Matrix Diffie-Hellman problem is to distinguish the two distributions ([A], [Aw]) and
([A], [u]) where A

$← Dk, w $← Zkp and u $← Zk+1
p .

APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16] 253

Definition 3 (Dk-Matrix Diffie-Hellman Assumption Dk-MDDH). Let Dk be a matrix dis-
tribution and s ∈ {1, 2, T}. We say that the Dk-Matrix Diffie-Hellman (Dk-MDDH) Assumption
holds relative to GGen in group Gs if for all PPT adversaries D,

AdvDk,GGen(D) := |Pr[D(G, [A]s, [Aw]s) = 1]− Pr[D(G, [A]s, [u]s) = 1]|
= negl(λ),

where the probability is taken over G $← GGen(1λ), A $← Dk,w $← Zkp,u
$← Zk+1

p .

For each k ≥ 1, [EHK+13] specifies distributions Lk, Uk, . . . such that the corresponding
Dk-MDDH assumption is the k-Linear assumption, the k-uniform and others. All assumptions
are generically secure in bilinear groups and form a hierarchy of increasingly weaker assumptions.
The distributions are exemplified for k = 2, where a1, . . . , a6

$← Zp.

L2 : A =



a1 0
0 a2
1 1


 U2 : A =



a1 a2
a3 a4
a5 a6


 .

It was also shown in [EHK+13] that Uk-MDDH is implied by all other Dk-MDDH assumptions.
In the following, we write k −MDDH for Dk −MDDH.

Lemma 4 (Random self reducibility [EHK+13]). For any matrix distribution Dk, Dk-
MDDH is random self-reducible. In particular, for any m ≥ 1,

AdvDk,GGen(D) + 1
q−1 ≥ AdvmDk,GGen(D′)

where AdvmDk,GGen(D′) := Pr[D′(G, [A], [AW]) ⇒ 1] − Pr[D′(G, [A], [U]) ⇒ 1], with G ←
GGen(1λ), A $← Dk,W $← Zk×mp ,U

$← Z(k+1)×m
p .

Remark: It should be noted that L1,L2 are respectively the SXDH and DLin assumptions that
we recall below for completeness.

Definition 5 (Decisional Linear (DLin [BBS04])). The Decisional Linear hypothesis says
that in a multiplicative group (p,G, g) when we are given (gλ, gµ, gαλ, gβµ, gψ) for unknown ran-
dom α, β, λ, µ

$← Zp, it is hard to decide whether ψ = α+ β.

Definition 6 (Symmetric External Diffie Hellman (SXDH [ACHdM05])). This variant
of DDH, used mostly in bilinear groups in which no computationally efficient homomorphism
exists from G2 in G1 or G1 to G2, states that DDH is hard in both G1 and G2.

Labelled Cramer-Shoup Encryption. We present here the well-known encryption schemes
based on DDH, and we show in Section 4 how to extend it to Dk−MDDH. We focus on Cramer-
Shoup [CS98] in all the following of the paper, but one easily obtains the same results on El
Gamal IND-CPA scheme [ElG84] by simply omitting the corresponding parts. We are going to
rely on the IND-CCA property to be able to decrypt queries in the simulation.
Vanilla Cramer-Shoup Encryption. The Cramer-Shoup encryption scheme is an IND-CCA
version of the ElGamal Encryption. We present it here as a labeled public-key encryption scheme,
the classical version is done with ` = ∅.
– Setup(1K) generates a group G of order p, with a generator g
– KeyGen(param) generates (g1, g2)

$← G2, dk = (x1, x2, y1, y2, z)
$← Z5

p, and sets, c = gx11 g
x2
2 ,

d = gy11 g
y2
2 , and h = gz1 . It also chooses a Collision-Resistant hash function HK in a hash

family H (or simply a Universal One-Way Hash Function). The encryption key is ek =
(g1, g2, c, d, h,HK).

– Encrypt(`, ek,M ; r), for a message M ∈ G and a random scalar r ∈ Zp, the ciphertext
is C = (`,u = (gr1, g

r
2), e = M · hr, v = (cdξ)r), where v is computed afterwards with

ξ = HK(`,u, e).

254 APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16]

– Decrypt(`, dk, C): one first computes ξ = HK(`,u, e) and checks whether ux1+ξy11 ·ux2+ξy22
?= v.

If the equality holds, one computes M = e/(uz1) and outputs M . Otherwise, one outputs ⊥.
The security of the scheme is proven under the DDH assumption and the fact the hash

function used is a Universal One-Way Hash Function.
In following work [CS02] they refined the proof, explaining that the scheme can be viewed as

a 2-Universal Hash Proof on the language of valid Diffie Hellman tuple.

Vanilla Cramer-Shoup Encryption with Matricial Notations.
– Setup(1K) generates a group G of order p, with a generator g, with an underlying matrix

assumption D1 using a base matrix [A] ∈ G2×1;
– KeyGen(param) generates dk = t1, t2, z

$← Z2
p (with t1 = (x1, x2), t2 = (y1, y2) and z =

(z, 1)), and sets c = t1A, d = t2A, h = zA. It also chooses a hash function HK in a collision-
resistant hash family H (or simply a Universal One-Way Hash Function). The encryption key
is ek = ([A], [c], [d], [h],HK).

– Encrypt(`, ek, [m]; r), for a message M = [m] ∈ G and random scalar r $← Zp, the ciphertext
is C = (`,u = [Ar]), e = [hr +m], v = [(c+ d� ξ)r], where v is computed afterwards with
ξ = HK(`,u, e).

– Decrypt(`, dk, C): one first computes ξ = HK(`,u, e) and checks whether v is consistent with
t1, t2.
If it is, one computes M = [e− (uz)] and outputs M . Otherwise, one outputs ⊥.

Groth-Sahai Proof System. Groth and Sahai [GS08] proposed non-interactive zero-knowledge
proofs of satisfiability of certain equations over bilinear groups, called pairing product equations.
Using as witness group elements (and scalars) which satisfy the equation, the prover starts with
making commitments on them. To prove satisfiability of an equation (which is the statement of
the proof), a Groth-Sahai proof uses these commitments and shows that the committed values
satisfy the equation. The proof consists again of group elements and is verified by a pairing
equation derived from the statement.

We refer to [GS08] for details of the Groth-Sahai proof system, and to [EHK+13] for the
compatibility with the k-MDDH assumptions. More details can be found in Appendix B. We are
going to give a rough idea of the technique for SXDH.

To prove that committed variables satisfy a set of relations, the Groth-Sahai techniques
require one commitment per variable and one proof element (made of a constant number of
group elements) per relation. Such proofs are available for pairing-product relations and for
multi-exponentiation equations.

When based on the SXDH assumption, the commitment key is of the form u1 = (u1,1, u1,2) ,u2 =
(u2,1, u2,2) ∈ G 2

1 and v1 = (v1,1, v1,2) ,v2 = (v2,1, v2,2) ∈ G 2
2 . We write

u =

(
u1

u2

)
=

(
u1,1 u1,2
u2,1 u2,2

)
and v =

(
v1

v2

)
=

(
v1,1 v1,2
v2,1 v2,2

)
.

The Setup algorithm initializes the parameters as follows: u1 = (g1, u) with u = gλ1 and
u2 = u1

µ with λ, µ $← Z∗p, which means that u is a Diffie-Hellman tuple in G1, since u1 = (g1, g
λ
1)

and u2 = (gµ1 , g
λµ
1). The TSetup algorithm will use instead u2 = u1

µ � (1, g1)
−1: u1 = (g1, g

λ
1)

and u2 = (gµ1 , g
λµ−1
1). And it is the same in G2 for v. Depending on the definition of u2, v2, this

commitment can be either perfectly hiding or perfectly binding. The two parameter initializations
are indistinguishable under the SXDH assumption.

To commit to X ∈ G1, one chooses randomness s1, s2 ∈ Zp and sets C(X) = (1, X)� us11 �
us22 = (1, X)� (us11,1, u

s1
1,2)� (us22,1, u

s2
2,2) = (us11,1 · us22,1, X · us11,2 · us22,2). Similarly, one can commit to

element in G2 and scalars in Zp. The committed group elements can be extracted if u2 is linearly
dependant of u1 by knowing the discrete logarithm x1 between u1,1 and u2,2: c2/(cx11) = X.

APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16] 255

In the following we are going to focus on proof of linear multi-scalar exponentiation in G1,
that is to say we are going to prove equations of the form

∏
iA

yi
i = A where Ai are public

elements in G1 and yi are going to be scalars committed into G2.

2.4 Protocols

UC Framework. The goal of this simulation-based model [Can01] is to ensure that UC-secure
protocols will continue to behave in the ideal way even if executed in a concurrent way in
arbitrary environments. Due to lack of space, a short introduction to the UC framework is given
in Appendix C.

Oblivious Transfer and Password-Authenticated Key-Exchange. The security properties
for these two protocols are given in terms of ideal functionalities in Appendix C.

3 Structure-Preserving Smooth Projective Hashing
3.1 Definition

In this section, we are now going to narrow the classical definition of Smooth Projective Hash
Functions to what we are going to name Structure-Preserving Smooth Projective Hash Functions,
in which both words, witnesses and projection keys are group elements.

Since witnesses now become group elements, this allows a full compatibility with Groth and
Sahai methodology [GS08], such that for instance possessing a Non-Interactive Zero-Knowledge
Proof of Knowledge can become new witnesses of our SP-SPHF, leading to interesting applica-
tions, as described later on.

As we are in the context of Structure Preserving cryptography, we assume the existence of a
(prime order) bilinear group (p,G1,G2, g1, g2,GT , e), and consider Languages (sets of elements) L
defined over this group. The hash space is usually GT , the projection key space a group Gm

1 ×Gn
2

and the witness space a group Gn
1 ×Gm

2 .

Definition 7 (Structure-Preserving Smooth Projective Hash Functions).
A Structure-Preserving Smooth Projective Hash Function over a language L ⊂ X onto a set

H is defined by 4 algorithms (HashKG,ProjKG,Hash,ProjHash):
– HashKG(L, param), outputs a hashing key hk for the language L;
– ProjKG(hk, (L, param),W), derives the projection key hp thanks to the hashing key hk.
– Hash(hk, (L, param),W), outputs a hash value H ∈ H, thanks to the hashing key hk, and W
– ProjHash(hp, (L, param),W,w), outputs the value H ′ ∈ H, thanks to hp and the witness w

that W ∈ L.

Remark 8. We stress that, contrarily to classical SPHF, both hp, W and more importantly w are
base group elements, and so live in the same space.

3.2 Properties

Properties are then inherited by those of classical Smooth Projective Hash Functions.

– Correctness: On honest computations with (W,w) compatible with L, we have
ProjHash(hp, (L, param),W,w) = Hash(hk, (L, param),W).

– Smoothness: For all W ∈ X \L the following distributions are statistically indistinguishable:

∆0 =



(L, param,W, hp, v)

param = Setup(1K), hk = HashKG(L, param),
hp = ProjKG(hk, (L, param),W),
v = Hash(hk, (L, param),W) ∈ GT





∆1 =

{
(L, param,W, hp, v)

param = Setup(1K), hk = HashKG(L, param),

hp = ProjKG(hk, (L, param),W), v
$← GT

}
.

256 APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16]

This is formalized by

Advsmooth
SPHF (K) =

∑

V ∈G

∣∣∣∣Pr∆1

[v = V]− Pr
∆0

[v = V]

∣∣∣∣ is negligible.

As usual, a derivative property called Pseudo-Randomnness, says the previous distribution
are computationally indistinguishable from words in the language while the witnesses remain
unknown. This is implied by the Smoothness on Hard Subset membership languages.

3.3 Retro-compatibility

Constructing SP-SPHF is not that hard of a task. A first naive approach allows to transform
every pairing-less SPHF into a SP-SPHF in a bilinear setting. It should be noted that while
the resulting Hash/ProjHash values live in the target group, nearly all use cases encourage to
use a proper hash function on them before computing anything using their value, hence the
communication cost would remain the same. (Only applications where one of the party has to
provide an additional proof that the ProjHash was honestly computed might be lost, but besides
proof of negativity from [BCV15], this never arises.)

To this goal, simply given a new generator f ∈ G2, and a scalar witness vector λ, one generates
the new witness vector Λ = [f � λ]2. Words and projection keys belong to G1, and hash values
to GT . Any SPHF can thus be transformed into an SP-SPHF in the following way:

SPHF SP-SPHF
Word u [λ� Γ (u)]1 [λ� Γ (u)]1
Witness w λ Λ = [f � λ]2
hk α α
hp = [γ(u)]1 [Γ (u)�α]1 [Γ (u)�α]1
Hash(hk,u) [Θ(u)�α]1 [f �Θ(u)�α]T
ProjHash(hp,u, w) [λ� γ(u)]1 [Λ� γ(u)]T

– Correctness is inherited for words in L as this reduces to computing the same values but in
GT .

– Smoothness: For words outside the language, the projection keys, remaining unchanged, do
not reveal new information, so that the smoothness will remain preserved.

– Pseudo-Randomness: Without any witness, words inside the language are indistinguishable
from words outside the language (under the subgroup decision assumption), hence the hash
values remain pseudo-random.
It should be noted that in case this does not weaken the subgroup decision assumption (k-

MDDH in the following) linked to the original language, one can set G1 = G2.
We give in Figure 1 two examples of regular Smooth Projective Hash Functions on Diffie-

Hellman and Cramer-Shoup encryption ofM , where α = H(u, e), and their counterparts with SP-
SPHF. ElGamal being a simplification of Cramer-Shoup, we skip the description of the associated
SP-SPHF. We also give in Figure 2 the matricial version of Cramer-Shoup encryption, in which
we denote by C ′ the Cramer-Shoup encryption C of M in which we removed M .

3.4 Possible Applications

Nearly Constant 1-out-of-m Oblivious Transfer Using FLM. Recent pairing-based con-
structions [CKWZ13,ABB+13] of Oblivious Transfer use SPHF to mask each line of a database
with the hash value of as SPHF on the language corresponding to the first flow being a commit-
ment of the said line.

APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16] 257

SPHF SP-SPHF
DH hr, gr hr, gr

Witness w r gr2
hk λ, µ λ, µ

hp hλgµ hλgµ

Hash(hk,u) (hr)λ(gr)µ e((hr)λ(gr)µ, g2)
ProjHash(hp,u, w) hpr e(hp, gr2)

CS(M;r) hrM, fr, gr, (cdα)r hrM, fr, gr, (cdα)r

Witness w r gr2
hk λ1, λ2, µ, ν, η λ1, λ2, µ, ν, η

hp hλ1fµgνcη, hλ2dν hλ1fµgνcη, hλ2dν

Hash(hk,u) H = (hr)λ1+αλ2(fr)µ(gr)ν((cdα)r)µ e(H, g2)
ProjHash(hp,u, w) (hp1hp

α
2)
r e(hp1hp

α
2 , g

r
2)

(with hp = (hp1, hp2))

Fig. 1. Example of conversion of classical SPHF into SP-SPHF

SPHF SP-SPHF
CS(M;r) [hr +M,Ar, (c+ dα)r] [hr +M,Ar, (c+ dα)r]1

B :




h
f
g
c





Br +




0
0
0
d


αr +




M
0
0
0








Br +




0
0
0
d


αr +




M
0
0
0







1

Witness w r [r]2
hk λ1, λ2, µ, ν, η λ1, λ2, µ, ν, η
hp

[
hp1 =

(
λ1 µ ν η

)
B
]
, [hp1]1 , [hp2]1

hp2 =
(
λ2 0 0 η

)



h
0
0
d







Hash(hk,u)
[(
λ1 + αλ2 µ ν η

)
(C′)

] [(
λ1 + αλ2 µ ν η

)
(C′)

]
T

ProjHash(hp,u, w) [(hp1 + αhp2)r] [(hp1 + αhp2)r]T

Fig. 2. Example of conversion of SPHF into SP-SPHF (matricial notations)

Sadly, those constructions require special UC commitment on scalars, with equivocation and
extraction capacities, leading to very inefficient constructions. In 2011, [FLM11] proposed a
UC commitment, whose decommitment operation is done via group elements. In section 5, we
are going to show how to combine the existing constructions with this efficient commitment
using SP-SPHF, in order to obtain a very efficient round-optimal where there is no longer a
growing overhead due to the commitment. As a side result, we show how to generalize the FLM
commitment to any MDDH assumption.

Round-Optimal Password Authenticated Key Exchange with Adaptive Corruptions.
Recent developments around SPHF-based PAKE have either lead to Round-Optimal PAKE in
the BPR model [BPR00], or with static corruptions [KV11,BBC+13b]. In order to achieve round-
optimality, [ABB+13] needs to do a bit-per-bit commitment of the password, inducing a com-
munication cost proportional to the maximum password length.

In the following, we show how to take advantage of the SP-SPHF constructed on the FLM
commitment to propose a One-Round PAKE UC secure against adaptive adversaries, providing
a constant communication cost.

Using a ZKPK as a witness, Anonymous Credentials. Previous applications allow more
efficient instantiations of protocols already using scalar-based SPHF. However, one can imagine

258 APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16]

additional scenarios, where a scalar based approach may not be possible, due to the inherent
nature of the witness used.

For example, one should consider a strong authentication scenario, in which each user pos-
sesses an identifier delivered by an authority, and a certification on a commitment to this iden-
tifier, together with a proof of knowledge that this commitment is indeed a commitment to this
identifier. (Such scenario can be transposed to the delivery of a Social Security Number, where
a standalone SSN may not be that useful, but a SSN officially linked to someone is a sensitive
information that should be hidden.) In this scenario, a user who wants to access his record on
a government service where he is already registered, should give the certificate, and then would
use an implicit proof that this corresponds to his identifier. With our technique, the server would
neither learn the certificate in the clear nor the user identifier (if he did not possess it earlier),
and the user would be able to authenticate only if his certificate is indeed on his committed
identifier.

In our scenario, we could even add an additional step, such that Alice does not interact directly
with Bob but can instead use a pawn named Carol. She could send to Carol a commitment to the
signature on her identity, prove in a black box way that it is a valid signature on an identity, and
let Carol do the interaction on her behalf. For example, to allow a medical practitioner to access
some subpart of her medical record concerning on ongoing treatment, in this case, Carol would
need to anonymously prove to the server that she is indeed a registered medical practitioner, and
that Alice has given her access to her data.

4 Encryption and Commitment Schemes Based on k-MDDH

4.1 k-MDDH Cramer-Shoup Encryption

In this paper, we supersede the previous constructions with a k-MDDH based one:
– Setup(1K) generates a group G of order p, with an underlying matrix assumption using a base

matrix [A] ∈ Gk+1×k;
– KeyGen(param) generates dk = t1, t2, z

$← Zk+1
p , and sets, c = t1A ∈ Zkp,d = t2A ∈ Zkp,h =

zA ∈ Zkp. It also chooses a hash function HK in a collision-resistant hash family H (or simply
a Universal One-Way Hash Function).
The encryption key is ek = ([c], [d], [h], [A],HK).

– Encrypt(`, ek, [m]; r), for a message M = [m] ∈ G and random scalars r $← Zkp, the ciphertext
is C = (u = [Ar]), e = [hr +m], v = [(c + d � ξ)r]1, where v is computed afterwards with
ξ = HK(`,u, e).

– Decrypt(`, dk, C): one first computes ξ = HK(`,u, e) and checks whether v is consistent with
t1, t2.
If it is, one computes M = [e− (uz)] and outputs M . Otherwise, one outputs ⊥.

Theorem 9. The k-MDDH Cramer-Shoup Encryption is IND-CCA 2 under k-MDDH assump-
tion and the collision resistance (universal one-wayness) of the Hash Family.

Proof. To sketch the proof of the theorem, one should remember that the original proof articulate
around three main cases noting `,u, e, v the challenge query, and `′,u, e′, v′ the current decryption
query:
– (`,u, e) = (`′,u′, e′) but v 6= v′. This will fail as v is computed to be the correct checksum,

hence we can directly reject the decryption query.
– (`,u, e) 6= (`′,u′, e′) but ξ = ξ′, this is a collision on the Hash Function.
– (`,u, e, v) 6= (`,u, e, v) and ξ 6= ξ′. This is the argument revolving around the 2-Universality

of the Hash Proof system defined by c,d. c,d gives 2k equations in 2k + 2 variables, hence
answering decryption queries always in the same span can give at most 1 more equation
leaving at least 1 degree of freedom in the system. ut

APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16] 259

Structure-Preserving Smooth Projective Hash Function

For ease of readability we are going to set B =





h
A
c




 and D =






0
...
d





, and write

C ′ = [Br + ξDr]1 the ciphertext without the message M .
– HashKG(L, param), chooses Λ $← Z(k+2)×1

p , λ $← Zp and sets

hk1 = Λ, hk2 =




λ
0

Λk+2


 ;

– ProjKG(hk, (L, param),W), outputs hp1 = hk>1 B, hp2 = hk>2



h
0
d


;

– Hash(hk, (L, param),W), outputs a hash value H = [(hk1 + ξhk2)
>C ′]T ;

– ProjHash(hp, (L, param),W,w), outputs the value H ′ = [(hp1 + ξhp2)r]T .
The Smoothness comes inherently from the fact that we have 2k+2 unknowns in hk while hp

gives at most 2k equations. Hence an adversary has a negligible chance to find the real values.

4.2 A Universally Composable Commitment with Adaptive Security Based on
MDDH

We first show how to simply generalize FLM’s commitment [FLM11] from DLin to k-MDDH.

FLM’s Commitment on DLin. At Asiacrypt 2011, Fischlin, Libert and Manulis presented a
universally composable commitment [FLM11] with adaptive security based on the Decision Linear
assumption [BBS04]. We show here how to generalize their scheme to the Matrix Decisional Diffie-
Hellman assumption from [EHK+13] and recalled in Section 2. We first start by recalling their
original scheme. Note that sid denotes the session identifier and cid the commitment identifier
and that the combination (sid, cid) is globally unique, as in [HMQ04,FLM11].
– CRS Generation: SetupCom(1K) chooses a bilinear group (p,G,GT) of order p > 2K, a

generator g of G, and sets g1 = gα1 and g2 = gα2 with random α1, α2 ∈ Z∗p. It defines
the vectors g1 = (g1, 1, g), g2 = (1, g2, g) and g3 = g1

ξ1g2
ξ2 with random ξ1, ξ2 ∈ Z∗p,

which form a Groth-Sahai CRS g = (g1,g2,g3) for the perfect soundness setting. It then
chooses a collision-resistant hash function H : {0, 1}∗ → Zp and generates a public key
pk = (X1, . . . , X6) for the linear Cramer-Shoup encryption scheme. The CRS consists of
crs = (K,G,GT , g,g, H, pk).

– Commitment algorithm: Com(crs,M, sid, cid, Pi, Pj), to commit to message M ∈ G for
party Pj , party Pi parses crs as (K,G,GT , g,g, H, pk) and conducts the following steps:
• It chooses random exponents r, s in Zp and computes a linear Cramer- Shoup encryption
ψCS = (U1, U2, U3, U4, U5) ofM ∈ G under the label ` = Pi‖sid‖cid and the public key pk.
• It generates a NIZK proof πval−enc that ψCS = (U1, U2, U3, U4, U5) is indeed a valid

encryption of M ∈ G. This requires to commit to exponents r, s and prove that these
exponents satisfy the multi-exponentiation equations U1 = g1

r, U2 = g2
s, U3 = gr+s,

U4/M = X5
rX6

s and U5 = (X1X3
α)r · (X2X4

α)s.
• Pi erases (r, s) after the generation of πval−enc but retains the DM = πval−enc.

The commitment is ψCS .
– Verification algorithm: the algorithm VerCom(crs,M,DM , sid, cid, Pi, Pj) checks the proof
πval−enc and ignores the opening if the verification fails.

– Opening algorithm: OpenCom(crs,M,DM , sid, cid, Pi, Pj) reveals M and DM = πval−enc
to Pj .

260 APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16]

The extraction algorithm uses Cramer-Shoup decryption algorithm, while the equivocation
uses the simulator of the NIZK. It is shown in [ABB+13] that the IND-CCA security notion for C
and the computational soundness of π make it strongly-binding-extractable, while the IND-CCA
security notion and the zero-knowledge property of the NIZK provide the strong-simulation-
indistinguishability.

Moving to k-MDDH: We now show how to extend the previous commitment to the k-MDDH
assumption. Compared to the original version of the commitment, we split the proof πval−enc into
its two parts: the NIZK proof denoted here as [Π]1 is still revealed during the opening algorithm,
while the Groth-Sahai commitment [R]2 of the randomness r of the Cramer-Shoup encryption
is sent during the commitment phase. Furthermore, since the hash value in the Cramer Shoup
encryption is used to link the commitment with the session, we include this value [R]2 to the
label, in order to ensure that this extra commitment information given with the ciphertext is the
original one. We refer the reader to the original security proof in [FLM11, Theorem 1], which
remains exactly the same, since this additional commitment provides no information (either
computationally or perfectly, depending on the CRS), and since the commitment [R]2 is not
modified in the equivocation step (only the value [Π]1 is changed).
– CRS Generation: algorithm SetupCom(1K) chooses a bilinear asymmetric group (p,G1,G2,

GT , e, g1, g2) of order p > 2K, and a set of generators [A]1 corresponding to the underlying
matrix assumption.
As explained in [EHK+13], following their notations, one can define a Groth-Sahai CRS by
picking w $← Zk+1

p , and setting [U]2 = [B||Bw]2 for a hiding CRS, and [B||Bw + (0||z)>]2
otherwise, where [B]2 is an k-MDDH basis, and w, z are the elements defining the challenge
vector.
For the Cramer-Shoup like CCA-2 encryption, one additionally picks t1, t2, z

$← Zk+1
p , and a

Universal One-Way Hash Function H and sets [h]1 = [z ·A]1, [c]1 = [t1A]1, [d]1 = [t2A]1.
The CRS consists of crs = (K, p,G1,G2,GT , [A]1 ∈ Gk×k+1

1 , [U]2, [h]1 ∈ Gk
1, [c]1 ∈ Gk

1, [d]1 ∈
Gk

1,H).
– Commitment algorithm: Com(crs,M, sid, cid, Pi, Pj), to commit to message M ∈ G1 for

party Pj , party Pi conducts the following steps:
• It chooses random exponents r in Zkp and commits to r in [R]2 with randomness ρ $←
Zk×k+1
p , setting [R]2 = [Uρ + ι2(r)]2 ∈ Gk×k+1

2 . It also computes a Cramer-Shoup en-
cryption ψCS = [C]1 of M ∈ G1 under the label ` = Pi‖sid‖cid and the public key pk:

[C]1 = [Ar||hr +M ||(c+ d�H(`||C1||C2||R))r]1 = [C1||C2||C3]1

For simplicity we write `′ = `||[C1]1||[C2]1||[R]2.
• It generates a NIZK proof DM = [Π]1 that ψCS is indeed a valid encryption of M ∈ G1

for the committed r in [R]2. This requires to prove that these exponents satisfy the
multi-exponentiation equations:

[C1]1 = [Ar]1, [C2 −M]1 = [hr]1, [C3 = (c+ d�H(`′))r]1
The associated proof is then [Π]1 = [ρ>(A||h||c+ d�H(`′))]1.
• Pi erases r after the generation of [R]2 and [Π]1 but retains DM = [Π]1.

The commitment is ([C]1, [R]2).
– Verification algorithm: the algorithm VerCom(crs,M,DM , sid, cid, Pi, Pj) checks the con-

sistency of the proof πval−enc with respect to [C]1 and [R]2. and ignores the opening if the
verification fails.

– Opening algorithm: OpenCom(crs,M,DM , sid, cid, Pi, Pj) reveals M and DM = [Π]1 to
Pj .
One can easily see that [C3]1 is the projective hash computation of a 2-universal hash proof

on the language “[C1]1 in the span of A”, with [C2]1 being an additional term that uses the same
witness to mask the committed message, so that [C]1 is a proper generalization of the Cramer-
Shoup CCA-2 encryption. Details on the k-MDDH Groth-Sahai proofs are given in Appendix B.

APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16] 261

It is thus easy to see that this commitment is indeed a generalization of the FLM non-
interactive UC commitment with adaptive corruption under reliable erasures (in which we switched
the CRS, the Cramer-Shoup encryption and the Groth-Sahai proof in the k-MDDH setting).

4.3 A Structure-Preserving Smooth Projective Hash Function Associated with
this Commitment

Structure-Preserving Smooth Projective Hash Function. We now want to supersede
the verification equation of the commitment by a smooth projective hash function providing
implicit decommitment, simply using the proof as a witness. We consider the language of the
valid encryptions of M using a random r which is committed into [R]2:

LM = {[C]1 | ∃r∃ρ such that [R]2 = [Uρ+ ι2(r)]2
and [C]1 = [Ar||hr +M ||(c+ d�H(`||C1||C2||R))r]1}

The verifier picks a random hk = α
$← Zk+3×k+1

p and sets hp = [α�U]2.
On one side, the verifier then computes:

Hash(hk, ([C]1, [R]2)) = [α� ((C1||C2 −M ||C3)− (A||h||c+ d�H(`′)) ·R)]T

While the prover computes ProjHash(hp,Π) = [Π · hp]T .
– Correctness: comes directly from the previous equations.
– Smoothness: on a binding CRS, [U]2’s last column is in the span of the k first (which are

simply [B]2), hence as hk ∈ Zk+1
p , the k equations given in hp are not enough to determine

its value and so it is still perfectly hidden from an information theoretic point of view.
– Pseudo-Randomness: Under the MDDH assumption, the subset membership decision is a

hard problem, as the generalized Cramer-Shoup is IND-CCA-2, and [R]2 is an IND-CPA
commitment to r.

Theorem 10. Under the k-MDDH assumption, the above SP-SPHF is strongly pseudo-random
on a perfectly hiding CRS.

For sake of compactness, the proof is postponed to Appendix D.

Efficiency. The rough size of a projection key is k × (k + 3) (number of elements in each proof
times number of proofs). It should be noted, that for a CS-SPHF (in the case of the oblivious
transfer), instead of repeating the projection key k+3 times (in order to verify each component
of the Cramer-Shoup), one can generate a value ε $← Zp, an hp for a single equation, and say
that for the other component, one simply uses hpε

i
, as the trick explained in [ABB+13].

5 Application: Nearly Optimal Size 1-out-of-m Oblivious Transfer

5.1 Main Idea of the Construction

Our oblivious transfer scheme builds upon that presented by Abdalla et al. at Asiacrypt 2013
[ABB+13]. In their scheme, the authors use a SPHF-friendly commitment (which is a notion
stronger than a UC commitment) along with its associated SPHF in a now classical way to
implicitly open the commitment. They claim that the commitment presented in [FLM11] cannot
be used in such an application, since it is not “robust”, which is a security notion meaning that one
cannot produce a commitment and a label that extracts to x′ (possibly x′ = ⊥) such that there
exists a valid opening data to a different input x, even with oracle access to the extraction oracle
(ExtCom) and to fake commitments (using SCom). Indeed, because of the perfectly-hiding setting
of Groth-Sahai proofs, for any ciphertext C and for any message x, there exists a proof Π that
makes the verification of C on x. However, we show in this section that in spite of this result, such
a commitment can indeed be used in a relatively close construction of oblivious transfer scheme.

262 APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16]

To this aim, we use our construction of structure-preserving SPHF on FLM’s commitment, simply
using the decommitment value (a Groth-Sahai proof) as the witness, presented in Section 4.3.

It should be noted that the commitment used in [ACP09,ABB+13] has the major drawback
of leaking the bit-length of the committed message. While in application to Oblivious Transfer
this is not a major problem, for PAKE this is a way more sensitive issue, as we show in the
next section. Moreover, using FLM’s commitment is conceptually simpler, since the equivocation
only needs to modify the witness, allowing the user to compute honestly its message in the
commitment phase, whereas in the original commitments, a specific flow had to be sent during
the commitment phase (with a different computation and more witnesses for the SPHF, than in
the honest computation of the commitment).

5.2 A Universally Composable Oblivious Transfer with Adaptive Security Based
on MDDH

We denote by DB the database of the server containing t = 2m lines, and j the line requested by
the user in an oblivious way. We assume the existence of a Pseudo-Random Generator (PRG) F
with input size equal to the plaintext size, and output size equal to the size of the messages in
the database and a IND-CPA encryption scheme E = (Setupcpa,KeyGencpa,Encryptcpa,Decryptcpa)
with plaintext size at least equal to the security parameter. The commitment used is the variant
of [FLM11] described above. It is denoted as Com` in the description of the scheme, with ` being
a label. Note that sid denotes the session identifier, ssid the subsession identifier and cid the
commitment identifier and that the combination (sid, cid) is globally unique, as in [HMQ04,
FLM11].

We present our construction, in Figure 3, following the global framework presented in [ABB+13],
for an easier efficiency comparison (we achieve nearly optimality in the sense that it is linear in
the number of lines of the database, but with a constant equal to 1 only).

CRS generation:
crs

$← SetupCom(1K), paramcpa
$← Setupcpa(1

K).

Pre-flow:

1. Server generates a key pair (pk, sk)
$← KeyGencpa(paramcpa) for E , stores sk and completely erases the

random coins used by KeyGen
2. Server sends pk to User

Index query on j:

1. User chooses a random value J , computes S ← F (J) and encrypts J under pk:
c

$← Encryptcpa(pk, J)

2. User computes ([C]1, [R]2, [Π]1)
$← Com`(crs, j, sid, cid, Pi, Pj) with the label ` = (sid, ssid, Pi, Pj)

3. User stores [Π]1 and completely erases J and the random coins used by Com and Encryptcpa and sends
[C]1, [R]2 and c to Server

Database input (n1, . . . , nt):

1. Server decrypts J ← Decryptcpa(sk, c) and computes S ← F (J)

2. For s = 1, . . . , t: Server computes hks
$← HashKG(Ls), hps ← ProjKG(hks,Ls), Ks ←

Hash(hks, (Ls, (`, [C]1, [R]2))), and Ns ← S ⊕Ks ⊕ ns
3. Server erases everything except (hps, Ns)s=1,...,t and sends them over a secure channel

Data recovery:
Upon receiving (hps, Ns)s=1,...,t, User computes
Kj ← ProjHash(hpj , (Lj , `, [C]1, [R]2), [Π]1) and gets nj ← S ⊕Kj ⊕Nj .

Fig. 3. UC-Secure 1-out-of-t OT from an SPHF-Friendly Commitment (for Adaptive Security)

APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16] 263

Theorem 11. The oblivious transfer scheme described in Figure 3 is UC-secure in the presence
of adaptive adversaries, assuming reliable erasures and authenticated channels.

The proof is given in Appendix E for completeness.

6 Application: Adaptive and Length-Independent One-Round PAKE

Password-authenticated key exchange (PAKE) protocols allow two players to agree on a shared
high entropy secret key, that depends on their own passwords only. Katz and Vaikuntanathan
recently came up with the first concrete one-round PAKE protocols [KV09], where the two
players just have to send simultaneous flows to each other. Following their idea, [BBC+13b]
proposed a round-optimal PAKE protocol UC secure against passive corruptions. On the other
hand, [ACP09] proposed the first protocol UC secure against adaptive corruptions, and [ABB+13]
built upon both [KV09] and [ACP09], to propose the first one-round protocol UC secure against
adaptive corruptions. Unfortunately, both of them share a drawback, which is that they use a
commitment growing linearly with the length of a password. Besides being an efficiency problem,
it is over all a security issue in the UC framework. Indeed, the simulator somehow has to “guess”
the length of the password of the player it simulates, otherwise it is unable to equivocate the
commitment (since the commitment reveals the length of the password it commits to). Since
such a guess is impossible, the apparently only solution to get rid of this limitation seems to
give the users an upper-bound on the length of their passwords and to ask them to compute
commitments of this length, which leads to costly computations.

In this section, we are now going to present a constant-size, round-optimal, PAKE UC secure
against adaptive corruptions. It builds upon the protocol proposed in [ABB+13], using the same
techniques as in the former section to avoid the apparent impossibility to use FLM’s commitment.

CRS: crs $← SetupCom(1K).
Protocol execution by Pi with pwi:

1. Pi generates hki $← HashKG(Lpwi
), hpi ← ProjKG(hki,Lpwi

)
and erases any random coins used for the generation

2. Pi computes ([Ci]1, [Ri]2, [Πi]1) = Com`i(crs, pwi, sid, cid, Pi, Pj)
with `i = (sid, Pi, Pj , hpi)

3. Pi stores [Πi]1, completely erases random coins used by Com
and sends hpi, [Ci]1, [Ri]2 to Pj

Key computation: Upon receiving hpj , [Cj]1, [Rj]2 from Pj

1. Pi computes H ′i ← ProjHash(hpj , (Lpwi
, `i, [Ci]1, [Ri]2), [Πi]1))

and Hj ← Hash(hki, (Lpwi
, `j , [Cj]1, [Rj]2)) with `j = (sid, Pj , Pi, hpj)

2. Pi computes ski = H ′i ·Hj and erases everything else, except pwi.

Fig. 4. UC-Secure PAKE from the revisited FLM Commitment

It should be noted that we need the classical requirement for extraction capabilities (see for
example [Lin11, BCPV13] for a detailed explanation), i.e. a password pw is assumed to be a
bit-string of length bounded by log p−2, and then one can use a bijective embedding function G
mapping {0, 1}|p|−2 in G1. For the sake of simplicity, we continue to write pwi in the high level
description, but it should be interpreted as a commitment to G(pwi).

The language Lpwi is then the language of valid Cramer-Shoup encryptions of the embedded
password G(pwi), consistent with the randomness committed in the second part, and the rest of
the label.

264 APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16]

Theorem 12. The Password Authenticated Key Exchange scheme described in Figure 4 is UC-
secure in the presence of adaptive adversaries, assuming reliable erasures and authenticated chan-
nels.

The proof is given in Appendix F for completeness.

7 Application: Anonymous Credential-Based Message Transmission

Anonymous Credential protocols [Cha86,Dam90,CL01] allow to combine security and privacy.
Typical credential use involves three main parties. Users need to interact with some authorities
to obtain their credentials (assumed to be a set of attributes validated / signed), and then prove
to a server that a subpart of their attributes verifies an expect policy.

In this section, we give another go to Anonymous Credential, this time to allow message
recovery. This is between Anonymous Credential but also Conditional Oblivious Transfer [Rab81]
and Oblivious Signature-Based Envelope [LDB03].

We present a constant-size, round-optimal protocol that allow to use a Credential to retrieve
a message without revealing the Anonymous Credentials in a UC secure way, by simply building
on the commitment proposed earlier in the paper.

7.1 Anonymous Credential System

In a Attribute-Based Credential system, we assume that different organization issue credentials
to users. A user i possesses a set of credential Credi of the form {Credi,j , vkj} where organization
j assesses that the user verifies some property. (The DMV will assess that the user is indeed
capable of driving, the university that she has a bachelor in Computer Science, while Squirrel
Airways that she reached the gold membership, all those authorities don’t communicate with
each other).

A Server might have an access Policy P requiring some elements (For example being a female,
with a bachelor, and capable of driving).

– Setup(1K): A probabilistic algorithm that gets a security parameter K, an upper bound t for
the size of attribute sets and returns the public parameters param

– OKeyGen(param): Generates a pair of signing keys skj , vkj for each organization.
– UKeyGen(param): Generates a pair of keys ski, vki for each use.
– CredObtain(〈Ui, ski〉, 〈Oj , skj〉) Interactive process that allows a user i to obtain some cre-

dentials from organization j by providing his public key vkj and a proof that it belongs to
him.

– CredUse(〈Ui,Credi, ski〉, 〈S, P,M〉) Interactive process that allows a user i to access a message
guarded by the server S under some policy P by using the already obtained credentials.

An attribute-based anonymous credential system is called secure if it is correct, unforgeable
and anonymous.

7.2 Construction

Smooth Projective Hash Functions have been shown to handle complex languages [ACP09,
BBC+13a], those properties can naturally be extended to Structure Preserving Smooth Pro-
jective Hash Function, allowing credentials to be expressive as disjunction / conjunction of sets
of credentials, range proofs, or even composition (having a credential from authority A signed
by authority B for example).

What is really new with the Structure Preserving part is that now a user can request to
have a credential on a witness by requiring a Structure-Preserving signature on it, while before

APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16] 265

CRS generation:
crs

$← SetupCom(1K), paramcpa
$← Setupcpa(1

K).

Pre-flow:

1. Server generates a key pair (pk, sk)
$← KeyGencpa(paramcpa) for E , stores sk and completely erases the

random coins used by KeyGen
2. Server sends pk to User

Credential Use by user i:

1. User chooses a random value J , computes S ← F (J) and encrypts J under pk:
c

$← Encryptcpa(pk, J)

2. User computes ([C]1, [R]2, [Π]1)
$← Com`(crs,Credi, sid, cid, Pi, Pj) with ` = (sid, ssid, Pi, Pj)

3. User stores [Π]1 and completely erases J and the random coins used by Com and Encryptcpa and sends
[C]1, [R]2 and c to Server

Database input M with policy P :

1. Server decrypts J ← Decryptcpa(sk, c) and computes S ← F (J)

2. Server computes hkP
$← HashKG(LP), hpP ← ProjKG(hkP ,LP), KP ← Hash(hkP , (LP , (`, [C]1, [R]2))),

and NP ← S ⊕KP ⊕M
3. Server erases everything except (hpP , NP) and sends them over a secure channel

Data recovery:
Upon receiving (hpP , NP), User computes
K ← ProjHash(hpP , (LP , `, [C]1, [R]2), [Π]1) and gets M ← S ⊕K ⊕NP .

Fig. 5. UC-Secure Anonymous Credential from an SPSPHF-Friendly Commitment (for Adaptive Security)

scalars either required to give too much information to the server B or prevented chaining as
most signatures requires some sort of Hashing (BLS requires an explicit Hash, while signature
à la Waters requires to handle a bit per bit version of the message hindering drastically the
efficiency of the protocol). This allows more possibilities in both the Credential Generation step
and the policy required for accessing messages, while maintaining an efficient construction.

Theorem 13. The Anonymous Credential Protocol described in Figure 5 is UC-secure in the
presence of adaptive adversaries, assuming reliable erasures and authenticated channels.

The ideal functionality and a sketch of the proof are given in Appendix G for completeness.

References

[ABB+13] Michel Abdalla, Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, and David Pointcheval. SPHF-
friendly non-interactive commitments. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013,
Part I, volume 8269 of LNCS, pages 214–234. Springer, December 2013.

[ACD+12] Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss, Ryo Nishimaki, and Miyako
Ohkubo. Constant-size structure-preserving signatures: Generic constructions and simple assump-
tions. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages
4–24. Springer, December 2012.

[ACHdM05] Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno de Medeiros. Practical group
signatures without random oracles. Cryptology ePrint Archive, Report 2005/385, 2005. http://
eprint.iacr.org/2005/385.

[ACP09] Michel Abdalla, Céline Chevalier, and David Pointcheval. Smooth projective hashing for conditionally
extractable commitments. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 671–
689. Springer, August 2009.

[ADK+13] Masayuki Abe, Bernardo David, Markulf Kohlweiss, Ryo Nishimaki, and Miyako Ohkubo. Tagged
one-time signatures: Tight security and optimal tag size. In Kaoru Kurosawa and Goichiro Hanaoka,
editors, PKC 2013, volume 7778 of LNCS, pages 312–331. Springer, February / March 2013.

[AFG+10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo.
Structure-preserving signatures and commitments to group elements. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 209–236. Springer, August 2010.

266 APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16]

[AGHO11] Masayuki Abe, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. Optimal structure-
preserving signatures in asymmetric bilinear groups. In Phillip Rogaway, editor, CRYPTO 2011,
volume 6841 of LNCS, pages 649–666. Springer, August 2011.

[AGOT14a] Masayuki Abe, Jens Groth, Miyako Ohkubo, and Mehdi Tibouchi. Structure-preserving signatures
from type II pairings. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I,
volume 8616 of LNCS, pages 390–407. Springer, August 2014.

[AGOT14b] Masayuki Abe, Jens Groth, Miyako Ohkubo, and Mehdi Tibouchi. Unified, minimal and selectively
randomizable structure-preserving signatures. In Yehuda Lindell, editor, TCC 2014, volume 8349 of
LNCS, pages 688–712. Springer, February 2014.

[BBC+13a] Fabrice Ben Hamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud.
Efficient UC-secure authenticated key-exchange for algebraic languages. In Kaoru Kurosawa and
Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 272–291. Springer, Febru-
ary / March 2013.

[BBC+13b] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud.
New techniques for SPHFs and efficient one-round PAKE protocols. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 449–475. Springer, August 2013.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, August 2004.

[BC15] Olivier Blazy and Céline Chevalier. Generic construction of uc-secure oblivious transfer. Cryptology
ePrint Archive, Report 2015/560, 2015.

[BCL+05] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure computation without
authentication. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 361–377.
Springer, August 2005.

[BCPV13] Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud. Analysis and improvement
of Lindell’s UC-secure commitment schemes. In Michael J. Jacobson Jr., Michael E. Locasto, Payman
Mohassel, and Reihaneh Safavi-Naini, editors, ACNS 13, volume 7954 of LNCS, pages 534–551.
Springer, June 2013.

[BCV15] Olivier Blazy, Céline Chevalier, and Damien Vergnaud. Non-interactive zero-knowledge proofs of
non-membership. Cryptology ePrint Archive, Report 2015/072, 2015. http://eprint.iacr.org/.

[BM92] Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based protocols secure
against dictionary attacks. In 1992 IEEE Symposium on Security and Privacy, pages 72–84. IEEE
Computer Society Press, May 1992.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure against
dictionary attacks. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 139–
155. Springer, May 2000.

[BPV12] Olivier Blazy, David Pointcheval, and Damien Vergnaud. Round-optimal privacy-preserving protocols
with smooth projective hash functions. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS,
pages 94–111. Springer, March 2012.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer, August 2001.

[Cha86] David Chaum. Showing credentials without identification: Signatures transferred between uncondi-
tionally unlinkable pseudonyms. In Franz Pichler, editor, EUROCRYPT’85, volume 219 of LNCS,
pages 241–244. Springer, April 1986.

[CHK+05] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKenzie. Universally
composable password-based key exchange. In Ronald Cramer, editor, EUROCRYPT 2005, volume
3494 of LNCS, pages 404–421. Springer, May 2005.

[CK02] Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange and secure chan-
nels. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 337–351. Springer,
April / May 2002.

[CKWZ13] Seung Geol Choi, Jonathan Katz, Hoeteck Wee, and Hong-Sheng Zhou. Efficient, adaptively secure,
and composable oblivious transfer with a single, global CRS. In Kaoru Kurosawa and Goichiro
Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 73–88. Springer, February / March 2013.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous creden-
tials with optional anonymity revocation. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume
2045 of LNCS, pages 93–118. Springer, May 2001.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party
and multi-party secure computation. In 34th ACM STOC, pages 494–503. ACM Press, May 2002.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS,
pages 13–25. Springer, August 1998.

APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16] 267

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen cipher-
text secure public-key encryption. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of
LNCS, pages 45–64. Springer, April / May 2002.

[Dam90] Ivan Damgård. Payment systems and credential mechanisms with provable security against abuse by
individuals. In Shafi Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages 328–335. Springer,
August 1990.

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic framework
for Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part
II, volume 8043 of LNCS, pages 129–147. Springer, August 2013.

[ElG84] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In
G. R. Blakley and David Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages 10–18. Springer,
August 1984.

[FLM11] Marc Fischlin, Benoît Libert, and Mark Manulis. Non-interactive and re-usable universally compos-
able string commitments with adaptive security. In Dong Hoon Lee and Xiaoyun Wang, editors,
ASIACRYPT 2011, volume 7073 of LNCS, pages 468–485. Springer, December 2011.

[GL03] Rosario Gennaro and Yehuda Lindell. A framework for password-based authenticated key exchange.
In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 524–543. Springer, May 2003.
http://eprint.iacr.org/2003/032.ps.gz.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel P.
Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer, April 2008.

[HK07] Omer Horvitz and Jonathan Katz. Universally-composable two-party computation in two rounds.
In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 111–129. Springer, August
2007.

[HMQ04] Dennis Hofheinz and Jörn Müller-Quade. Universally composable commitments using random oracles.
In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 58–76. Springer, February 2004.

[JR14] Charanjit S. Jutla and Arnab Roy. Dual-system simulation-soundness with applications to uc-pake
and more. Cryptology ePrint Archive, Report 2014/805, 2014.

[JR16] Charanjit Jutla and Arnab Roy. Smooth nizk arguments with applications to asymmetric uc-pake.
Cryptology ePrint Archive, Report 2016/233, 2016. http://eprint.iacr.org/.

[Kal05] Yael Tauman Kalai. Smooth projective hashing and two-message oblivious transfer. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 78–95. Springer, May 2005.

[KOY01] Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient password-authenticated key exchange
using human-memorable passwords. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045
of LNCS, pages 475–494. Springer, May 2001.

[KPW15] Eike Kiltz, Jiaxin Pan, and Hoeteck Wee. Structure-preserving signatures from standard assumptions,
revisited. In CRYPTO 2015, Part II, LNCS, pages 275–295. Springer, August 2015.

[KV09] Jonathan Katz and Vinod Vaikuntanathan. Smooth projective hashing and password-based authen-
ticated key exchange from lattices. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of
LNCS, pages 636–652. Springer, December 2009.

[KV11] Jonathan Katz and Vinod Vaikuntanathan. Round-optimal password-based authenticated key ex-
change. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 293–310. Springer, March
2011.

[LDB03] Ninghui Li, Wenliang Du, and Dan Boneh. Oblivious signature-based envelope. In Elizabeth
Borowsky and Sergio Rajsbaum, editors, 22nd ACM PODC, pages 182–189. ACM, July 2003.

[Lin11] Yehuda Lindell. Highly-efficient universally-composable commitments based on the DDH assumption.
In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 446–466. Springer,
May 2011.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In S. Rao Kosaraju, editor, 12th
SODA, pages 448–457. ACM-SIAM, January 2001.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In 22nd ACM STOC, pages 427–437. ACM Press, May 1990.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable
oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 554–571.
Springer, August 2008.

[Rab81] Michael O. Rabin. How to exchange secrets with oblivious transfer. Technical Report TR81, Harvard
University, 1981.

[RS92] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen
ciphertext attack. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 433–444.
Springer, August 1992.

268 APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16]

A Commitments and Smooth Projective Hash Functions

A.1 Encryption

An encryption scheme C is described through four algorithms (Setup,KeyGen,Encrypt,Decrypt):
– Setup(1K), where K is the security parameter, generates the global parameters param of the

scheme;
– KeyGen(param) outputs a pair of keys, a (public) encryption key pk and a (private) decryption

key dk;
– Encrypt(ek,M ; ρ) outputs a ciphertext C, on M , under the encryption key pk, with the ran-

domness ρ;
– Decrypt(dk, C) outputs the plaintext M , encrypted in the ciphertext C or ⊥.

Such encryption scheme is required to have the following security properties:
– Correctness: For every pair of keys (ek, dk) generated by KeyGen, every messages M , and

every random ρ, we should have

Decrypt(dk,Encrypt(ek,M ; ρ)) =M.

– Indistinguishability under Adaptive Chosen Ciphertext Attack IND-CCA (see [NY90,RS92]):
An adversary should not be able to efficiently guess which message has been encrypted even
if he chooses the two original plaintexts, and ask several decryption of ciphertexts different
from challenge one.

The ODecrypt oracle outputs the decryption of c under the challenge decryption key dk. The
input queries (c) are added to the list CT of decrypted ciphertexts.

Expind-cca−bE,A (K)

1. param← Setup(1K)
2. (pk, dk)← KeyGen(param)
3. (M0,M1)← A(FIND : pk,ODecrypt(·))
4. c∗ ← Encrypt(ek,Mb)
5. b′ ← A(GUESS : c∗,ODecrypt(·))
6. IF (c∗) ∈ CT RETURN 0
7. ELSE RETURN b′

A.2 Commitments

A commitment scheme is said equivocable if it has a second setup SetupComT(1K) that addition-
ally outputs a trapdoor τ , and two algorithms
– SimCom`(τ) takes as input the trapdoor τ and a label ` and outputs a pair (C, eqk), where
C is a commitment and eqk an equivocation key;

– OpenCom`(eqk, C, x) takes as input a commitment C, a label `, a message x, an equivocation
key eqk, and outputs an opening data δ for C and ` on x.

such as the following properties are satisfied: trapdoor correctness (all simulated commitments
can be opened on any message), setup indistinguishability (one cannot distinguish the CRS ρ
generated by SetupCom from the one generated by SetupComT) and simulation indistinguisha-
bility (one cannot distinguish a real commitment (generated by Com) from a fake commitment
(generated by SCom), even with oracle access to fake commitments), denoting by SCom the
algorithm that takes as input the trapdoor τ , a label ` and a message x and which outputs
(C, δ)

$← SCom`(τ, x), computed as (C, eqk) $← SimCom`(τ) and δ ← OpenCom`(eqk, C, x).
A commitment scheme C is said to be extractable if it has a second setupSetupComT(1K) that

additionally outputs a trapdoor τ , and a new algorithm

APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16] 269

Expc-s-ps-rand-bA (K)

(ρ, τ)
$← SetupComT(1K)

(`, x, state)
$← ASCom·(τ,·),ExtCom·(τ,·)(ρ); C $← SimCom`(τ)

hk
$← HashKG(Lx); hp← ProjKG(hk, Lx,⊥)

If (b = 0) H ← Hash(hk, Lx, (`, C))

Else H
$← Π

(`′, C′, state) $← ASCom·(τ,·),ExtCom·(τ,·)(state, C, hp, H)
If ((`′, ?, C′) ∈ Λ) THEN H ′ ←⊥
Else H ′ ← Hash(hk, Lx, (`

′, C′)

Return ASCom·(τ,·),ExtCom·(τ,·)(H ′)

Fig. 6. Strong Pseudo-Randomness

– ExtCom`(τ, C) which takes as input the trapdoor τ , a commitment C, and a label `, and
outputs the committed message x, or ⊥ if the commitment is invalid.

such as the following properties are satisfied: trapdoor correctness (all commitments honestly
generated can be correctly extracted: for all `, x, if (C, δ) $← Com`(x) then ExtCom`(C, τ) = x),
setup indistinguishability (as above) and binding extractability (one cannot fool the extractor,
i.e., produce a commitment and a valid opening data to an input x while the commitment does
not extract to x).

A commitment scheme is said extractable and equivocable if the indistinguishable setup al-
gorithm outputs a common trapdoor that allows both equivocability and extractability, and the
following properties are satisfied: strong simulation indistinguishability (one cannot distinguish a
real commitment (generated by Com) from a fake commitment (generated by SCom), even with
oracle access to the extraction oracle (ExtCom) and to fake commitments (using SCom)) and
strong binding extractability (one cannot fool the extractor, i.e., produce a commitment and a
valid opening data (not given by SCom) to an input x while the commitment does not extract
to x, even with oracle access to the extraction oracle (ExtCom) and to fake commitments (using
SCom)).

A.3 Smooth Projective Hash Functions Used With Commitments

The strong pseudo-randomness property, taken from [BBC+13b], is defined by the experiment
Exp

c-s-ps-rand
A (K) depicted in Figure 6. It is a strong version of the pseudo-randomness where the

adversary is also given the hash value of a commitment of its choice (obviously not generated
by SCom or SimCom though, hence the test with Λ which also contains (C, `, x)). This property
only makes sense when the projection key does not depend on the word C to be hashed. It thus
applies to KV-SPHF, and CS-SPHF only.

B Groth Sahai Methodology

Groth and Sahai [GS08] have introduced a methodology to build Non-Interactive ZK / Witness
Indistinguishable proofs of satisfiability of pairing-product like equations. The three types of
equations handled by such proofs are the following:

A pairing-product equation over variables X = (X1, . . . ,Xm) ∈ Gm
1 and Y = (Y1, . . . ,Yn) ∈ Gn

2

is of the form
〈A,Y〉 · 〈X ,B〉 · 〈X , ΓY〉 = tT , (1)

defined by constants A ∈ Gn
1 , B ∈ Gm

2 , Γ = (γi,j)1≤i≤m
1≤j≤n

∈ Zm×n
p and tT ∈ GT .

A multi-scalar multiplication equation over variables y ∈ Zn
p and X ∈ Gm

1 is of the form

〈y,A〉 · 〈b,X 〉 · 〈y, ΓX 〉 = T, (2)

270 APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16]

defined by the constants A ∈ Gn
1 , b ∈ Zm

p , Γ ∈ Zm×n
p and T ∈ G1.

A multi-scalar multiplication equation in group G2 is defined analogously.
A quadratic equation in Zp over variables x ∈ Zm

p and y ∈ Zn
p is of the form

〈a,y 〉+ 〈x, b 〉+ 〈x, Γy 〉 = t, (3)

defined by the constants a ∈ Zn
p , b ∈ Zm

p , Γ ∈ Zm×n
p and t ∈ Zp.

Groth and Sahai have detailed generic construction of the proofs π and specific instantiations
under different security assumptions. We will focus on Linear Equations in the following, as they
are those needed in the rest of the paper, that is to say equations with variables in only one of
the two groups.

B.1 SXDH Instantiation

In order to generate a proof of such relations, the methodology invites us to commit to the
witness vectors X with randomness R, and to Y with S with two double ElGamal commitments
scheme, one in G1 and one in G2 with respective commitment keys u ∈ G2×2

1 and v ∈ G2×2
2 . As

both need to be semantically secure, we will work under the SXDH assumption.

We will note ι1(g1)=(11, g1), ι2(g2)=(12, g2), ιT (tT) :=

(
1T 1T
1T tT

)
and focus on product pairing

equations.
Assuming elements were committed in G2 following the way explained in 2, following [GS08]

notations, we then have access to algorithms:
– Prove((Yj), (u,v), E; (Sj), T ∈ Z2×2

p) outputs a proof π, together with d ∈ G2×n
2 commit-

ments to the witnesses with randomness S ∈ Z2×n. The proof is composed of two elements
in G1 : π = S>A

– Verify(d, ck, E, π) checks if:
(
ι1(A) • d

)
= ιT (tT)�

(
ι1(π) • v

)

There is also an algorithm that allows anyone to randomize the proof, even without the
knowledge of the witnesses.

The Soundness and the Witness Indistinguishability of such a proof directly come from the
security of the commitment, and the extra randomness T .

Intuitively the proof is here to compensate some part introduced by the randoms in the
verification equation: S>A will cancel the randomness in

(
ι1(A) • d

)
.

B.2 k-MDDH Instantiation

[EHK+13] defined a generalization of the Groth and Sahai framework for Zero-Knowledge proof
to fit with the Matrix Assumption.

Given an underlying matrix [B]s, one generate a binding CRS, by computing an additional
vector in the span of [B]s:[Bw]s, and a hiding one, if there is some perturbation to this column.
We name the commitment matrix [U] which is the concatenation of the matrix B and this extra
column.

We define the k + 1 vector: ιs(X) := (1, . . . , 1,X), and the k + 1 by k + 1 matrix ιT (tT) :=

1 . . . 1
...
. . . 1

1 1 tT


. This allows us to extend the previous commitment to their equivalent under k −

MDDH.
To commit to an element M, one computes [R]s with randomness ρ $← Zk+1

p , setting [R]2 =

[Uρ+ ιs(M)]s ∈ Gk+1
2 .

As before, there exist Prove,Verify algorithms allowing to generate a compatible, randomiz-
able, Zero-Knowledge proof that the committed value fulfills some pairing equation.

APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16] 271

C Ideal Functionalities

C.1 UC Framework

The goal of the UC framework is to ensure that UC-secure protocols will continue to behave in the
ideal way even if executed in a concurrent way in arbitrary environments. It is a simulation-based
model, relying on the indistinguishability between the real world and the ideal world. In the ideal
world, the security is provided by an ideal functionality F , capturing all the properties required
for the protocol and all the means of the adversary. In order to prove that a protocol Π emu-
lates F , one has to construct, for any polynomial adversary A (which controls the communication
between the players), a simulator S such that no polynomial environment Z (the distinguisher)
can distinguish between the real world (with the real players interacting with themselves and A
and executing the protocol π) and the ideal world (with dummy players interacting with S and F)
with a significant advantage. The adversary can be either adaptive, i.e. allowed to corrupt users
whenever it likes to, or static, i.e. required to choose which users to corrupt prior to the execution
of the session sid of the protocol. After corrupting a player, A has complete access to the internal
state and private values of the player, takes its entire control, and plays on its behalf.

C.2 UC-Secure Oblivious Transfer

The ideal functionality of an Oblivious Transfer (OT) protocol is depicted in Figure 7. It is
inspired from [CKWZ13].

The functionality F(1,k)-OT is parameterized by a security parameter K. It interacts with an adversary S and a
set of parties P1,. . . ,Pn via the following queries:
– Upon receiving an input (Send, sid, ssid, Pi, Pj, (m1, . . . ,mk)) from party Pi, with mi ∈ {0, 1}K:

record the tuple (sid, ssid, Pi, Pj , (m1, . . . ,mk)) and reveal (Send, sid, ssid, Pi, Pj) to the adversary S. Ignore
further Send-message with the same ssid from Pi.

– Upon receiving an input (Receive, sid, ssid, Pi, Pj, s) from party Pj, with s ∈ {1, . . . , k}: record the
tuple (sid, ssid, Pi, Pj , s), and reveal (Receive, sid, ssid, Pi, Pj) to the adversary S. Ignore further Receive-
message with the same ssid from Pj .

– Upon receiving a message (Sent, sid, ssid, Pi, Pj) from the adversary S: ignore the message if
(sid, ssid, Pi, Pj , (m1, . . . ,mk)) or (sid, ssid, Pi, Pj , s) is not recorded; otherwise send (Sent, sid, ssid, Pi, Pj) to Pi
and ignore further Sent-message with the same ssid from the adversary.

– Upon receiving a message (Received, sid, ssid, Pi, Pj) from the adversary S: ignore
the message if (sid, ssid, Pi, Pj , (m1, . . . ,mk)) or (sid, ssid, Pi, Pj , s) is not recorded; otherwise send
(Received, sid, ssid, Pi, Pj ,ms) to Pj and ignore further Received-message with the same ssid from the adver-
sary.

Fig. 7. Ideal Functionality for 1-out-of-k Oblivious Transfer F(1,k)-OT

C.3 UC-Secure Password-Authenticated Key Exchange

We present the PAKE ideal functionality FpwKE on Figure 8. It was described in [CHK+05].
The main idea behind this functionality is as follows: If neither party is corrupted and the

adversary does not attempt any password guess, then the two players both end up with either the
same uniformly-distributed session key if the passwords are the same, or uniformly-distributed
independent session keys if the passwords are distinct. In addition, the adversary does not know
whether this is a success or not. However, if one party is corrupted, or if the adversary successfully
guessed the player’s password (the session is then marked as compromised), the adversary is
granted the right to fully determine its session key. There is in fact nothing lost by allowing it
to determine the key. In case of wrong guess (the session is then marked as interrupted), the

272 APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16]

The functionality FpwKE is parameterized by a security parameter k. It interacts with an adversary S and a set
of parties P1,. . . ,Pn via the following queries:
– Upon receiving a query (NewSession, sid, ssid, Pi, Pj, pw) from party Pi:

Send (NewSession, sid, ssid, Pi, Pj) to S. If this is the first NewSession query, or if this is the second NewSession
query and there is a record (sid, ssid, Pj , Pi, pw

′), then record (sid, ssid, Pi, Pj , pw) and mark this record fresh.
– Upon receiving a query (TestPwd, sid, ssid, Pi, pw

′) from the adversary S:
If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If pw = pw′, mark the record compromised
and reply to S with “correct guess”. If pw 6= pw′, mark the record interrupted and reply with “wrong guess”.

– Upon receiving a query (NewKey, sid, ssid, Pi, sk) from the adversary S:
If there is a record of the form (sid, ssid, Pi, Pj , pw), and this is the first NewKey query for Pi, then:
• If this record is compromised, or either Pi or Pj is corrupted, then output (sid, ssid, sk) to player Pi.
• If this record is fresh, and there is a record (Pj , Pi, pw

′) with pw′ = pw, and a key sk′ was sent to Pj ,
and (Pj , Pi, pw) was fresh at the time, then output (sid, ssid, sk′) to Pi.

• In any other case, pick a new random key sk′ of length K and send (sid, ssid, sk′) to Pi.
Either way, mark the record (sid, ssid, Pi, Pj , pw) as completed.

Fig. 8. Ideal Functionality for PAKE FpwKE

two players are given independently-chosen random keys. A session that is nor compromised nor
interrupted is called fresh, which is its initial status.

Finally notice that the functionality is not in charge of providing the password(s) to the par-
ticipants. The passwords are chosen by the environment which then hands them to the parties as
inputs. This guarantees security even in the case where two honest players execute the protocol
with two different passwords: This models, for instance, the case where a user mistypes its pass-
word. It also implies that the security is preserved for all password distributions (not necessarily
the uniform one) and in all situations where the password, are related passwords, are used in
different protocols. Also note that allowing the environment to choose the passwords guarantees
forward secrecy.

In case of corruption, the adversary learns the password of the corrupted player, after the
NewKey-query, it additionally learns the session key.

D Proof of the Strong Pseudo-Randomness

Proof. To prove the strong pseudo-randomness, we use the following sequence of games:

Game G0: This game is the experiment Expc-s-ps-rand-0A .
Game G1: In this game, we replace (C,R, eqk)

$← SimCom`(τ) by C,R, $← Com`(M ′′) for
some arbitrary M ′′ 6=M . This game is indistinguishable thanks to strong simulation indis-
tinguishability (Commitments and fake commitments are the same, only their decommitment
witnesses differs but they are indistinguishably distributed).

Game G2: In this game, we replace the CRS, by a perfectly binding one. (There are no more
equivocation used, only real commitments). Under k-MDDH, this is indistinguishable from
the previous one.

Game G3: In this game, before computing H ′, we compute M ′ ← ExtCom`′(τ, C ′) and we
abort if the decryption is not unique. In other words, if C ′ is not perfectly binding, we
abort. However as we now have a perfectly hiding CRS, this never happen. This game is
indistinguishable from the previous one.

Game G4: In this game, if M ′ 6=M , we replace H ′ by a random value.
This game is indistinguishable from the previous one thanks to the smoothness of the SPHF,
the fact that M ′ 6= M and C ′ is perfectly binding (otherwise, we would have aborted), so
that (`′,C ′,R′) /∈ LM , and thanks to the fact that H could have been computed as follows:
Π ← OpenCom`(eqk,C,R,M) and H ← ProjHash(hp, LM , (`,C,R), Π).

Game G5: In this game, when M ′ 6=M , we replace H by a random value.

APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16] 273

This game is indistinguishable from the previous one thanks to the smoothness of the SPHF,
and the fact that C is a real commitment of M ′′ 6=M and so that (`,C,R) /∈ LM .
Notice that we could not have done this if M ′ =M , since, in this case, we still need to use
hk to compute the hash value H ′ of C ′. We are handling this (tricky) case in the following
game.

Game G6: In this game, we replace H by a random value, in the case M ′ = M . So now H
will be completely random, in all cases (since it was already the case when M ′ 6=M).
Finally, we write [r′]2, the vector extracted from R′. There are two cases:
1. If [C ′1]T = [A·r′]T In this case, since C ′ extracts toM , this means that (`′,C ′,R′) ∈ LM ,

and its hash value H ′ could be computed knowing only hp and r′. Therefore, the hash
value H of C looks random by smoothness.

2. Else C ′1 is not in the correct span, the rows of the matrix Γ in Equation and the two
vectors Θ(C) and Θ(C ′) are linearly independent. Then, even given access to the hash
value H ′ of C ′ and the projection key hp, the hash value H of C looks perfectly random.

The following games are just undoing the modifications we have done, but keeping H picked
at random

Game G7: In this game, if M ′ 6=M , we compute H ′ as originally (as the hash value of C ′).
This game is indistinguishable from the previous one thanks to the smoothness of the SPHF.

Game G8: In this game, we do not extract M ′ from C ′ nor abort when C ′ is not perfectly
binding.

Game G9: In this game, we now move back to the perfectly hiding CRS. Under k-MDDH this
game is indistinguishable from the previous one.

Game G10: In this game, we now compute C as originally using SimCom. This game is indis-
tinguishable thanks to strong simulation indistinguishability.
We remark that this game is exactly the experiment Expc-s-ps-rand-1A .

ut

E Proof of the Oblivious Transfer Scheme

To prove theorem 11, we exhibit a sequence of games. The sequence starts from the real game,
where the adversary A interacts with real players and ends with the ideal game, where we
have built a simulator S that makes the interface between the ideal functionality F and the
adversary A.

Compared to the protocol presented in [ABB+13], the difficulty here arises from the fact
that the commitment from [FLM11] needs the CRS to be hiding in order to be equivocable and
that such a CRS forbids the use of smoothness for the SPHF. Instead of being able to replace
all the commitment queries by simulated (fake) commitments from the beginning of the proof,
one has to only allow the extraction trapdoors (for the Cramer-Shoup encryption inside the
commitment, and for the CPA encryption of J) and to deal carefully with the properties of the
SPHF before being able, at the end of the proof, to turn the CRS into a hiding one and simulate
the commitments. More details follow (the description of the simulator can be found in the last
game).

Game G0: This is the real game.
Game G1: In this game, the simulator generates correctly every flow from the honest players,

as they would do themselves, knowing the inputs (n1, . . . , nt) and j sent by the environ-
ment to the server and the user. In all the subsequent games, the players use the label
` = (sid, ssid, Pi, Pj). In case of corruption, the simulator can give the internal data generated
on behalf of the honest players.

274 APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16]

Game G2: In this game, we just replace the setup algorithms so that the simulator knows the
trapdoor for extracting both the Cramer-Shoup encryption, and the Encryptcpa encryption.
Note that we do not change anything more in the setup, implying the CRS remains a CRS
for a perfectly-sound Groth-Sahai setting. Corruptions are handled the same way.

Game G3: We first deal with honest servers: when receiving a commitment ([C]1, [R]2), the
simulator extracts the committed value j from [C]1. Instead of computing the key Ks, for
s = 1, . . . , t with the hash function, it chooses Ks

$← G for s 6= j.
Since [C]1 is extracted to j, then, with an hybrid proof applying the smoothness for every
honest server, on every index s 6= j, the hash value Ks is indistinguishable from a random
value for s 6= j.
In case of corruption, everything has been erased. This game is thus indistinguishable from
the previous one under the smoothness of the smooth projective hash function.

Game G4: We continue to deal with honest servers: when receiving a commitment ([C]1, [R]2),
the simulator extracts the committed value j from [C]1. Instead of proceeding as the server
would do on (n1, . . . , nt), the simulator proceeds on (n′1, . . . , n

′
t), with n′j = nj , but n′s = 0

for all s 6= j. Since the masks Kt, for t 6= s, are random from the previous game, this game
is perfectly indistinguishable from the previous one.

Game G5: We continue to deal with honest servers and more precisely with the computation
of S. If the user and the server are still honest until the server has received an honestly-
generated ([C]1, [R]2, c) from the honest user, the simulator does not extract J and compute
S ← F (J), but directly sets S ← (J ′), with J ′ a random value, for both players.
With an hybrid proof, applying the IND-CPA property for each session, one can show the
indistinguishability of this game with the previous one.

Game G6: We continue to deal with honest servers and more precisely with the case de-
scribed in the previous game. In this case, the simulator now directly sets S as a random
value, instead of setting S ← F (J ′).
With an hybrid proof, applying the PRF property for each session, one can show the indis-
tinguishability of this game with the previous one.

Game G7: We continue to deal with honest servers and now describe how the simulator
generates Kj , in case the user and the server are still honest until the server has received an
honestly-generated ([C]1, [R]2, c) from the honest user. In this case, thanks to the additional
random mask S, the simulator can send a random Nj on behalf of the server, and postpone
the computation of Kj at the time the user actually receives this value.
Since the adversary does not know any decommitment information [Π]1 for the commit-
ment ([C]1, [R]2) (thanks to the IND-CCA properties of the Cramer-Shoup and Groth-Sahai
encryptions), this hash value Kj is indistinguishable from a random value, applying the
pseudo-randomness for every honest server. If the server involved in the pseudo-randomness
gets corrupted, we are out of this case and can thus abort it.
In case of corruption of the server, everything has been erased. In case of corruption of the
user, the simulator receives the good value nj and is able to choose R (which is a random
value unknown to the adversary, and because all the other Kt are independent random values
too) such that

R⊕ ProjHash(hpj , (Lj , `, [C]1, [R]2))⊕Nj = nj .

This game is thus indistinguishable from the previous one under the pseudo-randomness.
Game G8: We continue to deal with the same case. On behalf of an honest server, the simulator

proceeds with the database (n′1, . . . , n
′
s), with n′s = 0 for all s even s = j. Since the masks

Ks ⊕ S, for any s = 1, . . . , t, are all independent random values (this comes from the fact
that the Kt, for t 6= s, are independent random values, and S is independently random), this
game is perfectly indistinguishable from the previous one.
We remark that it is therefore no more necessary to know the index j given by the ideal
functionality to the honest user in order to correctly simulate the server. But note that

APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16] 275

the knowledge of this index is still necessary to simulate the user (in particular in case of
corruption). We show in the next games how to get rid of this knowledge.

Game G9: In this game, we completely replace the setup algorithms so that not only the
simulator knows the trapdoor for extracting both the Cramer-Shoup encryption, and the
Encryptcpa encryption, but the CRS also becomes a CRS for a witness indistinguishable
Groth-Sahai setting. This game is indistinguishable from the former one under the k-MDDH
assumption.

Game G10: In this game, we deal with honest users, assuming that the simulator still knows
the index j which has to be committed to by the honest users and still computes the commit-
ment ([C]1, [R]2) honestly. However, in case of corruption, it computes the proof [Π]1 using
the simulation trapdoor rather than the real witnesses. This game is indistinguishable from
the former one since, in the witness-indistinguishable setting, simulated proofs are distributed
as real proofs.

Game G11: In this game, we still deal with honest users, by without using anymore the
knowledge of j when simulating. On behalf of an honest user, the simulator chooses an index
j′ at random, and computes honestly the commitments ([C]1, [R2]) to this value j′. In case
of corruption, it computes the proof [Π]1 corresponding to the real j it has just learnt using
the simulation trapdoor as in the former game. Since the proofs are already simulated, this
is indistinguishable from the former game thanks to the semantic security of the Cramer-
Shoup encryption. The argument uses an hybrid proof and is the same as [CF01, Theorem 8]
or [FLM11, Theorem 1].
When it finally receives the values (hps, Ns) from the adversarial server, the simulator com-
putes, for s = 1, . . . , t, [Πs]1 corresponding to a commitment of s, Ks ← ProjHash(hps, (Ls, `,
[C]1, [R]2), [Πs]1) and gets ns ← S⊕Ks⊕Ns, giving it the database submitted by the server.
The only problem would arise if an adversarial user committed to j and was able to open its
commitment to j′ by computing the correct [Πj′]1. But since the commitment is universally
composable, there is a neglibible probability for it to be able to compute this witness. Thus,
the security again relies on the pseudo-randomness, making this game indistinguishable from
the previous one.

Game G12: We can now make use of the functionality, which leads to the following simulator:
– when receiving a Send-message from the ideal functionality, which means that an honest

server has sent a pre-flow, the simulator generates a key pair (pk, sk) $← KeyGen(1K) and
sends pk as pre-flow;

– after receiving a pre-flow pk (from an honest or a corrupted server) and a Receive-message
from the ideal functionality, which means that an honest user has sent an index query, the
simulator generates ([C]1, [R]2, [Π]1)

$← Com(crs, j′, sid, cid, Pi, Pj) for a random index j′

and c
$← Encrypt(pk, S), for a random value S, and sends [C]1, [R]2 and c during the

index query phase on behalf of the honest user;
– when receiving a commitment [C]1, [R]2 and a ciphertext c, generated by the adversary

(from a corrupted user), the simulator extracts the committed value j, and uses it to send
a Receive-message to the ideal functionality. It also decrypts the ciphertext c as J , and
computes S = F (J);

– when receiving (hp1, N1, . . . , hpt, Nt) from the adversary (a corrupted server), the sim-
ulator computes, for i = 1, . . . , t, [Πs]1 corresponding to a commitment of s, Ks ←
ProjHash(hps, (Ls, `, [C]1, [R]2), [Πs]1) and gets ns ← S⊕Ks⊕Ns, giving it the database
submitted by the server. It uses these values to send a Send-message to the ideal func-
tionality.

– when receiving a Received-message from the ideal functionality, together with nj , on
behalf of a corrupted user, from the extracted j, instead of proceeding as the server would
do on (n1, . . . , nt), the simulator proceeds on (n′1, . . . , n

′
t), with n′j = nj , but n′s = 0 for

all s 6= t;

276 APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16]

– when receiving a commitment [C]1, [R]2 and a ciphertext c, generated by an hon-
est user (i.e., by the simulator itself), the simulator proceeds as above on (n′1, . . . , n

′
t),

with n′s = 0 for all s, but it chooses S uniformly at random instead of choosing it
as S = F (J); in case of corruption afterwards, the simulator will adapt S such that
S ⊕ ProjHash(hpj , `, (Lj , [C]1, [R]2), [Π]1) ⊕ Nj = nj , where nj is the message actually
received by the user.

Any corruption either reveals j earlier, which allows a correct simulation of the user, or reveals
(n1, . . . , nt) earlier, which allows a correct simulation of the server. When the server has sent
his flow, he has already erased all his random coins.
However, there would have been an issue when the user is corrupted after the server has sent
is flow, but before the user receives it, since he has kept Π1: this would enable the adversary
to recover nj from Nj and hpj . This is the goal of the ephemeral mask S that provides a
secure channel.

F Proof of the PAKE Scheme

To prove theorem 12, we exhibit a sequence of games. The sequence starts from the real game,
where the adversary A interacts with real players and ends with the ideal game, where we
have built a simulator S that makes the interface between the ideal functionality Fpake and the
adversary A. For simplicity, in the proof we are going to use pw loosely to designate an encoding
G(pw). A decryption can lead to two cases, either a valid encoding G(pw) which can then be
reverted to a password pw, or an invalid one. In this last case, the simulator assumes the password
pw to be ⊥.

For the sake of simplicity, since the protocol is fully symmetric in Pi and Pj , we describe the
simulation for player Pi in order to simplify the notations.

We say that a flow is oracle-generated if the tuple (hpi, [Ci]1, [Ri]2) was sent by an honest
player Pi (or the simulator) and received without any alteration by the adversary. It is said
non-oracle-generated otherwise.

Game G0: This is the real game.
Game G1: First, in this game, the simulator generates correctly every flow from the honest

players, as they would do themselves, knowing the inputs pwi and pwj sent by the environment
to the players. In case of corruption, the simulator can give the internal data generated on
behalf of the honest players.
In the following, Step 1. is always generated honestly by the simulator, since the hashing and
projection keys do not depend on any private value.

Game G2: In this game, we just replace the setup algorithms so that the simulator knows the
trapdoor for extracting the Cramer-Shoup encryption. Note that we do not change anything
more in the setup, implying the CRS remains a CRS for a perfectly-sound Groth-Sahai
setting. Corruptions are handled the same way.

Game G3: In this game, we deal with the case where Pi receives a flow oracle-generated
from Pj, and they have identical passwords. When Pi receives an oracle-generated flow
from Pj , the simulator checks whether the two passwords sent by the environment for Pi
and Pj are identical. If so, S computes both hash values using Hash and not ProjHash. More
precisely, it computes H ′i = Hash(hkj , (Lpwj , `i, [Ci]1, [Ri]2))) (with `i = (sid, Pi, Pj , hpi)). If
the passwords are distinct, it does not change anything. Recall that it is able to do so since
it generated the hashing keys on their behalf.
Thanks to the correctness of the SPHF, this game is indistinguishable from the former one.

Game G4: In the next two games, we deal with the case where Pi receives a flow oracle-
generated from Pj, but Pj has been corrupted, and they have distinct passwords.
In this case, S has received the password pwj of Pj at the corruption time of Pj (pwj was

APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16] 277

anyway already known), and knows the corresponding opening data [Πj]1, which it computed
honestly on behalf of Pj (since it still knows pwj). If this password is the same, it does not
change anything. If the passwords are distinct, then S computes H ′i as before, but chooses Hj

at random: this means that we replace Hash(hki, (Lpwi , `j , [Cj]1, [Rj]2)) by a random value,
while [Cj]1, [Rj]2 have been simulated by Com with an opening value [Πj]1 for pwj 6= pwi.
Using an hybrid proof, this game is indistinguishable from the former one using the smooth-
ness of the SPHF.

Game G5: We conclude for this case: if the passwords are distinct, Pi chooses a random key.
Since this is a simple syntactical change from the former game, this game is perfectly indis-
tinguishable from it.

Game G6: In the next two games, we deal with the case where Pi receives a flow oracle-
generated from Pj, and Pj is still honest, and they have distinct passwords. The
simulator checks whether the two passwords sent by the environment for Pi and Pj are
distinct. If so, S replaces Hash(hkj , (Lpwj , `i, [Ci]1, [Ri]2)) by a random value, the first time
it is computed (and uses the same random value the second time it is computed by the
partner, and thus only if this is the same password).
In case the player on which we made the modification is later corrupted, this is out of this
case, and thus we abort this hybrid game and go to the next one. Using an hybrid proof, this
game is indistinguishable from the former one using the pseudo-randomness.

Game G7: We conclude for this case: S sends a random key to Pi.
Since this is a simple syntactical change from the former game, this game is perfectly indis-
tinguishable from it.

Game G8: In the next two games, we deal with the case where Pi receives a non-oracle-
generated flow (hpj , [Cj]1, [Rj]2). Since this pair is fresh, either [Cj]1, [Rj]2 is new or hpj
(and thus the label) is new. Since [Rj]2 is used in the label of the Cramer-Shoup encryption
[Cj]1, either both of them are new or not. In both cases, S can extract the committed value
pw′j on behalf of Pj .
If this password is the same than that of Pi (which the simulator can easily check, still having
access to the private values sent by the environment), S still computes both Hj and H ′i as
before.
Otherwise (or if the extraction fails), the S computes H ′i as before, but chooses Hj at random:
Under the smoothness, with an hybrid proof, one can show the indistinguishability of the two
games.

Game G9: Finally, when Pi receives a non-oracle-generated flow (hpj , [Cj]1, [Rj]2) that ex-
tracts to a different password than that of Pi (or for which extraction fails), then S sets the
session key of Pi as random.
Since this is a simple syntactical change from the former game, this game is perfectly indis-
tinguishable from it.

Game G10: In this game, we completely replace the setup algorithms so that not only the sim-
ulator knows the trapdoor for extracting the Cramer-Shoup encryption, but the CRS also
becomes a CRS for a witness indistinguishable Groth-Sahai setting. This game is indistin-
guishable from the former one under the k-MDDH assumption.

Game G11: In this game, we still use the knowledge of pwi to compute [C]1, [R]2 but in case
of corruption, it computes the proof [Π]1 using the simulation trapdoor rather than the
real witnesses. This game is indistinguishable from the former one since, in the witness-
indistinguishable setting, simulated proofs are distributed as real proofs.

Game G12: We do not use anymore the knowledge of pwi when simulating an honest
player Pi. On behalf of an honest user, the simulator chooses a password pw′i at random, and
computes honestly the commitments ([C]1, [R2]) to this value pw′i. In case of corruption, it
computes the proof [Π]1 corresponding to the real pwi it has just learnt using the simulation

278 APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16]

trapdoor as in the former game. Since the proofs are already simulated, this is indistinguish-
able from the former game thanks to the semantic security of the Cramer-Shoup encryption.
The argument uses an hybrid proof and is the same as [CF01, Theorem 8] or [FLM11, The-
orem 1].
The only problem would arise if an adversarial user committed to pw′i and was able to open its
commitment to pw′′i by computing the correct [Π]1. But since the commitment is universally
composable, there is a negligible probability for it to be able to compute this witness. Thus,
the security again relies on the pseudo-randomness, making this game indistinguishable from
the previous one.
The private values of Pi are thus not used anymore in Step 1. and Step 2. The simulator only
needs them to choose how to set the session key of the players. In the ideal game, this will be
replaced by a NewKey-query that will automatically deal with equality or difference of the
passwords, or TestPwd-query for non-oracle-generated-flows.

Game G13: This is the ideal game. Now, the simulator does not know the private values
of the honest players anymore, but can make use of the ideal functionality. We showed in
Game G12 that the knowledge of the private values is not needed anymore by the simulator,
provided it can ask queries to the ideal functionality:

Initialization: When initialized with security parameter K, the simulator first runs the
commitment setup algorithm obtaining a witness indistinguishable crs in which it knows
the trapdoors for the extraction of the Cramer-Shoup encryption and the simulation of
the Groth-Sahai proofs. It initializes the real-world adversary A, giving it crs as common
reference string.

Session Initialization: When receiving a message (NewSession, sid, ssid, Pi, Pj) from FpwKE ,
S executes the protocol on behalf of Pi as follows:

1. S generates honestly hki
$← HashKG(L) and hpi ← ProjKG(hki,L);

2. S computes ([Ci]1, [Ri]2, [Π i]1)Com
`i(crs, pwi, sid, cid, Pi, Pj) with `i = (sid, Pi, Pj , hpi);

3. S sends hpi, [Ci]1, [Ri]2 to Pj .

If Pi gets corrupted, S recovers the password pwi and computes the corresponding proof
[Πi]1, which it is able to give to the adversary.

Key Computation: When receiving a flow (hpj , [Cj]1, [Rj]2):
– if the flow (hpj , [Cj]1, [Rj]2) is non-oracle-generated, S extracts the password pw′j (or

sets it as a dummy value in case of failure of extraction). S then asks for a TestPwd-
query to the functionality to check whether pw′j is the password of Pi. If this password
is correct, S sets pwi = pw′j , computes the corresponding proof [Πi]1, as well as Hj

and H ′i, and then ski, that is passed to the NewKey-query (compromised case). If the
password is incorrect, S asks the NewKey-query with a random key (interrupted
case).

– if the flow (hpj , [Cj]1, [Rj]2) is oracle-generated but the associated Pj has been cor-
rupted, then S has recovered its password pwj and has been able to compute the
corresponding proof [Πj]1. It can thus compute skj , that is passed to the NewKey-
query (corrupted case).

– if the flow (hpj , [Cj]1, [Rj]2) is oracle-generated and the associated Pj is still uncor-
rupted, S asks the NewKey-query with a random key (normal case).

One can remark that the NewKey-queries will send back the same kinds of session keys to
the environment as in Game G12: if a player is corrupted, the really computed key is sent
back, in case of impersonation attempt, the TestPwd-query will address the appropriate
situation (correct or incorrect guess), and if the two players are honest, the NewKey-query
also addresses the appropriate situation (same or different passwords).

APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16] 279

G Sketch of Proof for Anonymous Credential-Based Message Transmission

G.1 Ideal Functionality

The ideal functionality for Anonymous Credential-Based Message Transmission is given in Fig-
ure 9. The server S agrees to send a message M to the user, as soon as his credentials Cred
comply with the policy P .

The functionality FAC is parametrized by a security parameter K. It interacts with an adversary S and a
set of parties P1,. . . ,PN via the following queries:

– Upon receiving an input (Send, sid, ssid, Pi, Pj,M, P) from party Pi, with M ∈ {0, 1}K: record
the tuple (sid, ssid, Pi, Pj ,M, P) and reveal (Send, sid, ssid, Pi, Pj , P) to the adversary S. Ignore further
Send-message with the same ssid from Pi.

– Upon receiving an input (Receive, sid, ssid, Pi, Pj,Cred) from party Pj : ignore the message if
(sid, ssid, Pi, Pj ,M, P) is not recorded. Otherwise, reveal (Receive, sid, ssid, Pi, Pj) to the adversary S
and send (Received, sid, ssid, Pi, Pj ,M ′) to Pj where M ′ =M if the credentials comply with the policy
P , and M ′ = ⊥ otherwise. Ignore further Receive-message with the same ssid from Pj .

Fig. 9. Ideal Functionality for Anonymous Credential-Based Message Transmission FAC

G.2 Idea of the Proof

We sketch the proof by giving the simulator S such that no polynomial environment Z can
distinguish between the real world (with the real players interacting with themselves and A and
executing the protocol π) and the ideal world (with dummy players interacting with S and F)
with a significant advantage. Recall that the adversary is adaptive, which means that it can
corrupt any player at any time during the execution of the protocol.

The main idea is that we use an extractable and equivocable commitment, which allows the
simulator (while simulating the user) to be able to open it to any credential. This will be useful
in case of adaptive corruptions. Indeed, in this case, if the credentials were correct, the simulator
can adapt them and the randomness so that they seem to belong to the adequate language. From
the server’s side, the extractability of the commitment enables the simulator to know whether it
has to send the correct message (obtained from the functionality in case the user is corrupted)
or not.

This leads to the following simulator:

– when the simulator receives a Send-message from the ideal functionality, it knows than an
honest sender has sent a pre-flow. It thus generates a key pair (pk, sk)

$← KeyGen(1K) and
sends pk as a pre-flow.

– when the simulator receives a Receive-message from the ideal functionality, it knows than
an honest user has sent a pre-flow. It also has received a pre-flow pk (from an honest or
a corrupted sender). It then generates an equivocable commitment ([C]1, [R]2, [Π]1)

$←
Com`(crs,Credi, sid, cid, Pi, Pj) with ` = (sid, ssid, Pi, Pj) and a ciphertext c $← Encryptcpa(pk, J)
where S is a random value.

– when it simulates an honest server who receives these values ([C]1, [R]2, [Π]1) and c from a
corrupted user, it decrypts the ciphertext c as J , and computes S = F (J). Next, it extracts the
committed values (Credi), which it uses to send a Receive-message to the ideal functionality.

– when it simulates an honest user receiving (hpP , NP) from a corrupted server, it computes
K ← ProjHash(hpP , (LP , `, [C]1, [R]2), [Π]1) and gets M ← S ⊕K ⊕NP . It uses this value
in a Send query to the ideal functionality.

280 APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16]

– when it simulates an honest server and receives a Received-message from the ideal function-
ality, giving it M sent to the corrupted user, it proceeds with this value M .

– when it simulates an honest server facing an honest user (the simulator itself), on the behalf
of which it generated the commitment ([C]1, [R]2, [Π]1) and the ciphertext c, it uses M = 0
and chooses S at random (instead of computing it honestly with F (J)). This value S will be
adapted during the simulation in case of corruption afterwards (which gives it the messageM
received by the user in case his credentials comply with the policy), so thatM = S⊕K⊕NP .

APPENDIX E. STRUCTURE-PRESERVING SPHF [BC16] 281

	Remerciements
	I Introduction
	Introduction
	Primitives and Protocols Studied
	Related Work
	Our contributions
	Efficient UC-Secure Authenticated Key-Exchange for Algebraic Languages (PKC 2013, PKC:BBCPV13)
	New Techniques for SPHFs and Efficient One-Round PAKE Protocols (Crypto 2013, C:BBCPV13)
	SPHF-Friendly Non-Interactive Commitments (Asiacrypt 2013, AC:ABBCP13)
	Adaptive Oblivious Transfer and Generalization (Asiacrypt 2016, AC:BlaCheGer16)
	Structure-Preserving Smooth Projective Hashing (Asiacrypt 2016, AC:BlaChe16)
	Other Contributions

	Outline
	Publications

	Security Model
	Description of the UC Framework
	Ideal World and Real World
	Adversary and Environment
	Corruptions

	Main Ingredients for UC Security
	Ideal Functionalities
	Session and Player Identifiers
	UC Framework With Joint State
	The Split Functionality
	A Simpler Model

	Formalisation of Ideal Models
	Random Oracle in the UC Framework
	The Common Reference String Model

	II Cryptographic Primitives
	Smooth Projective Hash Functions
	Definition and Classical Properties
	Classification and Examples
	Smoothness Adaptivity and Key Word-Dependence
	SPHF on Languages of Ciphertexts
	SPHF on Cramer-Shoup Ciphertexts

	Constructions
	Additional Properties: Structure-Preserving SPHF
	Definition
	Retro-compatibility
	Possible Applications

	Commitments
	Definition, Classical Properties and Ideal Functionality
	Discussion and Correction of Lindell's Protocols
	Security Against Adaptive Corruptions
	A Simple Patch
	Our Optimization of the Commitments Protocols

	Additional Properties and New Constructions
	Extractable and Equivocable Commitment Schemes
	Constructions
	SPHF-Friendly Commitments

	III Cryptographic Protocols
	Password-Authenticated Key-Exchange
	Security Definition in the UC Framework
	Constructions of One-Round PAKE
	Katz and Vaikuntanathan Smooth Projective Hash Functions
	Constructions of One-Round PAKE in the UC Framework

	Extension to Language-Authenticated Key Exchange
	Definition and Ideal Functionality
	A Generic UC-Secure LAKE Construction
	Concrete Instantiations and Comparisons

	Extension to Distributed PAKE
	Definition and Security Model
	Our Simple Protocol
	Our Efficient Protocol

	Oblivious Transfer
	Definition and Security Model
	Constructions
	Three-round adaptively secure 1-out-of-k OT
	Generic Construction
	Improving the Complexity

	Adaptive version of the Protocol
	Definition and (New) Security Model
	High-Level Idea of the Construction
	Generic Construction

	Extension to Oblivious Language-Based Envelope
	Definition of Oblivious Language-Based Envelope
	Security Properties and Ideal Functionality of OLBE
	Generic UC-Secure Instantiation of OLBE with Adaptive Security
	Oblivious Primitives Obtained by the Framework

	From a UC-Secure PAKE to a UC-Secure OT
	Introduction
	Generic Construction of a UC-Secure OT From a UC-Secure PAKE

	IV Conclusion
	Conclusion and Perspectives
	List of figures
	Bibliography

	V Appendices
	Efficient UC-Secure LAKE [BBC+13a]
	New SPHFs and One-Round PAKE [BBC+13b]
	SPHF-Friendly Non-Interactive Commitments [ABB+13]
	Adaptive OT and Generalization [BCG16]
	Structure-Preserving SPHF [BC16]

