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ABSTRACT

Compensation of nonlinear distortions is an issue of importance
for the restoration of degraded audio material. It however remains
a very challenging task, especially in cases when only a single
instance of the degraded audio signal is available. Compared to
other sources of distortion such as additive noise (hiss) or signal
gaps, even the fundamental limits achievable by the restoration are
yet unknown.

In this contribution, we consider a particular distortion model
of the Hammerstein type (instantaneous nonlinear distortion fol-
lowed by an all pole filter) for which only the output signal is ob-
served. We argue that the tasks of identifying the distortion model
and restoring the signal should be handled separately and focus
on the former one. The proposed method estimates the distortion
model from a large number of signal frames using a sub-optimal
iterative framework.

1. INTRODUCTION

Identification and compensation of nonlinear distortions is a recur-
rent topic in signal processing, particularly for audio applications.
The most challenging situation is the one faced when trying to re-
store degraded archived audio material where the characteristics
of both the original signal and those of the source of distortion
(amplifier, recording media, etc.) are usually unknown.

The idealized model in which the unknown degraded signal is
a (strict sense) white noise has been extensively studied in main-
stream signal processing and automatic control and some results
and methods are available (often with further simplifying assump-
tions concerning the nature of the unknown distortion) [1, 2]. In
audio however, it is not clear how such methods could be of any
use except in situations where the source of distortion is available
and may be excited with arbitrary signals. At present, the most
impressive results demonstrated in settings closer to actual audio
scenarios have been obtained using computer intensive numeri-
cal Bayesian methods based Markov Chain Monte Carlo (MCMC)
simulations [3].

In this contribution, we follow a middle path between these
two options by restricting to signal and distortion models which
are sufficiently simple to guarantee that they are indeed identifi-
able by robust methods from the sole observation of the distorted
output. On the other hand, we do not want to assume that the in-
put signal is white. To cope with the fact that the spectrum of the
input signal is mostly unknown we will take profit of the observa-
tion that, when considered on a large time scale, audio signals are
non stationary and thus displays a variety of spectral contents, and
most importantly, of signal levels.

2. MODEL AND HYPOTHESES

A first observation is that instantaneous distortion models are ob-
viously not appropriate for audio except in very specific situations
(such as digital clipping). On the other hand, models based on gen-
eral nonlinear expansions such as Volterra series [1] are clearly too
general (to allow identifiability) and cannot cope with the type of
time dependence observed in audio unless one uses a large number
of lagged terms in the expansion (although they may be usefull for
high quality devices where the distortion effect is quasi instanta-
neous [4]).
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Figure 1:Distortion model.

A model that is reasonable in many situation given our knowl-
edge of the physical behavior of some typical distorting devices is
the Hammerstein model shown in figure 1. In this model, the sig-
nal first undergoes a nonlinear instantaneous transformation by a
functionφ followed by an all pole filtering (here we used the nota-
tion D to denote the delay operator). Our observation is the signal
Xk and both the original signalZk and the intermediate oneYk

are unavailable. Although we do not describe these experiments
here (for reason of space), we first fitted the Hammerstein model
to some input-output (ie. using test signals) measurements of ac-
tual audio devices (a tube amplifier and magnetic recorder). The
results showed that the distortion effect observed for large ampli-
tude signals was satisfyly modeled using a Hammerstein model
with p (AR order) about 10-15 andd = 7 or 9 (see Section 3 for
the meaning ofd).

The next step consists in dissociating the model identification
and signal restoration steps. The reason for this has to do with the
type of functionsφ that are typically encountered which exhibit
a strong saturation effect for high amplitudes. If we consider the
extreme saturation curve which corresponds to hard clipping, it is
clear that the recovery of the input signal is a very difficult and
ambiguous task (often referred to as an ill-posed inverse problem)
which can only be tackled using strong prior assumptions on the
input signal. A very good solution in this setting would be to use
MCMC methods on small frames of signal where the signal may
be assumed to be stationary with an AR prior [5]. On the other
hand, estimation of the clipping curve is a much simpler problem.
Yet, it is a problem that can only be solved by looking at large
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portions of the signal so as to actually observe clipping. In this
contribution we focus on the identification side of the problem and
consider an approach which effectively profits from the observa-
tion of a large section of signal (typically several seconds or more)
on which the stationary assumption cannot hold.

The idealized model that we will be used here is that when
splitted inton signal frames of lengtht, which we denote byXi

1,
. . . , Xi

t for i = 1, . . . , n, the output signals may be viewed as
the response ton independent input Gaussian signalsZi

1, . . . , Z
i
t

for i = 1, . . . , n with identical power spectral density (psd)f(ω)
known up to a scaleσi (which is different for each signal index
i = 1, . . . , n and unknown). This is a very crude model which
pretends that the only source of non-stationarity in audio signals
has to do with level changes and not with spectral changes (this
issue will be discussed further in section 4).

It is clear that at this point of simplification, we could esti-
mate the unknown parametersa1, . . . , ap (the AR coefficients),
φ (or at least a parameterized version of it) andσ1, . . . , σn (in-
put levels) using a maximum likelihood approach. To do so how-
ever, we would have to parameterizeφ−1 rather thanφ (because of
the change of variable formula) which would be a very bad move
granted the type of saturation curve that we are expecting forφ
(that isφ−1 is a function whose derivative is arbitrary large on the
borders of the range ofφ). We will thus use a sub-optimal ap-
proach based only on the empirical second order properties and
marginal distribution of(Zi

1, . . . , Z
i
t) for i = 1, . . . , n.

For the estimation to be feasible we will need the additional
assumptions thatφ may be parametrized as finite order (d) poly-
nomial and that it is monotonic. The reason for this second as-
sumption is that

1. (ai)1≤i≤p is identifiable from second order properties only
when the corresponding causal filter is stable andf(ω) is
known. If φ is a polynomial of orderd, the(ai)1≤i≤p are
identifiable for allφ in this class when at leastd + 1 input
signals with different scalesσi are available.

2. φ is then identifiable from the marginal distributions up to
an unknown scale ifφ is monotonic (φ is never identifiable
unless assumed monotonic). The scalesσi (i = 1, . . . , n)
are then identifiable up to an unknown global scale.

3. PARAMETER IDENTIFICATION

In the following we assume thatφ(x) =
Pd

j=1

αj

j!
xj . There is

unfortunately no way of constraining simplyφ to be monotonic as
required. We will however use only odd order monomials in order
to forceφ to be antisymmetric which is highly sensible for audio
applications.

The proposed parameter estimation procedure corresponds to
a suboptimal approach which iterates between two fundamental
steps : one in which the all-pole parameters are estimated from
the second order properties of the observed signals(Xi

k)1≤k≤t

and second step in which the scales and nonlinear transforma-
tion parameters are estimated from the marginal distribution of the
whitened output signals.

3.1. AR parameters

A fundamental Hilbert space result known as Mehler’s formula
states that ifZ1 andZ2 are jointly Gaussian variables with com-
mon unit variance and correlation coefficientρ, E[Hk(Z1)Hl(Z2)] =

k!ρk if k = l (and equals 0 otherwise), whereHk denote the fam-
ily of Hermite polynomials which are orthogonal with respect to
the Gaussian measureN (0, 1; z) = 1/

√
2π exp(−z2/2) on R

[6]. We may thus compute the autocovariance function of a signal
(Zk)1≤k≤t distorted byφ as

E(YlYl+k) =

dX
j=1

�
cσ

j

�2
j!

ρ(k)j (1)

whereρ(k) is the autocorrelation function of the input andσ2 its
variance andcσ

1 , . . . cσ
d are the coefficients ofφ(σz) in the ba-

sis of the Hermite polynomialsH1(z), . . . Hd(z). These can be
obtained by back-substitution from the monomial coefficientsα1,
. . . , αd when the orderd is fixed. For instance, ford = 5 these
are given by0@cσ
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cσ
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cσ
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The above method is used to compute the autocovariance func-

tions, or equivalently, the power spectral densityf i
Y of the dis-

torted signals(Y i
k )1≤k≤t (i = 1, . . . , n) from the common aver-

age autocorrelation functionρ and the input scalesσ1, . . . , σn. It
can be shown that the joint Whittle criterion for the observed sig-
nals is optimized for the parameter vectora1, . . . , ap which solves
the Yule-Walker like system

nX
i=1

0BBB@
ri(0) ri(1) · · · ri(p− 1)
ri(1) ri(0) · · · ri(p− 2)

...
ri(p− 1) ri(p− 2) · · · ri(0)

1CCCA
×

0BBB@
a1
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...
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1CCCA =

nX
i=1
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...
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whereri are the Fourier coefficients ofIi

X/f i
Y , with Ii

X(ω) =
|Pt

k=1 Xi
k e−jωk |2/t denoting the periodogram of theith signal.

In practice, theri are approximated by computing the peri-
odogramIi

X at Fourier frequenciesωk = 2πk/t, dividing by
f i

Y (ωk) and performing inverse FFT.

3.2. Distortion and scales

For estimating the parameters ofφ (α1, . . . , αd) and the signal
scalesσ1, . . . , σn, we rely solely on the marginal distribution of
the observable signal and use a least-square criterion. The ideas
used here are inspired by [2] and [7].

Let Ŷ i
k = Xi

k−
Pp

j=1 ajX
i
k−j denote theith whitened signal

given the current estimate of the all-pole parameters. From this we
compute the order statistics

Ŷ i
(1) < Ŷ i

(2) < · · · < Ŷ i
(t)

for each signali = 1, . . . , n (note that in practice, we only have
t− p samples of the whitened signal but we will ignore this fact to
keep the notations simple). It turns out that we have a rather good
idea of the statistical behavior of these order statistics thanks to the
following Lemma.
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Lemma [6] For a GaussianN (0, 1) iid signal frameZ1, . . . , Zt,
the order statisticsY(1), . . . , Y(t) for the distorted signalYk =
φ(Zk) satisfies whent, j ↗∞ such thatj/t → θ ∈ [0, 1],

√
t(Y(j) − φ(Q(θ)))

L→ N
�
0, φ̇(Q(θ))2Q̇(θ)2θ(1− θ)

�
where the symbol above refers to convergence in distribution, the
dot correspond to the first derivative andQ denotes the inverse of
the Gaussian distribution function, that is the function(0, 1) →
(−∞,∞) such thatZ Q(θ)

−∞
1/
√

2π exp(−z2/2)dz = θ.

In other words,Y(j) is approximately Gaussian with mean
φ(Q(j/t)) and known variance (except for the very first or last
order statistics). The use of the variance information given by
the above lemma is somewhat problematic since it depends on the
derivativeφ̇ of φ. Although the behavior of this variance would
deserve more comments, we will here consider that the variations
of this variance withθ are sufficiently small to be ignored. This
suggest the use of a nonlinear least squares procedure with objec-
tive function
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whereqi = Q(i/(t+1)) (the division byt+1 rather thant avoids
problems for the last statistic) anddiag denotes the diagonal ma-
trix with given diagonal elements. With the notations introduced
above, the optimization problem to be solved consists in minimiz-
ing

nX
i=1




Ŷi −QD(σi)�



2

(2)

with respect to the unknown vector� and the scalesσ1, . . . , σn.
The criterion is quadratic with respect to� (the parameters of the
transformationφ) but highly nonlinear with respect to the scale
parameters.

Optimization of this criterion has to be done carefully. In par-
ticular, the complete relaxation procedure which optimize with re-
spect to� and then all theσi separately was found to be overly
sensitive to initialization. Robust identification results have been
obtained by applying a Quasi-Newton optimization procedure to
the reduced criterion obtained by replacing� in (2) by its least-
squares estimate. The resulting criterion only depends on the sig-
nal scalesσ1, . . . , σn which have to be somehow initialized. In the
following, we use the estimated standard deviation of theith out-
put signal as an initial guess ofσi (which would be correct if there
was no distortion). Since, the scalesσ1, . . . , σn and the distortion
φ are only identifiable up to a shared unknown constant,σ1 is kept
fixed during the optimization. In the simulations of Section 4 be-
low, we used the knowledge of the standard deviation of the actual
first input signal to recover the correct scaling forφ (in order to
allow comparisons) but, in general,φ will only be determined up
to a constant factor.

4. EXPERIMENTS

4.1. Simulated Signals

We first consider as input signalsn = 10 AR(1) sequences (with
AR parameter0.9) of length t = 1024 with linearly increasing
standard deviations such thatσ10/σ1 = 3.5. The distortionφ is
a fifth order odd polynomial (α1 = 1, α3 = −2.1, α5 = 3.6)
displayed in the left plot of figure 2 (bold curve). The all-pole
filter is of orderp = 2 and its frequency response is shown in the
right plot of figure 2 (bold curve).
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Figure 2: Left: Actual distortion curve (bold curve) and ten es-
timated distortion curves;Right: Common psd of the input se-
quences (light dashed curve), actual (bold curve) and estimated
frequency response of the all-pole filter.

We used two iterations of the our two steps procedure starting
with the estimation of the distortion parameters and input scales,
the former being the only parameters which have to be initialized
(see Section 3.2). In this simulated example, the procedure was
found to be very robust with respect to its initialization and con-
verges quickly to a solution which is indiscernible from the actual
distortion source for the all-pole part (right plot in figure 2). The
distortion curve is also fairly well estimated although the estima-
tion errors tends to be larger at the borders of the interval (there
are 10 superimposed estimated curves on the left plot of figure 2).
Note that the average number of input samples with magnitude
larger than 0.8 for all 10 independent draws of the input signal is 7
(out of10× 1024). Generally these samples are found only in the
last signal, which has the larger standard deviation. This clearly
means that the behavior of the estimated curve above 0.8 and be-
low -0.8 has more to do with polynomial extrapolation than with
actual estimation. In the range of the input signal however, the
estimation of the distortion curve is quite good.

4.2. Audio signal

We now consider a musical record of vocal track and piano with
ambient noise, synthetically distorted with the same nonlinear model
as in the previous experiment. Now the maximal magnitude of the
signal is 1.5 and there are about 0.9% of the samples with magni-
tude larger than 0.8. We considern = 340 signal frames of length



2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 19-22, 2003, New Paltz, NY

t = 1024 corresponding to 7.9 seconds of signal. The evolution of
the RMS magnitude of the signal for 70 consecutive frames taken
in the middle of the musical extract is shown on figure 3 (with the
circles). The “common” psdf(ω) is computed by averaging the
frequency content of all input frames in the cepstral representa-
tion (using 32 cepstral coefficients). Cepstral averaging is recom-
mended since it is both insensitive to the scale (if the first cepstral
coefficients is discarded) and provides a smoothed version of the
spectrums. The obtained common psd is displayed on figure 4
(right plot, dashed curve).
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Figure 3:Circles: RMS levels of input signal frames;Stars: esti-
mated levels.
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Figure 4:Left: Actual distortion curve (bold curve) and estimated
distortion curve (dot curve);Right: Average psd of the input se-
quences (light dashed curve), actual (bold curve) and estimated
frequency response of the all-pole filter.

The distortion model (both the static transfer functionφ and
the all-pole filter) are the same as in the previous example. We
proceed as previously for the estimation, initializing the variances
σ1, . . . , σn to those of the output (distorted) signals.

From the results displayed on figure 4, we can first conclude
that the instantaneous distortion is very well estimated (left plot
in figure 4), especially granted that only about 0.7% of the input
samples have a magnitude larger than 0.8. The second conclusion
is that the estimation of the all-pole model (light curve in the right
plot of figure 4) is correct somewhat less accurate.

A closer investigation reveals that the estimated all-pole filter
is more sensitive than the estimated nonlinear curve to the spec-
tral contents of the signals. In particular, the obtained results de-
pends, to some extent, on the selected signal frames. However

using a large section of the input signal pays and the estimated
all-pole filter is both much more accurate and stable when using
all 340 frames then when using smaller subsets of them (we first
tried using about 35 frames which was less robust). Using more
signal frames makes it possible to average out the spectral varia-
tions around the “common” psd (even though, the assumption that
all signals share an identical psd is grossly wrong). The second
obvious factor is that the all-pole filter is sensitive to the form of
the average psd which is used by the identification algorithm. This
corresponds to a strong characteristic of the problem which is al-
ready encountered for the blind deconvolution oflinear effects [8].
This means that in practical situations, recovering the input signal
up to an unknown linear filtering effect is about the best that we
can hope for.

5. CONCLUSION

The work described above is based on the idea that robust iden-
tification of nonlinear distortion models should take profit of the
observation of large sections of signals, and in particular, of the
scale variations typical of audio signals. The experiments reported
in the last section shows that the proposed method fulfills, at least,
a significant part of this program. Possible improvements include
refining the assumptions that are used for the input signals. In par-
ticular, one could use mixture models, as proposed in [9] for single
sensor source separation, instead of a single common spectrum.
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