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1 Introduction

Analysis and modeling of computer network traf-
fic is a daunting task considering the amount of
available data. This is quite obvious when consid-
ering the spatial dimension of the problem, since
the number of interacting computers, gateways and
switches can easily reach several thousands, even in
a Local Area Network (LAN) setting. This is also
true for the time dimension: W. Willinger and V.
Paxson in [42] cite the figures of 439 million packets
and 89 gigabytes of data for a single week record of
the activity of a university gateway in 1995. The
complexity of the problem further increases when
considering Wide Area Network (WAN) data [28].

In light of the above, it is clear that a notion
of importance for modern network engineering is
that of invariants, i.e. characteristics that are ob-
served with some reproducibility and independently
of the precise settings of the network under consid-
eration. In this tutorial paper, we focus on two
such invariants related to the time dimension of the
problem, namely, long-range dependence, or self-
similarity, and heavy-tail marginal distributions.
Both characteristics arise in most “scalar signals”
that can be extracted from complete network traf-
fic traces [27, 35, 3, 43]. Typical “scalar signals” in-
clude continuous-time point processes constructed
from recording the arrival times of successive IP (In-
ternet Protocol) packets at some point of the net-
work, or a time series obtained by counting the size
of the data transferred during some time intervals.

In order to illustrate and motivate the technical
part of this tutorial, we begin with a statistical de-
scription of the traffic data that will be considered
throughout the paper. A striking feature, which
corroborates the conjecture that long-range depen-
dence and heavy-tailness are really meaningful traf-
fic invariants, is that they can be observed, to some
extent, without using any specific experimental pro-
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Figure 1: The Drexel data (10 000 s in total) viewed
through four different aggregation intervals: from top to
bottom, 10 ms, 100 ms, 1 s and 10 s.

tocol. Accordingly, the traffic data shown in fig-
ure 1 corresponds to actual 100 Mbps Ethernet traf-
fic, which was measured on a WWW/Email/FTP/-
Computing server located in the ECE Department
of Drexel University. It was captured using the
Snoop program, which is part of the Sun Solaris op-
erating system. To generate this trace, all packets of
private connections with this server, broadcasting,
and multi-casting were captured and time-stamped
during several hours. In the following, we only con-
sider byte counts (size of the transferred data) mea-
sured on 10 ms intervals, which is the data repre-
sented in the top plot of figure 1. The overall length
of the record is about three hours (exactly, 104 sec-
onds). The three other plots in figure 1 correspond
to the “aggregated” data obtained by accumulating
the data counts on increasing time intervals. The
striking feature in figure 1 is that the aggregation
is not really successful in smoothing out the data.
The aggregated traffic still appears bursty in the
bottom plot despite the fact that each point in it is
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obtained as the sum of one thousand successive val-
ues of the series displayed in the top plot of figure 1.
Similar characteristics have been observed in many
different experimental setups, including both LAN
and WAN data (e.g. [27, 35, 3] and the references
therein).
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Figure 2: Variance-time plot: Empirical variance of the
aggregated process normalized by the size of the aggre-
gation frame, plotted as a function of the size of aggre-
gation frame expressed in 10 ms units (logarithmic scale
on both axes). The dark circles correspond to the point
obtained from the four plots in figure 1 while the other
points correspond to intermediate aggregation intervals.

This counterintuitive behavior is clearly illus-
trated by figure 2, which represents the empirical
variance of the aggregated data normalized by the
aggregation interval as a function of the aggregation
interval. Based on conventional stationary time se-
ries theory, one would expect that, for sufficiently
large aggregation intervals, these points should line
up along a horizontal line (or, in other words, the
variance of the aggregated data should be propor-
tional to the aggregation interval) [4]. Figure 1
clearly shows that is far from being true for the
considered traffic data, since the least-squares line
fitted to the rightmost six points has a slope of 0.72.
Taking into account that the plot has logarithmic
scales on both axes, this means that, for large ag-

gregation intervals, the variance of the aggregated
process grows as the aggregation interval raised to
the power 1.72. Section 2 shows that this behavior
can be explained by a very slow decay of the au-
tocovariance function, a phenomenon which we will
refer to as long range dependence. Means for mea-
suring and quantifying this effect, of which figure 2
is only a very basic example, are covered in detail
in section 5.
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Figure 3: Empirical complementary distribution func-
tion for the Drexel data (logarithmic scale on both axes).
The vertical dashed bold line at 1.25 105 bytes / 10ms
(that is 1Mbits / 10 ms) corresponds to the capacity of
the network.

The other important characteristic of the data
shown in figure 1 is its extreme variability, or impul-
siveness. Figure 3 illustrates this point by plotting
the empirical complementary distribution function
(fraction of the data larger than a given value) es-
timated from the data shown in the top plot of fig-
ure 1 (that is, from one million 10 ms byte counts).
Starting from the leftmost part of figure 3, we ob-
serve that the plot declines from a level of 60%,
which is attributable to the fact that about 40% of
the data is zero. For moderately active networks
like the one under consideration, there is thus a sig-
nificant probability that not a single packet will be
transmitted during the 10 ms interval selected as
our time unit. Looking at the other end of figure 3,
it is clear that the highest data sizes one actually
observes corresponds to the full capacity of the net-
work link, which is 1 Mbits / 10 ms. In between
these extremes, the empirical complementary dis-
tribution function has a very slow decay. Similar
characteristics have been observed in various set-
tings [24] [22] [43], [32]. In general, impulsiveness is
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dominant in data flows generated by a single user
(so called source-level traffic), and LAN traffic of-
ten appears to be impulsive at both single user and
multiple users levels.
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Figure 4: Fraction of the overall workload represented
by data counts larger than a given quantile value (log-
arithmic scale on the x axis). The light dashed lines
corresponds to the two quantiles (1% and 0.1%) also
highlighted in figure 3. For instance, the 1% upper quan-
tile, corresponding to transfer sizes of 5.15 103 bytes per
10 ms and above, accounts for about 40% of the overall
workload.

Of course, one may wonder whether modeling
the tail behavior, i.e. the appearance of very rare
events, is indeed a sensible thing to do. Figure 4
shows that this is truly the case since a large frac-
tion of the workload, defined as the overall size of the
data transferred during the 10 000 s of traffic shown
in figure 1, is due to these rare but large transfer
sizes. Thus, the issue of extreme quantiles behavior
and impulsiveness has an important practical im-
pact, which justifies the need for specific models to
be described in section 3.

2 The low-frequency behavior:
long memory

2.1 Long range dependence

Let {Yk}k∈Z be a discrete-time second-order sta-
tionary process, with autocovariance function
γ(τ) := cov(Yk+τ , Yk)1. Most standard time-series
models assume that the covariance sequence is ab-

1In the following the index set of signals will be indicated
only when there could be some ambiguity. In other words,
{Yk} is our default notation for a discrete-time process.

solutely summable,
∑∞

τ=−∞ |γ(τ)| < ∞, meaning
that the dependence among the observations di-
minishes fast. For example, the correlation func-
tion of an ARMA process decreases geometrically
fast as the correlation lag approaches infinity. Such
processes are said to be Short-Range Dependent
(SRD).

To model phenomena exhibiting dependence
upon larger time-scale, we will consider in the se-
quel processes for which

∑∞
τ=−∞ |γ(τ)| = ∞, and

we will call them long-memory, or long-range de-
pendent [2]. The non-summability of the autoco-
variance captures the intuition behind long-range
dependence (LRD); even though the high-lag auto-
correlations are individually small, their cumulative
effect is of importance, thus giving rise to a behavior
which is markedly different from that of processes
with short-range dependence.

Though it is possible to develop a whole theory
from this starting point, we will restrict our atten-
tion to fractional processes, which is the class of
processes for which the autocovariance function de-
cays according to:

γ(τ) = L(τ)τ−2(1−H) with 1/2 < H < 1. (1)

In (1), the function L(τ) is slowly-varying at infin-
ity, i.e., for all positive x, limτ→∞ L(τx)/L(τ) = 1
(typical such slowly varying functions are constant
functions or ratios of two polynomials with identi-
cal degree). The coefficient H is referred to as the
Hurst parameter, by reference to the hydrologist
Hurst, who formally introduced these models for
river flows in the 50’s [19]. Equivalently, the asymp-
totic decay of the correlation may be characterized
by the so-called “fractional index” of the process,
defined as: d

4
= H − 1/2 (that is 0 < d < 1/2).

The spectral density of a LRD fractional process
verifying (1) is given by

f(λ) ∼ |1− eiλ|−2H+1L(1/λ), λ → 0+ (2)

where the function L(λ) is regularly-varying at in-
finity, and the symbol ∼ indicates that the ratio of
the left and the right hand side tends to 1. The
spectral density is unbounded at zero, while near
the origin obeys a power-law with index directly re-
lated to H. In contrast, the spectral density of a
short-range dependent process is bounded.
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2.2 Self-similarity and Long Range De-
pendence

Long-memory processes are intimately related to
self-similar processes [30], and the two words are
sometimes (improperly) used exchangeably in the
network literature. A continuous time process
{X(t)}t∈R, is self-similar with index H > 0, if
for all a > 0, for any n ≥ 1 and any n-tuple
(t1, t2, · · · , tn), the sequences (X(at1), · · · , X(atn))
and (aHX(t1), · · · , aHX(tn)) have identical distri-
butions (see also companion article [1] by Abry,
Baraniuk, Flandrin, Riedi and Veitch in this issue).
Thus, self-similarity implies that a change of the
time scale is equivalent to a change in state space
scale (this definition does of course require that the
process be defined in continuous time since we must
be able to scale the time axis by any positive fac-
tor a). The term self-similarwas coined by Man-
delbrot and is now standard. A process {X(t)}t∈R
has stationary increments if, for all t0 ∈ R, the
shifted processes {X(t + t0)−X(t0)}t∈R have iden-
tical distributions, irrespectively of the value of t0.
A process {X(t)}t∈R is said to be H-sssi if it is
self-similar with stationary increments. A beauti-
ful result is that there is a unique Gaussian H-sssi
process, {BH(t)}t∈R, the fractional Brownian mo-
tion or fBm for short. There are also non-Gaussian
finite-variance H-sssi processes, but none of them
play the same prominent role as the fBm, which has
been used successfully to model a variety of natu-
ral phenomena, such as terrains, coast lines, and
clouds, and, of course, network traffic data. Note
that, if H = 1/2, the fBm coincides with the classi-
cal Brownian motion [38].

Since fractional Brownian motion has station-
ary increments, its sampled increments, YH(k) =
BH(k) − BH(k − 1), k ∈ Z, form a stationary se-
quence. The sequence {YH(k)}k∈Z is called frac-
tional Gaussian noise (FGN). Note that, as τ →∞,
the autocovariance function of the FGN is γ(τ) ∼
σ2

0H(2H − 1)τ2H−2 (for H 6= 1/2), and thus, for
1/2 < H < 1, the FGN is a long-memory frac-
tional process, outlining the links between H-sssi
processes and LRD processes.

A striking feature of FGN with H 6= 1/2 is that
it provides a counterexample to the usual central
limit theorem. Indeed, for d−1

m

∑m
k=1 YH(k) to con-

verge in distribution, as m → ∞, to a non-trivial
limit, one cannot choose dm ∼

√
m but rather

dm ∼ mH : Since {YH(k)}k∈Z is the increment pro-

cess, m−H
∑m

k=1 YH(k) = m−HBH(m) which has
the same distribution as BH(1) due to self-similarity
of {BH(t)}t∈R. Since H > 1/2, this means that a
salient feature of long memory processes, such as
the FGN, is that the variance of time averages de-
creases far less rapidly than observed in usual (short
memory) models.

2.3 Aggregation, long-memory and
asymptotic self-similarity

For discrete time processes, self-similarity is bet-
ter described by means of distributional invariance
upon aggregation and scaling. More precisely, let
{Y (m)

k }k∈Z denote the aggregated process of order
m :

Y
(m)
k :=

km∑
j=(k−1)m+1

Yj , k = 1, 2, . . .

that is, the process defined as the sum over con-
secutive blocks of size m of the original process
{Yk}. A process is exactly self-similar with index
α if, for all m ≥ 1, the scaled aggregated process
{m−αY

(m)
k }k∈Z has the same distribution as {Yk}.

It is easily seen that FGN with Hurst parameter H
is self-similar with index H, and it can be shown
that it is the only discrete-time finite-variance pro-
cess that has this property.

A weaker form of discrete-time self-similarity can
be defined by examining the limiting behavior of
{Y (m)

k }k∈Z for large values of m. Recall that if
{Yk} was a sequence of zero-mean i.i.d random vari-
able with finite variance σ2, the central limit the-
orem would imply that, at the limit of large ag-
gregation m, the finite dimensional distributions of
{m−1/2Y

(m)
k }k∈Z converge to those of a Gaussian

white noise with variance σ2. This is of course no
longer the case for long memory processes: Assume
that {Yk} is a stationary fractional process with in-
dex 1/2 < H < 1, a simple but profound result of
the theory is that under mild conditions, as m →
∞, the limiting distribution of {m−HY

(m)
k }k∈Z is

that of the FGN of index H. This fact draws strong
links between LRD and self-similarity. This is the
reason why LRD processes are sometimes referred
to as asymptotically self-similar. Intuitively, the
most striking feature of asymptotically self-similar
processes is that their aggregated processes do not
tend to second-order white Gaussian noises.
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Aggregation can thus serve as a means to esti-
mate the Hurst coefficient. The procedure, often re-
ferred under the catchy name of variance-time plot
consists of regressing the variance vm of {Y (m)

k }k∈Z
on the aggregation size m. Under weak depen-
dence conditions, vm is linear w.r.t m at the limit
of “large” aggregation intervals. If the process is
LRD, the variance of the running aggregate process
variance vm increases more quickly than m. More
precisely, if the process is LRD fractional with Hurst
parameter H, then vm ∝ m2H . The Hurst coeffi-
cient can thus be deduced by estimating the slope in
the regression of log vm on log m. Figure 2 displays
such a variance-time plot using logarithmic scales.
The procedure has been often used in the early days
of network traffic analysis [27], [41], though it is
now well established that this is a poor estimator
of the memory coefficient from a statistical perspec-
tive. These estimators are outperformed by either
spectral domain (see section 5.1) or wavelet-domain
estimators (described in [1]).

One of the salient features of self-similar processes
is that they capture an important empirical law,
commonly referred to as the Hurst law. Consider a
finite stretch of observations, Y1, . . . , Yn. Denote by
Ȳn the sample mean and S2

n the sample variance,
and define Wk :=

∑k
`=1 Y`− kȲn, k = 1, . . . , n. The

rescaled adjusted range statistic (R/S statistic for
short) is given by

Qn := S−1
n

(
max(0,W1,W2, . . . ,Wn)−

min(0,W1,W2, . . . ,Wn)
)
.

When Y is asymptotically self-similar with self-
similarity parameter H, E [Qn] = nHL(n), where
L(n) is slowly varying at infinity. This property is
the so called Hurst law which states that the range
of the aggregated process is of much larger order
when long term dependences are present (the ap-
propriate asymptotic scaling factor would be n1/2

only for short-memory processes). The R/S statis-
tics thus provides an alternative estimator of the
Hurst parameter. Hurst has found experimentally
that many naturally occurring time series appear
to satisfy the Hurst law [19]. This estimator has
however rather poor statistical performance, and is
nowadays seldomly used in practice.

3 Modeling impulsiveness

In the previous section, we saw that the presence
of long-range correlations in the data could partly
account for the unusual range of the aggregated
process that was observed in figure 1. But fig-
ure 3 indicates that the marginal distribution of
the data is already very dispersed, with non negligi-
ble probability of observing extremely large values.
This feature can be captured through the use of
so-called heavy-tail models which exhibit tails that
decay much slower than Gaussian or exponential
distributions. A perhaps surprising characteristic
of some of these models is that they have infinite
variance. We should emphasize here that, like most
physical phenomena, traffic time series can hardly
be considered as having infinite variance. Employ-
ing heavy-tail models in modeling such data only
constitutes an approximation of the real tail behav-
ior.

3.1 Heavy tail distributions

A random variable X is regularly-varying index α,
if there exists a slowly-varying function at infinity,
L(x), (see the definition given in Section 2.1) such
that, as x →∞,

P(|X| ≥ x) ∼ L(x)
xα

. (3)

The variable X is said to have heavy tails with in-
finite variance if X is regularly varying with index
0 < α < 2. In those cases, the variance of X is
infinite (if α < 1 the mean itself is infinite). Man-
delbrot [30] refers to (3) to as the Noah effect or
the infinite variance syndrome. Intuitively, an in-
finite variance means that the random variable X
can fluctuate far away from its central range (the
reader may think of it as the median level, since
this is always correctly defined whatever the value
of α is). For example, the Pareto distribution with
complementary distribution function:

P (X ≥ x) =
{

(x0
x )α, x ≥ x0,

1, x < x0,
(4)

where x0 is positive constant and 0 < α < 2, satis-
fies the heavy-tail condition.

3.2 α-stable distributions

A particular class of heavy-tail distributions with
infinite variance are the (symmetric) α-stable ones.
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Their characteristic function has the following form:

Φ(θ) = E[exp(iθX)] = exp (−|θ/σ|α) , (5)

where σ is a scaling parameters. Further generaliza-
tions of (5), omitted here for brevity, include intro-
ducing a shift and a skewness (asymmetry) param-
eters. Such a distribution is “stable”, in the sense
that if X1, . . . Xn are i.i.d. random variables with
distribution given by (5), then m−1/α

∑m
i=1 Xi also

has the same distribution. Thanks to this property,
α-stable models have a number of desirable features
in terms of estimation and processing [34].

4 Stochastic modeling of long-
range dependence and heavy
tails

After having reviewed the main concepts pertain-
ing to long-range dependence and heavy-tail dis-
tributions, we now consider the models that have
been proposed for capturing long-range dependence
and heavy-tailness in the context of network traffic.
One approach relies on behavioral models, which at-
tempt to mimic the trends observed in measured
data, without taking into account the nature of net-
work traffic. Such models are also referred to as
“black-box”. The second approach relies on struc-
tural modeling. It attempts to explain the observed
data characteristics by using knowledge about the
traffic, such as the fact that it results from superpo-
sition of a large number of sources that share com-
mon resources (the individual user sessions). Be-
havioral modeling is often severely criticized in the
network engineering literature, see [42] for instance,
because the parameters of the fitted models are not
related to network parameters, and thus do not lend
themselves to an easy interpretation. Nevertheless,
behavioral models can be useful for simulation pur-
poses or traffic forecasting.

It is clear that one can extract a large amount of
information from a traffic trace, which can be used
in designing structural models. For instance, the
header of the TCP packets may be used to, at least
partly, recover individual sessions, end-to-end pro-
tocols, or application level information. However, it
is often not possible to describe the full complexity
of the data using a structural model, which means
that, at some stage, one might have to resort to
behavioral modeling.

4.1 Behavioral models

In this section, we only describe the linear mod-
els, which build on the familiar ARMA models,
and constitute a simple but yet rich class of models
for series presenting long-range dependence effects
and/or heavy marginal tail properties.

Linear second-order stationary models are de-
fined by

Yk =
∞∑

`=0

a`Zk−` (6)

where {Zk} is a sequence of independent or iden-
tically distributed (i.i.d) zero-mean finite-variance
random variables and

∑∞
`=0 a2

` < ∞. The fact that
Y = {Yk} is LRD implies that

∑∞
`=0 |a`| = ∞, oth-

erwise such process has absolutely summable auto-
covariance sequence. {Yk} is a fractional process if
a` ∼ C`d−1, with C ∈ R, as ` → ∞ . The basic
building block in defining such a model is the frac-
tional difference operator [18], which is a fractional
generalization of the classical difference operator.
For d < 1/2, consider the formal power series ex-
pansion of (1− z)−d,

(1− z)−d =
∞∑

j=0

bj(d)zj =
∞∑

j=0

Γ(d + j)
Γ(d)Γ(j + 1)

zj (7)

where Γ denotes the Gamma function. The process
{Xk} is the fractional integration of order d of the
process {Yk}, if

Xk = (1−B)−dYk =
∞∑

j=0

bj(d)Yk−j (8)

where B denotes the backward shift operator
(BYk = Yk−1). For d = 1, 2, . . ., (1−B)−d is merely
the inverse of the difference operator (1−B) iterated
|d| times. For a non-integer value of d, (1 − B)−d

has to be interpreted by its series expansion given
by (7).

According to the terminology introduced by
Granger and Joyeux (1980), {Xk} corresponds to
a FARIMA(p, d, q) model (namely, Auto-Regressive
Fractionally Integrated Moving Average) when
{Yk} is a causal invertible ARMA(p, q) process.
The process {Xk} is then asymptotically self-similar
with index H = d + 1/2. FARIMA processes are
more flexible than the simple FGN introduced in
section 2.2, since they allow for simultaneous mod-
eling of short-range and long-range behaviors (that
is, respectively, of small-lag and large-lag regions of
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the autocovariance function). The FGN process is
specified by two parameters only (fractional index
d and variance), which are not sufficient to capture
a wide range of low-lag autocorrelation structures
encountered in practice.

Defining infinite-variance linear models is a bit
more intricate since we cannot anymore rely on the
usual definition of the autocovariance function. It
can, however, be shown that if {Zk} is an i.i.d. se-
quence of regularly-varying random variables with
index α ∈ (0, 2), the series in (6) converges with
probability 1 (that is the process {Yk} is well de-
fined) provided that the coefficient of the impulse
response of the filter decay sufficiently fast in the
sense that

∑∞
j=0 |aj |δ < ∞, for some δ ∈ (0, α).

A surprising fact, is that the sample autocorrela-
tion function

ρ̂n(τ) :=
∑n−τ

k=1 YkXk+τ∑n
k=1 k2

t

provides a useful measure of dependence in this con-
text despite the fact that {Yk} has non finite vari-
ance in this context. Indeed, it can be shown [6]
that ρ̂n(τ) converges (in probability) for large val-
ues of n to ∑∞

j=0 ajaj+τ∑∞
j=0 a2

j

,

which is nothing but the usual expression of the cor-
relation function of a finite variance version of the
model of (6). Readers interested in this topic and
its applications for traffic data should refer to [37].

Alpha-stable linear models constitute an espe-
cially interesting subclass of linear models with in-
finite variance. Since any linear combination of a
finite number of i.i.d. α-stable random variables
is also an α-stable random variable (see section 3),
there exists a simple characterization of linear mod-
els based on these distributions. A flexible model is
provided by FARIMA with stable innovations. Ba-
sically the model is defined as in the second-order
case (cf. (8)), except that the innovation sequence
{Yk} is now an i.i.d. α-stable sequence. It can be
shown that the existence of the process is then guar-
anteed provided that d < 1− 1/α [38]. LRD arises
when d > 0, which is possible only if α > 1.

FARIMA models have been used with some suc-
cess for traffic modeling, notably for variable-bit-
rate (VBR) video traffic following [7] – see also [16].
Simulation and prediction of FARIMA processes is
a non trivial task and nothing exact can be expected
outside Gaussian FARIMA models, i.e., when {Yk}

is and ARMA model with Gaussian innovation se-
quence. Nevertheless, approximate simulation tech-
niques are available for infinite variance FARIMA
models [25].

Taking into account that most signals encoun-
tered in network traffic engineering are inherently
positive, linear models, and in particular Gaussian
ones, can only be applied after pre-transforming the
data. When dealing with packet data, it is common
to consider the logarithm of the measurements [27].
This choice of transformation is rather ad-hoc, and
effectively assumes that the marginal distribution
of the underlying data is log-normal.

4.2 Structural models

In structural modeling, one tries to reproduce the
observed features of the measurements, using mod-
els whose parameters are related to the traffic gen-
erating mechanism and the behavior of the main
components of the network (e.g., protocols, net-
work topology, routing strategy). This approach
is by far the most popular in the network commu-
nity, because contrary to the behavioral models, it
provides insight into the impact of network design
parameters and control strategies.

At some level of abstraction, a network can be
modeled as a controlled non-linear system. Struc-
tural models can be either open-loop or closed-loop,
depending on whether the network feedback on the
input flows is taken into account or not. Exam-
ples of network feedback include the TCP adaptive
window size mechanism (triggered by the observed
round trip time delays and losses in the link), or the
congestion avoidance strategy in routers. Closed
loop models make more sense, but the network com-
plexity is enormous and only rough approximations
of these feedback mechanisms can be used for mod-
eling purposes.

To give a feeling of what a structural model can
be, we focus on what is perhaps the most intuitive
and simple model for LAN or WAN traffic, namely,
the ON/OFF model. This is an open-loop model,
and was proposed in the seminal paper by Willinger
et al [41] (see also [14]).

Based on a construction originally suggested by
Mandelbrot [30], the ON/OFF model views the
overall traffic as a superposition of many i.i.d. al-
ternating ON/OFF processes (interested readers
should check [13] for a related approach involving a
varying number of sources).
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An ON/OFF process represents traffic between
a single source/destination pair. It alternates be-
tween two states: the ON state, during which the
source transmits data at a constant rate; and the
OFF state, during which the source is silent.

Figure 4.2 displays a schematic view of a section
of the ON/OFF process. X1, X2, . . . are i.i.d non-
negative random variables representing the dura-
tion of the ON states, and Y1, Y2, . . . are i.i.d non-
negative random variables representing the dura-
tion of OFF states. Furthermore, the sequences
{Xk}k≥1 and {Yk}k≥1 are independent, regularly-
varying with indices αON > 1 and αOFF > 1, re-
spectively. Hence, both distributions have finite
mean, but their variance can be infinite, depend-
ing on whether the corresponding tail index is less
than 2.

The On/Off model came to explain, for the first
time, the self-similar behavior of traffic, which was
experimentally observed by many researchers. It is
basically the heavy-tail On and Off durations that
lead to such behavior. This assumption is consistent
with network measurements. Indeed, the OFF du-
ration can have high variability, since some source
model phenomena that are triggered by humans
(e.g., HTTP sessions) have extremely long period
of latency. There is also significant amount of em-
pirical evidence suggesting that the ON duration is
heavy-tail. A well established observation for in-
stance is that the sizes of the files available on a
server are heavy-tail, which implies that the trans-
fer times for these files also have the same type of
characteristics [5].

A mathematical expression for the process of fig-
ure 4.2 is the following:

W (t) =
∞∑

n=0

1[Sn,Sn+Xn)(t) for t ≥ 0,

where Sk denotes the time of occurrence of the k-th
ON period, and 1[s1, s2](t) is the indicator function,
being defined as non-zero and equal to one only for
t ∈ [s1, s2]. The distribution of S0 is adjusted so
that W (t) is strict sense stationary (see [39] for de-
tails).

The autocovariance function of {W (t)} may be
expressed as [29]

γW (τ) = τ−(min(αON,αOFF)−1)L(τ)

where L is slowly varying at infinity. If
min(αON, αOFF) is less than 2, the process is long-

--

Sn+1

Xn Yn

OFF

ON W(t)

Sn

Figure 5: A single ON/OFF source

memory, with fractional differentiation index d =
1−min(αON, αOFF)/2.

Now consider a superposition of M i.i.d.
ON/OFF sources {W (m)(t)}, m = 1, . . . ,M . The
workload process {NM (t)}t∈R+ is simply defined as
the number of sources that are in the ON state
at time t. {NM (t)} thus varies between 0 and M
and also exhibits LRD when min(αON, αOFF) is less
than 2.

Let us consider the cumulative input to the server
between times 0 and t, defined as:

AM (t) =
∫ t

0
NM (s)ds.

It can be shown [39] that AM (t) corresponding to
an increasing number of i.i.d. ON/OFF sources,
under proper normalization, converges to the frac-
tional Brownian motion, in the sense of convergence
of the finite dimensional distributions. The result
is formulated as a double limit, and the order of
taking the limit matters (first let M → ∞ and
then, let t → ∞). This results was thought to be
of fundamental importance because it established
that properly aggregated and rescaled source traffic
is not only long-range dependent but also asymp-
totically self-similar. Recent contributions however
point out that other limiting processes, which are
not necessarily self-similar, can be obtained by us-
ing a different aggregation scheme (for instance, let-
ting t →∞ and then M →∞) [31].

For practical uses of this model however, the most
important fact illustrated on figure 6 is perhaps
that there is a very pronounced difference of behav-
ior depending on whether or not min(αON, αOFF)
is smaller than 2: In the first case (red curve),
the LRD phenomenon is patent with occasional
very large excursions as well random very long-term
trends (the x axis corresponds to 10000 points); In
the second case (blue curve), one obtains a process
whose oscillations are mostly high-frequency which
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Figure 6: Workload resulting from the superposition of
500 sources: Top (red curve), αON = αOFF = 1.2 which
corresponds to a LRD limit with d = 0.4; Bottom (blue
curve), αON = αOFF = 4 which corresponds to a SRD
limit.

could be represented, for instance, using a standard
(short memory) autoregressive model.

Several modifications of the simple ON/OFF
paradigm have been proposed. An obvious limi-
tation of the basic ON/OFF source model is that
all sources systematically emit at a nominal level.
A natural way of raising this limitation consists in
making the level of activity of each source random
using a sequence {Gn}n≥0 of non negative i.i.id.
random variables (also called the “reward” vari-
ables). The process that describe the activity of
a single source is now defined as

W (t) =
∞∑

n=0

Gn1[Sn,Sn+Xn)(t) for t ≥ 0,

In [43], for instance, the author consider the case
where the rewards themselves follow a Pareto dis-
tribution, with possibly infinite variance giving rise
to a process which exhibit heavy-tails at the source
level.

5 Quantification of long-range
dependence

The application of the concepts and models that
have been introduced so far for network traffic data,
although dominant in the network engineering lit-
erature of the past ten years, has been somewhat
controversial (compare, for example, [7] and [16],
[37] and [42] or [39] and [31]). One should not be

mistaken to believing that these controversies indi-
cate a failure of such statistical approaches; they
rather reflect the fact that we are here tackling a
very tough problem. Estimation of the LRD index,
d, or the tail index, α, from network traffic data
is a statistically challenging task (let alone the is-
sue of “verifying” experimentally whether the data
is indeed self-similar). In the sequel, we illustrate
some of the difficulties encountered when estimating
long-range dependence parameters (this section), or
tail properties (section 6) and provide an idea of the
statistical performances that can be reached.

In the case of finite variance processes, LRD is
described by the Hurst parameter, for the estima-
tion of which extensive research results exist. Far
fewer results exist for the quantification of LRD in
the case of infinite variance processes. In this sec-
tion, we provide a summary of existing literature
for the above two cases.

5.1 Estimation of the Hurst parameter

Long-range dependence manifests itself either in
time-domain (power-law decay of the autocorrela-
tion) or in spectral domain (power-law singularity
of the spectral density at zero frequency). Con-
sequently, the problem of testing and estimating
the long-memory behavior can be approached from
a number of different angles utilizing both time-
domain, frequency-domain and wavelet-domain ap-
proaches. We focus here on the frequency domain
approach, and refer to [1] (this issue) for an alterna-
tive technique, based on wavelet (instead of Fourier)
decomposition.

The estimation of the Hurst parameter in spectral
domain amounts to estimating the exponent of the
spectral density as the frequency approaches zero.

The oldest and most natural tool for spectral
estimation is the tapered periodogram defined as
I(λ) = |d(λ)|2 where :

d(λ) =
1√

2π
∑n

t=1 |ht|2

n∑
t=1

htXte
itλ

The use of tapers is important for the analysis of
long-memory time-series in order to minimize leak-
age effects. For practical and theoretical reasons
(see [21], [20]), it is recommended to use tapers
whose Fourier transform is a finite combination of
Dirichlet kernels. We restrict our attention to the
tapers proposed by Hurvich and Chen [21], i.e.,
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ht = (1 − exp(i2πt/n))p, where p is referred to as
the order of the kernel.

5.1.1 Local methods

The so-called local methods aim at constructing
estimators that are consistent, without imposing
any restrictions on the behavior of the spectral
density away from zero, except from integrability
on [−π,+π]. Recall that, since the spectral den-
sity f(λ) ∼ Cλ−2d as λ → 0+, then log f(λ) '
log C−2d log(λ), i.e. the log spectral density is ap-
proximately linear in the log-frequency scale, and
the intercept of the log-frequency is equal to (two
times) the memory parameter.
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Figure 7: GPH Plot. The log-periodogram as a function
of the log-frequency together with the local regression
line. Top plot: Gaussian FARIMA(1,d,0), with d = 0.4
and θ = 0.9. Bottom plot: Gaussian AR(1) process,
Xt = 0.9Xt−1 + εt. In both case the number of samples
is n = 105. Prior to taking the log, the periodogram
ordinates has been averaged (pooled) over m = 5 bins.

This idea has been pushed forward in an early
work by Geweke and Porter-Hudak (hence the
acronym GPH) [8]. Of course, the relation
log f(λ) ' log(C) − 2d log(λ) is valid only in a
neighborhood of the zero frequency, and thus the
regression line should be computed using only a
subset of the log-periodogram ordinates log I(λk),
k ∈ {1, . . . ,M}, where λk are the Fourier frequen-
cies. The choice of the bandwidth parameter M is
difficult problem, which critically influences the es-
timation procedure. The problem shares similarity
with the choice of the bandwidth of a kernel for non-
parametric spectral density estimation. Too small
bandwidth M yields estimator with small bias (be-

cause the approximation of log f(λ) by C−2d log(λ)
is adequate for λ close to zero) but large variance
(because the number of terms entering in the regres-
sion is small). A careful choice of the bandwidth
should ideally mitigate these two effects. Graphi-
cal techniques [40] are very useful for selecting the
bandwidth parameter based on some simple visual
statistical diagnostics. Of course, this approach is
only suited for off-line estimation, and automatic
bandwidth selection rules are also of great practical
interest. We focus here on the graphical approach
for illustration purposes. A good approach is to
plot d̂(M) as a function of M , together with the
lower and upper confidence bounds, which are de-
termined from the variance of the regression noise
and the regression coefficients. To a first order ap-
proximation, this variance is independent from the
memory parameter, d, and thus the bounds can be
evaluated a priori (see Figure 8). Since these esti-
mators are consistent estimators of d, it is expected
that these plots have a stable regime around the
true value of d.
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Figure 8: GPH Dynamic Plot (with 95% confidence
intervals). The processes under considerations are the
same as in figure 7. For small values of the bandwidth
M the regression variance is very large and yields to use-
less estimates; for large value of M the bias dominates
the variance. The red (FARIMA) and green (AR) plots
appear very similar except for a shift by d = 0.4, show-
ing that the major source of bias is indeed due to the
approximation of the “short-memory” component.

Figure 9 shows the GPH dynamic plot corre-
sponding to a segment of LAN traffic stretching
over one-hour during the busy period. A visual in-
spection shows values of the memory parameter d
in the range 0.35, 0.4], showing evidence of LRD in
the data set. This corroborates the result observed
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Figure 9: GPH Dynamic plot for one hour segment
of the Drexel LAN traffic in a busy period (with 95%
confidence intervals).

for the simple variance-time plot shown in figure 2,
since we have seen in section 2.3 that the rate of
growth of the variance of the aggregated process is
equal to 2H = 1 + 2d (an thus, the 0.72 slope in
figure 2, corresponds to a value of 0.36 for d).
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Figure 10: GPH Static plot, for a one hour segment of
the Drexel LAN traffic in a busy period.

Automatic determination of the bandwidth is a
difficult problem. Methods based on plug-in (re-
quiring a pilot estimate of the spectral density of
the short-memory component in a neighborhood of
zero) has been discussed e.g. in [15]. Adaptive tech-
nique, based on the so-called intersection of confi-
dence intervals method is presented in [9], [10] and
[23].

5.1.2 Global methods

The local GPH estimator has a global counterpart.
Instead of estimating d and f∗(0) on a vanishing
neighborhood of zero frequency, global estimators
jointly estimate d and f∗ over [−π, π]. Examples
of global methods include the FEXP estimator [33]
and the FAR estimator [26].

Like the GPH estimator, the FEXP estimator is
based on log-periodogram regression. The principle
of the FEXP estimator is to estimate simultane-
ously d and the coefficients of a truncated expansion
of log f∗(λ) '

∑q
j=0 θj cos(jλ) on the cosine basis

where q is a truncation number, which plays a role
similar to the bandwidth parameter, M , for local es-
timators. For small values of q, the bias is large (be-
cause the parametric model does not have enough
degree of freedom to model the short-memory com-
ponent of the spectral density) and the variance of
the estimator is small (because the number of pa-
rameters to estimate is limited). On the contrary,
large values of q yield to estimators with small bi-
ases but large variance. Here again, graphical meth-
ods may prove useful for off-line application. Dy-
namic display allows to monitor the variation of d̂
as a function of q, helping to identify stable regions
(see Figure 11). Assessment of the goodness-of-fit
can then be done by choosing and fixing q and by
plotting the periodogram together with the fitted
spectral density. Automatic data driven selection
procedure for the truncation parameter q has been
considered in [23].

The FEXP estimator has been shown in [23]
(see [33]) to have many interesting statistical prop-
erties. It is in general better behaved than the
GPH estimator in cases where f∗ is smooth because
it achieves a better separation between the long-
memory and the short-memory components. Com-
paring figures 11 and 8, the FEXP dynamic plot is
less ambiguous than the GPH plot in the sense that
it is easier to spot the region which correspond to a
good compromise between the bias and the variance
– typically for q between 10 and 15 on figure 11.

5.2 Quantification of LRD for infinite
variance processes

Extensions of the previous frequency methods to
LRD linear processes with infinite variance have
been considered in a number of works [40]. These
extensions rely on the use of the normalized peri-
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Figure 11: FEXP Dynamic Plot (with 95% confidence
intervals). The processes under considerations are the
same as in figure 7. For small values of the order q, the
regression variance is small but the bias is very large
which yields to useless estimates; for large value of q,
the variance is large but the bias is small. The red
(FARIMA) and green (AR) plots are very similar except
for a shift by d = 0.4, showing that the major source of
bias is indeed due to the approximation of the ”short-
memory” component.
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Figure 12: FEXP Dynamic plot, for a one hour segment
in a busy period (with 95% confidence intervals).

odogram

I(λ) =
|
∑n

t=1 htXt exp(−itλ)|2∑n
t=1 h2

t X
2
t

,

In the absence of tapper (ht = 1), I(λ) is the Fourier
transform of ρ̂n the sample autocorrelation func-
tion of the considered process (remember that in
section 4.1, it was shown that the sample autocor-
relation function indeed converges to a finite limit
for a large class of infinite variance models).

A alternative estimator of the Hurst parameter
was used in [43]. It results from a linear regression
applied to an empirical estimate of the logarithm
of the generalized codifference [38],[36]. Despite re-
cent advances, these estimators are still far less well-
known.

6 Estimation of the tail index

The estimation of the tail index is of key importance
when assessing the sporadicity of the traffic. Let
{Xk}k≥0 be a strict sense stationary process, taking
on positive values only, and also let is be regularly-
varying with index of variation α. The problem that
we address next is the estimation of the tail index,
α, from a finite stretch of data (X1, X2, . . . , Xn).

6.1 Hill Plot

Let X1,n ≤ X2,n ≤ · · · ≤ Xn,n be the order statis-
tics of the sample X1, . . . , Xn, which consist of the
samples of the process, placed in increasing order.
For some k < n, we define the Hill estimator [17] to
be the difference between the logarithm of the k-th
largest observation and the average of the logarithm
of the k largest observations, i.e.,

α̂−1
k,n = k−1

k∑
j=1

log(Xn−k+j,n/Xn−k,n).

When {Xj}1≤j≤n is an i.i.d. sample of a Pareto
distribution (see eq. (4)), then the Hill estimator
for k = n is the maximum likelihood estimator for
α−1. The Hill estimator is easy to obtain, and its
asymptotic behavior is well understood (at least un-
der conditions implying short-range dependence).
However, it has certain drawbacks : it is sensitive
to the value of k, for the selection of which very
little guidance can be offered.

The choice of k is of course a difficult issue. A
useful graphical tool is to plot α̂k,n as a function
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of k, which yields to a dynamic Hill plot. Since for
appropriately chosen sequence of the tail thresholds
kn, α̂−1

kn,n is a consistent sequence of estimators of
α−1, it is expected that the Hill plot should have a
stable regime at height α.

In practice, the Hill Plot exhibits extreme volatil-
ity, which makes finding a stable regime in the plot
more guesswork than science. As an alternative to
the dynamic Hill plot, it is sometimes useful to dis-
play the information provided by the Hill estimator
as the curve α̂[nθ],n) for values of θ between 0 and 1,
where [y] is the smallest integer greater or equal to
y > 0. This alternative display is sometimes reveal-
ing, since the small order statistics get shown more
clearly and cover a bigger portion of the displayed
space. However, when the data is Pareto or nearly
Pareto, this alternate plotting device is less useful
since in the Pareto case, the Hill estimator applied
to the full data set is the maximum likelihood esti-
mator and hence the correct answer is usually found
at the right end of the Hill plot.
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Figure 13: Hill plot, for a one hour segment in a busy
period.

The Alternate Hill of a one hour extract (360 000
points) of the Drexel LAN traffic data are shown
in Figures 13. The right point of the plot coin-
cides with the 10% upper quantile, which accounts
for nearly 80 % of the cumulated workload (see fig-
ure 4). A stability region can be found starting at
the 2 % upper quantile with value of the tail index
in the range (1.5, 1.8): it is however difficult to de-
termine a precise value (the Hill estimator in the
range of 2 % to 5 % upper quantile is more like a
monotonously declining line). This value may be
considered as an evidence of heavy tail. Note how-

ever that this tail index is not compatible with the
values found for the extreme quantile (say above
the 1 % upper quantile), where the tail index is
much larger : this effect cannot only be attributed
to the variance of the Hill plot but reflects the fact
that the distribution above extreme quantiles are
not well approximated by regularly varying tails be-
cause these models do not take into account the
fact that the data is indeed bounded as shown on
figure 3. As noted in the introduction however,
figure 4 shows that modeling of upper quantiles is
an important matter since these contribute signifi-
cantly to the cumulative workload of the network.

6.2 Quantile-quantile regression plot
(qqplot)

The quantile-quantile regression plot is also based
on the property that, for a regularly-varying Xk

with index α, the distribution of Xn−k+j,n/Xn−k,n,
for large k, is approximately Pareto with shape pa-
rameter α.

If the data are Pareto distributed over [1,∞) with
shape parameter α, then {(1 − j/(n + 1))−1/α, 1 ≤
j ≤ n} are quantiles of their probability distribution
whereas {Xj,n}1≤j≤n are the corresponding quan-
tiles of the empirical distribution function. This
suggests to estimate α by plotting the empirical
quantiles versus the theoretical quantiles (qq-plot)
in log scales for both axis. Indeed, {(− log(1−j/(n+
1)), log(Xj,n)), 1 ≤ j ≤ n} should be approximately
a line with slope α−1. Similarly as above, when Xk

is regularly-varying with index α, and k is such that
k−1+k/n → 0, then Xn−k+j,n/Xn−k,n, 1 ≤ j ≤ k is
approximately Pareto with shape parameter α. The
slope of regression 1 − log(1 − j/(k + 1)) through
the points log(Xn−k+j,n/Xn−k,n) can thus be used
as an estimator of the tail index. This estimator
is referred to as the qq-plot estimator. Although in
the i.i.d. case its asymptotic variance is worse than
the asymptotic variance of the Hill estimator, the
variability of the qq-plot always seems to be less
than that of the Hill estimator.

As in the case of the Hill plot, the dynamic qq-
plot obtained by plotting (k, α̂k,n), for l < k <
n is a useful tool. Another useful graph is the
static qq-plot in which one represents the data
log(Xn−k+1,n/Xn−k,n) as a function of log(1−j/(k+
1)) together with the least-squares regression line.
The slope of that line is used to compute the qq-
estimator α̂−1

k,n. interest to assess the validity of the
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Figure 14: Static QQ-plot for a 1-hour segment in a
busy period (k = 500).

regular tail variation model. In figure 14, the static
qq-plot for a one hour (n = 360000) segment of
the Drexel data (busy traffic period) is displayed
for k = 500. On this example, the static qq-plot
suggests that the upper-quantiles (k = 500 highest
values out of n = 360000) are compatible with a
regular variation model with tail index, as given by
the slope of the regression line, about 3.52. This
correspond to a distribution with very heavy tails
(compared to those of a Poisson model for instance)
but with finite variance.

7 Conclusions

This tutorial paper has discussed statistical mod-
els for analyzing long-range dependence and impul-
sive phenomena that appear in high-speed network
traffic. The main challenge of this exciting rapidly
evolving domain of engineering is that the charac-
teristics of the data are so extreme that they have
led to the development of new concepts and models,
the most simple of which have been described in sec-
tion 4. Finally, since we are indeed dealing with ex-
treme behavior (very long term correlations in one
case and very rare events in the other), the sta-
tistical performances of the estimation procedures
become a very important concern which has been
covered in some details in sections 5 and 6.
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